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S1. Supplementary  

S1.1 Preliminary analysis  

We perform a preliminary analysis where we examine the link between the crevasse binary map (CNN and NeRD) and the 

ice rate factor field 𝐴𝐴 using two different ice rate factor thresholds: an 𝐴𝐴 value for temperate ice and an 𝐴𝐴 value 10 times 

large. We evaluate the confusion matrix charts (Fig. S1) and F1 scores (Table S1 and S2) to assess the performance of the 5 

model and assess whether the dataset is unbalanced. The confusion matrix chart summarises the four possible outcomes of a 

binary classification analysis between predicted and true classes: True positive, True Negative, False Positive and False 

Negative. These values are used to estimate different performance metrics such as accuracy, precision, recall and F1 score, 

which allow us to quantify how often the model makes correct and incorrect predictions for the presence of crevasses at a 

given location. The precision metric measures the proportion of true positive predictions among all positive predictions, 10 

while the recall metric is the proportion of true positive prediction among all true positive cases. The F1 score is the 

“harmonic mean” of these two metrics, and ranges from 0 to 1 (Rizk et al., 2019). It is useful when both false positives and 

false negatives are equally undesirable, and the dataset is unbalanced.  

 

Since the crevasse datasets are highly skewed towards the non-crevassed class (99 %), with such an imbalanced distribution 15 

of classes, a “naïve” classifier will likely show a biased high accuracy, as it would predict most non-crevassed regions 

correctly, while performing poorly on the minority class. This is clearly reflected in the confusion matrix charts and the F1 

scores reported in Fig. S1 and Tables S1 and S2, for Filchner-Ronne and Pine Island ice shelves, respectively. The confusion 

charts summarise the results of a binary classification analysis, between predictions and observations. In both cases, for all 

crevasses and heavily damaged crevasses, the non-crevassed region is correctly detected, yet the model fails to detect the 20 

crevasse class, which is a minority in the dataset. This is further reflected in the F1 score analysis. A high weighted F1 score 

is measured for both A-thresholds, which would suggest that the model identifies crevasses accurately while minimizing 

incorrect hits and misses. However, these scores are unreliable as the majority no-crevasses class, which dominates the 

sample, provides very high performances compared to the minority crevasse class (0.0074 and 0.0024, in Table S1), overall 

dominating the final score. This is visible on both Filchner-Ronne and Pine Island ice shelves, as most samples belongs to 25 

the non-crevassed class. As a result, the F1 scores for all crevasse maps and A-thresholds are considerably influenced by the 

majority class, making it challenging to evaluate accurately the model’s performance on the minority (crevasse) class. 
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Figure S1 Confusion matrices for two classification cases, when 𝑨𝑨 is greater than 𝑨𝑨 for temperate ice measured by experiments 
and when 𝑨𝑨  is ten times greater than 𝑨𝑨 for temperate ice, for Filchner-Ronne Ice Shelf for all crevasses (panel a), and for Pine 
Island Ice Shelf for all and heavily damaged crevasses (panel b). All matrices summarize the predicted and true class labels. Each 
table is divided into four quadrants, depicting the four outcomes of a binary classification analysis: true negative, true positive, 35 
false positive and false negative. In both cases (panels a and b), the non-crevassed region is correctly detected, thus providing a 
high “accuracy”, which is biased and incorrect since the non-crevassed class is dominating the dataset. 
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Table S1 Display of F1 scores for Filchner-Ronne Ice Shelf when relating the inverted ice rate factor field 𝑨𝑨 and all crevasses as 
mapped by the CNN of Lai et al., (2020). The high weighted F1 score (0.9841 and 0.9854), for the two “A-threshold” cases (A(0°C) 40 
and 10*A(0 °C)) suggests that the model identifies crevasses accurately while minimizing incorrect hits and misses. These scores 
are unreliable because the no-crevasses class still dominates the sample (Weight_NoCrev, 99 %), resulting in high F1 scores 
(0.9936 and 0.9950) compared to the F1 scores of the minority crevasse class (0.0074 and 0.0024).  

 

Filchner Ronne Ice Shelf Weight_Crev Weight_NoCrev F1_Crev F1_NoCrev F1_Weighted 

All 

Crevasses 

A(0 °C) 0.0097 0.9903 0.0074 0.9936 0.9841 

10*A(0 °C) 0.0097 0.9903 0.0024 0.9950 0.9854 

 45 

 

Table S2 Display of F1 scores for Pine Island Ice Shelf for all crevasses and heavily damaged crevasses; Overall, a weighted F1 
score of 0.53-0.55 and 0.96 -0.98 indicates that the model's overall performance across all classes is moderate to high. However, the 
performance of the model seems to be imbalanced towards the No-Crevasse class (which define 66 % and 99 % of the distribution 
respectively). As the F1 score for crevasses does not exceed 0.11, it suggests that the performance of the current crevasse detection 50 
model is weak when classifying crevasses and that certain techniques are necessary to balance the dataset. 

 

Pine Island Ice Shelf Weight_Crev Weight_NoCrev F1_Crev F1_NoCrev F1_Weighted 

All 

Crevasses 

A(0 °C) 0.34 0.66 0.10 0.78 0.55 

10*A(0 °C) 0.34 0.66 0.02 0.80 0.53 

Highly 

Damaged  

Crev 

A(0°C) 0.01 0.99 0.08 0.97 0.96 

10*A(0 °C) 0.01 0.99 0.11 0.99 0.98 

 

 
  55 
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 S1.2 Ice rate factor field 𝐴𝐴 and satellite image for Filchner-Ronne and Pine Island ice shelves.  

 
Figure S2 Detailed display of the inverted ice rate factor field 𝑨𝑨 for Filchner-Ronne (a) and Pine Island Ice Shelf (b), using colour 
scale described in Fig. 1. Red boxes in b) display a discrepancy between areas displaying an ice rate factor well below the reference 
A for temperate ice and the abundance of remotely sensed crevasses depicted from the composite Sentinel (S2) image of austral 60 
summer 2019-2020. The MODIS MOA2009 mosaic underlaid in panel (a) is available at the National Snow & Ice Data Center 
(NSIDC): https://nsidc.org/data/nsidc-0593/. The Sentinel 2 composite in panel (b) was obtained from Izeboud et al., 2023 
processed in the Google Earth Engine, for which the code is available here: 
https://code.earthengine.google.com/63b4cf06dffc7c6b5695dbd256e844fd. 

 65 
S1.3 Calculation of the Optimal Operating Point 

 
To further identify an ideal “A-threshold” which best compromises the FPR and TPR in this analysis, we calculate the 

OPTtimal operating PoiNT (OPT-PNT) on the ROC curve. The OPT-PNT on the ROC curve is calculated by finding the “A-

threshold” which best comprises the pair of False Positive Rate (FPR) and True Positive Rate (TPR). This is performed by 70 

finding the slope S of a line which satisfies the relationship: 

𝑆𝑆 =
Cost(P/N) − Cost(N/N) 
Cost(N/P)  − Cost(P/P) 

∗
𝑁𝑁
𝑃𝑃

 

where the terms "Cost(N/P)" and "Cost(P/N)" refer to the costs incurred from misclassifying a positive class as a negative 

class and a negative class as a positive class, respectively. P is the total number of positive instances, which is the sum of 

true positives (TP) and false negatives (FN). N is the total number of negative instances, which is the sum of true negatives 75 

(TN) and false positives (FP). The optimal operating point is found by moving the straight line with slope S from the upper 
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left corner of the ROC plot (FPR = 0, TPR = 1) down and to the right, until it intersects the ROC curve (tangent to the 

curve).  

S1.4 Sensitivity analysis to changes of the regularisation parameter (γs )  

The importance of conducting a sensitivity analysis for γs pertains to values within the L-corner range [103 106]. In Figure S3 80 

we present ROC curves for an extended sensitivity analysis applied to all values of γs,, for demonstrating purposes. The 

regularisation parameter γs imposes a constraint on the gradient (the spatial distribution) of the final solution of 𝐴𝐴. As higher 

values of γs are applied, the solution of 𝐴𝐴 is required to adhere more strictly to the imposed prior, resulting in a more uniform 

distribution of  𝐴𝐴 — since the prior imposed was that of a uniform 𝐴𝐴 (see Figure S5). Whenever performing a ROC analysis, 

for the cases of total uniformity, until the 𝐴𝐴 threshold is not surpassed, all crevasses remain undetected. Once the threshold is 85 

surpassed, the model accurately identifies all crevasses, but at the cost of misclassifying all the non-crevassed areas as 

crevassed. This, therefore, provides a ROC curve that is a straight diagonal line from the bottom-left (0-0) to the top-right (1-

1), indicating that the model's performance is as good as random (AUC-mean = 0.5 Figure 4b), and providing a 100% TPR 

and 100% FPR (Figure 5 and S6). For the cases in the ROC analysis where we see an S-shaped curve, i.e., γs = [1x107 

5x108], the solution of 𝐴𝐴 has not yet reached a total uniformity (Figure S4 b and S5), changing just slightly throughout the 90 

domain. The s-shaped ROC curve represents a biphasic behavior which does not mean a better classifier, but rather a two-

phase discriminative ability as a function of the threshold. Changes in the magnitude of 𝐴𝐴 are minimal but enough to affect 

the ROC curve distribution. In fact, whenever performing the ROC analysis, the predictions and the misses are not 100% yet 

(Figure 5 and S6), thus the estimated curve takes the form of an s-shaped one. Since a uniform 𝐴𝐴 is not likely or expected 

any simulation of γs larger than 1x107 becomes irrelevant to use for this body of work, since the classifier is not capable to 95 

differentiate between crevasses and no crevasses effectively. The main results presented in this work adopted a γs = 25000, 

and these findings hold true for γs within the L-curve range.  
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Figure S3: ROC curve analysis for 2000 classification tests applied to Pine Island Ice Shelf, for all crevasses as mapped via NeRD 
(panel a) and for only heavily damaged crevasses (panel b), when testing for different regularisation values of γs and maintaining a 100 
constant γa=1. We observe a similar set of curves up until γs values ~ 106; between γs =107 and γs =5x108 the ROC curves take on an 
S-shaped form; for values of γs > 109, the relative ROC curves are a diagonal line, thus the performance is that of a random 
classifier.  
 

 105 

Figure S4: a) ROC curve for Pine Island Ice Shelf (dark yellow line) when considering all crevasses and the solution of 𝐴𝐴 obtained 
from an inversion using γs = 107. The diagonal dashed blue line represents a random classifier. b) Solution of 𝐴𝐴 for γs = 107 

displayed in log-scale; it is clear that 𝐴𝐴 has not yet reached spatial uniformity; thus, when performing the ROC analysis, a s-
shaped curve is obtained.  
 110 
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 115 

Figure S5: Solution of 𝐴𝐴 for Pine Island Ice Shelves represented in log scale for increasingly higher values of γs. Note that the last 
row of the figure adopts a different set of limits for the colour scale, to show the slight changes of 𝐴𝐴, until total uniformity is 
reached. By applying values of γs > 5x109, a complete spatial uniformity of 𝐴𝐴 is present.  
 
S1.5 True Positive Rate and False positive rate for all crevasses and heavily damaged crevasses, for values of γs  120 

 

Figure S6 True Positive Rate (a) and False Positive Rate (b) for Pine Island Ice Shelf across varying regularisation values (γs), 
for all crevasses (diamonds) and heavily damaged crevasses (circles, as in Figure 5) for simulations that fitted velocities for 
February 2020. Within each panel, a red-outlined box filled with grey shading highlights the acceptable values for γs —within 
the L-corner range. As we increase the value of γs to very large values (> 5x109), the solution of 𝑨𝑨, is spatially uniform and the 125 
TPR and FPR are both at 100%. 
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S1.6 Map of True Positive, False Positive and False Negative when applying the mean optimal A-Threshold estimated 

from the ROC curve. 

 130 
Figure S7 True Positives (yellow, crevasses that are correctly detected as crevasses), False Positive (green, crevasses that are 
incorrectly predicted as crevasses) and False Negatives (blue, crevasses that were missed) for Pine Island Ice Shelf, when applying 
the mean optimal A-Threshold estimated from the ROC curve analysis, for all crevasses (a), and for heavily damaged crevasses (b). 
Simulations inverted for 𝑨𝑨 by fitting velocities for the month of February 2020, with a regularisation parameter of γa = 1 and 
γs=25000.  135 

S1.7 Map of True Positive, False Positive and False Negative when applying the mean optimal A-Threshold estimated 

from the ROC curve for Filchner Ronne Ice Shelf  

 
Figure S8 True Positives (yellow, crevasses that are correctly detected as crevasses), False Positive (green, crevasses that are 
incorrectly predicted as crevasses) and False Negatives (blue, crevasses that were missed) for Filchner Ronne Ice Shelf, when 140 
applying the mean optimal A-Threshold estimated from the ROC curve analysis, for all crevasses advected downstream for 5 
years, to match velocities of 2014. Results are shown for a simulation with regularisation parameters of γa = 1 and γs=25000.  
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S1.8 Simulations fitting velocities for the month of November 2019 and February 2020 for Pine Island Ice Shelf for 

different values of γs 145 

We conduct a comparative analysis evaluating the L-curve and ROC plot results for simulations whose ice rate factor fitted 

either the November 2019 (red line) or the February 2020 (black line) velocities observed on Pine Island Ice Shelf. Both sets 

of simulations display a similar L-curve, with ROC plots results being insensitive to the value of the regularisation parameter 

γs when within the L-corner range (grey-shaded box). The 2020 velocities provide a generally higher AUC-mean for heavily 

damaged crevasses in the L-corner range, compared to the 2019 velocities.  150 

 
Figure S9 a) L-curve analysis comparing simulations when fitting velocities from November 2019 (red line) and February 2020 
(black line). A zoomed-in plot of L-corner range is displayed as a shaded grey box, with red contouring. b) AUC-mean across 
varying regularisation values (γs) for all crevasses as depicted by the NeRD method for Pine Island Ice Shelf, for November 2019 
and February 2020; Values within the L-corner range are highlighted by the grey-shaded box. c) AUC-mean across varying 155 
regularisation values (γs) for all heavily damaged crevasses as depicted by the NeRD method for Pine Island Ice Shelf, for 
November 2019 and February 2020; Values within the L-corner range are highlighted by the grey-shaded box. 
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S1.9 Sensitivity analysis to γa: comparison of ROC plots for a solution of A inferred with γa = 1 or γa = 0, and a 

constant γs = 25000, for Pine Island Ice Shelf, fitting 2019 Velocity Data. 160 

 
Figure S10: ROC curve analysis for 2000 classification tests applied to Pine Island Ice Shelf, for all crevasses as mapped via NeRD 
(a) and for only heavily damaged crevasses (b), fitting velocities of 2019. We test the sensitivity to changes in results when adopting 
γa = 1 (in orange) and γa = 0 (in blue) and a constant γs = 25000. Both simulations provide analogous AUC-means for both cases (all 
crevasses and heavily damaged crevasses) thus suggesting that the sensitivity to γa is negligible.  165 
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S2 Solution of A inferred with γa = 1 and γs = 25000 and velocity map for Pine Island Ice Shelf fitting 2019 and 2020 

Velocity Data.  170 

 

 
Figure S11: Inverted ice rate factor in log-scale (left-panels) and relative velocities (m/yr) for Pine Island ice shelf for November 
2019 (a) and February 2020 (b). The boundary of each domain is reported as a uniform black line; dashed lines represent ice shelf 
front before/after calving event. Clearly visible in panel a) is the weakening region along the rift that a couple of months later 175 
would calve away a chunk of the ice shelf. Weakening is also a visible in both simulations along the ice shelf margins.  
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