

Supplement of

Hydrological response of Andean catchments to recent glacier mass loss

Alexis Caro et al.

Correspondence to: Alexis Caro (alexis.caro.paredes@gmail.com)

The copyright of individual parts of the supplement might differ from the article licence.

The supplementary material contains: Availability of data by glacier and catchment, data for evaluation and results, precipitation factor fit and climate correlations regarding annual mass balance.

1 Availability of data by glacier and catchment

Simulations in 786 Andean catchments are available. Each folder per catchment contains: glacier mass balance, area, volume, temperature, precipitation, glacier melt and rainfall on glaciers. These data were processed per glacier and per catchment at annual temporal resolution. In addition, glacier melt and rainfall on glaciers are available at a monthly time step per catchment. Data are available at glacier and catchment scale.

2 Climate evaluation

This section describes the data used to evaluate the TerraClimate dataset: temperature data recorded at meteorological stations in glaciers and outside them, lapse rate estimation per glaciological zone and the precipitation factors estimation.

2.1 Historical Climate data

In Table S1 are described the characteristics of 35 meteorological stations off and on glacier surface between 9°-51°S.

Tab glac	le S1. M iers acro	eteorological stations u ss the Andes.	sed to ge	enerate v	ertical temp	erature laps	e rates and v	alidate Te	rraClimate d	ataset on or near of
			Coordir	nates [°]	Elevatior	n [m a.s.l.]		Rang	ge date	
ID	Zone	Weather station name	Lat	Lon	Station	TC grid	Surface	start	end	Reference
1	ОТ	Llan_Up-2	-9.05	-77.60	4122	4354	Off glacier	08/2006	06/2019	
2	ОТ	CuchWX	-9.41	-77.36	4642	4694	Off glacier	08/2013	12/2019	Mateo et al., 2022
3	ОТ	Huaytapallana	-11.93	-75.06	4684	4632	Off glacier	01/2018	12/2019	
4	ОТ	Quisoquepina	-13.80	-70.89	5157	5313	Off glacier	05/2015	12/2019	SENAMHI, 2022
5	ОТ	Zongo off glacier	-16.28	-68.14	5050	4836	Off glacier	10/1995	12/2018	
6	ОТ	Zongo on glacier	-16.28	-68.14	5050	4836	On glacier	09/2004	08/2019	2022
7	DA1	La Frontera	-29.30	-70.01	4927	5074	Off glacier	01/2002	04/2007	Rabatel et al., 2011
8	DA1	Estrecho glacier	-29.30	-70.01	5102	5074	On glacier	04/2014	03/2015	Hernández et al., 2021
9	DA1	Guanaco glacier	-29.31	-70.00	5324	5074	On glacier	11/2008	04/2011	MacDonnell et al., 2013

		1								
10	DA1	Tapado glacier	-30.15	-69.92	4727	4502	Off glacier	05/2018	12/2019	CEAZA, 2022
11	DA1	Tapado morrena	-30.16	-69.91	4318	4502	Off glacier	11/2009	04/2013	
12	DA1	La Laguna Embalse	-30.20	-70.04	3160	3434	Off glacier	01/1980	12/2019	
13	DA2	Juncal Sur glacier	-33.12	-70.11	4035	4189	Off glacier	01/2019	12/2019	
14	DA2	Olivares Gamma glacier	-33.16	-70.15	3628	4002	Off glacier	05/2014	12/2019	
15	DA2	Estero Yerba Loca en P. Carvajal	-33.22	-70.27	3250	4148	Off glacier	01/2012	12/2017	
16	DA2	Bello glacier	-33.53	-69.95	4134	4071	On glacier	11/2013	04/2018	
17	DA2	Yeso glacier	-33.53	-69.92	4428	4375	On glacier	11/2013	04/2018	DGA, 2022
18	DA2	Portezuelo Echaurren	-33.58	-70.13	3847	3603	Off glacier	03/2016	12/2019	
19	DA2	Pirámide glacier	-33.59	-69.89	3459	3924	On glacier	11/2013	04/2018	
20	DA2	El Yeso Embalse	-33.68	-70.09	2475	2705	Off glacier	01/1980	12/2019	
21	DA3	G. San Franc. en A. P.	-33.75	-70.07	2238	2895	Off glacier	10/2011	12/2019	
22	DA3	San Francisco glacier	-33.80	-70.07	3466	3544	On glacier	11/2013	04/2015	
23	DA3	Cipreses glacier	-34.54	-70.42	1880	1961	Off glacier	11/2016	12/2019	
24	DA3	Cortaderal glacier	-34.66	-70.26	3156	3273	Off glacier	05/2018	12/2019	
25	WA1- 2	La Punilla	-36.66	-71.33	840	898	Off glacier	01/1980	10/1986	DGA, 2022
26	WA1- 2	Volcán Chillán	-36.89	-71.4 1	2200	-	Off glacier	03/2015	12/2019	
27	WA1- 2	Mocho nunatak	-39.93	-72.01	1970	1523	Off glacier	05/2006	10/2014	Schaefer et al., 2017
28	WA3- 4-5-6	San Rafael glacier	-46.70	-73.59	1187	1188	On glacier	07/2012	12/2019	
29	WA3- 4-5-6	Rio Nef A. J. E. El Revalse	-47.14	-73.09	281	551	Off glacier	01/2012	12/2017	
30	WA3- 4-5-6	Glaciar Colonia en Lago Cachet-2	-47.20	-73.26	451	570	Off glacier	01/2011	12/2019	DGA, 2022
31	WA3- 4-5-6	Greve glacier	-48.83	-73.58	1428	1377	On glacier	10/2014	07/2016	

32	WA3- 4-5-6	O'Higgins	-48.88	-72.74	250	699	Off glacier	01/2014	12/2019	
33	WA3- 4-5-6	Candelario Mancilla	-48.93	-73.14	300	370	Off glacier	12/2004	12/2017	
34	WA3- 4-5-6	Aonikenk	-49.29	-73.00	1200	1376	Off glacier	03/2014	12/2019	IANIGLA, 2022
35	WA3- 4-5-6	Dickson glacier	-50.79	-73.14	221	529	Off glacier	11/2018	12/2019	CECs, 2018

2.2 Temperature lapse rates

In general, short air temperature records were observed on stations located over glaciers (Estrecho in 29°S, and Juncal Sur and Olivares in 33°S, over the 4000 m a.s.l.), whereas the longer records comes from stations located off glaciers (El Yeso Embalse in 33°S, La Laguna Embalse in 30°S and off Glacier Zongo in 16°S, over 2400 m a.s.l.). The short records are associated with recent dates before December 2019 and the longer ones start from 1980. The vertical temperature lapse rates were obtained using a minimum of 3 stations (cluster WA1-2) and a maximum of 8 meteorological stations (cluster WA3-4-5-6) at cluster scale (Figure S1).

Figure S1. Temperature lapse rates at glaciological zone scale using meteorological records at monthly time step from 1980 to 2019.

2.3 Historical assessment of TerraClimate

In this section, the TerraClimate temperature was evaluated regarding meteorological station measurements (Table S1). Table S2 shows the temperature assessment results in 35 weather stations before and after the application of the lapse rate per glaciological zone, whereas, Figure S2 displays the monthly evaluations.

Tab	ole S2. Terra	Climate temperature assessme assessm	ent regarding ent was mad	g observatio e using wea	ons before an ther station e	d after tempera elevations.	ature lapse ra	ate applicat	ion. The
			Weather St	ation [°C]	Corrected [TerraClimate °C]	Raw Terra [°C	aClimate]	N10 - C
ID	Zone	Weather station name	Mean	SD	Mean	SD	Mean	SD	Months

1	ОТ	Llan_Up-2	6.4	0.2	5.4	0.2	3.9	1.2	113
2	OT	CuchWX	4.7	0.4	4.4	0.2	4	1.2	48
3	ОТ	Huaytapallana	3	0.2	6.3	0.2	6.6	0.6	24
4	ОТ	Quisoquepina	-0.4	0.1	2.7	0.4	1.6	1.9	21
5	OT	Zongo off glacier	2.3	0.1	2	0.1	3.4	1.8	220
6	ОТ	Zongo on glacier	-0.3	0.4	2.1	0.2	3.6	1.8	85
7	DA1	La Frontera	-6.2	0.6	0.4	0.3	-0.8	2.8	58
8	DA1	Estrecho glacier	-8.1	NA	-1.9	NA	-1.7	2.7	12
9	DA1	Guanaco glacier	-10	0.5	-4.1	0.5	-2	3.2	30
10	DA1	Tapado glacier	-5	0.6	-3.2	0.4	-1.4	3.7	16
11	DA1	Tapado morrena	-1.2	0.6	0	0.2	-1.5	3.7	41
12	DA1	La Laguna Embalse	8.1	0.4	4.1	0.1	1.8	3.6	476
13	DA2	Juncal Sur glacier	-1.4	NA	-1.7	NA	-2.7	4.9	12
14	DA2	Olivares Gamma glacier	1.1	0.5	0.3	0.4	-2.3	4.6	68
15	DA2	Estero Yerba Loca en P. Carvajal	3.5	1.1	-0.7	0.3	-6.9	4.2	72
16	DA2	Bello glacier	0.3	1.3	0.3	0.5	0.8	2.6	18
17	DA2	Yeso glacier	-1.6	0.8	-0.2	0.4	0.2	1.8	15
18	DA2	Portezuelo Echaurren	-0.4	1.3	-0.2	0.6	1.4	5.1	37
19	DA2	Pirámide glacier	1.5	0.8	1.4	0.7	-1.8	4.6	42
20	DA2	El Yeso Embalse	8.9	0.4	0.9	0.1	-0.7	4.5	480
21	DA3	G. San Francisco en A. P.	9.4	0.4	12.1	0.3	7.8	4.7	95
22	DA3	San Francisco glacier	3.8	0.9	7.6	0.8	7.1	2.3	13
23	DA3	Cipreses glacier	12.4	1.3	5.9	0.3	5.4	4.8	36
24	DA3	Cortaderal glacier	2.2	2.3	0.3	0.4	-0.5	4.8	20
25	WA1-2	La Punilla	11.9	0.5	10.6	0.3	10.2	4.8	81
26	WA1-2	Volcán Chillán	6.8	4.4	-	-	-	-	-
27	WA1-2	Mocho nunatak	2.6	0.5	4.2	0.3	7.1	4.1	102
28	WA3-4-5- 6	San Rafael glacier	3.1	0.3	2.6	0.2	2.6	3.2	90
29	WA3-4-5- 6	Rio Nef Antes Junta Estero El Revalse	7.8	0.4	5.5	0.3	3.8	3.6	61
30	WA3-4-5- 6	Glaciar Colonia en Lago Cachet-2	6.6	0.4	7.8	0.3	7.1	3.6	84

31	WA3-4-5- 6	Greve glacier	-0.7	0.8	1.4	0.4	1.7	2.9	22
32	WA3-4-5- 6	O'Higgins	7.8	0.3	7.7	0.2	4.8	3.2	72
33	WA3-4-5- 6	Candelario Mancilla	8.7	0.9	6.7	0.3	6.2	3.5	99
34	WA3-4-5- 6	Aonikenk	2.7	0.7	5.4	0.2	4.3	3.3	70
35	WA3-4-5- 6	Dickson glacier	7.4	0.6	7.9	0.2	5.9	3.1	14

Figure S2. Monthly TerraClimate temperature and temperature records comparison in 34 weather stations on and near of glaciers across the Andes.

2.4 Precipitation factor fitting

The results of the precipitation factor adjustment in 18 glaciers along the Andes are presented in Table S3. Despite the Pf estimation in Tropical Andes we used Pf = 1, due high precipitation overestimation observed after ran the simulations.

Table S3. Standard deviation of annual mass balance for observed and simulated glaciers. Orange color shows high SD differences whereas the blue color show close SD between mb observed and simulated.											
RGIv6.0 id	Name	Pf	LR [°C/k m]	Sim mb mean [mm w.e.]	Sim mb sd [mm w.e.]	Obs mb mean [mm w.e.]	Obs mb sd [mm w.e.]	Start year	End year	Glaciolo gical zone	Final Pf
RGI60-16.01 339	Antisana 15 Alpha	1	-6.6	-114	540	-511	490	2000	2019	IT	1
RGI60-16.01 355	Conejeras	1	-6.6	-1971	1628	-3300	1587	2006	2019	IT	1
RGI60-16.00 532	Charquini Sur	4	-6.6	-437	138	-918	1055	2003	2018	ОТ	
RGI60-16.00 543	Zongo	4	-6.6	-472	352	-248	520	2000	2018	ОТ	
RGI60-16.01 447	Chacaltaya	2.4	-6.6	219	620	-1314	616	2000	2008	OT	1
RGI60-16.02 086	Yanamarey	4	-6.6	-1073	411	-1078	728	2005	2019	OT	
RGI60-16.02 444	Artesonraju	1	-6.6	-469	759	-828	610	2005	2019	OT	
RGI60-17.00 466	Azufre	4	-6.5	-2562	421	-2955	499	2018	2019	DA3	4
RGI60-17.02 128	Martial Este	2.3	-6.4	-281	576	-183	569	2001	2019	WA3-4- 5-6	2.3
RGI60-17.12 440	Mocho-Choshue nco	4	-6.5	-1003	1008	-908	1041	2004	2019	WA2	4
RGI60-17.13 715	Echaurren	4	-6.9	-517	760	-832	1356	2000	2019	DA2	1.0
RGI60-17.14 203	Piloto Este	1.9	-6.9	237	742	-463	751	2000	2003	DA2	1.9
RGI60-17.14 642	Agua Negra	3.2	-8.2	-850	493	-383	492	2015	2019	DA1	
RGI60-17.14 868	Guanaco Oeste	1.1	-8.2	-376	400	-619	396	2004	2015	DA1	2.8

RGI60-17.14 872	Toro 2	4	-8.2	-73	401	-1097	626	2004	2009	DA1
RGI60-17.14 874	Esperanza	4	-8.2	-171	455	-1137	962	2004	2009	DA1
RGI60-17.14 887	Amarillo	3.8	-8.2	-380	842	-295	1665	2008	2019	DA1
RGI60-17.14 889	Los Amarillos	4	-8.2	-199	297	-296	1100	2008	2019	DA1

3 Mass Balance evaluation

This section describes the data used to evaluate the simulated mass balance regarding observations.

3.1 Mass balance observations

In table S4 are described the characteristics of 15 monitored glaciers with mass balance measurements located between 5°N-55°S. We filtered glaciers with mass balance observations with a greater geodetic mass balance error that its mass balance estimation from Hugonnet et al.(2021) between 2000-2019, such as Chacaltaya (RGI60-16.01447; -0.16 \pm 0.17 m w.e.), Los Amarillos (RGI60-17.14889; -0.14 \pm 0.15 m w.e.), Toro 2 (RGI60-17.14872; -0.13 \pm 0.19 m w.e.), Antisana 15 Alpha (RGI60-16.01339; -0.11 \pm 0.12 m w.e.). As well as, very small monitored glaciers like Esperanza glacier (RGI60-17.14874; 0.1 km²).

Table S4. In situ glaciological mass balance measurements on 15 glaciers used to validate OGGM simulated mass balance

across	cross the Andes								
Nº	Zone	Glacier name	Coord	inates [°]	Elevation	Glacier	RGIv6 0 id	Mass balance	
11	Zone	Glacier hame	Latitude	Longitude	[m a.s.l.]	area [km ²]	KOIVO.0 la	references	
1	IT	Conejeras	4.8	-75.4	4791	3.8	RGI60-16.01355		
2	OT	Zongo	-16.3	-68.1	5320	2.3	RGI60-16.00543		
3	DA1	Guanaco Oeste	-29.3	-70	5163	1.8	RGI60-17.14868		
4	DA1	Guanaco Este	-29.3	-70	5161	0.7	RGI60-17.14869		
5	DA1	Amarillo	-29.3	-70	5174	0.4	RGI60-17.14887	WGMS, 2021	
6	DA1	Estrecho	-29.3	-70	5194	1.9	RGI60-17.14892		
7	DA1	Ortigas 1	-29.4	-70.1	5003	1.2	RGI60-17.14849		
8	DA1	Agua Negra	-30.2	-69.8	4971	1.1	RGI60-17.14642		
9	DA2	Piloto Este	-32.6	-70.1	4481	2.9	RGI60-17.14203		
10	DA2	Paula	-33.2	-70.3	4688	0.1	RGI60-17.13879		
11	DA2	Paloma Oeste	-33.2	-70.3	4408	0.6	RGI60-17.13882	Marangunic et	
12	DA2	Paloma Este	-33.2	-69.7	4762	0.6	RGI60-17.13883	al., 2021	

13	DA2	Del Rincón	-33.2	-70.1	5050	0.4	RGI60-17.13887	
14	WA2	Mocho-Choshuenco	-39.9	-72	1963	6.3	RGI60-17.12440	WCMS 2021
15	WA4	Martial Este	-54.8	-68.4	1091	0.7	RGI60-17.02128	w GWI5,2021

3.2 Superficial mass balance assessment

In this section, the results of simulated mass balance evaluation from OGGM regarding in situ measurements are presented. Table S5 shows the results of the evaluation in 15 Andean glaciers. The results of annual mass balance differences and cumulative mass balance differences per glacier are displayed in Figure S3 and Figure S4.

Tab (200	le S5. ()0-2019)	OGGM mass balance	e evaluation on	15 glaciers us	sing in situ m	easurements	from the	Tropical A	Andes t	to the Wet	t Andes
N°	Zon e	Glacier name	MB Obs [mm]	MB Sim [mm]	MB Hugonnet et al. 2021 2000-2019 [mm]	Date range	Person corr	p-value	r ²	RMSE [mm]	bias [mm]
1	IT	Conejeras	-3300±1587	-2196±2582	-1644±283	2006-2019	0.9	0	0.8	704	1104
2	OT	Zongo	-248±520	-471±299	-548±148	2000-2018	0.3	0.22	0.1	484	-224
3	DA1	Guanaco Oeste	-477±638	-396±573	-393±154	2003-2015	0	0.93	0.0	613	81
4	DA1	Guanaco Este	-477±638	-340±572	-347±176	2003-2015	0	0.93	0.0	613	137
5	DA1	Amarillo	-295±1665	-345±663	-204±168	2008-2019	0	0.89	0.0	1592	-50
6	DA1	Estrecho	-682±379	-462±593	-411±159	2007-2014	0.6	0.11	0.4	281	220
7	DA1	Ortigas 1	-1036±630	-358±549	-320±158	2007-2014	0	1	0.0	589	679
8	DA1	Agua Negra	-383±492	-828±455	-524±171	2015-2019	-0.7	0.17	0.5	303	-445
9	DA2	Piloto Este	-462±751	243±753	-318±150	2000-2003	0.8	0.21	0.6	395	706
10	DA2	Paula	-967±639	-963±568	-383±286	2014-2019	0.8	0.08	0.6	384	4
11	DA2	Paloma Oeste	-1217±913	-1102±500	-589±237	2014-2019	0.7	0.1	0.5	564	114
12	DA2	Paloma Este	-1090±1102	-876±498	-288±183	2015-2019	0.8	0.08	0.7	542	214
13	DA2	Del Rincón	-762±361	-283±484	17±252	2014-2019	0.8	0.05	0.7	191	479
14	WA 2	Mocho-Choshuenc o	-908±1041	-1045±1043	-691±139	2004-2019	0.5	0.11	0.3	833	-137
15	WA 4	Martial Este	-183±569	-280±560	-236±224	2001-2019	0.5	0.02	0.3	472	-98

Figure S3. Annual mass balance differences between OGGM simulations and observations on 15 glaciers across the Andes (2000-2019).

Figure S4. Cumulative mass balance differences between OGGM simulations and observations on 14 glaciers across the Andes (2000-2019).

4 Morphometric and climate variables associated to catchments with glacier melt and rainfall on glaciers changes

Table S6. Mea changes betwee	`able S6. Mean morphometric and climate variables on glacierized catchments with glacier melt and rainfall on glaciers hanges between periods 2000-2009 and 2010-2019								
Change in contribution	Latitude median [°]	Elevation [m a.s.l.]	Area [km ²]	Slope [°]	Aspect mode [°]	Temperature (change) [°C]	Total precipitation (change %) [mm yr ⁻¹]	N° of catchments	
			(Glacier melt		-			
Increase	-46	2404±1637	0.9±3.3	25±7	120	-0.1 (0.4)	2550 (-8)	661	
Reduction	-52	1737±1319	0.5±2	24±7	126	0.6 (0.3)	2929 (-14)	95	
Not change	-44	1944±1146	0.2±0.3	27±7	110	0.4 (0.4)	2929 (-10)	30	
			Raiı	nfall on glac	iers				
Increase	-46	2691±1734	1±3.8	25±7	138	-0.6 (0.4)	1843 (-4)	403	
Reduction	-44	1898±1339	0.7±2.3	25±8	110	1.2 (0.3)	3773 (-11)	322	

Not change	-33	3881±1548	0.5±1.7	26±8	141	-2.1 (0.4)	1547 (-10)	61
------------	-----	-----------	---------	------	-----	------------	------------	----

5 Climate correlations regarding annual mass balance

Figure S7 shows statistically significant correlations (p-value < 0.05) between mean annual temperature and precipitation with the mean annual simulated mass balance in the period 2000-2019 at catchment scale across the Andes. The mean temperature correlation in 729 catchments was -0.74 ± 0.1 , while we estimated a mean precipitation correlation in 600 of -0.7 ± 0.1 . The high correlations of precipitation and mass balance in the Dry Andes and precipitation and mass balance in the Wet Andes are similar as expected from the Caro et al. (2021) estimation.

Table S7. Mean annual temperature and precipitation correlations regarding mean annual simulated mass balance per glaciological regions across the Andes

Glaciological region	Temperature mean correlation	Precipitation mean correlation	Temperature N° of catchments	Precipitation N° of catchments
Tropical Andes	-0.87±0.1	0.65±0.1	183	16
Dry Andes	-0.63±0.1	0.75±0.1	131	136
Wet Andes	-0.72±0.1	0.69±0.1	415	448

Figure S5. Correlations between annual corrected temperature and precipitation with simulated annual mass balance for the period 2000-2019 at catchment scale. Correlations are presented by a) temperature and b) precipitation considering some interesting catchments across the Andes. c) Correlations are present to temperature (cTCp) and precipitation (cTCp), where the negative correlation of temperature was escalated to positive values for easier comparison with precipitation correlation. Mean values were extracted from each simulated glacier inside 729 catchments for temperature and 600 catchments for precipitation, considering statistically significant correlations in the 786 simulated catchments (< 0.05).

6 References

Caro A, Condom T and Rabatel A. Climatic and Morphometric Explanatory Variables of Glacier Changes in the Andes (8–55°S): New Insights From Machine Learning Approaches. Front. Earth Sci. 9:713011. https://doi: 10.3389/feart.2021.713011, 2021.

CEAZA, datos meteorológicos de Chile [data set], http://www.ceazamet.cl/, 2022.

CECs. Meteorological data measured by Centro de Estudios Científicos, 2018.

DGA, datos de estudios hidroglaciológicos de Chile [data set], https://snia.mop.gob.cl/BNAConsultas/reportes, 2022.

GLACIOCLIM, Données météorologiques [data set], https://glacioclim.osug.fr/Donnees-des-Andes, 2022.

Hernández, J., Mazzorana, B., Loriaux, T., and Iribarren, P. Reconstrucción de caudales en la Cuenca Alta del Río Huasco, utilizando el modelo Cold Regional Hydrological Model (CRHM), AAGG2021, 2021.

IANIGLA, datos meteorológicos [data set], https://observatorioandino.com/estaciones/, 2022.

MacDonell, S., Kinnard, C., Mölg, T., Nicholson, L., and Abermann, J. Meteorological drivers of ablation processes on a cold glacier in the semi-arid Andes of Chile, The Cryosphere, 7, 1513–1526, https://doi.org/10.5194/tc-7-1513-2013, 2013.

Marangunic C., Ugalde F., Apey A., Armendáriz I., Bustamante M. and Peralta C. Ecosistemas de montaña de la cuenca alta del río Mapocho, Glaciares en la cuenca alta del río Mapocho: variaciones y características principales. AngloAmerican - CAPES UC, 2021.

Mateo, E. I., Mark, B. G., Hellström, R. Å., Baraer, M., McKenzie, J. M., Condom, T., Rapre, A. C., Gonzales, G., Gómez, J. Q., and Encarnación, R. C. C.: High-temporal-resolution hydrometeorological data collected in the tropical Cordillera Blanca, Peru (2004–2020), Earth Syst. Sci. Data, 14, 2865–2882, https://doi.org/10.5194/essd-14-2865-2022, 2022.

Rabatel, A., Castebrunet, H., Favier, V., Nicholson, L., and Kinnard, C. Glacier Changes in the Pascua-Lama Region, Chilean Andes (29° S): Recent Mass Balance and 50 Yr Surface Area Variations. The Cryosphere 5 (4), 1029–1041. https://doi:10.5194/tc-5-1029-2011, 2011.

Schaefer M., Rodriguez J., Scheiter M., and Casassa, G. Climate and surface mass balance of Mocho Glacier, Chilean Lake District, 40°S. Journal of Glaciology, 63(238), 218-228, https://doi:10.1017/jog.2016.129, 2017

SENAMHI, datos hidrometeorológicos de Perú [data set], https://www.senamhi.gob.pe/?&p=descarga-datos-hidrometeorologicos, 2022.

WGMS, Global Glacier Change Bulletin No. 4 (2018-2019) [data set]. Michael Zemp, Samuel U. Nussbaumer, Isabelle Gärtner-Roer, Jacqueline Bannwart, Frank Paul, and Martin Hoelzle (eds.), ISC (WDS) / IUGG (IACS) / UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 278 pp. https://doi.org/10.5904/wgms-fog-2021-05, 2021.