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Abstract. The high temporal resolution of thermal infrared
imagery from the Geostationary Operational Environmental
Satellites R-series (GOES-R) presents an opportunity to ob-
serve mountain snow and forest temperatures over the full
diurnal cycle. However, the off-nadir views of these im-
agers may impact or bias temperature observations, espe-
cially when viewing a surface composed of both snow and
forests. We used GOES-16 and -17 thermal infrared bright-
ness temperature observations of a flat snow- and forest-
covered study site at Grand Mesa, Colorado, USA, to charac-
terize how forest coverage and view angle impact these ob-
servations. These two geostationary satellites provided views
of the study area from the southeast (134.1° azimuth, 33.5°
elevation) and southwest (221.2° azimuth, 35.9° elevation),
respectively. As part of the NASA SnowEx field campaign in
February 2020, coincident brightness temperature observa-
tions from ground-based and airborne IR sensors were col-
lected to compare with those from the geostationary satel-
lites. Observations over the course of 2 cloud-free days
spanned the entire study site. The brightness temperature ob-
servations from each dataset were compared to find their rel-
ative differences and how those differences may have var-
ied over time and/or as a function of varying forest cover
across the study area. GOES-16 and -17 brightness temper-
atures were found to match the diurnal cycle and tempera-
ture range within ∼ 1 h and ± 3 K of ground-based observa-
tions. GOES-16 and -17 were both biased warmer than nadir-
looking airborne IR and ASTER observations. The warm bi-
ases were higher at times when the sun–satellite phase angle
was near its daily minimum. The phase angle, the angle be-

tween the direction of incoming solar illumination and the
direction from which the satellite is viewing, reached daily
minimums in the morning for GOES-16 and afternoon for
GOES-17. In morning observations, warm biases in GOES-
16 brightness temperature were greater for pixels that con-
tained more forest coverage. The observations suggest that a
“thermal infrared shadow-hiding” effect may be occurring,
where the geostationary satellites are preferentially seeing
the warmer sunlit sides of trees at different times of day.
These biases are important to understand for applications us-
ing GOES-R brightness temperatures or derived land surface
temperatures (LSTs) over areas with surface roughness fea-
tures, such as forests, that could exhibit a thermal infrared
shadow-hiding effect.

1 Introduction

Mountain areas that receive seasonal snow are the headwa-
ters of rivers that more than a billion people depend on glob-
ally (Immerzeel et al., 2020). Despite their importance, these
are notoriously difficult places to gather hydrological or me-
teorological observations for predicting snow water equiv-
alent (SWE) and the timing and magnitude of streamflow
(Raleigh et al., 2013). Longwave radiation measurements, of
which the upwards component is controlled by the diurnal
cycle of snow surface temperature, have been identified as
especially critical for modeling these snowmelt-fed systems
(Lapo et al., 2015; Raleigh et al., 2016). Distributed obser-
vations of surface temperatures at sub-daily temporal resolu-
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tions are needed for hydrologic and land surface models and
could aid real-time forecasting (Shamir and Georgakakos,
2014). Thermal infrared imagery from geostationary satel-
lites that constantly view the same portions of Earth’s sur-
face, such as the GOES-R Advanced Baseline Imager (ABI),
can make land surface temperature (LST) observations at
very high temporal resolution (5 min or better), capturing the
full diurnal cycle. These observations, however, have spatial
resolutions of ≥ 2 km, and view the land surface from off-
nadir angles.

The 2020 NASA SnowEx field campaign was a collabo-
rative effort between government agencies and academic re-
searchers to intercompare and evaluate snow remote sensing
methods with extensive ground-based observations. This was
conducted in early 2020 at Grand Mesa, a large flat-topped
mountain in the western part of the US state of Colorado.
As part of this campaign, a multi-sensor experiment was de-
signed to investigate how the off-nadir views of GOES-R
satellites affect their surface temperature retrievals over snow
and forests by making thermal infrared brightness tempera-
ture observations and intercomparisons at a range of spatial
and temporal scales (Table 1, Fig. 1). This unique study site, a
flat expanse of snow and conifer forest, allowed us to inves-
tigate how forests affect observed brightness temperatures,
independent of the effects due to complex terrain. Ground-
based snow brightness temperature measurements provided
a continuous point of comparison for GOES-R, while multi-
ple overpasses from airborne IR imagery, gridded to 5 m spa-
tial resolution, provided finer-resolution distributed bright-
ness temperature details over the course of two mornings. To
benchmark the ground point measurements and airborne IR,
which itself has a wide range of view angles (Pestana et al.,
2019), we compared these with a coincident nadir-looking
ASTER thermal infrared image at 90 m spatial resolution.
Specifically, we set out to address the following questions re-
garding GOES-R ABI thermal infrared brightness tempera-
ture observations during SnowEx. (1) What were the relative
accuracies of each source of remotely sensed brightness tem-
perature? (2) How did fractional forest cover impact the rela-
tive accuracy of GOES-R ABI brightness temperature across
the study area? (3) How did the relative accuracy of GOES-R
ABI brightness temperature change over the course of each
day of observations?

We hypothesized that among the brightness temperature
observations collected, the best agreements would be be-
tween the nadir-looking ASTER, nadir-looking airborne IR,
and ground-based snow brightness temperatures. We further
hypothesized that for GOES-R ABI pixels with greater for-
est canopy, the observed brightness temperatures would be
greater than those from the nadir ASTER and airborne IR im-
agery. Finally, we hypothesized that these warm biases would
be greatest in the early morning observations of GOES-16
(GOES-East) and late afternoon observations of GOES-17
(GOES-West), when they are viewing the solar-illuminated
side of trees.

2 Background

2.1 High temporal resolution thermal infrared imagery

Land surface models are highly sensitive to their temperature
and longwave forcing input (Mizukami et al., 2014; Raleigh
et al., 2015) in both accumulation and ablation periods (Gün-
ther et al., 2019). This is especially important for sparsely
instrumented mountain areas, where land surface models can
have air temperature errors of∼ 3–4 °C (Tomasi et al., 2017).
Differences in forcing inputs, or how surface energy fluxes
are parameterized in land surface models, can result in hourly
surface temperature errors of as much as 15 °C (Essery et
al., 2013), and lead to snow disappearance date uncertainties
spanning months (Hinkelman et al., 2015). Surface tempera-
ture observations at model-relevant time steps, such as hourly
temporal resolutions, are especially needed to capture diurnal
processes like snow melt–freeze cycles (Niu et al., 2011) and
snow grain metamorphism, which in turn drive feedbacks in
the surface energy balance through changes in emissivity and
albedo (Flanner and Zender, 2006; Warren, 1982, 2019).

Thermal infrared satellite imagery can provide snow
surface temperature observations for homogenous snow-
covered landscapes (Hall et al., 2008; Wan et al., 2002), es-
timates of near-surface air temperature (Pepin et al., 2016;
Shamir and Georgakakos, 2014), and dew-point temperature
(Raleigh et al., 2013), all of which are needed for model-
ing hydrologic processes. However, satellite observations at
< 100 m spatial resolution are made too infrequently (4–16 d
repeat) for looking at snow surface energy balance processes
at model-relevant time steps. Observations from imagers like
VIIRS or MODIS (250 m to 1 km resolution) provide two
observations per day each for mid-latitude locations. The ob-
servations from the sun-synchronous orbiting MODIS or VI-
IRS imagers do not necessarily see the coldest and warmest
times of day to capture the full diurnal temperature range
(DTR), nor do they provide LST more frequently than ev-
ery few hours. Their twice-daily observations can also be ob-
scured by cloud cover, creating large data gaps relative to the
diurnal cycle of snow surface temperatures.

Geostationary satellite imagery may help overcome these
drawbacks, providing high-temporal-resolution LST, poten-
tially seeing between intermittent periods of cloud cover,
though at coarser spatial resolutions (≥ 2 km) and off-nadir
view angles. In the complex terrain and forest vegetation of
mountain watersheds, the individual image pixels from ther-
mal infrared observations will report an LST signature that
is a mixture of the subpixel snow and forest surface tem-
peratures (Dozier, 1981; Selkowitz et al., 2014). Snow and
vegetation can have significant temperature differences, es-
pecially on clear days, where incoming solar radiation warms
forest canopies more than the high albedo snow surface,
and during the snowmelt period, when daytime snow sur-
face temperatures are capped at 0 °C (Pestana et al., 2019).
Sections 4.4 and 5.4 describe how we tested the uncertainty
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Table 1. Ground-based and remotely sensed temperature observations from the SnowEx 2020 field campaign used in this study.

Dataset Spatial resolution Temporal resolution Spectral range Specified accuracy

Ground-based observations:
Continuous snow brightness
temperature

1.5 m× 2.5 m spot size 5 min 8–14 µm ± 0.2 K

Instantaneous snow surface
temperature

n/a n/a n/a ± 1 K

Remote sensing observations:
Airborne IR image mosaics 5 m ∼ 10 min 8–14 µm ± 2 K
ASTER IR image
(AST L1T)

90 m n/a (one image) 10.95–11.65 µm 2 % (± 1.1 K @ 260 K)

GOES-16 and -17 ABI band 13
(ABI-L1b-RadC)

∼ 2 km 5 min 10.05–10.55 µm 1.5 % (± 0.7 K @ 260 K)

GOES-16 and -17 ABI band 14
(ABI-L1b-RadC)

∼ 2 km 5 min 10.8–11.6 µm 1.5 % (± 0.8 K @ 260 K)

GOES-16 and -17 ABI LST
(ABI-L2-LSTC)

∼ 2 km 1 h n/a ± 2.5 K

Figure 1. Conceptual illustration of how nadir and off-nadir looking remote sensing imagers see parts of a forest canopy and, depending on
the direction of solar illumination, the shadows cast by trees.

around the assumption that the brightness temperatures of
surfaces within a pixel’s footprint scale linearly to a mean
brightness temperature and the geolocation uncertainty of
GOES ABI pixel footprints.

2.2 Off-nadir views and shadow-hiding

Imagery from geostationary satellites comes with the draw-
back of having off-nadir view angles. These view angles are
dependent on the location of the area of interest on Earth’s
surface and the satellite’s orbital position (Schmit et al.,
2017). Interpretation of off-nadir thermal infrared images
require consideration of the parallax effect over rough sur-

faces, the angular emissivity of different surface materials,
and longer atmospheric path lengths.

In thermal infrared satellite imagery, the parallax effect
can lead to different brightness temperatures being observed
for the same area of interest at different view angles. Geosta-
tionary satellites view the mountains of North America from
the south; therefore, south-facing mountain slopes appear
lengthened, occupying a larger portion of an image, north-
facing mountain slopes are foreshortened, and steeper north-
facing mountain slopes may be completely occluded from
view. Prior work compared brightness temperatures from
off-nadir GOES-16 thermal infrared imagery to coincident
nadir-looking ASTER and MODIS thermal infrared imagery
over the Sierra Nevada of California (Pestana and Lundquist,
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2022). This work showed that GOES-16 imagery preferen-
tially viewed south-facing slopes, which receive more solar
illumination in the daytime, heating up more than shaded
north-facing slopes. GOES-16 brightness temperatures were
therefore biased warm in comparison to those from ASTER
and MODIS, which being nadir-pointing could see both the
sunlit and shaded sides of mountain slopes.

The parallax effect is also important at smaller spatial
scales, such as that of individual trees in a forested landscape
(Fig. 1). Tree profiles (rather than canopy tops) come into
view when observed from off-nadir angles, causing each tree
to take up more space in the image. Off-nadir imagery of
landscapes with snow and forests will also have trees obscur-
ing the snow surface behind and beneath them (Balick et al.,
2002; Pestana et al., 2019). Much like at the scale of moun-
tain slopes, daytime solar illumination, especially at low sun
angles, will warm up one side of trees more than the other
shaded side. The observed thermal infrared brightness tem-
perature of mountainous or forested terrain is therefore de-
pendent on both view angle and the angle of solar illumina-
tion. The angle between the two is the phase angle (Hender-
son et al., 2003). The same landscape can therefore appear
warmer at small phase angles when solar illuminated sur-
faces are in view and shaded areas are occluded, or colder at
large phase angles when more shaded areas are in view and
sunlit areas are occluded (Fig. 1). With visible and NIR im-
agery, this effect is referred to as “shadow-hiding,” or creat-
ing a “hotspot” (really a bright spot), over surface roughness
features, such as trees (Hall et al., 1993; Bréon et al., 2002)
or wind forms in snow, such as sastrugi (Warren et al., 1998).
With nadir-pointing satellite imagers in sun-synchronous or-
bits (e.g., MODIS or VIIRS), the phase angle changes slowly
on an annual cycle, but with a geostationary satellite able to
observe at high temporal resolution, the phase angle changes
continuously over each diurnal cycle (Pestana et al., 2023).

Due to the off-nadir view angles of the GOES-R ABI ob-
servations, the angular emissivity of surfaces observed, i.e.,
a snow-covered forested landscape, must also be considered.
The near blackbody-like emissivity of vegetation, such as
the conifers that dominate the study area (Sect. 3.1), does
not vary with view angle. The emissivity of snow, however,
does vary with view angle and with grain size (Dozier and
Warren, 1982). The emissivity of snow is smaller at larger
view angles; however, over rough snow surfaces such as the
wind-formed sastrugi observed over the westernmost portion
of the mesa, there is a wide distribution of view angles nor-
mal to the snow surface even for a nadir-looking imager. At
the view angles that GOES-16 and -17 observed our study
area (Sect. 3.3.1), snow emissivity could range from 0.95 for
coarse-grained snow (such as> 1 mm melt forms) to 0.99 for
fine-grained snow (such as< 1 mm fragmented dendritic pre-
cipitation particles) (Hori et al., 2006; Warren, 2019). At the
lowest end of this emissivity range, a snow surface at 260 K
would have a brightness temperature about 3 K colder seen
by the off-nadir-looking GOES compared to a nadir-looking

satellite imager, and it would be about 0.5 K colder at the
highest end of this range. Snow pit observations (Vuyovich
et al., 2021) coinciding with the GOES observations used in
this work reported predominately fine-grained decomposing
and fragmented precipitation particles of< 1 mm at the snow
surface. We can therefore expect to see in our comparison
of brightness temperatures from imagers with different view
angles that GOES ABI observations may be biased low by
0.5 K relative to nadir observations due to emissivity alone.
GOES-R ABI brightness temperatures may also be biased
low in comparison with a nadir-looking view due to their
longer atmospheric path lengths, but this effect can be negli-
gible for cloud-free high-altitude winter conditions when ab-
sorption of thermal infrared radiation by water vapor is min-
imal (Pestana and Lundquist, 2022). See Sect. 6.1 for further
discussion of atmospheric effects.

3 Study site and observations

3.1 SnowEx 2020 field campaign study site

The 2020 NASA SnowEx field campaign intensive observa-
tion period (IOP) took place at Grand Mesa in western Col-
orado (39.02°, −108.12°) from 26 January to 14 February
2020 (Fig. 2). This period of the field campaign brought to-
gether snow remote sensing researchers to test new instru-
ments and methods and to collect extensive ground-based
observations for validation. Grand Mesa, a large flat-topped
mountain with elevations above 3000 m, is located within
the watersheds of the upper Colorado River and its tributary,
the Gunnison River. This region was chosen as a location to
evaluate remote sensing observations of mountain snow be-
cause of its flat terrain, where the additional complications of
view angles and complex terrain are minimized. The site is
also beneficial for thermal infrared remote sensing because
at its high elevation the atmospheric path length, and there-
fore magnitude of absorption of thermal infrared radiation
by water vapor in the atmosphere, is lower than that of sites
at lower elevations. The high emissivities of both snow and
conifer trees provide us with a scene where brightness tem-
peratures are close to true surface temperatures (Kim et al.,
2018; Warren, 2019).

During the IOP field campaign, the ground surface was en-
tirely snow covered, with no bare ground surfaces visible in
remotely sensed imagery. The westernmost portion of Grand
Mesa is sparsely forested, and forest cover increases across
the mesa towards the east. Mixed conifer forests of Engel-
mann spruce (Picea engelmannii), subalpine fir (Abies la-
siocarpa), and lodgepole pine (Pinus contorta var. latifolia)
species dominate the vegetation that stood above the snow,
with some stands of deciduous Aspen (Populus tremuloides)
trees (Currier et al., 2019).
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Figure 2. Map of the study area at Grand Mesa, Colorado, and inset map showing its location within the contiguous United States. Polygons
outline GOES-16 (orange) and GOES-17 (purple) ABI pixel footprints, and airborne IR image mosaic swaths (dashed blue lines). Snow pit
2S10, where automated continuous snow brightness temperatures were observed, is indicated by the white circle, and instantaneous snow
surface temperature observations at other snow pits are indicated by white + symbols. Dark green areas indicate forests within the area
covered by the thermal infrared remote sensing imagery.

3.2 Ground-based observations

Ground-based observations at Grand Mesa included contin-
uous automated measurements of snow brightness temper-
ature and instantaneous manual snow surface temperatures
measurements taken as part of the data collection at individ-
ual snow pits. Snow brightness temperatures were measured
continuously by an Apogee SI-111 radiometer (8–14 µm) in-
stalled at snow pit 2S10 in the western portion of the mesa
(39.0195, −108.19214). This radiometer viewed the snow
surface at an angle of 45° from nadir and was mounted 2 m
above the ground surface, which at this time was 1.27 m
above the snow surface. The radiometer had an instantaneous
field of view of 44°, giving it an approximately elliptical
footprint of 1.45 m× 2.45 m on the top of the snow surface.
Snow brightness temperatures measured by this radiometer
were recorded at a 5 min temporal resolution (Pestana and
Lundquist, 2021). More than 150 snow pits were dug by the
field teams over the course of the IOP (Vuyovich et al., 2021),
and among the measurements recorded at each snow pit were
snow grain size and types, snow surface temperature, and the
time of the surface temperature measurement. Snow surface
temperatures were measured by a stem thermometer inserted
into the topmost 1 cm of snow and shaded from direct sun-
light. These snow pit data were accessed from the SnowEx
database through the snowexsql Python library (Johnson et
al., 2023). The USGS National Elevation Dataset 1 arcsec

(∼ 30 m) DEM (United States Geological Survey, 2021) and
Tree Canopy Cover (TCC) product from the National Land
Cover Database (NLCD) 2016 (Coulston et al., 2012) were
used to compute zonal statistics of elevation and fractional
vegetated area (fveg), respectively, across the study site.

3.3 Remote sensing observations

3.3.1 GOES-R ABI

Images from the Advanced Baseline Imager (ABI) onboard
GOES-16 and GOES-17 were retrieved for the duration of
the study period in February 2020. The 5 min temporal res-
olution Level 1b top-of-atmosphere Radiance CONUS prod-
uct (L1b-RadC) for thermal infrared bands 13 (10.3 µm) and
14 (11.2 µm), and the 1 h temporal resolution Level 2 Land
Surface Temperature CONUS product (L2-LSTC), were
downloaded as NetCDF files via the goespy library (Mello
and Pestana, 2022). Both satellites viewed the Grand Mesa
study site from similar view angles, though with GOES-
16 in the southeastern sky (azimuth 134.1°, or 45.9° from
due south) and GOES-17 in the southwestern sky (azimuth
221.2°, or 41.2° from due south), with elevation angles of
33.5° and 35.9°, respectively.

The specific ABI pixel footprints that overlapped the study
area on top of Grand Mesa were identified by first orthorec-
tifying (Pestana et al., 2022; Pestana and Lundquist, 2022)
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2 km L1b-RadC imagery clipped to the region surrounding
Grand Mesa from each of GOES-16 and GOES-17. Vec-
tor polygons outlining the ABI pixel footprints were created
from these sample images, and the resulting polygons were
then used to compute land surface elevation summary statis-
tics from the 30 m resolution DEM (United States Geologi-
cal Survey, 2021). We sampled ABI pixels with footprints on
top of Grand Mesa that covered an area with a mean elevation
greater than or equal to 3000 m and standard deviation of ele-
vation less than or equal to 60 m. For GOES-16, this resulted
in six pixels selected, and for GOES-17 it resulted in seven
pixels selected (Fig. 2). The pairs of overlapping GOES-16
and -17 pixels were labeled “NW” for the pixels covering the
northwestern most portion of Grand Mesa, and “A”–“E” for
the pixels running roughly west to east across the study area.
Two GOES-17 pixels are labeled “C1” and “C2” to indicate
that they both primarily overlapped with GOES-16 pixel “C.”
Time series of the thermal infrared radiance, brightness tem-
peratures (both from L1b-RadC), and LST (from L2-LSTC)
were compiled for each of these pixels from imagery cover-
ing 8 to 15 February 2020.

These pixel footprints were used to delineate areas of dif-
ferent fractional vegetation cover for comparison across the
mesa. The NLCD TCC map was converted to a binary forest
map with a vegetation threshold at 20 % TCC. This thresh-
old was chosen to visually match the forest above the snow
surface in the ASTER visible image from the morning of
8 February (Fig. 5a). For each GOES ABI pixel footprint, the
fractional vegetation area (fveg) was calculated as the frac-
tion of the pixel footprint classified as forest in the binary
forest map.

This work uses brightness temperatures computed from
high temporal resolution GOES-R ABI top-of-atmosphere
radiance (L1b-RadC), rather than the LST product (L2-
LSTC). Though the LST product corrects for atmospheric
absorption and surface emissivity, they are only generated
hourly, rather than the much higher 5 min temporal resolu-
tion available from the radiance product. The hourly LST
observations were also not available for most of the day-
time periods. The ABI Cloud Mask algorithm is generally
used to determine when and where the land surface is not ob-
scured by clouds to determine if LST should be computed.
However, identifying cloud cover over snow is notoriously
difficult due to their similar appearance in remote sensed im-
agery across the visible through infrared spectrum (Rittger
et al., 2019; Stillinger et al., 2019). Only four daytime LST
observations on 8 February were available, and on 11 Febru-
ary there were three daytime and nine nighttime LST obser-
vations. Additionally, the ground-based radiometer and air-
borne thermal infrared imagery (discussed in the next sec-
tion) provided brightness temperature observations and were
not corrected for atmospheric absorption or surface emissiv-
ity to derive an LST product from each. Therefore, we focus
primarily on radiance and brightness temperature in our anal-
ysis.

3.3.2 Airborne IR imagery

Airborne IR imagery was collected on 4 d with the UW Ap-
plied Physics Laboratory’s Compact Airborne System for
Imaging the Environment (CASIE), consisting of thermal
infrared cameras and an infrared radiometer, mounted on
the Twin Otter research aircraft from the Naval Postgradu-
ate School (NPS) Center for Interdisciplinary Remotely Pi-
loted Aircraft Studies (CIRPAS). CASIE was installed on
the aircraft to be primarily nadir-looking, and had three DRS
UC640-17 thermal infrared cameras (8–14 µm) pointing with
bore-sight incidence angles of 19°, 0° (nadir-looking), and
21° from port to starboard on the aircraft. These three cam-
eras have overlapping fields of view of 25° (left camera) and
40° (center and right cameras) perpendicular to the aircraft
flight direction, with a total field of view of about 72.5°
(Lundquist et al., 2018). The aircraft flew at about 1 km
above the top of Grand Mesa, giving the three cameras a
total swath width of about 2.5 km perpendicular to the di-
rection of flight and a raw ground resolution of 1 m. A nadir-
looking Heitronics KT15.85D infrared radiometer with spec-
tral range 9.6–11.5 µm and narrow 1.9° field of view provides
a precise brightness temperature measurement for a spot on
the ground surface at the center of the center camera’s field
of view. This higher-precision radiometer data were used to
calibrate the thermal infrared cameras (Pestana et al., 2019)
prior to mosaicking images together using the aircraft INS-
GPS navigation data from their original ∼ 1.1 m spatial res-
olution to 5 m.

Imagery from two flights on 8 February (from about
08:00–10:00 and 11:00–13:00 LT) and one flight on
11 February (from about 10:00–13:00) were used as these
days had the least cloud cover over the study site. Flight lines
over the study site were along two sets of parallel tracks that
would overlap with ground observations at snow pits (Fig. 2).
One set of parallel tracks ran east–west, and the other tracks
ran roughly northwest–southeast to capture the northwestern
portion of the mesa. The airborne IR imagery collection was
in part planned to coincide with the collection of satellite im-
agery by ASTER on 8 February.

3.3.3 Terra ASTER

The NASA Terra satellite made an overpass of the Grand
Mesa study site and imaged it with ASTER at 11:07 LT
(UTC−7) on 8 February 2020. ASTER provides a reliable
source of surface brightness temperature information at 90 m
spatial resolution (Abrams, 2000), fine enough to capture
the surface temperature variabilities across the Grand Mesa
study area and resolve forest stands from open snow. For
this single observation of the Grand Mesa study site, the
ASTER Level 1 Precision Terrain Corrected Registered At-
Sensor Radiance (AST L1T) product (Meyer et al., 2015) for
band 14 (11.3 µm) was used. The top-of-atmosphere radiance
was converted to brightness temperatures (Thome, 1999) for
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comparison with the other ground-based and remote sensing
observations.

4 Methods

4.1 Evaluating airborne IR image mosaics against
ASTER

To first assess the accuracy of the airborne IR imagery, two
airborne IR mosaics from 8 February at 11:07 and 11:19, run-
ning east–west across the mesa, were compared against the
coincident ASTER image captured at 11:07. The airborne IR
mosaics were first resampled to the same spatial resolution
of ASTER by taking the mean of the original 5 m spatial res-
olution images within each 90 m ASTER pixel. The differ-
ences between ASTER and each of the two resampled air-
borne IR mosaics were then computed, producing two dif-
ference maps, and the mean and standard deviation of dif-
ferences were computed for each. Means and standard devi-
ations of differences were also computed for the portions of
the difference maps within each of the GOES-16 ABI pixel
footprints. The difference maps were inspected qualitatively
for patterns in the imagery across the study site to better char-
acterize properties of the airborne IR imagery.

4.2 Comparison of airborne IR, ASTER, and ground
observations

To determine how representative the ground-based point
brightness temperature measurements were of their sur-
rounding areas, airborne IR imagery and the single ASTER
satellite image were compared with ground-based data at the
times when each passed over the study site. From each air-
borne IR mosaic, a 1km× 1km square was extracted from
around the automated snow brightness temperature measure-
ment site at snow pit 2S10 (Fig. 3). Only airborne images
that covered at least 30 % of this 1 km2 area were used. The
mean, median, and standard deviation of brightness temper-
atures from this area in each airborne IR image were com-
puted. This provided us with a time series of snow bright-
ness temperatures at each time that the aircraft flew over
the ground site. The same 1 km2 region around the snow
brightness temperature measurement site was sampled from
the single ASTER image from the morning of 8 February
to compute the brightness temperature mean, median, and
standard deviation as seen by ASTER. The correlation be-
tween the time series of airborne IR snow brightness temper-
ature observations and ground-based snow brightness tem-
peratures were computed for each day, while the difference
between the ground-based snow brightness temperature mea-
surements and ASTER observations were computed at the
time of its overpass.

To compare the snow surface temperature observations
taken at each snow pit against coincident airborne IR im-
agery, all of the snow pits sampled from 8 February and

11 February that were along the aircraft’s flight path within
± 30 min of the flight overpass were compared to the im-
ages from that flight. The mean and standard deviation of air-
borne IR-observed brightness temperatures within a 100 m2

square centered on the snow pit were then compared with
these ground-based observations to determine how the differ-
ences between the two varied over time and across the study
area. One snow pit overflown by the aircraft was about 50 m
south of a forest stand, while all other snow pits were 250 m
or more away from the nearest forest stand.

The sensitivity of the comparisons between airborne IR
imagery, ASTER, and point ground-based temperature ob-
servations was tested by reducing the size of the square area
from which temperatures were sampled from the airborne IR
images (Fig. 3), from a square with sides ranging from 1000
to 100 m (a single ASTER pixel is 90 m), and then for the
airborne imagery ranging from 1000 to 5 m (the size of a sin-
gle airborne IR pixel) (Table 2). All airborne IR images were
included in this analysis, rather than excluding images that
covered less than 30 % of the area, as was done in the prior
analysis of airborne IR and ground data. The mean, median,
and standard deviation of brightness temperatures were com-
puted for the sampled region in each image. The mean differ-
ence and root-mean-squared difference between all the air-
borne IR brightness temperature observations of these areas
and the coincident ground-based temperature measurements
were computed. The smallest area sampled was a single 5 m
airborne IR pixel that should contain the ∼ 2.5 m footprint
of the ground-based radiometer that was measuring snow
brightness temperatures. However, the geolocation accuracy
of the airborne IR mosaic imagery is only about± 10 m (Pes-
tana et al., 2019). Therefore, the single pixel sampled may
not actually overlap completely with the ground-based ra-
diometer footprint but instead be directly adjacent to it.

4.3 Comparison of high temporal resolution GOES-R
ABI with continuous ground observations

GOES-16 and -17 brightness temperature observations were
compared against the ground-based snow brightness temper-
ature observations at snow pit 2S10. A time series of bright-
ness temperatures for bands 13 and 14 at 5 min temporal res-
olution was created for 8 to 12 February 2020 for the GOES-
16 and -17 ABI pixels, which contained snow pit 2S10 (both
labeled pixel A). Two cloud-free periods, 8 February (07:00–
18:00) and 11 February (00:00–18:00), were manually iden-
tified by inspecting the GOES imagery and brightness tem-
peratures for cold cloud tops obscuring the study site. The
ground-based snow brightness temperature observations at
snow pit 2S10 over these same time periods were resam-
pled to match the 5 min temporal resolution of GOES ABI
brightness temperatures. All time series were then smoothed
with a 30 min running mean to remove the highest frequency
variability (median<± 0.02, σ < 0.6 K) from the data and
fill data gaps. The daily maximum and minimum tempera-
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Figure 3. Airborne (a) visible and (b) IR image of the area around the snow brightness temperature observation site at snow pit 2S10. Boxes
indicate regions from which the mean airborne IR brightness temperature information was taken for comparison with the ground-based
observations (only the boxes with sides of 1000, 500, 250, and 100 m are shown). Map coordinates are in UTM zone 13N. (c) Histograms
of the airborne IR brightness temperatures from this example image plotted alongside the ground-based snow brightness temperature at this
time (vertical dashed line).

Table 2. Mean difference between ground-based snow brightness temperatures and remotely sensed brightness temperatures (K) from both
ASTER and airborne IR imagery, sampled from square areas with sides 5 to 1000 m.

Box size of image Mean Difference (K) with ground-based Tb
area sampled (m) at snow pit 2S10

ASTER, 8 Feb Airborne IR, 8 Feb. Airborne IR, 11 Feb

1000 0.3 0.6 2.0
500 0.3 0.9 2.3
250 0.1 0.9 2.0
100 0.0 0.9 1.8
50 – 0.9 1.7
25 – 0.9 1.5
10 – 0.9 1.6
5 – 1.0 1.4

tures and diurnal temperature range (DTR) were then found
for both the ground-based snow brightness temperature ob-
servations and the GOES ABI brightness temperatures. The
mean and root-mean-squared difference between GOES ABI
brightness temperatures and the ground-based snow bright-
ness temperatures were also computed. For 8 February, be-
cause there was cloud-cover at night obscuring the study area
until 07:00, we only compared the timing of maximum day-
time temperature between GOES and the ground-based ob-
servations.

4.4 Comparison of GOES-R ABI, airborne IR, and
ASTER imagery

The differences between GOES-16 and -17 ABI brightness
temperatures for 8 February (07:00–18:00) and 11 February
(21:00 10 February–18:00 11 February) were computed for
each pair of corresponding pixels (NW, A, B, C/C1, C/C2,
D, and E) across the mesa. This comparison was performed
with both ABI bands 14 and 13. The mean difference, stan-

dard deviation of differences, and range of differences for
each pixel were plotted against the corresponding pixel’s fveg
value to inspect for any apparent correlation between these
differences and the forest fraction within each pixel footprint.
The comparison of GOES-16 to -17 is complicated because
they view the scene from different perspectives. For example,
the pair of pixels “A” from GOES-16 and -17 overlap each
other, but they do not have the same footprint on the ground,
have slightly different values of fveg, and may include differ-
ent amounts of the edges of the mesa.

From each airborne IR mosaic, if the airborne imagery
covered at least 30 % of each of the GOES-16 and -17 ABI
pixel footprints on top of the mesa, the region was sampled
from the mosaic (Fig. 4). The mean, median, and standard de-
viation of temperatures within each footprint were computed
for comparison against the ABI band 14 brightness temper-
ature and LST of that pixel for a 10 min window around the
aircraft overpass time. The use of the GOES ABI pixel foot-
prints to sample the finer-spatial-resolution airborne images
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assumes a direct linear scaling of the finer-spatial-resolution
brightness temperatures to a mean brightness temperature
at the coarser GOES ABI spatial resolution (Pestana and
Lundquist, 2022). The sensitivity of the results to this as-
sumption and to the geolocation accuracy of a pixel footprint
were tested by comparing GOES ABI brightness tempera-
tures with airborne brightness temperatures sampled from an
area larger than a single pixel footprint. An example of the
500 m buffer around a GOES ABI pixel footprint is illus-
trated in Fig. 4b. Similarly, the GOES-16 and -17 ABI pixel
footprints and expanded footprints were used to extract the
mean, median, and standard deviation of top-of-atmosphere
radiance from the single ASTER image. These were then
converted to brightness temperature for comparison against
ABI band 14 brightness temperatures.

5 Results

5.1 Evaluating airborne IR image mosaics against
ASTER

The airborne IR imagery was found to have a warm bias com-
pared with ASTER brightness temperatures. The mean dif-
ferences between the two resampled airborne IR image mo-
saics and the ASTER image from the morning of 8 February
were 0.4 and 0.8 K and had standard deviations of 1.5 and
1.4 K, respectively. Using the GOES-16 ABI pixel footprints
labeled A–E, we found that the mean differences between the
airborne IR and ASTER did not vary with vegetation cover.

There were, however, systematic patterns in the difference
between airborne IR and ASTER-observed brightness tem-
peratures. The brightness temperature difference maps for
each of the two coincident airborne IR image mosaics exhibit
a gradient across their field of view, perpendicular to the air-
craft’s flight direction (Fig. 5). Along the southern edge of
each image mosaic, the airborne IR brightness temperatures
are about 0.5 K colder than ASTER brightness temperatures,
and along the northern edge they are about 0.5 K warmer.
Though other airborne IR images did not have coincident
ASTER observations for comparison, there was an apparent
brightness temperature gradient present in most of the images
from east–west flight tracks but not in any from north–south
flight tracks.

The apparent brightness temperature gradients could be
due to the temperature of the thermal infrared cameras them-
selves, view angle effects as described in Sect. 2.2, or a com-
bination of the two. Since the airborne IR image mosaics
are created from individual images from three cameras, these
differences may stem from the three cameras having differ-
ent temperatures. Following the east–west flight lines, solar
heating (sunlit on the southern side, shaded on the north-
ern side) on the aircraft could contribute camera tempera-
ture differences (Pestana et al., 2019). Likewise, prevailing
wind direction could preferentially cool one side of the cam-

era set versus the other. Though centered at nadir, the three
airborne IR cameras together have view angles from 31.5° on
the left to 41.0° on the right. At larger off-nadir view angles
near the image edges more of the sides of trees will be visi-
ble. Along the east–west flight lines, the northward-looking
cameras are seeing the south-facing and sunlit side of trees
and fewer tree shadows, which is an overall slightly warmer
scene than a nadir view would provide. At the same time,
southward-looking cameras are seeing the north-facing side
of trees and more snow surface shaded by the trees, an overall
slightly colder scene than a nadir view would provide. A sim-
ilar effect could be taking place with undulations in the snow
surface where at different view angles the cameras see either
the warmer south-facing sunlit side or cooler shaded north-
facing side of waves or dunes in the snow surface (Fig. 3b).

Whatever the source of the apparent brightness tempera-
ture gradient in some of the airborne IR imagery, we consid-
ered its impact on the results negligible. The gradient only
had a magnitude of 1 K across the image swaths, which is less
than the cameras’ accuracy of± 2 K (Table 1). The difference
between airborne IR and ASTER brightness temperatures in
the nadir-looking center of the swaths is 0 K. The east–west
flight lines passed directly over most of the ground obser-
vations locations, observing them from very close to nadir
where airborne IR and ASTER brightness temperatures agree
(Fig. 1). In comparisons between GOES ABI and airborne
IR infrared brightness temperatures, the airborne IR images
are aggregated to a mean brightness temperature within a
GOES ABI pixel footprint across the image swaths (Fig. 4).
This aggregation may compensate for the erroneous gradi-
ents since it averages together the positively and negatively
biased edges of the swaths. Also of note, the easternmost por-
tion of the airborne IR mosaic from 11:19 shows a large cold
feature, which, by inspecting the visible airborne imagery,
we identified as a small cloud (Fig. 5c), not visible in the air-
borne or ASTER image from 12 min prior. This portion of
the mosaic was excluded from later analysis.

5.2 Comparison of airborne IR, ASTER, and ground
observations

Snow brightness temperatures observed by the airborne IR
and ASTER imagers were biased warm in comparison with
the ground-based snow brightness temperature observations
at snow pit 2S10. Aircraft flights on 2 cloud-free days dur-
ing the study period provided us with 15 overpasses over the
ground sites on the western mesa. Two flights were made on
8 February (Fig. 6a and b). On the first flight, three over-
passes occurred about an hour after sunrise (07:13 UTC−7)
between 08:00 and 09:30. The second flight of that day made
six overpasses between 10:30 and 13:00. The second flight
was coincident with the ASTER image taken at about 11:08.
On 11 February, a single flight made another six overpasses
of the ground site between 09:30 and 13:00 (Fig. 6c and d).
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Figure 4. Example of sampling (a, b) 5 m spatial resolution airborne IR image mosaics and (c, d) 90 m spatial resolution ASTER image
using the GOES-R ABI pixel footprints or (dashed line in b) pixel footprints with an additional 500 m buffer.

Figure 5. Comparison of airborne and ASTER (a) visible and (b) IR observations on the morning of 8 February 2020. Two overlapping
airborne swaths of visible (a) and IR (b) imagery are outlined in dashed (northern flight line at 11:07 UTC−7, east-to-west flight direction)
and solid (southern flight line at 11:19 UTC−7, west-to-east flight direction) white lines. (c) The difference between airborne IR image
mosaics and the ASTER image (at 11:07 UTC−7).
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Figure 6. Time series for (a) 8 February and (c) 11 February of the ground-based snow brightness temperatures from the Apogee radiometer at
snow pit 2S10 (black line), along with GOES-16 (dashed orange) and GOES-17 (dashed purple) band 13 brightness temperatures, GOES-17
LST (red+), airborne IR (blue circles), and ASTER (red diamonds) mean brightness temperatures for the 1 km2 area around the ground site.
Plots of ground-based snow brightness temperature against remote sensing brightness temperatures on (b) 8 February and (d) 11 February.

On 8 February, snow brightness temperatures as seen by
the airborne IR and ASTER imagery appeared more uniform
than on 11 February around snow pit 2S10, and therefore less
sensitive to the size of the area sampled from the imagery to
compare with ground-based observations (Table 2). ASTER
on 8 February matched most closely to the ground-based
brightness temperatures with its single pixel value, though
this difference only increased by ∼ 0.3 K as the size of the
sampled region increased. Snow brightness temperatures as
seen in the airborne IR imagery were more uniform across
the study area on 8 February (with standard deviations across
the 1 km2 area of 0.2 to 0.6 K) than on 11 February (with
standard deviations of 0.7 to 1.0 K) which had colder air tem-
peratures and higher wind speeds.

Only four snow pits on 8 February (1N1, 1S2, 6N16, 2S7)
and two snow pits on 11 February (1N3, 2S6) were captured
in the airborne IR imagery within± 30 min of their snow sur-
face temperature measurements. On 8 February, two of the
snow pit surface temperature measurements (1S2, 2S7) were
within ± 1 K of the brightness temperatures in the airborne
IR images, while two (1N1, 6N16) were ∼ 2 K warmer, and
both snow pit temperature observations were 3–4 K warmer
on 11 February. Measuring the temperature of the topmost

centimeter of snow is not trivial, as the stem thermometers
used can heat up if exposed to sunlight and are in contact
with both snow grains and the air space between snow grains.
Near the top of the snowpack, the air temperature can be
close to that of the above-surface air (Colbeck, 1989), poten-
tially biasing these snow surface temperature readings more
towards that of warmer ambient air temperatures.

5.3 Comparison of high temporal resolution GOES-R
ABI with continuous ground observations

Both GOES-16 and -17 reported surface brightness temper-
atures warmer than the ground-based snow brightness tem-
perature observations (Fig. 6), though this difference varied
over the course of each day (Fig. 7). Compared to the ground-
based observations, the band 14 brightness temperatures had
smaller mean and root-mean-squared differences than the
band 13 brightness temperatures did. ABI brightness tem-
peratures and ground-based temperature observations show
a hysteresis patterns, with GOES ABI brightness tempera-
tures more closely matching the ground-based observations
in the nighttime (11 February) and early morning (8 Febru-
ary) than during the day. This pattern is more apparent on
11 February, with GOES brightness temperatures warming
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up in the morning and cooling down in the evening faster
than the ground-based snow brightness temperatures.

GOES-16 and -17 bands 13 and 14 all observed daily
Tmin and Tmax within 1 h or less of those measured on the
ground, and the DTR matched within± 3 K on both days. On
8 February, GOES-16 and -17 bands 13 and 14 all observed
Tmax within 30 min of ground-based Tmax. Both GOES-16
and -17 observed a DTR∼ 3 K larger in this time period than
the DTR measured on the ground. On 11 February, GOES-16
bands 13 and 14 observed the time of Tmax 30 min later than
the ground-based Tmax, and Tmin within 15 min. GOES-17
saw Tmax almost 1 h later than ground-based Tmax, and a Tmin
within 20 min of ground-based Tmin. On this day, the DTR
observed by GOES ABI was ∼ 3 K smaller than the DTR
from the ground-based snow brightness temperature obser-
vations.

5.4 Comparison of GOES-R ABI, airborne IR, and
ASTER imagery

The band 13 and 14 brightness temperatures from both
GOES-16 and -17 were mostly warmer than those from air-
borne IR and ASTER imagery, and this warm bias was larger
for GOES-16, especially for ABI pixels that contained larger
forest fractions. The mean differences between GOES-16
compared to GOES-17 and airborne IR observations across
all pixels during the first flight on 8 February decreased over
time from positive to negative biases (Fig. 7a and b). Dur-
ing the second flight on 8 February, the mean differences be-
tween GOES-16 and airborne IR generally decreased from
about 2 to 0 K, while the mean differences between GOES-
17 and airborne IR increased over time from −1 to 1 K. On
11 February, the mean differences between GOES-17 and
airborne IR were relatively constant throughout the morn-
ing of observations, while GOES-16 mean differences de-
creased similarly to what was seen on 8 February, from 5 to
2 K (Fig. 7c and d). The brightness temperature differences
also showed some variation due to the airborne image swaths
sampling only part of the ABI pixel footprints on alternating
flight tracks (as seen in Fig. 7b and d). The mean differences
between GOES-16 and the morning airborne IR observations
were found to be larger for ABI pixel footprints with higher
fveg, while the differences with GOES-17 did not correlate
with fveg (Fig. 8). Similarly, the mean differences between
GOES-16, but not GOES-17, and the morning ASTER obser-
vation were larger for ABI pixel footprints with larger fveg.
These results were also robust to uncertainty in the geoloca-
tion accuracy of GOES ABI pixel footprints, which is dis-
cussed in Sect. 6.1.

The difference between GOES-16 and -17 brightness tem-
peratures showed a prominent pattern over the course of each
day, with GOES-16 reporting warmer brightness tempera-
tures by as much as 3 K in the morning, peaking at about
10:00, and GOES-17 reporting warmer brightness tempera-
tures by nearly 3 K in the afternoons, peaking at about 15:00.

The maximum and minimum differences between GOES-16
and -17 were larger for the more forested pixel E than the
mostly open snow pixel A. However, there was no correla-
tion found between the magnitude of these differences and
the fveg value of each pixel.

6 Discussion

6.1 Intercomparison of remote sensing data

The mean differences between brightness temperatures ob-
served by all remote sensing sources and ground-based ob-
servations ranged from about 0 to 5 K, with remote sens-
ing sources (airborne IR, ASTER, GOES ABI) typically re-
porting warmer brightness temperatures than those measured
on the ground. The airborne IR and ASTER images best
matched the ground-based snow brightness temperature ob-
servations because they could resolve separate snow and for-
est temperatures, whereas the coarser ≥ 2 km spatial resolu-
tion GOES-R ABI pixels reported a mixture of forest and
snow temperatures (Table 3). This was apparent even for
the mostly forest-free westernmost portion of Grand Mesa
(pixels A) with fveg ≈ 15 %. Additionally, there were some
thin high-altitude clouds on the morning of 8 February, vis-
ible in the GOES-R ABI near-infrared “cirrus band” (band
4, 1.37 µm). The time series of band 13 and 14 brightness
temperatures during this time show rapid changes and possi-
bly colder temperatures than would be reported if those thin
clouds had not been present.

Over the course of each morning, the airborne IR imagery
tracked the morning warmup of the snow surface closely,
with a constant warm bias relative to the ground-based ob-
servations (Fig. 6). GOES-16 and -17 ABI also tracked the
ground-based snow brightness temperature observations over
the course of the day, though their biases relative to those
observations changed over time (Fig. 7). Snow brightness
temperatures were more uniform across the western mesa on
8 February than on 11 February, as seen in airborne imagery
(Table 2). This was also reflected in ABI brightness temper-
atures more closely matching the ground-based observations
on 8 February. Both GOES-16 and -17 captured the timing
of daily Tmin and Tmax on these 2 d within∼ 1 h and the diur-
nal temperature range within ± 3 K. This uncertainty in the
DTR is similar to the range seen in the mean differences over
each day and across the mesa between GOES-R ABI and
the ground-based observations (1–3 K), ABI and ASTER (2–
3 K), and ABI and the airborne IR imagery (0–5 K).

Our use of a ground-based infrared radiometer and thermal
infrared imagers all within the 8–14 µm window allowed us
to directly compare their observed brightness temperatures
(Pestana and Lundquist, 2022). However, the radiometer and
imagers viewed the study site through different atmospheric
path lengths. These different path lengths would subject the
observations to different amounts of atmospheric absorption
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Figure 7. Difference between GOES-16 ABI band 13 brightness temperature, and brightness temperature observations from GOES-17 ABI
band 13, airborne IR imagery, ASTER imagery, and ground-based brightness temperature observations. Plots for (a, b) 8 February 2020 and
(c, d) 11 February 2020 for pixels (a, c) A (fveg ∼ 15 %) and (b, d) E (fveg ∼ 45 %). The times that GOES-16 and GOES-17 have their daily
minimum phase angle are marked with vertical dashed orange and purple lines, respectively.

and emission of infrared radiation by water vapor. This im-
pact is somewhat alleviated at our high-elevation continen-
tal study site, where the atmospheric path to a satellite im-
ager is shorter and atmospheric water vapor concentrations
are less than those at more coastal or lower elevations. To
quantify these effects, the impact of atmospheric path length
for the airborne and satellite thermal infrared imagers was
simulated with MODTRAN (Berk et al., 2014) for a mid-
latitude winter atmosphere. These simulations showed that
GOES-R ABI brightness temperature observations could be
as much as 4 K colder than true brightness temperatures due
to atmospheric absorption. The GOES-R ABI LST product,
which is designed to account for these atmospheric effects,
reported surface temperatures very close to GOES-R ABI
brightness temperatures (Fig. 6). Absorption by water va-

por along the atmospheric path between the snow surface
and the radiometer mounted < 2 m above the snow surface
is negligible; however, for the airborne IR observations with
a path length of ∼ 1 km, the MODTRAN simulation showed
that brightness temperatures could be as much as 2 K colder
than true brightness temperatures. Due to their different at-
mospheric path lengths alone, we would expect satellite ob-
servations of top-of-atmosphere brightness temperature to be
biased colder than airborne observations from ∼ 1 km. Our
results, however, show that GOES-R ABI brightness temper-
atures were biased warmer than airborne observations, sug-
gesting that the magnitude of the atmospheric effect is sur-
passed by view-angle-related effects.

The mean differences between ground-based snow bright-
ness temperature observations and ABI band 14 brightness
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Figure 8. Mean differences between GOES-16 and -17 ABI brightness temperatures, airborne IR (blue dots), and ASTER (red diamonds)
plotted against the fractional vegetated area (fveg) value of each ABI pixel footprint.

Table 3. Summary of mean differences (K) between the various brightness temperature (Tb) data sources (aggregated across all ABI pixel
footprints where applicable) for 2 d of coincident observations during the SnowEx 2020 field campaign. Cells are colored by sign and
magnitude of the difference, with positive differences in red and negative differences in blue.
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temperatures were smaller than those for band 13 by about
0.2–0.4 K. This, however, does not necessarily mean that
band 14 was providing a more accurate snow brightness tem-
perature reading. Band 14 covers wavelengths where we can
expect some absorption of infrared radiance by atmospheric
water vapor, whereas band 13 sits within the “clean IR” win-
dow with minimal to no infrared absorption by water va-
por (Schmit et al., 2018). With no atmospheric water vapor
absorption, the difference between band 13 and 14 bright-
ness temperatures would be negligible. Any atmospheric wa-
ter vapor present can result in band 14 brightness tempera-
tures being colder than band 13, as was the case seen here.
Though we chose generally cloud-free time periods of obser-
vations, any trace amounts of water vapor could be causing
band 14 to appear colder, which coincidentally more closely
matched higher-resolution snow brightness temperatures on
Grand Mesa.

The results of this intercomparison were robust even if the
geolocation accuracy of a GOES ABI pixel footprint was an
order of magnitude larger (± 500 m) than their reported ac-
curacy (± 50 m; Tan et al., 2019). To test the sensitivity of
our results to geolocation accuracy, the analysis was repeated
but with airborne and ASTER imagery clipped to the area of
expanded GOES ABI pixel footprints. These expanded foot-
prints included a 500 m buffer around the original footprint
perimeter (Fig. 4b), making them 1 km wider and taller than
the original pixel footprints, representing large location un-
certainty and overlap between adjacent pixel fields of view.
This also tested the assumption that the radiance detected by
GOES ABI for a given pixel originated only from the land
surface contained within the pixel footprint (i.e., that true
brightness temperatures, represented by 5 m airborne or 90 m
ASTER, should linearly scale to an average brightness tem-
perature detected by GOES ABI). The analysis using these
expanded footprints did not significantly change the results
of this work. The warm biases seen in GOES ABI bright-
ness temperatures were larger, likely due to the expanded
pixel footprints including warmer lower-elevation areas off
the edge of Grand Mesa (Fig. 2).

6.2 Sun–satellite phase angle and thermal infrared
shadow-hiding

Even with the flat terrain of Grand Mesa controlling for ef-
fects of viewing mountain terrain from off-nadir angles (Pes-
tana and Lundquist, 2022), we observed a morning warm bias
between GOES-16 and the coincident nadir-looking ASTER,
airborne IR imagery, and GOES-17 (Fig. 7). The GOES-16
brightness temperatures were potentially exhibiting a hotspot
effect when the angle between the sun and the view angle
of GOES-16 (phase angle) reached a daily minimum. The
hotspot effect seen in remote sensing imagery of forests is
understood to be explained by shadow-hiding in imagery of
reflected sunlight in the visible and NIR wavelengths (Deer-
ing et al., 1999; Hapke et al., 1996).

When the airborne IR and ASTER images were taken
(07:00–13:00), the sun was rising in the southeastern sky
in the same direction from which GOES-16 was viewing
Grand Mesa. At about 10:00 on 11 February, when we see
the largest warm biases between GOES-16 and all other
datasets, the sun had reached 26.9° elevation at an azimuth
of 139.1° (26.1 and 139.6 on the 8 February). The angle be-
tween GOES-16’s view and the sun’s position (phase angle)
was at its minimum of ∼ 8° on 11 February at 09:59 (∼ 9° at
the same time on 8 February). At this time, the sun was illu-
minating and warming the southeastern-facing sides of trees
that GOES-16 is viewing, which in the airborne IR imagery
were as much as 5 K warmer than the shaded side of trees
(Fig. 9). In addition to viewing the sunlit side of trees, snow
in tree shadows was considerably colder than snow in the
sunlight (by∼ 10 K) and would also be hidden from the view
of GOES-16.

The airborne IR and ASTER images viewed the study
area from nadir, and the difference between these two image
sources did not vary with fveg. GOES-17 surface brightness
temperatures had smaller mean differences compared to air-
borne and ASTER than GOES-16, and these differences did
not correlate with fveg. GOES-17, viewing Grand Mesa from
the southwest, would similarly be viewing the southwest-
facing sides of trees, though during the morning these would
be partially in sun and partially in shade. In the afternoon
we see that GOES-17 is warmer than GOES-16, peaking at
about 15:00. The minimum phase angle between the sun and
GOES 17 is ∼ 8° at 14:37 on 11 February (∼ 9° on 8 Febru-
ary).

Though we see that the warm bias in GOES-16 imagery
correlates with fveg, the presence of these same warm biases
and their patterns over time (e.g., warm biases peaking at
the time of minimum phase angle) in the mostly open snow
pixels (Fig. 7a and c) suggests that other sources of surface
roughness may also be contributing to this effect, such as
greater than meter-scale dunes or sub-meter-scale ripples and
sastrugi (Kochanski et al., 2019; Warren et al., 1998).

6.3 Applications for downscaling GOES-R ABI
thermal infrared imagery

Downscaling methods for coarse-spatial-resolution thermal
infrared imagery rely on finer spatial resolution maps of
land cover properties and statistical relationships to model
and therefore correct for the expected biases in the coarse
imagery. Prior methods have used vegetation (Inamdar and
French, 2009; Kustas et al., 2003) and terrain maps (Wal-
ters, 2013), and biases in GOES-16 ABI imagery have been
related to their off-nadir views of complex terrain (Pestana
and Lundquist, 2022). Our results demonstrate that for high-
temporal-resolution GOES-R ABI thermal infrared imagery,
not only does the fractional forest coverage of each ABI pixel
have some control on surface temperature biases, but so does
the solar illumination angle and the phase angle between the
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Figure 9. Approximately nadir airborne (a) visible and (b) IR images over Grand Mesa, Colorado, from 11 February 2020 10:25:51 UTC−7,
and (c) a temperature profile across a forest stand, showing the presence of very cold tree shadows and warm southeast forest edges in full
sun. The temperature profile is parallel with the view direction of GOES-16 and nearly perpendicular to the view direction of GOES-17.

satellite and sun. Thus, any downscaling of GOES-R data
must explicitly consider time of day and time of year. These
solar and satellite view angle controls on surface temperature
observation biases were observed over both the forested and
open-snow regions of Grand Mesa, suggesting that surface
roughness features as large as trees but perhaps as small as
sastrugi contributed to the hotspot effect seen. This informa-
tion will be needed to determine if, when, and what magni-
tude a hotspot or thermal infrared shadow-hiding effect will
have on the surface temperature bias of the coarser-resolution
GOES-R ABI.

7 Conclusions

During the NASA SnowEx field campaign in February 2020,
we conducted an intercomparison of thermal infrared re-
mote sensors for retrieving surface brightness temperatures
of snow and forests. The flat study site at Grand Mesa in
western Colorado, USA, allowed us to investigate the impact
that forest cover has on thermal infrared remote sensing from
GOES-16 and GOES-17 at off-nadir view angles and high
temporal resolution. Snow brightness temperatures observed
by the airborne IR and ASTER imagers were biased warm
in comparison with the ground-based snow brightness tem-

perature observations, and the airborne IR imagery itself was
found to have a warm bias compared with ASTER, all with
mean differences within < 1 K of each other. GOES-16 and
GOES-17 observed daily maximum and minimum brightness
temperatures within ∼ 1 h of those measured in situ, and the
diurnal temperature range matched within ± 3 K. GOES-16
and GOES-17 reported warmer surface brightness tempera-
tures than the ground-based, airborne IR, and ASTER ob-
servations. This warm bias was larger for GOES-16 in the
mornings when the aircraft and ASTER passed over the study
site. The maximum warm biases in GOES-16 and GOES-
17 occurred when the sun-satellite phase angle was at its
daily minimum, suggesting that a thermal infrared shadow-
hiding effect may cause these off-nadir imagers to sense
warmer temperatures than nadir-looking imagers. Therefore,
land surface roughness features such as trees and the diurnal
changes in phase angle should be considered when interpret-
ing GOES-R ABI observations of land surface or brightness
temperatures.

The thermal infrared imagery and ground-based snow
temperature observations collected as part of SnowEx 2020
provide a unique dataset for characterizing the high tempo-
ral resolution observations from geostationary satellites. It
could be used further for testing methods for spatially down-
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scaling coarse GOES-R ABI imagery of snow and forests to
finer spatial resolutions with statistical models, sensor fusion
methods (Quan et al., 2018; Weng and Fu, 2014), or using
spectral mixture models to separate snow and forest temper-
atures (Lundquist et al., 2018). This work demonstrates that
future applications of GOES-R ABI imagery for land surface
temperature observations of landscapes like mountain snow
and forests must account for the continuously changing phase
angle and resulting thermal infrared shadow-hiding at small
phase angles. Though this work focuses on a single site in a
short time period, other geostationary satellites comparable
to GOES-R ABI, such as Fengyun-4 and Himawari-8, pro-
vide similar views of High Mountain Asia and other moun-
tains in the Eastern Hemisphere where these observations are
needed. We expect the processes described here to be impor-
tant for interpreting geostationary thermal infrared observa-
tions all around the globe.
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