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S1 Coordinate system:
We use two different sets of coordinates:
— (T, Ye, 2c) the regular cartesian coordinates

- (81, 82, n), across the slope, downslope, and normal to the slope

5 In the following, physical quantities denoted by a star (*) correspond to quantities expressed in the (s1, s2, ) coordinates
The angle between z. and n is «.

S2 Momentum balance

S2.1 Forces

10 In the following, P is the air pressure, and p is the air density.
The forces we are considering are:

— Pressure gradient force (PGF):

- in(wCaymzc):PGF:_%'v(P):_%'(%'wc+%'yc+%"z0)

p

: . 1 oP op oP
- 1n(81,82,n).PGF*=— .(831 81+6782'82+87'n)

15 — Buoyancy force (Gravity)
— in (Te, Ye 2c): Gravity =g - 2,
— in (81, 82, n): Gravity = —g - sin(«) - 81 — g - cos(a) - n
— Coriolis force:
— in (T¢, Ye 2¢): Coriolis = f-v-xe — f - u-ye, with (u, v) the wind speed coordinates in (¢, Yc)
20

— in (s, n): Coriolis = f - v* - 81 — f - u* - so with (u*, v*) the wind speed coordinates in (s1, S2)
— Turbulence and frictional forces : F’

S2.2 Momentum balance

The momentum balance equation in (Z¢,Ye, 2c) 1S

Dv _ 1. 8P
{Dt_ P BwC+Fx

Dw gTF:*gJFFz

=_1 (S1)
Dt P
25
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Since 4 U~ v* - cos(ar) —w* si.n(a) And v* =v-cos(a) +w- SiP(a)
w = w" - cos(@) +v”sin(a) w* =w-cos(a) — v -sin(a)

Dv* Dv Duw

= —_— 3 dhedpe’ 2

Dt Dt cos(a) + i sin(a) .
Using: { 5e. = cos(a) - 5y —sin(a) - 7

a‘zc =sin(a) - % + cos(a) - 8%

We end up with the following equations in (s,n) coordinates:

(83)

{%”Z =108 g.sin(a) — f-u' + F,

Dw? — 192 _ 4. cos(ar) + F),

Dt p on

We introduce P, and P’ as the background reference pressure and its perturbation, with P = P, + P’. Both variables are in
hydrostatic equilibrium. They depend on time, horizontal and vertical coordinates.

Dt = — 280 — L2 gosin(a) - 157 — 2 g-sin(a) — f-u” + F s
D — —%% — Lrg-cos(a) — %%% — £ -g-cos(a) + F,

When the slope is small, we can approximate a hydrostatic equilibrium for w*, meaning that:

Dw*

~0
Dt (SS)
{gﬁ =—p-g-cos(e)

As P, and P’ are in hydrostatic equilibrium as well,
9L = —p, - g cos(a)

P’ / (S6)
G =—p"-g-cos(a)

We define p,¢ and P, a constant density and a constant pressure in the horizontal dimensions which value remain close to p
and P. We integrate Eq. S6 with respect to the n coordinate and we divide by p,.q:

h

h
1 [oP :
86 dn = _&S(a)/p/dn (S7)
Pro n Pro
n

n

where h is a height above which P = P,. and P’ = 0. Therefore:

h

ip/(n) = _&S(Q)/p/dn (S8)
Pro Pro

n

Introducing the potential temperature 6 = (p%)l_”(Po)”, with Py = 1000 hPa, we use the logarithmic derivative:
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In the case of a shallow circulation:

AW) _ _Alp)

0 p

We define 6,.q as the potential temperature associated with p,.q and P,q:

1
. L p_ goosle) /edn
Pro

We derive the previous equation with respect to s:

h
1 oP" _ g-cos(a) cos(a / 87
pro Os B Os

As pro remains close to p:

h
19P"  g-cos(a) /E?Q’dn
p 0s - 0,0 0s

n

(89)

(S10)

(S11)

(S§12)

(S13)

Using the different developments and simplifications that we have made, we can rewrite Eq. (S4) for the downslope coordi-

nate:
Dv* 1.9P. / o0’ !
th = p[as ~g-sin(a)]+%:)(a) gdn—%g-sin(a)—f-u*—i—FS
n ~——~——" Coriolis

Large-scale Katabatic
Thermal wind

Thermal wind THWD is then computed as follows:

h
g-cos(a) [ 00
97«0 Os

n

THWD = dn

(S14)

(S15)

Eq. (S14) has been derived in what we call "sigma coordinates". From here we are unable to compute the large-scale accelera-

tion because we don’t have access to p,. or to p,.. We will need another formula for this term.

From (S1) and (S3):

10P.

-g-sin(a) =~ ——
g-sin(a) o,

Os

(S16)
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Let v,. be a wind speed such that P, and v, are in thermal-wind balance.
10P,
—— L =—_fu, (S17)
p 0z,
Using the chain rule:
1 0P, 0z,
= —— - S18
v o azc(axcﬂpr (S18)

Thus, with ®,. the geopotential associated to P,

rg 0% rg , 0D, 1,09,
vy = =8 ( ey, = I Cny o (S

~—— S19
of \Or or ‘0w~ T G
Using the definition of the potential temperature and the derivative with respect to P:
v, R 0T,
= — 2
ap = 7B \ox, 1" (520)
v, R P Ea 00,
P __t P\ S21
o~ 1R G (52
If P and P, are similar enough, which is a huge hypothesis, we can write:
ov, R P Ea 00,
P _ o S22
op =~ 7B ag)lP (522)
And it leads us to this expression:
o, R P Ra 00,
_ o S23
ane) 7R " alr (523)
As 0, (z,y,2) = 10(x,y) +70(2,y) - 2z (see article), with z. the altitude above ground level, we obtain:
80r 670 870 826
—|p= — % . S24
3330‘1) Oz, +6xc Zet 0 8%‘1) (S24)

At 500 hPa, on average, g% -2, ~ 1072 and gfc -0 ~ 10~* . The following simplification is thus made to compute v,:

6‘97, o 87'0 870
02" = o, (525)

S3 Choice of a lower boundary H,,,;,, for linear interpolation of 0

In order to accurately select H,,;y,, it is crucial to identify the minimum height at which the vertical gradient of potential
temperature (%) diverges from its value in the linear section (V;;neqr). We consider v350—500 (the value of the vertical gradient
of potential temperature computed between 350 and 500 hPa), to be an initial guess of 7;;,cqr and define H,,,;,,, as the height

under which I%GC — Y350—500| > ThreshéaTs.
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Fig. S1. Number of timesteps for which H,:» is greater than Zsoo (orange line) and number of timesteps for which H.y,, is smaller than
100 m agl and forced to 100 m agl in July 2010 at 4 different stations as function of N. N is the multiplier of v350—500, defined in the
paragraph S3. (a) D17, (b) D47, (c) D85, (d) DC. The red line indicates the minimum value of the multiplier of v350—_500 for which Hy iy, is
always smaller than Z500

We chose to express this threshold as a proportion of the vertical gradient of potential temperature in the linear section:
Thresh 20 = N*v350_500, taking into account the fact that slight variations around a linear profile are common. In order to
determlne the ideal multiplier N of y350—500, we computed H,,;,, for a range of N. If N is too small, then H,,;,, is too high in
the atmosphere, and a value of H,,;, above Z5qg is unacceptable: There would be no difference between 7;incqr and v3s50—500-
If N is too large, , the interpolation is likely to extend excessively close to the surface (H,,;, < 100 m agl). As we assume the
surface processes to always be active under 100 m agl, in these cases, H,,;, is forced to this value. In Figure S1, we show in
yellow the number of cases when H,,;, > Z500 , and in green the number of cases when H,,,;,, < 100 m agl, as a function of
N. The ideal N is when both these metrics are minimized, and in this range, we chose the smallest N.

The minimum value of the multiplier of v350_500 for which H,,;, is always smaller than Z5pg (red line on Fig. S1) is a
good indicator of the optimal value for the multiplier of y350—_500. This value is comprised between 2 - y350—500 for DC and
5 - v350_500 for the other stations.

Additionally, we show on Figure S2 that the computation of 6, is only weakly sensitive to a reasonable choice of N: there is
no substantial difference between the background potential temperature computed with 2, 4 or 6 v350_500, as shown for D17
at 7 m agl. In the end, we used a single value of N=4, which is an intermediate value between the optimal multiplier at D17
and DC, and demonstrated that the computation of 6 is robust to this choice.

S4 Computation of H,,,;,, using a second order derivative method

Mathematically, the 15¢ derivative of a linear curve is a constant (the slope), while its 274 derivative is zero. Thus, in the linear
part of the vertical profile of potential temperature, the 15 derivative is a constant (’y) and the 2"¢ derivative is zero. We chose
to define the boundary of the linear profile of 6 as the height H,,,;,, under which I— — ¥350—500| > 4 * Y350—500hPa-

A second method to determine H,,,;, would be to use a threshold on the second vertlcal derivative: H,,;, is the height under
which a 5 > Thresh 2,

(')z
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Fig. S2. 6y (background potential temperature) computed at D47, at surface level (7 m agl) for July 2010, using 2 - y350—500 (blue line),
4 - y350—500 (orange line) and 6 - v350—500 (green line) threshold for determining H i, -

We show on Figure S3 the values for H,,;, using a threshold of 10~*K /m? or 1073 K /m?. We find that using a thresold
of 107%K / m?2 leads to a very similar estimation of 6 than the first method with N=4, with a difference smaller than 0.5% is
most of Antarctica, and up to 3% in the Weddell sea (Figure S4) .

Although this is also a valid method, there are several important caveats to using a thresold on the second derivative
Thresh 2, :

822

The vertical discretization is different close to the ground than higher up in the atmosphere, meaning that there can be
some artificial discontinuities in the 2"¢ derivative

The 2nd derivative in the “linear part” is not exactly zero, because the profile is not perfectly linear. Therefore, one must

be carefull to define T'hresh .2, big enough, so that it does not result in an artificially high value of H 2, .
222 222

Thresh 2,

822

cannot be too big, because otherwise, we might miss the deviation and interpolate too low.

Thresh

52, must be valid for all 3-hourly time step and grid point

822

Therefore, a fixed threshold for the 2¢ derivative does not appear to provide any advantage over using a threshold on the 15
derivative: Both include a somewhat subjective choice of the threshold, although we show here that the specific method used
is not critical, and that we can reliably estimate 6y with any method, and a reasonable choice of the threshold (Figures S3 and
S2)

S5 Supplementary Figures
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Fig. S3. Vertical mean July 2018 profiles of (a, d, g, j) 0, (b, e, h, k) % and (c, f, 1, 1) % at D17, D47, 85 and DC (from top to bottom). The
blue dotted lines in the middle panels indicate the minimum height for interpolation of 8, computed using the 1°* order vertical derivative

method described in the manuscript. The black dashed lines in the right panels indicate the minimum height for interpolation of 6y computed
using a 2"¢ order derivative method for three different values of Thresh 520
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Fig. S5. Distributions of July 2010 2m MAR (black distributions) and observed (colored distributions) wind-speed at (a) D17 (b) D47 (c)
D85 (d) DC. The black and colored fits correspond to the Weibull fit respectively for MAR and for the observations. The four horizontal lines

indicate the mean wind-speed of each station

Table S1. Weibull parameters associated wit]

Station | Shape parameter | Scale parameter
Kobs | KMAR | Aobs | AMAR
D17 1.49 2.72 10.04 | 12.84
D47 7.14 442 88.96 | 28.72
D85 1.46 3.03 4.80 16.47
DC 1.05 1.83 1.62 4.40
h the distributions displayed on Fig. S3



Coastal Low elevation 7 Higher elevation Interior

7 7 7
6 -
6 -
54 ° 61
5 c
4 =
51 &}
=,]a@ ] () (© 51 (d) a
>
L ] 4
3 1 ‘ 4]
o4 \
g ¢ 24 1 34 — Kat
8 0 T T Thie T - T T T T L T -+ LSC
o -10 o0 10 -10 0 10 -10 0 10 -10 0 10 4 THWDy,
£ ADVH
v . , . .
~ Coastal Low elevation Higher elevation Interior COR
< 7 ‘ 7 7 7 “+ TURB
S 64 ‘ — VtWS
2 61
QL 5] €1 ‘ 6 1
]
,‘ 5 7
4 4 5 4
34() a4 ) >1 (h) a
y (@]
4 O
2 A 4
i 3 1 4
, 3 1
e ¥
T T T T T T
-5 0 5 -5 0 5 -5 0 5 -5 0 5

Acceleration (m.s"1.h™)

Fig. S6. Vertical profiles averaged over July 2010-2020 of each downslope acceleration (top panel, the x-axis extends from -15 to 15
ms~ ' h™1) and cross-slope accelerations (bottom panel, the x-axis extends from -6 to 6 ms™* h™") for the 4 zones on the transect.

m.s™’

Fig. S7. (a) Mean July 2010-2020 total wind speed, (b) wind speed associated to the sum of dominant terms, i.e. katabatic, large-scale,
thermal wind and turbulent acceleration (c) Difference between (a) and (b) at surface level (~7 m agl), computed with 3-hourly MAR
outputs.
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Fig. S8. Mean July 2010-2020 norm of accelerations at surface level (~7 m a.g.1.) computed with 3-hourly MAR outputs:(a) large-scale, (b)
katabatic, (c) thermal wind, (d) horizontal advection, (e) turbulence and (f) Pressure Gradient Force. Superimposed are the corresponding

acceleration vectors.
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Fig. S9. Comparison of MAR PGF output with our MBD PGF at the surface at D17 (a, d), D85 (b, e) and DC (c, f). Left panel (a, b, c¢):
3-hourly time serie comparison of MAR PGF versus MBD PGF for a winter month (August 2012). Right panel (d, e, f): scatter plot of MAR

PGF at D17 2012, August
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(a) (b) NRMSE on the continent,
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Fig. S10. (a) Normalized root mean square error (NRMSE) computed for the PGF (July 2010-2020) along the transect, between MAR
(online) and our MBD method, at 7 m agl. The red line indicates the average NRMSE value on the transect. (b) Histogram of the NRMSE
on the continent. The two vertical red lines represent the 5% and 95% percentiles of the total distribution for July 2010-2020.
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Fig. S11. Examples of profiles exhibiting a high Normalized Root Mean Square Error (NRMSE) between the native MAR PGF and our MBD
PGF at D17. (a), (b) and (c): vertical profile of potential temperature (blue solid line), background potential temperature computed using the
first order derivative (green solid line) computed by interpolating the potential temperature profile between 350 and 500 hPa (orange line).
(d), (e), (): vertical profiles of the first order derivative of potential temperature (blue solid line), value of % computed between 350 and 500
hPa (black solid line), threshold value of 5 X~y350—500 below which we consider the vertical potential temperature profile to be no longer
quasi-linear (red solid line). For both panels, red dashed lines indicate pressure levels of 500 hPa, 450 hPa, 400 hPa and 350 hPa and blue
dashed lines indicate the minimun height H,,;, for the interpolation of the background potential temperature. Profile (a) is a typical case
where there is no abrupt increase in the vertical derivative of potential temperature at the top of the inversion layer. Profile (b) is a typical
case of intrusion of an air-mass (characterized by a non strictly monotonous profile of potential temperature) and profile (c) is a typical case
exhibiting a secondary linear section with a different slope under 500 hPa.
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Fig. S12. Fourier transform of katabatic (red), large-scale (blue) and thermal-wind (pink) accelerations for the 4 stations on the transect.
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