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Abstract. Reliable short-term sea ice forecasts are needed
to support maritime operations in polar regions. While sea
ice forecasts produced by physically based models still have
limited accuracy, statistical post-processing techniques can
be applied to reduce forecast errors. In this study, post-
processing methods based on supervised machine learning
have been developed for improving the skill of sea ice con-
centration forecasts from the TOPAZ4 prediction system for
lead times from 1 to 10 d. The deep learning models use pre-
dictors from TOPAZ4 sea ice forecasts, weather forecasts,
and sea ice concentration observations. Predicting the sea ice
concentration for the next 10 d takes about 4 min (including
data preparation), which is reasonable in an operational con-
text. On average, the forecasts from the deep learning mod-
els have a root mean square error 41 % lower than TOPAZ4
forecasts and 29 % lower than forecasts based on persistence
of sea ice concentration observations. They also significantly
improve the forecasts for the location of the ice edges, with
similar improvements as for the root mean square error. Fur-
thermore, the impact of different types of predictors (obser-
vations, sea ice, and weather forecasts) on the predictions has
been evaluated. Sea ice observations are the most important
type of predictors, and the weather forecasts have a much
stronger impact on the predictions than sea ice forecasts.

1 Introduction

Due to increasing maritime traffic in the Arctic (Gunnars-
son, 2021; Müller et al., 2023), there is a growing demand
for reliable short-term sea ice forecasts that can support ma-
rine operations (Wagner et al., 2020). While short-term sea
ice forecasts are operationally produced by several institu-
tions using dynamical models (e.g., Sakov et al., 2012; Smith
et al., 2016; Barton et al., 2021; Williams et al., 2021; Pon-
soni et al., 2023; Röhrs et al., 2023), the usefulness of these
forecasts in Arctic navigation is often limited by their inac-
curacies (Veland et al., 2021). Melsom et al. (2019) reported
that the location of the ice edge is predicted with a mean
accuracy of 39 km in 5 d forecasts from the TOPAZ4 predic-
tion system (Sakov et al., 2012), with larger errors during the
summer when most of the maritime traffic occurs (Müller
et al., 2023). Furthermore, the sea ice concentration (SIC)
forecasts from the regional model Barents-2.5km v2.0 are, in
most cases, not better than persistence of the SIC observa-
tions for short lead times (Röhrs et al., 2023).

It is common practice to post-process weather forecasts
produced by dynamical (physically based) models in order
to improve their skill. Statistical correction techniques have
been applied to atmospheric forecasts at timescales ranging
from hours to seasons (e.g., Wang et al., 2019; Vannitsem
et al., 2021; Frnda et al., 2022; Roberts et al., 2023), particu-
larly to essential variables for end users such as temperature,
wind, and precipitation. In sea ice forecasting, most post-
processing methods have been developed for subseasonal to
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seasonal timescales (e.g., Zhao et al., 2020; Director et al.,
2021; Dirkson et al., 2019, 2022), but short-term sea ice fore-
casts produced by dynamical models are usually not post-
processed despite their potential interests for end users (Wag-
ner et al., 2020). Nevertheless, Palerme and Müller (2021)
showed that the errors in short-term sea ice drift forecasts (up
to 10 d) from the TOPAZ4 prediction system (Sakov et al.,
2012) can be significantly reduced using random forest mod-
els (by 8 % and 7 % for the direction and speed of sea ice
drift, respectively). These post-processed sea ice drift fore-
casts have been distributed on the IcySea commercial appli-
cation from 2020 to 2024 (https://driftnoise.com/icysea.html
(last access: 25 April 2024); von Schuckmann et al., 2021)
and can be considered to be an exception in operational short-
term sea ice forecasting.

Another approach consists of developing statistical sea
ice forecasts without using dynamical sea ice model out-
puts. This has been used for sea ice forecasting at differ-
ent timescales (e.g., Kim et al., 2020; Fritzner et al., 2020;
Liu et al., 2021; Andersson et al., 2021; Grigoryev et al.,
2022; Ren et al., 2022), with the advantage of greatly re-
ducing the computational cost compared to dynamical mod-
els. Andersson et al. (2021) developed a deep learning sea-
sonal forecasting system (IceNet) that predicts the proba-
bility that the SIC exceeds 15 %. IceNet significantly out-
performs the European Centre for Medium-Range Weather
Forecasts (ECMWF) SEAS5 dynamical seasonal prediction
system (Johnson et al., 2019) for lead times from 2 to
6 months, and it runs over 2000 times faster on a laptop
than SEAS5 on a supercomputer. While many studies have
investigated such approaches for sea ice forecasting, most of
them were not focused on operational short-term forecast-
ing. Grigoryev et al. (2022) developed short-term (up to 10 d)
data-driven SIC forecasts for several Arctic seas in an op-
erational context with considering real-time availability of
data. Their forecasts, based on U-Net convolutional neural
networks (Ronneberger et al., 2015) with predictors from sea
ice observations and weather forecasts, significantly outper-
formed persistence and linear trend forecasts.

Most of the short-term sea ice prediction systems based
on machine learning do not use predictors from dynami-
cal sea ice models (Fritzner et al., 2020; Liu et al., 2021;
Grigoryev et al., 2022; Ren et al., 2022; Keller et al., 2023;
Kvanum et al., 2024), and it is currently unclear whether
adding such predictors would significantly improve forecast
accuracy. This study aims at assessing the impact of using
predictors from dynamical sea ice models in the develop-
ment of the SIC forecasts from machine learning, as well
as the impact of post-processing the SIC forecasts from a
dynamical sea ice model for lead times from 1 to 10 d. The
post-processing method developed is based on convolutional
neural networks with a U-Net architecture (Ronneberger
et al., 2015) and uses predictors from TOPAZ4 SIC forecasts,
ECMWF weather forecasts, and SIC observations from the
Advanced Microwave Scanning Radiometer 2 (AMSR2). It

is evaluated by assessing the improvement compared to the
raw TOPAZ4 forecasts and to the predictions from similar
deep learning models without using predictors from TOPAZ4
sea ice forecasts. In Sect. 2, the data, the development of the
deep learning models, and the methods used for evaluating
the forecasts are presented. The results are then described
in Sect. 3, followed by the discussions and conclusions in
Sect. 4.

2 Data and methods

2.1 Sea ice observations

The AMSR2 sensor is a conically scanning, dual-polarized
microwave radiometer that measures the microwave emis-
sions emitted from the Earth’s surface across several fre-
quencies. AMSR2 SIC data are currently assimilated into
sea ice prediction systems, such as the Barents-2.5km model
(Röhrs et al., 2023; Durán Moro et al., 2024) due to its ca-
pability of daily coverage of the polar regions and its inde-
pendence of solar illumination, enabling year-round obser-
vations. The AMSR2 SIC observations used in this study
were produced using the resolution-enhancing (reSICCI3LF)
algorithm, which was initially developed for the Euro-
pean Space Agency Climate Change Initiative (ESA CCI;
Lavergne et al., 2021) and adapted for the AMSR2 mis-
sion in the Sea Ice Retrievals and data Assimilation in NOr-
way (SIRANO) project (Rusin et al., 2024a). This algorithm
aims at producing high-resolution SIC fields with low mea-
surement uncertainties by combining two retrievals. The 19
and 37 GHz channels are used to derive a coarse SIC field
(15 km) with low measurement uncertainties, whereas the
89 GHz channels are used to derive a higher-resolution SIC
field (∼ 5 km) with larger uncertainties. The high-resolution
details derived from the 89 GHz channels are then added to
the coarse SIC field, enabling the production of a SIC field
with low measurement uncertainties at a higher spatial res-
olution (∼ 5 km). Using this algorithm, daily averaged pan-
Arctic SIC fields were produced for the period 2012–2022
on a 5 km Equal-Area Scalable Earth 2.0 (EASE2) grid. In
this study, these new observations are used as a reference for
evaluating the SIC forecasts as well as for some predictors
and the target variable of deep learning models.

In addition, the ice charts produced by the Ice Service
of the Norwegian Meteorological Institute (https://cryo.met.
no/en/latest-ice-charts (last access: 25 April 2024); JCOMM
Expert Team on sea ice, 2017) are used as an independent
data set for evaluating the AMSR2 SIC observations and the
forecasts developed in this study. The ice charts are manually
drawn by ice analysts using several types of remote sensing
data. Due to their high spatial resolution, synthetic-aperture
radar (SAR) images constitute the main source of informa-
tion where they are available. Elsewhere, visible and infrared
observations are given priority, while passive microwave re-
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trievals are used where no other observations are available.
For evaluating the SIC forecasts, the ice charts were inter-
polated on the grid used for the deep learning models using
nearest-neighbor interpolation. It is worth noting that the ice
charts provide SIC categories and are not produced during
weekends. Therefore, the number of ice charts available in
2022 for evaluating the SIC forecasts varies depending on
lead time (between 144 and 243) and is considerably lower
than the number of AMSR2 SIC observations available.

2.2 Predictors and data sets used for the deep learning
models

The post-processing method developed in this study is ap-
plied to TOPAZ4 sea ice forecasts. TOPAZ4 is a numeri-
cal prediction system producing 10 d forecasts at a 12.5 km
resolution for the Arctic and the North Atlantic with hourly
time steps (Sakov et al., 2012). It consists of a sea ice model
with one thickness category and an elastic–viscous–plastic
rheology (Hunke and Dukowicz, 1997) coupled with the ver-
sion 2.2 of the Hybrid Coordinate Ocean Model (HYCOM;
Bleck, 2002; Chassignet et al., 2006). Sea ice and oceanic ob-
servations are assimilated weekly using an ensemble Kalman
filter, and the ocean surface is forced by ECMWF high-
resolution weather forecasts.

Wind and temperature high-resolution forecasts (HRES)
from the ECMWF Integrated Forecasting System (IFS) are
also used as predictors. These forecasts have lead times of
up to 10 d and are produced four times per day, but only the
forecasts starting at 00:00 UTC are used in this study. Due to
the developments of IFS HRES over time, forecasts produced
by different model cycles have been used, and it is worth
noting that the spatial resolution changed from about 16
to 9 km in March 2016 (https://www.ecmwf.int/en/forecasts/
documentation-and-support/changes-ecmwf-model, last ac-
cess: 25 April 2024).

In this work, the deep learning models have been devel-
oped using eight predictors that can be divided into three
categories (Table 1). First, two predictors are derived from
AMSR2 SIC observations acquired before the forecast start
date and consist of the SIC observations from the day pre-
ceding the forecast start date and the SIC trend calculated
over the 5 d preceding the forecast start date (in % d−1). The
second category consists of weather forecasts from ECMWF
that have been averaged between the forecast start date and
the predicted lead time. These predictors are the 2 m temper-
ature, as well as the x and y components of the 10 m wind,
on the grid used for the deep learning models. Then, predic-
tors from the TOPAZ4 ocean model can be considered to be
the last category. These variables are the SIC forecasts for
the predicted lead time, the difference between TOPAZ4 SIC
during the first daily time step and the SIC observed the day
before (hereafter referred to as “TOPAZ4 initial errors”), and
the land–sea mask (constant predictor).

The predictors from weather and sea ice forecasts vary de-
pending on lead time. Therefore, different deep learning re-
gression models were developed for each lead time from 1 to
10 d. Before developing the deep learning models, all the pre-
dictors and the SIC observations used for the target variable
were projected onto a common grid using nearest-neighbor
interpolation. This grid has the same projection and spatial
resolution (12.5 km) as the TOPAZ4 prediction system but is
smaller (544 × 544) due to the constraints related to the U-
Net architecture (the x and y axes must be divided by 2 sev-
eral times). Nevertheless, this grid includes all the grid points
that can potentially be covered by sea ice from the TOPAZ4
prediction system. When providing the predictors to the neu-
ral networks, all the grid points must contain valid values,
meaning that the land grid points must be filled with valid
values for oceanic variables. In this study, the land grid points
were considered to be ice-free ocean in the predictors. Fur-
thermore, all the predictors and the target variable have been
normalized (resulting in values ranging from 0 to 1) before
providing them to the neural networks. The training data set
was used to compute the minimum and maximum values of
the variables, which were then used for the normalization.

Though TOPAZ4 produces daily 10 d forecasts, only the
forecasts starting on Thursdays (when data assimilation is
performed) are stored in the long-term archive. Therefore,
weekly data during the period 2013–2020 were used for
training the deep learning models, resulting in about 400
forecasts for each lead time. However, we stored daily
TOPAZ4 forecasts from 2021, and we therefore used daily
data for the validation and test data sets, which consist of the
forecasts from 2021 and 2022, respectively.

2.3 Development of the deep learning models

U-Net neural networks are designed to perform image seg-
mentation tasks using an encoder–decoder architecture (Ron-
neberger et al., 2015) and have been successfully used in ear-
lier studies for sea ice forecasting (Andersson et al., 2021;
Grigoryev et al., 2022; Keller et al., 2023; Kvanum et al.,
2024). Several variations from the original U-Net architec-
ture of Ronneberger et al. (2015) are tested in our study. First,
some models were developed using residual connections (He
et al., 2016) in the convolutional blocks (meaning that the
residual was learned at each block), which was shown to ease
neural network training (He et al., 2016). It is worth noting
that the residual U-Net architecture was used by Keller et al.
(2023) for predicting the sea ice extent in the Beaufort Sea.
Furthermore, the impact of using attention blocks introduced
by Oktay et al. (2018) in the decoder, and designed to give
more weight (attention) to areas that are challenging to pre-
dict (these regions are identified by the attention blocks dur-
ing training), is also evaluated. The benefit of using attention
blocks for sea ice forecasting was already shown by Ren et al.
(2022), who developed an attention block (different from the
one used in this study) for sea ice prediction with a fully con-
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Table 1. List of predictors used for the deep learning models.

Source Variable Time

AMSR2 SIC observations Day preceding the forecast start date
AMSR2 SIC trend 5 d preceding the forecast start date
ECMWF 2 m temperature Mean value between the forecast start date and the predicted lead time
ECMWF 10 m x wind component Mean value between the forecast start date and the predicted lead time
ECMWF 10 m y wind component Mean value between the forecast start date and the predicted lead time
TOPAZ4 Land–sea mask Constant predictor
TOPAZ4 SIC forecasts Predicted lead time
TOPAZ4 and AMSR2 TOPAZ4 initial errors Day preceding the forecast start date and 1 d lead time

volutional network. Finally, average pooling was used in the
downsampling blocks of the encoder instead of max pool-
ing due to slightly better performances observed during the
tuning phase (see the Supplement).

In the original U-Net architecture (Ronneberger et al.,
2015), the number of convolutional filters is doubled (divided
by 2) at every layer in the encoder (decoder). We used the
same strategy with 32 convolutional filters in the first layer
and with the He weight initialization technique (He et al.,
2015). Five downsampling and five upsampling operations
were used in the neural networks, resulting in feature maps
with a size of 17 × 17 grid points in the bottleneck (compared
to 544 × 544 grid points in the predictors). The models were
trained using 100 epochs and a batch size of 4. An Adam op-
timizer was used with an initial learning rate of 0.005, which
was then divided by 2 every 25 epochs. The mean squared
error was used as a loss function, and the model version with
the best validation loss was selected during training in or-
der to avoid overfitting. Training the models, which contain
between 31 and 39 million parameters, takes about 3 h on a
12 GB GPU (NVIDIA Tesla P100 PCIe). For further details
regarding the model architectures, note that the codes used
for creating the deep learning models are publicly available
in a GitHub directory (see the “Code availability” section).

2.4 Verification scores

The forecasts are evaluated using two verification scores in
this study. In order to analyze the full range of SIC values in
the forecasts, as well as to strongly penalize large errors, the
root mean square error (RMSE) is calculated over all oceanic
grid points. In addition, the sea ice edge position is also eval-
uated. While the ice edge is defined here by the 15 % SIC
contour (excluding coastlines) when the AMSR2 SIC obser-
vations are used as reference, the 10 % SIC contour is used
when the forecasts are compared to the ice charts from the
Norwegian Meteorological Institute (the 10 % SIC contour
separates two sea ice categories). The integrated ice edge er-
ror (IIEE; Goessling et al., 2016) divided by the observed ice
edge length (hereafter referred to as the “ice edge distance
error”) is used for evaluating the ice edge positions, and the
ice edge length is assessed using the method introduced by

Melsom et al. (2019). While the IIEE measures the area of
mismatch between two data sets, the ice edge distance error
(Melsom et al., 2019) assesses the mean distance between
two ice edges. The ice edge distance error also has the advan-
tage of being less seasonally dependent than the IIEE, which
is greatly influenced by the ice edge length (Goessling et al.,
2016; Palerme et al., 2019). Therefore, it is more suitable
than the IIEE for comparing and averaging forecast scores
from different seasons. Furthermore, the Wilcoxon signed-
rank test is used in this study to analyze the statistical sig-
nificance of the differences between the forecast scores due
to its relevance for paired observations (the same observa-
tions are used for evaluating different forecasts) and for non-
parametric data (the errors are not normally distributed for
the SIC). This analysis was performed using the two-tailed
hypothesis with a significance level of 0.05. It is worth not-
ing that the Wilcoxon signed-rank test assesses the statistical
significance between the differences in the distribution of the
errors (and not between the mean errors).

2.5 Benchmark forecasts

The performances of the deep learning models are evaluated
by assessing the improvement compared to the raw TOPAZ4
forecasts. In addition, several benchmark forecasts are used
as reference. First, persistence of the AMSR2 SIC observa-
tions from the day preceding the forecast start date (hereafter
referred to as “persistence of AMSR2 SIC”) is used and can
be considered to be the limit from which the forecasts are
skillful. When the forecasts are evaluated using the ice charts
as reference, a similar benchmark forecast consisting of per-
sistence of the ice charts from the day preceding the forecast
start date is also used (hereafter referred as “persistence of
the ice charts”). The second benchmark forecast (hereafter
referred to as “anomaly persistence”) consists of calculating
the SIC anomalies from AMSR2 observations compared to a
climatological reference the day before the forecast start date
and adding these initial anomalies to the climatology during
the target date. Then, the values lower than 0 % and higher
than 100 % are assigned to 0 % and 100 %, respectively. All
the full years between the launch of AMSR2 (May 2012)
and the test period (2022) were used for calculating the cli-
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Figure 1. Evaluation of the ice edge positions from the new AMSR2
sea ice concentration observations used in this study and the product
OSI-408-a from the Ocean and Sea Ice Satellite Application Facility
(OSI SAF) during the period 2017–2022. The ice charts produced
by the Ice Service of the Norwegian Meteorological Institute are
used as reference, and the analysis has therefore been done in the
area covered by the ice charts (European Arctic). The ice edge dis-
tance error (see Sect. 2.4) is used for calculating the mean distance
between the ice edges, and the monthly mean distances are reported
in this figure. The red and blue lines correspond to the ice edge dis-
tance errors after all products were integrated onto the 10 km OSI-
408-a grid. The black line shows the ice edge distance error for the
new AMSR2 SIC product on its 5 km grid, thus retaining informa-
tion on the finer resolution.

matology, resulting in a 9-year period (2013–2021). The last
benchmark forecast consists of calculating the difference be-
tween TOPAZ4 SIC during the first daily time step and the
SIC observed the day before (in order to only use observa-
tions available at the forecast start date) and then subtracting
this difference from the TOPAZ4 forecasts for each lead time
(hereafter referred to as the “TOPAZ4 bias-corrected”). The
resulting values lower than 0 % and higher than 100 % are
then assigned to 0 % and 100 %, respectively. Note that this
forecast is equal to persistence of AMSR2 SIC for a 1 d lead
time.

3 Results

3.1 Sea ice concentration observations

The new AMSR2 observations were evaluated and compared
to the Ocean and Sea Ice Satellite Application Facility (OSI-
SAF) product OSI-408-a, which is also based on AMSR2
retrievals but with a spatial resolution of 10 km. The posi-
tion of the ice edge (defined here by the 10 % SIC contour)
was evaluated during the period from 2017 to 2022 using
the ice charts from the Norwegian Meteorological Institute
(JCOMM Expert Team on sea ice, 2017) as reference. All the

data sets were projected onto the grid of the OSI-408-a prod-
uct using nearest-neighbor interpolation, but only the area
covered by the ice charts (European Arctic) was taken into
account for this evaluation. The mean distances between the
ice edges from the AMSR2 products and from the ice charts
were assessed using the ice edge distance error. Overall, the
new AMSR2 data set outperforms the OSI-408-a product
(Fig. 1), with mean values of 16.8 km and 20.6 km for the
new AMSR2 observations and the OSI-408-a product, re-
spectively. Moreover, the new AMSR2 observations partic-
ularly outperform the OSI-408-a product close to the sea ice
minimum (in August, September, and October) compared to
the rest of the year. In order to assess the impact of the reso-
lution, a supplementary analysis was performed on the 5 km
grid from the new AMSR2 SIC observations when interpo-
lating the ice charts onto this grid. On the 5 km grid, the mean
distance between the ice edges from the new AMSR2 obser-
vations and the ice charts is 15.4 km, adding further confi-
dence in the quality of the new product.

3.2 Model architectures

The original U-Net architecture (with average pooling in-
stead of max pooling) is compared to architectures includ-
ing residual and attention blocks in Figs. 2 and 3. It is worth
noting that the architecture influences the number of model
parameters, which can also influence the performances. The
number of parameters varies from 31 million for the U-Net
models to 39 million for the Attention Residual U-Net mod-
els, and the models with the Residual U-Net and Attention
U-Net architectures contain about 33 and 37 million param-
eters, respectively. Figure 2 shows 5 d forecasts initialized
on 22 October 2022 from TOPAZ4, TOPAZ4 bias corrected,
and the deep learning models developed with different archi-
tectures. Between the day preceding the forecast start date
(21 October 2022) and the target date (26 October 2022), the
sea ice cover increased in the Laptev and East Siberian seas,
as well as in Baffin Bay. Moreover, a few large polynyas were
located around the New Siberian Islands during the target
date in an area not covered by sea ice during the day preced-
ing the forecast start date. While all the deep learning models,
as well as TOPAZ4 and TOPAZ4 bias corrected, reproduce
an increase in sea ice cover in the Laptev and East Siberian
seas, only the deep learning models predicted an increase in
sea ice cover in Baffin Bay. The model with the Attention
U-Net architecture produces a very small positive SIC (often
lower than 2 %) in large areas where no sea ice is observed
during the target date, which is a pattern often observed with
this model for other dates as well. Nevertheless, it seems that
adding residual blocks to this model (resulting in the Atten-
tion Residual U-Net architecture) consistently helps to better
predict these areas. Furthermore, the model with the Atten-
tion Residual U-Net architecture produces the most realistic
forecasts of the polynyas among the deep learning models.
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Figure 2. Sea ice concentration forecasts over 5 d from different forecasting systems initialized on 22 October 2022. (a) AMSR2 sea ice
concentration observations on 26 October 2022 (target date). (b) AMSR2 sea ice concentration observations during the day preceding the
forecast start date (21 October 2022). What follows are 5 d sea ice concentration forecasts from different systems: TOPAZ4 (c), TOPAZ4
bias corrected (d), the deep learning model with the U-Net architecture (e), the deep learning model with the Residual U-Net architec-
ture (f), the deep learning model with the Attention U-Net architecture (g), and the deep learning model with the Attention Residual U-Net
architecture (h).

Figure 3. Comparison of the performances of the deep learning models with different architectures during 2021 (validation period). (a) The
root mean square error (RMSE) of the sea ice concentration. (b) The mean error for the sea ice edge position defined by the 15 % sea ice
concentration contour (the ice edge distance error). AMSR2 sea ice concentration observations are used as reference.
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Figure 4. Performances of the deep learning models with the Attention Residual U-Net architecture during 2022 (test period) using the
AMSR2 sea ice concentration observations as reference. The deep learning models using all predictors are shown by the blue curves. The
models which do not use predictors from TOPAZ4 sea ice forecasts (sea ice concentration forecasts and initial errors) are shown by the
green curves. The models which do not use predictors from ECMWF weather forecasts (2 m temperature and wind) are shown by the yellow
curves. The models which do not use predictors from sea ice observations (AMSR2 sea ice concentration, AMSR2 sea ice concentration
trend, and TOPAZ4 initial errors) are shown by the purple curves.

In Fig. 3, the performances of the deep models with differ-
ent architectures are evaluated during the validation period
(2021). For a 1 d lead time, the different architectures pro-
duce forecasts with similar performances, except the U-Net
architecture for which the forecasts have an RMSE about 2 %
larger. The models with the Attention Residual U-Net archi-
tecture have the lowest RMSE for longer lead times and the
lowest errors for the position of the ice edge for lead times
up to 5 d. Therefore, the Attention Residual U-Net architec-
ture has been selected for the rest of this study despite the
higher errors for the position of the ice edge for 7 and 9 d lead
times compared to the forecasts produced using the Residual
U-Net architecture. Furthermore, it is worth noting that the
forecasts produced using the Attention Residual U-Net archi-
tecture have a lower RMSE and lower errors for the position
of the ice edge than the forecasts from the models with the
U-Net architecture for all lead times. These differences are
statistically significant (p value from the Wilcoxon signed-
rank test < 0.05) for all lead times and metrics, except for the
ice edge distance error for a 9 d lead time.

3.3 Performances of the deep learning models

In Fig. 4, the predictions from the models with the Attention
Residual U-Net architecture are compared to the benchmark
forecasts during the test period (2022) using AMSR2 SIC
observations as reference. They significantly outperform all
the benchmark forecasts for all lead times. The RMSE is im-
proved on average by 41 % compared to TOPAZ4 (between
28 % and 62 % depending on lead times), by 29 % compared

to persistence of AMSR2 SIC (between 19 % and 33 %), by
23 % compared to TOPAZ4 bias corrected (between 19 %
and 26 %), and by 27 % compared to anomaly persistence
(between 21 % and 31 %). Furthermore, the ice edge distance
error is reduced on average by 44 % compared to TOPAZ4,
by 25 % compared to TOPAZ4 bias corrected, by 32 % com-
pared to persistence of AMSR2 SIC, and by 34 % compared
to anomaly persistence.

In order to assess the impact of the different data sets
used in the predictors (observations, sea ice, and weather
forecasts), other deep learning models were developed with-
out including either predictors from TOPAZ4 sea ice fore-
casts (the SIC forecasts and TOPAZ4 initial errors), predic-
tors from ECMWF weather forecasts (temperature and wind
forecasts), or predictors from AMSR2 SIC observations (the
SIC during the day preceding the forecast start date, the SIC
trend, and TOPAZ4 initial errors). These models have the
same architecture and hyperparameters as the models us-
ing all predictors, and their performances are also shown in
Fig. 4. Note that TOPAZ4 initial errors are considered to be a
predictor from TOPAZ4 sea ice forecasts and from AMSR2
SIC observations in this experiment since both data sets are
needed to create this predictor. Overall, the predictions are
much more impacted by dropping ECMWF weather fore-
casts than by removing TOPAZ4 sea ice forecasts. On aver-
age, the relative increase in the RMSE is 2.1 % if the predic-
tors from TOPAZ4 sea ice forecasts are removed compared
to 7.7 % if the predictors from ECMWF weather forecasts are
removed. The differences in the RMSE between the models
using all predictors and those developed without ECMWF
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Figure 5. Fraction of days in 2022 (test period) during which the forecasts from the models with the Attention Residual U-Net architecture
outperform the different benchmark forecasts when the forecasts are evaluated with the RMSE (a) and with the ice edge distance error (b).
AMSR2 sea ice concentration observations are used as reference.

weather forecasts are statistically significant for all lead times
(p value from the Wilcoxon signed-rank test < 0.05). When
comparing the models using all predictors to those devel-
oped without TOPAZ4 sea ice forecasts, the differences in
the RMSE are statistically significant for all lead times, ex-
cept for 1 and 10 d. Furthermore, the forecasts from ECMWF
and TOPAZ4 have relatively similar impacts on the RMSE
for lead times from 8 to 10 d. The differences in the RMSE
between the models developed without TOPAZ4 sea ice fore-
casts and those developed without ECMWF weather fore-
casts remain statistically significant for lead times up to 9 d,
but this difference is not significant for a 10 d lead time.

The impact of removing predictors from TOPAZ4 or
ECMWF forecasts is stronger for the position of the ice edge,
with a mean increase in the ice edge distance error of 3.5 %
and 12.3 % for the predictors from TOPAZ4 and ECMWF
forecasts, respectively. Nevertheless, the models developed
without TOPAZ4 sea ice forecasts have slightly smaller ice
edge distance errors than the models using all predictors for
lead times of 7 and 9 d, and the difference in the ice edge
distance error is not statistically significant for a 10 d lead
time. Furthermore, removing the predictors from sea ice ob-
servations has a very strong impact on the predictions, with
a mean relative increase of 39 % in the RMSE and of 55 % in
the ice edge distance error.

Figure 5 shows the fraction of days in 2022 during which
the forecasts produced by the deep learning models outper-
form the different benchmark forecasts. When the forecasts
are evaluated using the RMSE, the forecasts from the deep
learning models outperform all benchmark forecasts for lead
times from 1 to 7 d and at least 99 % of the different bench-
mark forecasts for longer lead times. Moreover, the forecasts
from the deep learning models outperform all benchmark
forecasts for lead times from 1 to 5 d when the ice edge po-
sition is evaluated. For longer lead times, the deep learning

models outperform at least 97 % of persistence of AMSR2
SIC forecasts and 98 % of the anomaly persistence forecasts.
They also predict the ice edge position with better accuracy
than TOPAZ4 in at least 91 % of the cases for all lead times
and in at least 87 % of the cases compared to TOPAZ4 bias
corrected.

In order to assess the performances of the SIC forecasts
using independent observations, an additional evaluation was
performed in the European Arctic using the ice charts from
the Norwegian Meteorological Institute as reference (Fig. 6).
Since the ice charts provide sea ice categories (and not the
SIC as a continuous variable), only the ice edge position
is evaluated in Fig. 6. On average, the forecasts from the
deep learning models have an ice edge distance error 40 %
lower than TOPAZ4 forecasts, 23 % lower than TOPAZ4 bias
corrected, 29 % lower than persistence of AMSR2 SIC, and
22 % lower than persistence of the ice charts. While the fore-
casts from the deep learning models outperform TOPAZ4,
TOPAZ4 bias corrected, and persistence of AMSR2 SIC for
all lead times, they have worse performances than persistence
of the ice charts for a 1 d lead time (the ice edge distance error
is 33 % larger). Moreover, only 23 % of the forecasts from the
deep learning models outperform persistence of the ice charts
for a 1 d lead time. Nevertheless, the forecasts from the deep
learning models significantly outperform persistence of the
ice charts for longer lead times (p value from the Wilcoxon
signed-rank test < 0.05).

3.4 Predictor importance

In order to analyze the impact of each predictor on the fore-
casts, two approaches are used in this study. The first method
is the same as the one used in Fig. 4 to test the impact of
removing some data sets from the list of predictors, except
that only one predictor is removed for each model. Then, the
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Figure 6. Performances of the deep learning models with the Attention Residual U-Net architecture during 2022 (test period) using the ice
charts as reference. The ice edge position (defined by the 10 % SIC contour) is evaluated. (a) The mean ice edge distance errors depending on
lead time. (b) Fraction of days in 2022 during which the forecasts from the models with the Attention Residual U-Net architecture outperform
the different benchmark forecasts when the forecasts are evaluated using the ice edge distance error. It is worth noting that this evaluation
is performed over the area covered by the ice charts from the Norwegian Meteorological Institute (European Arctic) and that the number of
forecasts evaluated varies depending on lead time because ice charts are not produced during weekends.

Figure 7. Differences in the root mean square error in the sea ice concentration (a) and in the ice edge distance error (b) when one of the
predictor variables is not used in the deep learning models during 2022 (test period). The differences represent the subtraction between the
performances of the models in which one predictor was not used and the models using all the predictors. Therefore a positive value means
that adding the variable in the model improves the forecasts. AMSR2 sea ice concentration observations are used as reference.

performances of the different models are compared to assess
the impact of the different predictors on the forecasts. Due
to the relatively long computing time necessary for develop-
ing the different models, this experiment has only been per-
formed using half of the lead times. While two predictors are
used for the wind forecasts (x and y components), only one
model per lead time was developed by removing both pre-
dictors simultaneously to test the impact of wind forecasts. It
is worth noting that the importance of highly correlated pre-
dictors can be underestimated using this method since simi-

lar information is provided to the neural network when one
predictor is removed. The results from this experiment are
shown in Fig. 7. While all the predictors tend to reduce the
RMSE averaged over all lead times, some predictors have a
negative impact on the predictions of the ice edge (ECMWF
2 m temperature forecasts and AMSR2 sea ice concentration
observations and trend). The wind forecasts have the largest
impact among the predictors for all lead times. Removing
the wind forecasts leads to a mean absolute increase in the
RMSE of 0.72 % and a mean increase in the ice edge distance
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error of 2.49 km. The other predictors have a much lower im-
pact on the forecasts. Overall, the predictors from TOPAZ4
(the SIC forecasts and initial errors) have the strongest im-
pact on the predictions of the ice edge among the other pre-
dictors, with a mean difference in the ice edge distance error
of about 0.5 km for each predictor. However, the predictors
from TOPAZ4 sea ice forecasts have a slight negative impact
on the 7 d forecasts of the ice edge position.

Another method called permutation feature importance
has been used to assess the impact of the different predic-
tors on the forecasts (Fig. 8). In this method, only the mod-
els developed using all predictors are used. When making a
forecast, one predictor is randomly permuted by providing
the predictor data from another forecast start date. The goal
of this experiment is to test how much the models are fit-
ted to the different predictors. Figure 8 shows that the neural
networks are considerably fitted on TOPAZ4 SIC forecasts
and AMSR2 SIC observations. Permuting the fields from
these predictors produces very inaccurate forecasts, lead-
ing to mean absolute increases in the RMSE of 11.4 % and
10.4 % if TOPAZ4 SIC forecasts and AMSR2 SIC observa-
tions, respectively, are permuted. Similar results were ob-
tained for the position of the ice edge, with large increases
in the ice edge distance error if these predictors are permuted
(65.7 and 63.3 km for TOPAZ4 SIC forecasts and AMSR2
SIC observations, respectively). Moreover, the relative im-
portance of these two predictors seems anticorrelated de-
pending on lead times. This suggests that the neural networks
need at least one SIC field to guide the SIC predictions. Fur-
thermore, permuting the AMSR2 SIC trend seems to have
almost no impact on the forecasts, suggesting that the neural
networks use this predictor only marginally.

3.5 Seasonal and spatial variabilities

Figure 9 shows the seasonal variability in the performances
of the deep learning models for lead times of 1, 5, and 10 d.
Overall, the deep learning models show robust results, with
no clear seasonal cycle in the relative improvement compared
to TOPAZ4 forecasts and persistence of AMSR2 SIC. More-
over, the deep learning models outperform all the benchmark
forecasts for all the months, except in November when the
10 d forecasts are evaluated using the ice edge distance er-
ror. In November, the 10 d forecasts from the deep learning
models have a similar ice edge distance error as the TOPAZ4
bias-corrected forecasts.

The spatial variability in the performances of the deep
learning models in 2022 is shown in Fig. 10. The grid points
with less than 50 d during which the AMSR2 observations
indicate some sea ice (a SIC higher than 0 %) are excluded
from the analysis in order to only keep meaningful data.
Nevertheless, Fig. 10 must be interpreted carefully because
forecasts from different seasons with varying sea ice edge
positions are taken into account in this analysis. The fore-
casts from the deep learning models outperform the TOPAZ4

forecasts almost everywhere but have slightly lower perfor-
mances in the East Siberian Sea compared to the rest of
the Arctic. Nevertheless, it is difficult to determine if these
poorer performances in the East Siberian Sea are persistent
because only 1 year is used for this analysis. Furthermore,
the relative improvement from the forecasts produced by the
deep learning models, compared to TOPAZ4 forecasts, de-
creases with increasing lead times. Compared to persistence
of AMSR2 SIC and anomaly persistence, the relative im-
provement in the RMSE increases with increasing lead times.
There is an area in the central Arctic where the 1 d fore-
casts from the deep learning models have a larger RMSE
than TOPAZ4 bias corrected, persistence of AMSR2 SIC,
and anomaly persistence. However, the forecasts from the
deep learning models have a low RMSE in this area, meaning
that the relative differences in this area do not represent large
absolute values. Except for this area in the Central Arctic for
a 1 d lead time, the forecasts from the deep learning models
outperform the benchmark forecasts almost everywhere, with
larger improvements in areas where the marginal ice zone is
often located.

4 Discussion and conclusion

The forecasts from the deep learning models developed in
this study significantly outperform all the benchmark fore-
casts for all lead times when the AMSR2 SIC observa-
tions are used as reference, with a mean RMSE 41 % lower
than for TOPAZ4 forecasts and 29 % lower than for persis-
tence of AMSR2 SIC. They also considerably better predict
the ice edge position than the benchmark forecasts (the ice
edge distance error is reduced by 44 % and 32 % compared
to TOPAZ4 and persistence of AMSR2 SIC, respectively).
Moreover, their good performances for various seasons and
locations, as well as the relatively similar results obtained
during the validation and test periods (see the Supplement),
suggest that these models are robust. While it takes less than
a second to predict the sea ice concentration for one lead time
on a 12 GB GPU (NVIDIA Tesla P100 PCIe) once the list
of predictors is available, the full processing chain, includ-
ing the production of the predictors on a common grid, takes
about 4 min for all lead times. This is negligible compared
to the time necessary for producing TOPAZ4 forecasts and
therefore reasonable in an operational context. However, the
production of TOPAZ4 forecasts was stopped in April 2024,
and the AMSR2 SIC observations used in this study are not
available in near real time yet. This prevents the operational
use of the post-processing method presented here.

Using the ice charts from the Norwegian Meteorological
Institute as reference, the forecasts from the deep learning
models outperform all benchmark forecasts for lead times
longer than 1 d in the European Arctic but are worse than
persistence of the ice charts for a 1 d lead time. Since the
deep learning models are trained using AMSR2 SIC obser-
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Figure 8. Differences in the root mean square error in the sea ice concentration (a) and in the ice edge distance error (b) when the field
from a wrong date is provided to the deep learning models for one predictor during 2022 (test period). The differences represent the sub-
traction between the performances of the models in which one predictor is shuffled and the reference model. AMSR2 sea ice concentration
observations are used as reference.

Figure 9. Seasonal variability in the performances of the deep learning models with the Attention Residual U-Net architecture in 2022 (test
period) for different lead times (1, 5, and 10 d) when the forecasts are evaluated using the RMSE (a–c) and the ice edge distance error (d–f).
AMSR2 sea ice concentration observations are used as reference.
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Figure 10. The root mean square error (RMSE) of the forecasts from the deep learning models with the Attention Residual U-Net architecture
(first row) in 2022 (test period). Relative improvement in the RMSE (%) compared to TOPAZ4 forecasts (second row), TOPAZ4 bias
corrected (third row), persistence of AMSR2 SIC (fourth row), and anomaly persistence (fifth row). Positive values mean that the deep
learning forecasts outperform the benchmark forecasts. AMSR2 sea ice concentration observations are used as reference, and the grid points
with less than 50 d during which the AMSR2 observations indicate some sea ice (sea ice concentration higher than 0 %) are not taken into
account in this figure.

vations for the target variable, it cannot be expected that they
perform better than the differences between the two obser-
vational products (Fig. 1). While using ice charts for training
deep learning models has been recently proposed by Kvanum
et al. (2024), this does not allow for the prediction of the SIC
as a continuous variable.

Whereas previous studies used the original U-Net archi-
tecture for SIC predictions (Andersson et al., 2021; Grigo-
ryev et al., 2022), our results suggest that slightly better per-
formances can be achieved by adding residual and attention
blocks (a RMSE about 2.8 % lower on average), resulting
in the Attention Residual U-Net architecture. In addition to
the original U-Net architecture, Grigoryev et al. (2022) also

The Cryosphere, 18, 2161–2176, 2024 https://doi.org/10.5194/tc-18-2161-2024



C. Palerme et al.: Improving short-term sea ice concentration forecasts using deep learning 2173

tested a recurrent U-Net architecture in order to take into ac-
count the temporal evolution of the sea ice before the fore-
cast start date. They obtained slightly better results with the
recurrent U-Net architecture for short lead times (until 5 d
in the Labrador and Laptev seas and until 10 d in the Bar-
ents Sea) but worse results than with the original U-Net ar-
chitecture for longer lead times. Furthermore, they reported
that the computational cost for training the recurrent U-Net
models was much higher than for training the U-Net models.
In this study, training the models with the Attention Resid-
ual U-Net architecture took about the same time as training
the models with the U-Net architecture, and the models with
the Attention Residual U-Net architecture have better perfor-
mances than the models with the U-Net architecture for all
lead times.

Including predictors from ECMWF weather forecasts
(particularly the wind) has a considerable impact on the SIC
predictions, resulting in a 7.7 % reduction in the RMSE. This
is consistent with the findings from Grigoryev et al. (2022),
who assessed the impact of using predictors from weather
forecasts produced by the National Centers for Environmen-
tal Prediction (NCEP) Global Forecast System (GFS) and re-
ported significant improvements when these predictors are
included in their U-Net models. Nevertheless, the impact of
ECMWF weather forecasts decreases with increasing lead
times in our study. This could be due to the lower skill of
weather forecasts for longer lead times and to the prepro-
cessing of these variables before providing them to the neural
networks. Averaging the weather forecasts between the fore-
cast start date and the predicted lead time could decrease the
impact of these predictors for long lead times. This could be
mitigated by providing several predictors covering different
lead time ranges to the neural networks but with the disad-
vantage of increasing the computational cost.

The impact of using predictors from TOPAZ4 sea ice fore-
casts is much lower since these predictors lead to a reduc-
tion in the RMSE of only 2.1 % on average. While the im-
pact of using sea ice forecasts from TOPAZ4 is limited in
this study, this does not mean that using predictors from sea
ice forecasts does not have stronger potential. TOPAZ4 is an
operational system that has been constantly developed since
2012, which can lead to inconsistencies limiting the impact
of these predictors. The production of consistent re-forecasts
with operational systems could increase the impact of sea
ice forecasts in the development of such methods and should
be recommended in the sea ice community. Furthermore, it
is likely that more accurate physically based sea ice forecasts
would have a larger potential as predictors for machine learn-
ing models.

While this study focused on developing pan-Arctic SIC
forecasts at the same resolution as the TOPAZ4 prediction
system (12.5 km), there is also a need for higher-resolution
(kilometer-scale) sea ice forecasts (Wagner et al., 2020). This
can be addressed by developing regional high-resolution pre-
diction systems using deep learning such as the recent works

from Keller et al. (2023) and Kvanum et al. (2024). Most
studies on sea ice forecasting using machine learning have
focused on predicting the SIC and the sea ice edge (e.g., Kim
et al., 2020; Fritzner et al., 2020; Liu et al., 2021; Anders-
son et al., 2021; Grigoryev et al., 2022; Ren et al., 2022),
probably due to the larger number of reliable SIC observa-
tions available compared to other variables such as thickness,
drift, and type. However, predictions of other sea ice vari-
ables, such as thickness and drift, are necessary for seafarers,
and additional efforts should be made to better predict these
variables as well. Finally, probabilistic forecasts can also be
developed using supervised machine learning (Haynes et al.,
2023), which should have a strong potential for sea ice fore-
casting at short timescales and would be highly relevant for
end users (Wagner et al., 2020).
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Vrgoč, N., Wakelin, S., and Zupa, W.: Copernicus marine ser-
vice ocean state report, issue 5, J. Oper. Oceanogr., 14, 1–185,
https://doi.org/10.1080/1755876X.2021.1946240, 2021.

Wagner, P. M., Hughes, N., Bourbonnais, P., Stroeve, J., Raben-
stein, L., Bhatt, U., Little, J., Wiggins, H., and Flem-
ing, A.: Sea-ice information and forecast needs for indus-
try maritime stakeholders, Polar Geography, 43, 160–187,
https://doi.org/10.1080/1088937X.2020.1766592, 2020.

Wang, Q., Shao, Y., Song, Y., Schepen, A., Robertson, D. E., Ryu,
D., and Pappenberger, F.: An evaluation of ECMWF SEAS5
seasonal climate forecasts for Australia using a new forecast
calibration algorithm, Environ. Modell. Softw., 122, 104550,
https://doi.org/10.1016/j.envsoft.2019.104550, 2019.

Williams, T., Korosov, A., Rampal, P., and Ólason, E.: Presentation
and evaluation of the Arctic sea ice forecasting system neXtSIM-
F, The Cryosphere, 15, 3207–3227, https://doi.org/10.5194/tc-
15-3207-2021, 2021.

Zhao, J., Shu, Q., Li, C., Wu, X., Song, Z., and Qiao, F.: The
role of bias correction on subseasonal prediction of Arctic
sea ice during summer 2018, Acta Oceanol. Sin., 39, 50–59,
https://doi.org/10.1007/s13131-020-1578-0, 2020.

The Cryosphere, 18, 2161–2176, 2024 https://doi.org/10.5194/tc-18-2161-2024

https://doi.org/10.1175/BAMS-D-19-0308.1
https://doi.org/10.13140/RG.2.2.11169.33129
https://doi.org/10.1080/1755876X.2021.1946240
https://doi.org/10.1080/1088937X.2020.1766592
https://doi.org/10.1016/j.envsoft.2019.104550
https://doi.org/10.5194/tc-15-3207-2021
https://doi.org/10.5194/tc-15-3207-2021
https://doi.org/10.1007/s13131-020-1578-0

	Abstract
	Introduction
	Data and methods
	Sea ice observations
	Predictors and data sets used for the deep learning models
	Development of the deep learning models
	Verification scores
	Benchmark forecasts

	Results
	Sea ice concentration observations
	Model architectures
	Performances of the deep learning models
	Predictor importance
	Seasonal and spatial variabilities

	Discussion and conclusion
	Code availability
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

