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Abstract. Cryoseismology is a powerful toolset for pro-
gressing the understanding of the structure and dynamics of
glaciers and ice sheets. It can enable the detection of hid-
den processes such as brittle fracture, basal sliding, transient
hydrological processes, and calving. Addressing the chal-
lenge of detecting signals from many different processes, we
present a novel approach for the semi-automated detection
of events and event-like noise, which is well-suited for use
as Part 1 of a workflow where unsupervised machine learning
will be used as Part 2 (Latto et al., 2024) to facilitate the main
reconnaissance of diverse detected event types. Implemented
in the open-source and widely used ObsPy Python package,
the multi-STA/LTA algorithm constructs a hybrid character-
istic function from a set of short-term average (sta)–long-
term average (lta) pairs (refer to Sect. 2 in the main text for
an explanation of how uppercase and lowercase STA/sta and
LTA/lta abbreviations are differentiated). We apply the algo-
rithm to data from a seismic array deployed on the Whillans
Ice Stream (WIS) in West Antarctica (austral summer 2010–
2011) to form a “catch-all” catalogue of events and event-like
noise. The new algorithm compares favorably with standard
approaches, yielding a diversity of seismic events, including
all previously identified stick-slip events (Pratt et al., 2014),
teleseisms, and other noise-type signals. In terms of a cata-
logue overview, we investigate a partial association of seis-
micity with the tidal cycle and a slight association with ice
temperature changes of the Antarctic summer. The new algo-
rithm and workflow will assist in the comparison of different
glacier environments using seismology, the identification of
process change over time, and the targeting of possible sub-
sequent high-resolution studies.

1 Introduction

Seismic event detection is an important initial processing
step in the analysis of signals from a seismic network. Using
human analysts or automated techniques with analyst review,
the objective is to form an event catalogue representative of
the seismicity during a time period. Event catalogues have
value as they may be used for seismicity studies or as a work-
ing database for further scientific investigation. For these pur-
poses, catalogues aid the comparison between localities and
improve the detection of change over time. Equivalent to
human “picking”, automated techniques detect seismic sig-
nals above background noise and calculate the magnitude
and other quantitative characteristics of events using compu-
tational means. With regard to earthquake seismology, auto-
mated event detection techniques such as STA /LTA (“short-
term average over long-term average”; see Sect. 2 for an
explanation of how uppercase and lowercase STA/sta and
LTA/lta abbreviations are differentiated) and correlation type
have been used with increasing success and continue to be
developed (Bergen and Beroza, 2019). These techniques are
suitable for the seismological analysis of specific examples
of the smaller and more varied signals from volcanoes, land-
slides, mine activity, and glacier processes.

In contrast to targeting the event detection to a specific
signal or event type, we take an alternative approach to the
detection process, intending it to be “catch-all” such that it
includes both events and event-like noise. We use the term
“event” broadly to include impulsive signals and waveform
changes (such as an amplitude increase or frequency con-
tent change) with a less distinct onset. In some glacier envi-
ronments, event-like noise is of as much interest as impul-
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sive cryoseismic events, as both signal types yield insight
into glacier and/or ice shelf processes. The workflow that we
develop through this contribution thus aims to capture the
wide variety of seismic events and event-like noise present
in a glacier environment and any adjacent ice shelf (Part 1),
and we subsequently undertake a reconnaissance of event
types using unsupervised machine learning (Part 2, Latto
et al., 2024). This workflow aims to enable the reconnais-
sance of ice-covered environments, such as outlet glaciers
of ice sheets, some of which supply ice shelves. It provides
a consistent and repeatable approach that will work with a
modest number of stations deployed over a wide, remote area
to provide an initial appraisal of seismicity across a given re-
gion. Such a reconnaissance could facilitate (1) a comparison
of the processes active in different locations and/or (2) the
monitoring of glacier processes over time, and/or (3) the tar-
geting of following high-resolution studies.

The ObsPy Python project (Beyreuther et al., 2010) is a
software package, widely used at the time of writing, for
observational seismology including the implementation of
the STA/LTA algorithm (or STA/LTA for short) and other
data analysis tools in seismology research. As a framework
for processing observational seismological data, ObsPy pro-
vides a community-wide resource, and we have drawn upon
the nomenclature used therein unless otherwise stated. The
STA/LTA algorithm calculates average values of absolute
waveform amplitude in two time windows, one short and one
long, and compares their ratio to a threshold value for de-
tection (Allen, 1982; Trnkoczy, 2009). An event is triggered
(i.e., an event arrival time is picked) at the point where the ra-
tio rises above the trigger threshold value and is detriggered
(i.e., an event stop time is picked) once it falls below the de-
trigger threshold value. When discussing the STA/LTA algo-
rithm, we are explicitly referring to the recursive STA/LTA
algorithm, which may be regarded as a current standard ap-
proach of this type. The recursive STA/LTA algorithm im-
proves upon the classic algorithm as it reduces memory us-
age, yields a decaying exponential impulse response instead
of a rectangular one, and limits shadow zones. Shadow zones
occur when short event bursts (transients) in the STA cause
a large LTA, and the recursive algorithm limits the domi-
nating effect that such transients could have on successive
event detections. All together, this produces a more efficient
and smoother result (Withers et al., 1998). A shortcoming
of the STA/LTA algorithm is that it is sensitive to changing
noise levels. In environmental seismology studies, this leads
to missed detections because the signals of interest have low
signal-to-noise ratios and/or are diverse with regard to max-
imum amplitude and timescales (Vaezi and Van der Baan,
2015).

In comparison to STA/LTA, correlation-type algorithms
assume similar events will occur within a catalogue and so
can be less prone to missed detections of specified events
because they typically include some type of template match-
ing (Withers et al., 1998). This involves computing a nor-

malized correlation coefficient of a template for a previously
known waveform and searching a dataset for similar wave-
forms (Anstey, 1966). Under the umbrella of correlation-
type algorithms, seismic studies have employed stacking al-
gorithms (Grigoli et al., 2016) and artificial neural networks
(Wang and Teng, 1995, 1997; Valentine and Trampert, 2012).
Other advanced techniques include assigning nonlinear fil-
ters (Perol et al., 2018) and the computationally efficient sim-
ilarity search (Yoon et al., 2015). Despite successful applica-
tions in earthquake seismology, correlation-type algorithms
can lead to missed detections in environmental seismology
because of the varied and previously undetermined wave-
forms of the signals of interest.

Since STA/LTA and correlation-type algorithms have en-
joyed only limited success when applied to environmental
seismology, there is no community-wide consensus on a best
event detection technique for generating event catalogues for
cryoseismic signals. In fact, the many different methods that
have been applied demonstrate the experimental and individ-
ualized approach to detection in cryoseismology (Podolskiy
and Walter, 2016; Aster and Winberry, 2017). The most ba-
sic method is manual detection (Pomeroy et al., 2013; Pratt
et al., 2014; Barcheck et al., 2018), which avoids missed
and false detections associated with automated event detec-
tion. However, visually picking event arrival times in con-
tinuous cryoseismic data is time-consuming and analyst de-
pendent. In terms of automated detection, many studies use
the STA/LTA algorithm, which can be restrictive (i.e., only
recognizes a single set of parameters) and so is difficult to
apply across the diversity of signals that can come from
various glacier environments. Therefore, several cryoseismic
and environmental seismic studies have adapted STA/LTA
to certain applications. For example, Bassis et al. (2007)
design a variation of STA/LTA based on the detection re-
quirements of the seismometers in their study. In this case,
a small sample of manually detected events are used to op-
timize parameters. Similarly, other hybridized approaches to
STA/LTA are presented in Cichowicz (1993) and Lois et al.
(2013) for the purpose of more accurate detection in diverse
signal-and-noise environments, like those of microseismic
networks. Accounting for the possibility of missed detec-
tions, Roux et al. (2008) rely on post-processing events de-
tected by STA/LTA (e.g., extending an event’s length, ac-
counting for potential low-amplitude events that can be left
undetected). Minowa et al. (2019) apply STA/LTA to data fil-
tered by two separate frequency bands such that parameters
can be adjusted for event types characterized by different fre-
quencies. Ultimately, most studies determine the parameters
by trial and error (e.g., Lombardi et al., 2019).

Alternatives to the amplitude-dependent STA/LTA are the
use of other measures of an event, such as kurtosis, i.e., quan-
tifying deviations from a standard distribution of wave-
form amplitudes (McBrearty et al., 2020), and spectrograms
for frequency-related thresholds for detection (Helmstetter
et al., 2015). QuakeMigrate, an advanced extension of the
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STA/LTA algorithm and waveform stacking, relies on a co-
alescence (i.e., joint) energy approach that quantifies the cu-
mulative seismic energy recorded by a network of stations
(Smith et al., 2020). While QuakeMigrate and spectral-based
methods have been shown to be effective for detecting basal
icequakes, they are less effective at capturing longer tremors
(Hudson et al., 2019). Some studies also use STA/LTA and
correlation-type methods together (e.g., Walter et al., 2008;
Allstadt and Malone, 2014; Köhler et al., 2015) or just use
correlation-type methods (Mikesell et al., 2012) when there
is a reference waveform available for template matching. An
example of a more advanced technique on glaciers is the
use of hidden Markov models, which provide rapid, pre-
cise detection via learning but rely on labeled training data
(Hammer et al., 2015). Where high-resolution sensor cover-
age is desirable and possible, source locations and glacier
processes may be determined directly (e.g., Nanni et al.,
2022, make use of a dense,∼ 800 m aperture array), with the
reconnaissance-level approaches that we describe enabling
the targeting of such detailed studies.

The wide variety of techniques for the detection of ice-
quakes highlights the extent of analytical challenges in event-
based cryoseismology. Where the area of interest is an ice
stream or other ice sheet outlet glacier, the challenge is in-
creased by the remote location together with the need to
undertake a reconnaissance across a relatively large area.
The diversity of event types in glacier environments there-
fore suggests the need for a workflow comprising a (Part 1)
catch-all algorithm that can automatically capture heteroge-
neous seismicity characteristics. Given the advent of ma-
chine learning research, a rapid and broad event detection
method is a critical tool for preparing datasets for subsequent
(Part 2) semi-automated reconnaissance. In terms of any type
of analysis, a consistent approach from glacier to glacier will
be particularly useful. The high potential utility of compara-
ble event catalogues being generated from different seismic
deployments provides motivation to develop a generalized
approach for event detection and catalogue compilation for
cryoseismology data.

In this contribution, as Part 1 of the workflow pro-
posed above, we outline the development and testing of a
novel event detection method, the multi-STA/LTA algorithm,
which uses a set of sta–lta pairs to optimize the detection
of diverse cryogenic signals. We form a synthetic set of test
waveforms, using a Monte Carlo approach, and then per-
form a grid search to inform our choice of parameters for
the subsequent application of the algorithm. We also com-
pare the event detection performance of the multi-STA/LTA
algorithm with the recursive STA/LTA method. In a subse-
quent section, we apply the multi-STA/LTA algorithm to a
dataset from the Whillans Ice Stream to form an event cata-
logue, and we demonstrate how our semi-automated event
detections are substantiated by a number of visual-based
event detections. Our broad use of the term “event” includes
both impulsive signals and waveform changes with a less

distinct onset. The new event catalogue may be considered
sufficiently comprehensive to allow for an appraisal of the
recorded glacier seismicity and lends itself to subsequent
analysis using unsupervised machine learning (Part 2, Latto
et al., 2024). Finally, we discuss the limitations and utility of
this methodology in cryoseismology and other environmen-
tal seismology applications.

2 The multi-STA/LTA algorithm

In this section, we develop the multi-STA/LTA algorithm to
detect events with a range of durations and maximum ampli-
tudes. This algorithm is based on the principles of the estab-
lished STA/LTA procedure (Trnkoczy, 2009). We use a set
of simulated waveforms for algorithm testing using a Monte
Carlo approach and carry out a fine-grid search to inform the
choice of multi-STA/LTA algorithm parameters, defined in
Table 1. The relevant functions of the ObsPy package use
nomenclature including the use of “sta” (lower case) as a
duration for a short time window, and correspondingly “lta”
refers to the span of a long time window, with both given in
seconds. The short and long time windows are used to calcu-
late the average amplitudes within these window spans. We
explicitly use the uppercase “STA” and “LTA” as abbrevia-
tions for the short- and long-term averages. STA /LTA is thus
a ratio of the averaged amplitudes within these short and long
time windows.

2.1 Algorithm description

The foundation of the multi-STA/LTA algorithm is the for-
mation of a hybrid characteristic function (CF) for optimized
event detection. In statistics, a CF often represents a proba-
bility distribution of maximum eigenvalues (Feuerverger and
Mureika, 1977). When applied in this context in seismology,
the CF is a nonlinear transform of a seismogram showing
a probability distribution of likelihood for event detection.
Physically based, it quantifies changes in the energy in a
waveform’s direction of displacement.

The multi-STA/LTA algorithm takes the given input pa-
rameters (Table 1) and forms a hybrid CF through the fol-
lowing four steps:

1. Generate a set of short-time-window and long-time-
window “sta–lta pairs”. The algorithm determines the
number and spans of sta–lta pairs based on the input pa-
rameters: sta, lta, 1sta and 1lta, and ε.

2. Calculate the CF for each sta–lta pair using the recur-
sive STA/LTA algorithm applied to an input waveform.
The CF is the ratio of the absolute waveform amplitudes
averaged within the short and long time windows.

3. Calculate a hybrid CF from the maximum values of each
CF computed in Step 2 (i.e., maximum STA /LTA ra-
tios) using Eq. (1).
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Table 1. Parameter definitions for the multi-STA/LTA algorithm, based on their usage in ObsPy; see the main text for clarification. The
right-hand column shows the ranges of the parameter values sampled in a fine-grid search for the best parameter value choice (Sect. S2.2b),
the step size within the given ranges is uniformly distributed in log10 space.

Parameter name (units) Definition Range in parameter search

sta (seconds) span of the minimum short time window 0.001–100 s
lta (seconds) span of the minimum long time window 1–100 s
1sta (unitless) multiplier of sta (used to compute the span of the maximum short time window) 10–1000
1lta (unitless) multiplier of lta (used to compute the span of the maximum long time window) 10–1000
ε (unitless) the target ratio between sta–lta pairs (used as a tolerance value to limit the 1.78–100

number of time windows that are generated to ensure computational efficiency)

4. Trigger (or continue) an event while the hybrid CF value
at a given point in time is above a trigger threshold and
detrigger an event when the hybrid CF falls below a de-
trigger threshold, yielding an event list for the desired
time period.

Larger values in a CF signify a greater likelihood of an
event having occurred at that time; therefore, the maximum
value of the CF at a given point in time should signify the
highest likelihood of an event. The result is a hybrid CF that
is tailored systematically to each event in a waveform. This
contrasts the previously defined STA/LTA approach which
uses one CF computed by one short and long time window.
The multi-STA/LTA algorithm thus innovates on the recur-
sive STA/LTA algorithm by merging multiple CFs, resulting
in a hybrid CF.

The parameters of the hybrid CF used in the multi-
STA/LTA algorithm, defined by the following equation, are
selected to optimize the successful detection of events and to
minimize false detections:
Cmulti(Aon,Aoff,sta, lta,1sta,1lta,ε)=

max
{
Crecursive(Aon,Aoff,sta× (1sta)

i/(n−1), lta

× (1lta)
i/(n−1)) : i = 0, . . .,n− 1

}
, (1)

where the functionCmulti is the CF for the multi-STA/LTA al-
gorithm and the function Crecursive is the CF for the recursive
STA/LTA algorithm implemented per sta–lta pair. Aon and
Aoff are thresholds for which an event is triggered and de-
triggered, respectively, and n is the number of sta–lta pairs,
defined as the smallest integer satisfying the following equa-
tion:

n > ln(max(1sta,1/1sta,1lta,1/1lta))/ ln(ε). (2)

As an example to demonstrate how the algorithm gener-
ates a set of sta–lta pairs (Step 1), using parameter values of
sta= 1 s, lta= 10 s, 1sta= 10, 1lta= 10, and ε= 2 as inputs
to the multi-STA/LTA algorithm, the following pairs are gen-
erated:
{(sta0/lta0), . . ., (stai/ltai), . . ., (stan−1/ltan−1)} =

{(1/10), (2.15/21.5), (4.64/46.4), (10/100)}. (3)

The corresponding CFs (i.e., absolute amplitude ratios)
will be calculated, for each pair in this set, and the maxi-
mum CF per time window will be used to form the hybrid
CF (Steps 2 and 3). We illustrate the construction of the hy-
brid CF for this example parameter set applied to a waveform
in Fig. 1.

2.2 Algorithm testing and optimization

We use a Monte Carlo simulation to provide a set of wave-
forms for algorithm development. Each waveform thus gen-
erated includes randomized background noise and two events
that vary in time of occurrence, duration, amplitude, and
time between the events. The range of seismic signals that
we intend to capture in our simulations includes long-period
events with decaying amplitude, two events that are prox-
imate in time with different amplitudes and durations, and
low-amplitude events whose structure is barely detectable
above background noise. A large population of simulated
events are positioned at varying temporal separations with
respect to each other in each simulated waveform. The set of
simulated waveforms is not intended to accomplish the dif-
ficult task of replicating the exact nature of likely cryoseis-
mic signals but rather to provide a working set of signals that
present similar challenges to the STA/LTA algorithm, for ex-
ample, events of different types being closely spaced in time.

We define two event classes and randomly sample for a
uniform distribution over the variables of each class. The
sample space for each class is shown in Table 2. Further de-
tails of the simulated waveforms including the equations for
the two classes of simulated events, Eqs. (S1a) and (S1b) in
the Supplement, and further discussion of the simulated seis-
mic signal are given in Sect. S2.2a in the Supplement. Fol-
lowing the definitions of the event classes and sample space,
we use statistical analyses to guide parameter choices for the
algorithm.

We find the marginal probability distribution results for
sta, lta,1sta and1lta, and ε (Fig. 2). Finding ambiguity in the
choices of 1sta and 1lta, we also look at the marginal proba-
bility distributions of the two parameters (Fig. 3). These fig-
ures are provided in the main text to support the parame-
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Figure 1. Example to illustrate the differences in event detection for a recursive vs. a multi-STA/LTA approach. In the first panel (a) we
provide a seismic waveform sourced from https://examples.obspy.org/ (last access: 14 July 2023) with a high-pass 1 Hz filter. In (b), the CF
for a single recursive sta–lta pair (sta= 2.15 s, lta= 21.5 s), whereby one set of sta–lta pairs is used to calculate the STA /LTA amplitude
ratios, is provided as a point of comparison to (c), the hybrid CF (black) with the CFs for the four sets of sta–lta pairs in Eq. (3) that are
generated by the multi-STA/LTA parameters sta= 1 s, lta= 10 s, 1sta= 10, 1lta= 10, and ε= 2. Two reference lines for a typical trigger
value of 3 and a detrigger value of 0.5 (dashed grey) are overlaid in (b) and (c); these values are picked to show the best comparison between
event detections but are not subsequently applied to real data. In (d) the waveform is repeated from (a) with underlying horizontal bars
showing the extents of each detected event per CF in (b) as they meet the respective trigger and detrigger thresholds. The multi-STA/LTA
detected event (black) is at the maximum extent for the set of four recursive STA/LTA detected events.
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Figure 2. A guide to parameter choice for the multi-STA/LTA algorithm: the marginal probability distributions of sta, lta, 1sta, 1lta, and ε.
Each scatterplot reflects the fine grid of tested parameter values. Displayed are unconditioned values (blue circles); values conditioned by sta
between 0.01 and 0.18 (green squares); values conditioned by the sta and lta at 100 (red triangles); and values conditioned by sta, lta, and
the line log10(1lta)= 1.24× log10(1sta)+ 0.06 (black diamonds). The threshold for statistical significance is shown at 0.005 (dashed grey
line). Further discussion of the fine-grid parameter search is provided in Sect. S2.2b.

Figure 3. A further guide to parameter choices of 1sta and 1lta:
the two-dimensional marginal probability distribution for 1sta and
1lta. Overlaid is the line of best fit for the points of highest success
of event detection (red line: log10(1lta)= 1.24× log10(1sta)+
0.06). A low probability signifies a rejection of the null hypothesis
that events and noise are equally likely to be detected and, therefore,
a higher success in event detection. The color bar is scaled by the
maximum probability of rejecting the null hypothesis. Further dis-
cussion of the fine-grid parameter search is provided in Sect. S2.2b.

ter recommendations. However, full discussion of the figures
and statistical methods applied is given in Sect. S2.2b in the
Supplement. Limitations to these methods, as they are ap-
plied, are examined in Sect. 4.1.

3 Whillans Ice Stream event catalogue

We now apply the multi-STA/LTA algorithm to a real cryo-
seismology dataset – seismic recordings from the Whillans

Ice Stream (WIS; also known as Ice Stream B) – with the
aim of generating an event catalogue spanning the deploy-
ment period in the 2010–2011 austral summer.

3.1 Data

The WIS is one of five major glaciers that discharge ice
from the grounded West Antarctic Ice Sheet into the Ross
Ice Shelf. It is a fast-flowing ice stream at 300 ma−1 due
to its well-lubricated, deformable subglacial bed (Tulaczyk
et al., 2000); however it is also decelerating at an estimated
rate of 5.5 ma−2 (Beem et al., 2014), resulting in a high de-
formation rate. It experiences large-scale stick-slip motion
with tidal effects from the Ross Sea and Ross Ice Shelf. The
WIS is therefore a locality with the potential for a wide range
of cryoseismic events such as signals related to resonance
in subglacial water-filled cracks (Winberry et al., 2009) and
glacier earthquakes and tremors relating to the release of
strain the ice–bed boundary (i.e., stick-slip; Winberry et al.,
2013; Lipovsky and Dunham, 2016).

The WIS is a challenging case study for cryoseismic stud-
ies because its proximity to the Ross Ice Shelf (RIS) con-
tributes to an especially noisy seismic wave field. Though the
RIS front is distant from the WIS deployment (up to 600 km),
indirect, external sources can still be detected on the WIS
(Wiens et al., 2016); therefore, seismicity recorded on the
RIS and WIS could have various potential generative mech-
anisms. As well as the stick-slip events noted above, signals
are possible from teleseismic events (Baker et al., 2021),
ocean swell and gravity waves (Chen et al., 2019), surface
resonance (Chaput et al., 2018), rift fracture (Olinger et al.,
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Table 2. Sample space for the variables of each simulated event class. The values per variable are randomly sampled for a uniform distribution
in log10 space and are used to generate a simulated waveform containing two events as defined by Eqs. (S1a) and (S1b). Further discussion
of the two event classes is provided in Sect. S2.2a.

Variable Sample space for Eq. (S1a) Sample space for Eq. (S1b)

Amplitude (A) 1–1000 1–1000
Duration (T ) 1–100 1–100
Period component (n) 1–10 1–10
Period component (m) – 10–100
Decay (β) 1–3 1–3
Constant (γ ) – −1–1

Figure 4. Location of the Whillans Ice Stream (WIS) and the seismic stations used in this study. (a) Outline of Antarctica indicating the
location of the Ross Ice Shelf and exposed bedrock (brown) of (for example) the Transantarctic Mountains from Burton-Johnson et al. (2016).
(b) Location of the Whillans Ice Stream in the context of the Ross Ice Shelf (BB01: 84°17′43.8066′′ S, 158°9′47.1636′′W), with ice flow
speed (ma−1). (c) The WIS temporary broadband stations deployed in austral summer 2010 and 2011. Shown are the stations used in this
analysis (red shapes, labeled by station name) and the other deployed stations not used in this study (black crosses). Ice flow speed data are
from Rignot et al. (2011). Map generated by the “agrid” Python module (Stål and Reading, 2020).

2019), and flexure of the frozen surface (MacAyeal et al.,
2019). Environmental factors that are associated with detec-
tions of higher-frequency signals are tidal stresses, changes
in air temperature or insolation, and wind speed (Jenkins
et al., 2021).

Seismic sensors were deployed on the WIS in West
Antarctica during the 2010–2011 and 2011–2012 austral
summers (Winberry et al., 2010; Pratt et al., 2014). From
the 49 stations deployed, we examine data from 14 stations
(station names of format BBXX; Fig. 4, filled red shapes).

The BBXX seismometers are all Nanometrics Trillium 120 s
instruments with Reftek 130 D recorders using 200 Hz sam-
pling. Each station has continuous three-component data for
the time period between 14 December 2010 and 31 January
2011. Excluded are stations BB02, BB05, and BB09 due to
missing components and/or incomplete data for a significant
proportion of the deployment.

A common practice of the recursive STA/LTA algorithm
in earthquake detection is to use only the vertical component;
however, we also wish to make use of the horizontal compo-
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nents. This is a practical solution in the case of an instrument
problem on the vertical component and accounts for possi-
ble ray paths of seismic events to sensors. We utilize the root
sum squared (Euclidean norm) of the north, east, and verti-
cal (Z) component amplitudes for each station; this allows
weaker signals to be detected by the algorithm irrespective
of the component. This absolute value (no implied physical
meaning) is simply a means of triggering events. Conven-
tional frequency filtering is not applied during pre-processing
in order to maintain the full range of frequencies available to
be captured by the multi-STA/LTA algorithm.

3.2 Compiling the master event catalogue for the WIS

We compile a cryoseismic event catalogue for the WIS us-
ing the multi-STA/LTA algorithm with optimized parame-
ters as outlined above (Sect. 2.2). We use the waveform han-
dling pipeline for automated analysis developed by Turner
et al. (2021a), adding the multi-STA/LTA as a new option,
with a view to subsequent signal reconnaissance using un-
supervised learning (Part 2, Latto et al., 2024). We apply a
trigger value of 3 and a detrigger value of 1, chosen as a
set of triggers that effectively produce a catalogue that in-
cludes a sensible number of events. Two event catalogues are
generated: one that lists reference event information and one
that lists trace (i.e., station) specific metadata, named the ref-
erence event catalogue and trace (metadata) catalogue, re-
spectively. The reference event catalogue is based on a ref-
erence arrival time, i.e., the first instance when at least three
seismometers (equivalent to the coincident trigger threshold)
make simultaneous detections of an event, rather than the
strict event origin time (as is the case for earthquake cata-
logues). The reference time precedes this arrival time by half
the network time for the N closest seismometers, where N
is the coincident trigger threshold and the network time is
the travel time for a seismic wave between the most distant
seismometers in that group. We also take into account the
fact that multi-STA/LTA will decompose events into smaller
events based on amplitude variations; therefore, it is more ac-
curate to combine overlapping events into one event for the
purpose of compiling the two catalogues. Overlapping events
are reconciled in the catalogues by finding and merging times
accordingly for triggered stations (i.e., start to stop times
overlap plus or minus 30 s). Further considerations such as
maintaining the correct duration for the actual event are de-
tailed in the software (Turner et al., 2021a).

The two catalogues also report amplitude and energy, re-
spectively, as metrics for quantitatively describing events.
The amplitude is the maximum (peak) amplitude of a
recorded event, and the energy is the integral of the ampli-
tude squared with respect to time. Both metrics are in prac-
tice approximations because of the effect of the seismome-
ter instrument-response function. In the reference catalogue,
these values are determined by taking the average of the peak
amplitude of the three seismometers (the exact number is a

chosen variable) with the largest amplitudes. The trace cata-
logue lists these values by the station for which the event has
been triggered. Reference event and trace (metadata) cata-
logues for the WIS region during the 2010–2011 austral sum-
mer include stations triggered per event, network time, du-
ration, amplitude, and energy (https://github.com/beccalatto/
multi_sta_lta/, last access: 18 March 2024).

3.2.1 Assigning confidence and known seismicity labels
to events

Events are first assigned high- or low-confidence labels
based on the number of adjacent detecting stations (https:
//github.com/beccalatto/multi_sta_lta/ provides documenta-
tion and corresponding assignments for the reference event
catalogue). We find that approximately 35 % of events are
categorized as high confidence (Table S2 in the Supplement).
We choose to include all events (i.e., high and low con-
fidence) in this analysis because the low-confidence event
trends are generally consistent with those of high-confidence
events (Sect. 3.3 and 3.4). In this light, the concept of false
detections entering the catalogue becomes less of a concern,
although in some studies, analysts may prefer to work with
only high-confidence events. When possible, we label each
event with a verified source. We use the Pratt et al. (2014)
catalogue of stick-slip events for cross-comparison with the
reference event catalogue. Taking uncertainties in start time
into account, we label 140 events as stick-slip. Four of those
events are determined as additional to the Pratt et al. (2014)
catalogue from a manual reconnaissance. For our purposes,
by “stick-slip event”, we refer to any segment of stick-slip
rupture where the typical WIS stick-slip episode is two to
three ruptures over 20 to 30 min.

Using the global seismic catalogue (U.S. Geological Sur-
vey, 2022) during the 2010–2011 austral summer, we find
68 events as potential teleseisms. We then label events ac-
cording to how they compare to a local minimum in peak
amplitude distribution in terms of arbitrary units (a.u.) at
3.5 (log, a.u.): Teleseism I (> 3.5) and Teleseism II (≤ 3.5).
We thus find 32 Teleseism I events and 36 Teleseism II
events.

Each event with a known seismicity label was subject
to a visual review (stick-slip and teleseismic events are
available as .pdf products organized by assigned labels in
https://github.com/beccalatto/multi_sta_lta/, with documen-
tation for the plotting routine “MyAnalystPlots”). Further
information on how the labels for stick-slip and teleseis-
mic events were verified by analysts and are also included
within a subfolder containing the labeled catalogues and re-
lated README text file. Catalogue users may find that an
event is high confidence but not immediately evident in a vi-
sual inspection of the time series. Multiple, successive sta-
tion triggers add confidence to such events and usually show
a change in frequency content on more detailed analysis.
Other events that are attributable to known seismic sources
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Figure 5. Automatically detected events shown as an overlay on manually identified events (black) to compare the performance of alternative
algorithms. The y axis shows the east component amplitude centered around zero, and the x axis shows seconds from event arrival time.
The first event (a) has been identified as a basal stick-slip event by Pratt et al. (2014). The second (b) has characteristics that suggest a
tectonic teleseism (Teleseism I, main text); however it is possible that other modes of brittle deformation are contributing to the signal
(investigated further in Fig. S4 in the Supplement). The third (c) also has characteristics that suggest a tectonic teleseism (Teleseism II, main
text). Top row (purple overlay): detection by multi-STA/LTA, with recommended parameters (i.e., sta= 0.03, lta= 100,1sta= 18,1lta= 56,
and ε= 10). Second row (light-orange overlay): detection by the recursive algorithm with RECmin parameters (i.e., the minimum sta–lta
pairs sampled by the multi-STA/LTA with recommended parameters: sta= 0.03 and lta= 100). Bottom row (light-blue overlay): detection
by the recursive algorithm with RECmax parameters (i.e., the maximum sta–lta pairs sampled by the multi-STA/LTA with recommended
parameters: sta= 0.54 and lta= 5600). The multi-STA/LTA algorithm combines advantages of the other algorithms, as it is able to capture
the full length of extended events in common with RECmax.

but have a low-confidence label reinforce the notion that de-
tections may correspond to changes in frequency content not
evident in the waveforms. An example of an inspection plot
is provided together with examples of the varied event types
captured by the multi-STA/LTA algorithm (Fig. S2a, b).

3.3 Comparison of algorithms for real data

We compare the multi-STA/LTA algorithm, implemented
with the recommended sta–lta pairs, with two runs of the re-
cursive STA/LTA algorithm for real data from the WIS. From
this comparison, we aim to determine if only one sta–lta pair
is contributing to the event catalogue. If so, it would signify
that running multiple sta–lta pairs does not enhance the re-
sulting event catalogue and a recursive approach would be
sufficient.

Given the recommended parameters, we use the minimum
and maximum sta–lta pairs from the multi-STA/LTA set as
inputs to the recursive algorithm (Fig. 5, caption). We choose
these two corner cases from the multi-STA/LTA parameters
for sta–lta pairs as a sensible point of comparison between
the two algorithms that can be easily illustrated. The mini-
mum recursive sta–lta pair is referred to as RECmin, and the
maximum as RECmax.

In order to compare algorithms, we identify three de-
tected events that exhibit diverse characteristics (i.e., impul-
sive or emergent behavior, envelope descriptors, and dura-
tions), with the time frame of each event being set by the de-
tected multi-STA/LTA event duration. We then highlight the

events detected by the multi-STA/LTA, RECmin, and REC-
max approaches within the indicated time frames (Fig. 5).
The frequency spectrum and other available information are
also reviewed to aid the analysis of the event (Figs. S3–S5).

For the event shown in Fig. 5a that begins on 26 December
2010 at 18:07:00 UTC, we identify the source mechanism as
basal stick-slip based on a previous study (event no. 20; Pratt
et al., 2014). The event in Fig. 5b that begins on 5 January
2011 at 06:56:24 UTC has the initial impulsive arrival struc-
ture and high-frequency spectral content typically associated
with a tectonic teleseismic event. The source of this event is a
magnitude 6.1 earthquake occurring at a depth of 123.2 km to
the southeast of the Loyalty Islands, New Caledonia (Supple-
ment). It is possible that event source mechanisms of a sim-
ilar appearance are due to crevasse formation or propagation
in the subsurface or to quakes in the firn layer, which generate
seismic waveforms similar to those of tectonic earthquakes
at teleseismic distances (Lough et al., 2015). Based on the
peak amplitude, this event is classified as Teleseism I (> 3.5,
log a.u.). The event in Fig. 5c that begins on 11 January 2011
at 09:27:07 UTC corresponds to a tectonic teleseismic event,
with a peak amplitude that corresponds to the range allot-
ted to Teleseism II (≤ 3.5, log a.u.). The source of this event
is a magnitude 5.5 earthquake that ruptured 8013 km from
the WIS on 11 January 2011 at 09:16:09 UTC at a depth of
221.8 km.

RECmax is effective at detecting the initial arrivals of
events and can capture the full length of long events (Fig. 5).
In contrast, RECmin generally splits up events that are
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Figure 6. Reference event catalogue feature distributions. Shown on the x axes are duration (log10 s), total energy (log10 a.u.), and peak
amplitude (log10 a.u.), while the y axis shows the occurrences of events with the respective feature value. Detections from the three algorithms
are MSL, i.e., multi-STA/LTA (low confidence, light-grey filled, stacked; high confidence, dark-grey filled); the recursive RECmin (light-
orange outline); and the recursive RECmax (light-blue outline). The multi-STA/LTA algorithm combines advantages of the other algorithms,
as it is able to match, and improve upon, the detections achieved by RECmin while capturing the full length of extended events in common
with RECmax (see also Fig. 5, with parameter values given in caption). False detections are less of a concern using the current workflow than
in conventional catalogue generation as events are appraised using the Part 2 unsupervised learning with both events and event-like noise
potentially providing insight into glacier processes. See also the discussion of low-confidence events following patterns of high-confidence
events in the main text.

known to be continuous into separate segments. As a syn-
thesis of the advantages of both RECmin and RECmax, the
multi-STA/LTA algorithm with the recommended parameters
detects the full lengths of a variety of event types.

The populations of events that are yielded by the differ-
ent algorithms are compared using the reference event cat-
alogue features: duration, total energy, and peak amplitude
(Fig. 6). We use the term “occurrence” to avoid possible con-
fusion between count frequency and waveform frequency.
Event durations from the multi-STA/LTA catalogue show
a near-symmetrical distribution in semi-log space, with an
equivalent number of very short and very long events and
a maximum occurrence at about 10 s duration. RECmin, in
contrast, cannot detect events greater than 300 s, and REC-
max skews towards longer events, likely missing the large
subset of shorter, potentially real events detected by multi-
STA/LTA. The total energy of events detected by both multi-
STA/LTA and RECmin plots as a near-symmetric peak, but
RECmax does not detect the lower-energy events. All three
algorithms show detections for approximately 50 events at
very large energies, greater than 10 log (a.u.).

The distributions of the high- and low-confidence multi-
STA/LTA events are similar for higher durations (> 1 log,
seconds), energies (> 5 log, a.u.), and amplitudes (> 3 log,
a.u.). The distribution of low-confidence events where there
are no high-confidence events highlights, logically, that we
have greater uncertainty in the shorter and weaker detected
events. However, the low-confidence event distributions also
follow similar general trends to the high-confidence events,

lending credibility to the potentially real source mechanisms
for some events that are labeled low confidence.

The distribution of the peak amplitudes provides source
mechanism information that would commonly be extracted
from the magnitude of a tectonic event (such as the
Gutenberg–Richter b value; Weiss, 1997; Helmstetter et al.,
2015). However, in cryoseismology, the actual magnitude
cannot be determined because the material strength, slip dis-
tance, and area of slipped fault are usually less discernible
than for crustal earthquakes. The available data and/or the
seismic event may in fact be caused by mechanisms with
no slip such as the release of dammed meltwater. The max-
imum of the occurrences (i.e., distribution frequencies) for
all three algorithms at around 3 log a.u. can be interpreted
as an upper bound for peak amplitudes resulting from back-
ground noise (Rydelek and Sacks, 1989). After that thresh-
old, RECmax does not tend to find larger-amplitude events.
In contrast, RECmin and multi-STA/LTA preferentially de-
tect those events. The variegated structure of the curves for
both algorithms indicates composition by mixed populations
of event types.

4 Discussion

The purpose of the event detection algorithm development
and workflow is to facilitate a consistent approach to the gen-
eration and analysis of event catalogues for cryoseismology
and similar research.
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4.1 Limitations

The varied nature of cryoseismicity raises the question of
how an event should be defined for inclusion in the catalogue.
Two definitions were tested with regard to how an event is
detected by an array. In the first definition, we included a
trigger condition that defined a detection when three or more
seismometers were triggered within 60 s of the same arrival
time. This biased the catalogue towards events with impul-
sive initial arrivals, resulting in events that we know to have
a single source mechanism to be truncated prematurely or di-
vided up into separate events. As stick-slip events are known
to last between 20–30 min, we tested (and make subsequent
use of) a second definition that merges overlapping events
from three or more seismometers together regardless of ini-
tial start time (Fig. S6). In all cases, the start times in the re-
sulting catalogue indicate the time window within which the
signal is observed and not the origin time of the event. No
event locations are calculated or recorded in the catalogue,
which is intended as a generalized reconnaissance tool. As a
drawback to this approach, a small number of event groups
might be catalogued under a single energetic reference event
even though the source mechanisms could be different.

It is possible that events in other locations of interest for
cryoseismology have event types with substantially differ-
ent seismic signatures than those of the WIS (on which our
simulated waveform population was based). As an example,
stick-slip events can have a wide range of lengths and fre-
quencies with documented durations from 0.1 to 1000 s and
frequencies from 0.01 to 1000 Hz (see Podolskiy and Walter,
2016). Therefore, the parameters for the multi-STA/LTA al-
gorithm recommended in Sect. S2.2b can be adjusted based
on individual scenarios. We recommend a fresh grid search
of parameters be considered, using the same approach to the
parameter search described in Sect. S2.2b.4 (example codes
via https://github.com/beccalatto/multi_sta_lta/), prior to im-
plementation of the multi-STA/LTA in a new location. In
contrast to a trial-and-error approach, this method ensures a
robust final event catalogue while minimizing the time typ-
ically required to manually find an optimal value for each
parameter.

Use of the Euclidean norm, computed from the three-
component seismic signal, has the advantage of enabling
event detections irrespective of the component on which the
signal arrives with the highest amplitude. However, insights
yielded by separate P and S wave signals could be lost in
this process, and we encourage analysis, following the re-
connaissance enabled by the Part 1–Part 2 workflow, that
makes use of all three components. Examples include array
methods and beamforming, of relevance to both impulsive
events and event-like noise bursts (Gal and Reading, 2019;
Gal et al., 2016; Hudson et al., 2023). Such array approaches
have excellent potential for glacier studies as seismic sensor,
low-power instrumentation and battery technology continue
to evolve.

In this study we use the Monte Carlo approach to optimize
the five key model parameters that have the strongest con-
ditional interplay when applying the multi-STA/LTA method
(sta, lta,1sta and1lta, and ε) as previously described (Fig. 2).
Secondary parameters, which will vary based on the study
environment (i.e., background noise and seismic signal am-
plitudes), include the trigger and detrigger values. These val-
ues were set in this study following a brief, visual-based anal-
ysis as this was a straightforward process. Whilst any pa-
rameter choices could be optimized through the Monte Carlo
analysis, the visualization and appraisal process needed for
the trigger values could become unwieldy. In general, the pa-
rameters that are used should be recorded and supplied with
the resulting catalogue.

4.2 Event catalogue analysis

We now investigate bivariate relationships in the event cat-
alogue produced using the multi-STA/LTA algorithm (all
events, Fig. 7a; high-confidence events only, Fig. 7b), ex-
panding on the univariate investigation (Sect. 3.3) and us-
ing the same event catalogue features: duration, total energy,
and peak amplitude. This facilitates the exploration of event
types and thus the possible source mechanisms that make
up the catalogue. Here, the qualitative assessments of two-
dimensional event types are provided to be descriptive; we
further investigate event types in the companion paper to this
work (Latto et al., 2024).

We choose the local minimum in the amplitude–
occurrence distribution (Fig. 6) as a rudimentary thresh-
old for a split between two large groups of events:
events with amplitudes ≤ 3.5 log a.u. and events with am-
plitudes > 3.5 log a.u. As described in Sect. 3.2.1, to sup-
port catalogue reconnaissance, we have manually identified
events of stick-slip origin and teleseismic events (divided as
Teleseism I with amplitudes > 3.5 log a.u. and Teleseism II
with amplitudes ≤ 3.5), confirmed using several verifica-
tion methods elaborated in the https://github.com/beccalatto/
multi_sta_lta/ documentation. In Fig. 7, column (b), we show
that the bivariate relationships of the high-confidence events
follow similar patterns to the panels showing all events and
that the low-confidence events occupy the shorter and weaker
event domain.

The general trend between peak amplitude and duration
(Fig. 7, top) and energy and duration (Fig. 7, bottom) of
events is consistent with the positive linear association ex-
pected from cryogenic sources (i.e., increasing duration with
amplitude; Podolskiy and Walter, 2016, their Fig. 14). The
stick-slip events present as expected (i.e., high amplitudes
and energies, long durations), although there is a wide range
of stick-slip durations, from 100–10 000 s. In the bivariate re-
lationship between peak amplitude and energy (Fig. 7, mid-
dle), we see that the stick-slip events tend to cluster into two
families of stick-slip events: one with a linear dependence
between amplitude and energy and one with more variance,
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Figure 7. The complete reference event catalogue for multi-STA/LTA detected events shown as bivariate plots for (a) all events and (b) high-
confidence events only. The filled markers show all events (grey), stick-slip events (blue), Teleseism I events (yellow), and Teleseism II
events (pink). In the panels showing total energy versus duration (bottom row), events are subdivided according to peak amplitude to show
the distribution of smaller events ≤ 3.5 (light blue-grey). The threshold of 3.5 is determined from the local minimum in the amplitude–
occurrence distribution in Fig. 6. Some events corresponding to amplitudes ≤ 3.5 are obscured by points corresponding to larger-amplitude
events and/or known seismicity labels.

where events that have a broad range of amplitudes have
similar energies. Stick-slip waveforms on the WIS can vary
based on rupture location and tide (Pratt et al., 2014, their
Fig. 5). Therefore, the different types of stick-slip events can
be attributed to those differences. However, further analy-
sis is necessary to investigate if the parameters of the detec-

tion algorithm perform better for particular types of stick-slip
event.

The Teleseism I events show similar distributions on the
bivariate plots to the stick-slip events, with a wider range
of durations (0.1–10 000 s). This spread emphasizes the di-
versity of earthquake sources during the WIS deployment,
in terms of distance from WIS, magnitude, and depth. The
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Teleseism II events follow the Teleseism I event trends but
into the domain of shorter and weaker signals. In the figures
showing only high-confidence events, the Teleseism II events
cluster in a small range of durations (10–100 s), amplitudes
(3–3.5, log a.u.), and energies (6–8, log a.u.).

The events of higher amplitude (> 3.5) that are detected
with long durations and high energies similar to the stick-slip
events could inform studies of the WIS, as they likely pertain
to local, active glacier processes. We infer that these events
represent more than one glacier process because we can iden-
tify several clusters of events in these bivariate spaces. For
example, there is a cluster of events with very high energies
and long durations (Fig. 7, bottom). As another example in
these two dimensions, there is a cluster of events with high
energies and durations between 10–100 s.

The events of lower energies, clustered above but adjacent
to the 3.5 threshold, that occur for long durations (Fig. 7,
bottom) suggest the presence of harmonic tremors in the cat-
alogue. Harmonic tremors are observed from ice shelf pro-
cesses (such as iceberg dynamics or ocean waves around ice
shelves – MacAyeal et al., 2008, and Cathles et al., 2009,
respectively) or subglacial water flow beneath an ice stream
(Winberry et al., 2009). Other events (lower amplitudes and
energies, shorter durations) likely pertain to the noise events
(Sect. 3.3). The probable source mechanisms of these event
types are investigated in Latto et al. (2024).

4.2.1 Possible tidal control

In view of the possible tidal control on the events of the
WIS, we undertake a newly enabled overview analysis of this
relationship, based on the catch-all identification of events
in the catalogue (produced using the multi-STA/LTA algo-
rithm). We acknowledge that the length of the deployment
in this study is relatively short for such an analysis, but the
comparison indicates what is probable for records covering
longer time spans. The tidal heights that we use for compar-
ison are estimated using the Circum-Antarctic Tidal Simula-
tion (CATS; Padman et al., 2002), and we examine the two
large-event groups defined by peak amplitude (i.e.,> 3.5 and
≤ 3.5) and illustrate their occurrence on falling and rising
tides (Fig. 8). In general, similar patterns in events of high
and low confidence are found for peak amplitudes > 3.5.
The distributions for peak amplitudes ≤ 3.5 appear similar,
but the smaller number of high-confidence to low-confidence
events emphasizes the larger uncertainty in the analysis of
weaker events.

The separation of events by falling and rising tides demon-
strates that seismicity patterns are moderately correlated to
the periodic tidal cycles, mostly with little difference in tide
direction (increasing or decreasing), shown by the similar-
ities in Fig. 8a–c. The events with amplitudes > 3.5 show
a tendency towards positive tide heights. The high-tide ten-
dency is corroborated in the case of stick-slip seismicity,
which occurs preferentially at maximum power during high

tide near the center of the stick-slip region and of the array
(at 84.4° S, 157° W; Pratt et al., 2014; Barcheck et al., 2018).
Conversely, events with amplitudes ≤ 3.5 show a more sym-
metrical distribution. This result compares well with the ob-
served association between relatively weak amplitude ocean
microseisms and diurnal tidal cycles (Makinson et al., 2012;
Anthony et al., 2015).

We further examine the context of the events by eval-
uating the relationships between tides and ice temperature
variations and the timing of event occurrence (Fig. 9). The
ice temperature, retrieved for each of the 14 BBXX station
positions over the deployment period, is a surface prod-
uct sourced from the AVHRR Polar Pathfinder Cryosphere
(Fig. 9 caption). The neap and spring tide cycles correlate to
some extent, with a lower and higher number of events per
day, respectively. A possible causative mechanisms could be
processes occurring within the Ross Ice Shelf in response
to ocean gravity waves (Chen et al., 2019). In comparison,
the ice temperature variations appear to be more weakly cor-
related to event occurrence. Even so, cooling through the
months of available data (Comiso, 2000) may have a grad-
ual influence on the seismic response of the WIS and the
surrounding region (e.g., expected seismic response from the
thermal contraction of ice; Olinger et al., 2019). The tempo-
ral patterns of daily event occurrence are similar for both the
high- and the low-confidence events. For example, the days
with the highest number of overall events (e.g., Days 34, 33,
7, and 16) maintain a relative increase in events when looking
at high-confidence events only.

4.3 Applications

The systematic compilation of reference event and trace cat-
alogues using the multi-STA/LTA algorithm newly enables
the future application of a variety of seismic techniques to
understand glacier dynamic and hydrological processes, as
the event start time (signal arrival window) and other infor-
mation are provided to the analyst. Further, the production
of catch-all (near-comprehensive), reproducible event cata-
logues is a critical step towards standardized glacier moni-
toring as comparative studies between locations are enabled.
The algorithm and workflow may enable a more complete
analysis of diverse events from longer-duration networks. In
this way, new seismic deployments with “in-ice” stations can
draw on the experience gained in Greenland and Antarctica
including large-scale seismic networks like the Greenland Ice
Sheet Monitoring Network (GLISN) and the Polar Earth Ob-
serving Network (POLENET) (Wilson et al., 2006; Anderson
et al., 2010). The multi-STA/LTA algorithm could be applied
to these long-duration deployments to enable an expanded
catalogue and optimize fill-in deployment planning. We in-
tend the multi-STA/LTA algorithm to be used as an additional
tool in the cryoseismology toolbox and endorse existing ap-
proaches such as template matching or array approaches if
the intent of the cryoseismology study is to examine or lo-
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Figure 8. Reference event occurrence against downstream tidal height for the WIS. Events are grouped into rows for (a) all events, (b) events
occurring on a falling tide, and (c) events occurring on a rising tide. Bars are shaded light blue-grey for low-confidence events and dark
grey, stacked, for high-confidence events. From left to right, columns show all peak amplitudes, peak amplitudes > 3.5, and peak amplitudes
≤ 3.5. Tidal heights (m) are determined for a downstream location (84°20′20.3994′′ S, 166°0′0′′W) from the CATS tidal model (Padman
et al., 2002; Howard et al., 2019). This location is on the Ross Ice Shelf, 59 km from station BB12 (i.e., the seismometer in the WIS array
located furthest downstream). Teleseismic events are included with a view to streamlined future workflows but are not sufficient in number
to mask the temporal patterns shown (Table S2).

cate a more specific event (glacier process) type (e.g., Nanni
et al., 2022; Umlauft et al., 2023; Hudson et al., 2023).

The event catalogue produced here includes a list of the
seismic stations in the array which detected each event; the
network time at detection; and the duration, amplitude, and
energy. Complementing the reference catalogue, the trace
(metadata) catalogue enables manual analysis of represented
stations. The new catalogue will find utility in guiding con-
ventional glacier seismology, taking the place of a lengthy
manual reconnaissance of event types in most cases and also
pointing to any temporal patterns in event and event-like
noise occurrence.

Further, investigation of event types using a machine learn-
ing approach, which is being used increasingly (Bergen et al.,
2019), has been enabled and is the subject of a companion
paper (Latto et al., 2024). One of the key outcomes of our
current study is that the catalogue reveals the diverse charac-
ter of events from the nearby ocean and ice shelf, in addition
to the events within the ice stream. Of these, many events
are ambient noise, but the fluctuating noise level means that
they manifest as events. Therefore, using software such as
that provided in Turner et al. (2021a), we aim to investigate
the variety of event types using unsupervised learning based
on the features computed from the seismic time series per
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Figure 9. Reference event occurrences, split into daily totals, are shaded light blue-grey for low-confidence events and dark grey for high-
confidence events (stacked). Daily occurrence is plotted against (a) downstream tidal height for the WIS (red, right y axis) and (b) ice
surface temperature at all relevant stations (dark-blue line is the daily average for the area, and the blue shading covers the minimum and
maximum station daily temperatures, right y axis). Tidal heights (m) are determined for a downstream location, as in the caption for Fig. 8.
Ice surface temperatures (°C) are from the high-resolution (25 km) NOAA Climate Data Record (CDR) of the AVHRR Polar Pathfinder
(APP) Cryosphere, Version 2, at each of the 14 BBXX station positions (Key et al., 2016, 2019).

event (equivalent to the feature sets described in Köhler et al.,
2008).

While the methods described have been developed and
tested for a glacier environment, a similar workflow, includ-
ing use of the multi-STA/LTA algorithm, has potential for
application to other similar environments, such as volcanoes,
landslides, and mining.

The semi-automated nature of the processing makes
glacier monitoring using seismic methods increasingly feasi-
ble. Large outlet glaciers drain and buttress major ice sheets
covering Greenland and Antarctica from the warming ocean.
The contribution of these glaciers to sea level rise constitutes
an increasing threat (DeConto and Pollard, 2016). The infor-
mation from catch-all (near-comprehensive) event catalogues
would enable the detection and further understanding of hid-
den processes such as brittle cracking and basal slip and pro-
vide improved temporal resolution of intermittent processes
such as melt episodes and calving. In tandem with other in-
formation, such as that provided by satellite data, this pro-
vides a means to advance our understanding of glacier dy-
namics and the response of glaciers to forcings and change.

5 Conclusions

We present a novel seismic event detection algorithm (multi-
STA/LTA) that successfully detects events that have low
signal-to-noise ratios and/or are diverse with regard to max-
imum amplitude and event duration. Using a Monte Carlo
simulation of test waveforms and subsequent parameter
search, we demonstrated how the algorithm parameters can
be optimized. The algorithm’s utility in glacier seismology
for generating a catch-all event catalogue has been illus-
trated through application to 14 stations from the Whillans
Ice Stream 2010–2011 austral summer seismic deployment
(IRISDMC; Winberry et al., 2010). The resulting event cat-
alogues (reference catalogue, trace catalogue) encompass
a near-comprehensive reconnaissance research product that
will enable further glacial seismicity studies.

We find that multi-STA/LTA is more adept than the con-
ventional recursive approach at capturing diverse events that
are characterized by a wide range of durations, amplitudes,
and energies. In particular, the multi-STA/LTA approach de-
tects events across a wide range of characteristic timescales,
with durations varying by at least an order of magnitude, in
contrast to implementations where the computation is based
on a single set of such parameters.
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The catalogue is appraised through assigning high confi-
dence (approximately 35 %) and low confidence to events.
We show that the low-confidence event distributions are sim-
ilar to those of the high-confidence events in most cases. The
significant proportion of low-confidence events for this cat-
alogue highlights the challenges of glacial seismology in a
noisy environment such as that of the Whillans Ice Stream
and surrounding Ross Ice Shelf, where both local events and
those external to the ice stream are potentially of interest.
Many of the captured events are not immediately obvious to
a visual check of the time series but show a shift in frequency
content on closer analysis.

We demonstrate the utility of the catalogue through inves-
tigating aspects of event property distributions and links to
possible signal generation mechanisms. We are able to begin
analysis of the diverse event types, including stick-slip seis-
micity and teleseismic events, all produced from one hetero-
geneous catalogue. Events in the catalogue are visualized in
terms of their duration, energy, and peak amplitudes. We find
a partial association of seismicity with the tidal cycle, not-
ing that a longer deployment would be preferable for such an
analysis, and we consider 11 % of the catalogue to be stick-
slip and teleseismic events (Sect. 3.2.1). We find a slight as-
sociation with ice surface temperature, as an indicative exam-
ple of one atmospheric observable. For both results, longer
time series would be needed to support a statistical test for
correlation; therefore we use the term “association” to indi-
cate a qualitative assessment.

The new algorithm and workflow for systematic event de-
tection have multi-faceted potential. For conventional seis-
mological analysis, they will enable the reproducible gen-
eration of catch-all (near-comprehensive) event catalogues
for cryoseismology and facilitate further manual analysis.
They will also enable progress in the wider fields of envi-
ronmental and geotechnical applications of seismology. Sig-
nificantly a semi-automated approach to data analysis is en-
abled such that machine learning and other automated analy-
ses may be used to enhance pattern detection and dataset ex-
ploration. Improving analysis capabilities, whether by con-
ventional or semi-automated means, should prove to be a
valuable step forward in analyzing the response of remote
glaciers to global change.
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results are written in Python, open-access, and available for
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