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Abstract. Snow dynamics play a critical role in the climate
system, as they affect the water cycle, ecosystems, and soci-
ety. In climate modelling, the representation of the amount
and extent of snow on the land surface is crucial for sim-
ulating the mass and energy balance of the climate system.
Here, we evaluate simulations of daily snow depths against
83 station observations in southern Germany in an elevation
range of 150 to 1000 m over the time period 1987–2018. Two
simulations stem from high-resolution regional climate mod-
els – the Weather Research & Forecasting (WRF) model at
1.5 km resolution and the COnsortium for Small scale MOd-
elling model in CLimate Mode (COSMO-CLM; abbreviated
to CCLM hereafter) at 3 km resolution. Additionally, the hy-
drometeorological snow model Alpine MUltiscale Numeri-
cal Distributed Simulation ENgine (AMUNDSEN) is run at
point scale at the locations of the climate stations, based on
the atmospheric output of CCLM. To complement the com-
parison, the ERA5-Land dataset (9 km), a state-of-the-art re-
analysis land-surface product, is also compared. All four sim-
ulations are driven by the atmospheric boundary conditions
of ERA5.

Due to an overestimation of the snow albedo, the WRF
simulation features a cold bias of 1.2 °C, leading to the slight
overestimation of the snow depth in low-lying areas, whereas
the snow depth is underestimated at snow-rich stations. The
number of snow days (days with a snow depth above 1 cm) is
reproduced well. The WRF simulation can recreate extreme
snow depths, i.e. annual maxima of the snow depth, their tim-

ings, and inter-station differences, and thereby shows the best
performance of all models.

The CCLM reproduces the climatic conditions with very
low bias and error metrics. However, all snow-related assess-
ments show a strong systematic underestimation, which we
relate to deficiencies in the snow module of the land-surface
model. When driving AMUNDSEN with the atmospheric
output of the CCLM, the results show a slight tendency to
overestimate snow depth and number of snow days, espe-
cially in the northern parts of the study area. Snow depth ex-
tremes are reproduced well.

For ERA5-Land (ERA5L), the coarser spatial resolution
leads to larger differences between the model elevation and
the station elevation, which contributes to a significant corre-
lation of climatic biases with the elevation bias. In addition,
the mean snow depth and number of snow days are strongly
overestimated, with conditions that are too snowy in the late
winter. Extreme snow depth conditions are reproduced well
in the low-lying areas, whereas strong deviations occur with
more complex topography.

In sum, due to the high spatial resolution of convection-
permitting climate models, they show the potential to repro-
duce the winter climate (temperature and precipitation) in
southern Germany. However, different sources of uncertain-
ties, i.e. the spatial resolution, the snow albedo parametri-
sation, and other parametrisations within the snow model,
prevent their further use in a straightforward manner for im-
pact research. Hence, careful evaluation is needed before any
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impact-related interpretation of the simulations, such as in
the context of climate change research.

1 Introduction

The presence and absence of snow, as well as the snow
depth, affect nature and humans on many different levels.
The albedo of snow influences the radiation and energy bal-
ance of the surface (Warren, 2019). Its insulating effect pro-
tects plants and animals (Blume-Werry et al., 2016; Slatyer
et al., 2022). In addition, snow cover affects the microbial
structure of the soil (Gavazov et al., 2017). The seasonal
cycle of snow cover duration and snow depth governs soil
moisture dynamics (Qi et al., 2020) and the runoff regimes
of rivers and streams (Girons Lopez et al., 2020; Poschlod
et al., 2020a). Hence, the snow dynamics also affect the
freshwater availability in large regions of the world (Bar-
nett et al., 2005). Snow melt may also induce riverine floods
(Berghuijs et al., 2019), often in combination with heavy
rainfall (Poschlod et al., 2020b). Sufficient snow depths are
needed for ski tourism (Steiger et al., 2017; Witting and
Schmude, 2019) but are also expected by non-ski tourists
during their winter holidays in the mountains (Bausch and
Unseld, 2018). This also reflects the traditional and cul-
tural meaning of snow cover, which manifests annually in
discussions and expectations about a “white Christmas” in
the Northern Hemisphere (Durre and Squires, 2015; Harley,
2003). Moreover, the presence of snow influences everyday
life in terms of mobility. The usage of bikes or scooters is
reported to significantly depend on snow depths (Mathew et
al., 2019; Yang et al., 2018). Also, the alternatives (trains,
cars, or planes) may be affected by high snow depths (Doll et
al., 2014; Taszarek et al., 2020; Trinks et al., 2012). During
extreme snow events, power shortages (Bednorz, 2013; Ger-
hold et al., 2019) or even collapses of roofs (Strasser, 2008b)
occur, which is why building codes have to rely on the re-
gional snow climate (Croce et al., 2018).

Due to these manifold effects, there is great interest in
modelling snow dynamics and snow depths in order to be
able to predict near-term snow conditions (Hammer, 2018)
and to project future snow conditions (Frei et al., 2018).
In general, snow models are used to simulate snow dynam-
ics at different temporal and spatial scales. In global or re-
gional earth-system model setups, snow dynamics are sim-
ulated coupled with atmospheric processes and other land-
surface processes (Krinner et al., 2018). However, the spatial
resolution of global and regional models is often not suffi-
cient to represent complex terrain and the spatial variability
of the land-surface (Mooney et al., 2022). Further, the simu-
lated climate and snow dynamics show biases (Daloz et al.,
2022). Often, for local to regional impact studies, the climatic
biases are adjusted, in which case it is necessary to apply
a method tailored to snow climates (e.g. Chen et al., 2018;
Frei et al., 2018; Meyer et al., 2019). In the case of a sim-

ple univariate bias adjustment, the dependence between tem-
perature and precipitation is not considered, which neglects
the threshold effect of air temperature on the fractionation
of precipitation into rain and snowfall (Meyer et al., 2019).
Therefore, multivariate bias adjustment is recommended for
hydrological impact modelling in regions with snow and rain
dynamics (Chen et al., 2018; Meyer et al., 2019). In a next
step, snow models are set up at higher resolution, driven by
bias-adjusted climatic time series (Hanzer et al., 2018). Then,
however, the simulated snow dynamics cannot feed back into
the climate, which is why these simulations are called “of-
fline”. Another possibility would be to directly adjust the bi-
ases of the snow parameter simulated by the climate model
(Matiu and Hanzer, 2022).

Due to the advances in computational power, the spatial
resolution of regional climate models (RCMs) has increased
(Coppola et al., 2020). Kilometre-scale simulations are avail-
able for decade-long time spans. The high spatial resolution
allows for a finer-scale representation of complex topography
(Poschlod et al., 2018). Therefore, the effects of altitude on
air temperature can be mapped in more detail, which better
represents the fractionation into rain and snowfall as well as
melting and accumulation processes. In addition, the higher
resolution of land cover allows for more detailed simulation
of the albedo, which in turn governs the energy balance (Win-
ter et al., 2017). The high resolution also allows more pro-
cesses to be included in the model chain. Snow drift due
to wind and turbulence has been implemented in an offline
setup (Vionnet et al., 2021), and it was also implemented on-
line by coupling the RCM Weather Research and Forecasting
(WRF) with the detailed snow model SNOWPACK (Sharma
et al., 2023). Future work will aim at seamlessly implement-
ing snow drift in WRF (Saigger et al., 2023).

Here, two high-resolution convection-permitting regional
climate models are evaluated with station observations of
daily snow depth in southern Germany for a 31-year period
from 1987–2018. We analyse simulations of the WRF model
(Skamarock et al., 2019) at 1.5 km resolution and the COn-
sortium for Small scale MOdelling (COSMO; Sørland et al.,
2021) model in CLimate Mode (CLM) at 3 km resolution
(hereafter abbreviated to CCLM). Both models are driven by
atmospheric boundary conditions of ERA5 (Hersbach et al.,
2020) at 31 km resolution. Moreover, the hydrometeorolog-
ical snow model Alpine MUltiscale Numerical Distributed
Simulation ENgine (AMUNDSEN) is run at the point scale
of the climate stations driven by the atmospheric output of
CCLM. In addition, the state-of-the-art land-surface reanaly-
sis product ERA5-Land (9 km resolution; Muñoz-Sabater et
al., 2021) is compared.

Such evaluation is important, as future projections of snow
dynamics are often based on regional climate models (e.g.
Frei et al., 2018; Räisänen, 2021). Even though mean snow
depth and mean snow cover duration are expected to decrease
due to higher temperatures, risks associated with snow dy-
namics might not (Musselman et al., 2018). While there are
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studies on climate model simulations and extreme snowfall
(Quante et al., 2021; Sasai et al., 2019), we find no litera-
ture about extremes of snow depth dynamics within climate
model simulations. Furthermore, there are studies evaluat-
ing regional climate models based on multi-decadal simu-
lations, but these are at coarser spatial resolution (Daloz et
al., 2022: 0.11°; Matiu and Hanzer, 2022: 0.11°; Steger et
al., 2013: 0.22°). Recently, Monteiro and Morin (2023) com-
pared the performance of multiple model systems with spa-
tial resolutions ranging from 2.5 to 30 km over the European
Alps. They found that main features of the snow cover, snow
depth, and driving climatic conditions could be reproduced
by the models but with increasing deviations at higher alti-
tude. Lüthi et al. (2019) compared a 10-year simulation by
COSMO at 2.2 km over Switzerland to interpolated obser-
vations. The mean seasonal cycle averaged over the country
was reproduced well, but the model overestimated the mean
snow water equivalent (SWE) at high altitudes.

In contrast to these existing high-resolution studies in
Alpine terrain, we aim to assess snow conditions in south-
ern Germany, mainly north of the Alpine crest, at a lower
elevation range of between 150 to 1000 m. Even though the
topography is less complex, snow dynamics still play a ma-
jor role in this area, affecting natural systems (Poschlod et
al., 2020a) and human systems (Strasser, 2008b; Doll et al.,
2014; Frese and Blaß, 2011). Snow plays an important role in
the tourism industry, where the sufficient presence of snow is
important not only for ski tourists at higher altitudes but for
all winter tourists (Bausch and Unseld, 2018; Witting et al.,
2021). Due to the population density, there is high exposure
to potential snow extremes. Within Germany, the study area
covers a variety of snow load zones, which are used as the
basis for the structural dimensioning of roofs (German In-
dustry Norm DIN 1055-5; DIN, 2005). In the winter season
of 2005/06, continuous snow cover conditions induced sev-
eral roof collapses in the study area (Strasser, 2008b). Dur-
ing the recent winter (December 2023), snow depths above
40 cm in the study area (HND, 2024) led to a collapse in local
and long-distance transport, power shortages, and damage to
buildings and cars (Hagen and Mese, 2023; ARD, 2023).

Climate change already affects and will further alter snow
dynamics and conditions (Dong and Menzel, 2020; Monteiro
and Morin, 2023), which is why observation-based analyses
are limited. Climate impact research and data users bene-
fit from information at the local scale (Orr et al., 2021). In
order to provide local information, coarse-resolution RCMs
or even global circulation models have often been used to
drive snow models at the local scale; however, these require
bias adjustment, statistical downscaling and the de-coupling
of the interactions of snow dynamics and climate, which in-
duces additional uncertainties and limitations.

The “new generation” of high-resolution RCMs can poten-
tially directly provide snow depth information based on their
internal land-surface and snow modules. Hence, we see the
need for a critical examination of what new-generation high-

resolution RCMs are capable of in terms of snow dynamics
and extremes. So, in addition to the evaluation of winter tem-
perature and precipitation as well as mean winter snow depth
and duration, which is also present in the above-mentioned
studies, the study further aims to explore the capabilities of
the high-resolution models to reproduce short-period snow
conditions and extreme daily snow depths. The sample size
required for this motivates a research setup where we select
available multi-decadal high-resolution simulations (WRF,
CCLM, and AMUNDSEN driven by CCLM) and compare
them to the coarser-resolved product ERA5L. So, in sum, the
study aims to evaluate (1) winter climate, (2) mean seasonal
snow conditions, (3) short-duration snow conditions of rele-
vance to the tourism sector, and (4) extreme snow depths in
order to (5) explore the suitability of high-resolution climate
models for impact-relevant snow research.

2 Data and methodology

A comparative overview of the investigated simulation data
is given in Table 1. The following sections describe the dif-
ferent model features and setups in detail. As a preliminary
remark, we would like to point out that the historical gene-
sis of the different model setups still governs the degree of
complexity of the snow schemes. Single-layer snow schemes
are common in the atmospheric community for numerical
weather prediction (NWP) models and reanalyses (Arduini
et al., 2019). Lee et al. (2023) give an overview of various
snow parametrisations within nine land-surface models.

2.1 Regional climate models

Both RCMs are driven by the atmospheric-boundary condi-
tions of the ERA5 reanalysis at 31 km resolution. The WRF
simulations were carried out by Collier and Mölg (2020),
where the setup is described in detail. Version 4.1 of WRF
is run (Skamarock et al., 2019). The boundary conditions
for ERA5 drive WRF at 7.5km× 7.5km (one-way nest-
ing), where spectral nudging is applied. The forcing at the
lateral boundaries is updated at 3-hourly intervals. Increas-
ing the spatial resolution by a factor of 5 within a second
nesting step results in simulations at 1.5km× 1.5km reso-
lution, where convective processes are explicitly resolved.
Collier and Mölg (2020) provide a general climatic evalu-
ation with observational data. In order to simulate surface
processes, WRF is run coupled with the land-surface scheme
NOAH_MP (Niu et al., 2011). The physically based snow
model in NOAH_MP features up to three snow layers, which
are divided based on the simulated snow depth. In addition,
four soil levels and a vegetation canopy layer are considered.
Interception and burial of vegetation by snow is modelled
following Niu and Yang (2004). The modelling of the density
of newly fallen snow is dependent on the atmospheric tem-
perature (Niu et al., 2011). The temperatures of the layers are
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Table 1. Overview of the different investigated model setups.

Setup name Boundary Downscaling of the climatic Spatial Land-surface or Maximal Range of snow albedo
conditions input variables resolution snow model number of

snow layers

WRF ERA5a Dynamical: WRFb 1.5 km NOAH_MPc 3 Exposed, non-melting: 0.7 to 0.84;
exposed, melting: 0.5 to 0.84;
forestedd

CCLM ERA5a Dynamical: COSMO-CLMe 3 km TERRA-MLe 1 Exposed: 0.4 to 0.7;
forested: empirical reduction factor

ERA5L ERA5a Statistical: linear interpolation
for ERA5-Landf

9 km CHTESSELg 1 Exposed: 0.5 to 0.85;
forested: 0.27 to 0.38

AMUNDSEN ERA5a Dynamical: COSMO-CLMe 3 km AMUNDSENh,i 3 Exposed: 0.55 to 0.85
a Hersbach et al. (2020). b Skamarock et al. (2019). c Niu et al. (2011). d Niu and Yang (2004). e Doms et al. (2021). f Muñoz-Sabater et al. (2021). g ECMWF (2018), h Strasser (2008a). i Hanzer et
al. (2018).

calculated based on the energy balance for the snow and soil
layers. Melting and freezing are assumed to occur above and
below 0 °C, respectively. Mass transfer and energy transfer
between layers are accounted for (Niu et al., 2011). In order
to derive the snow depth, the density is assessed by repre-
senting snow metamorphism and compaction following An-
derson (1976) and Sun et al. (1999). The snow surface albedo
is calculated via the CLASS scheme (Verseghy, 1991), where
the albedo of fresh snow is assumed to amount to 0.84. Dur-
ing melting conditions, the albedo exponentially decreases,
with 0.5 used as the lower limit. Without melting conditions,
0.7 is assumed to be the lower limit. The snow albedo of
forested areas is modelled as being dependent on the leaf and
stem area index, accounting for snow interception, the load-
ing and unloading of snow, and melting and refreezing (Niu
and Yang, 2004). The ground surface albedo is calculated as
an area-weighted average of the snow albedo and bare soil
albedo (Niu et al., 2011). The WRF data are openly available
(Collier, 2020).

COSMO was operationally applied as a weather forecast-
ing model in Germany for over 20 years before being re-
placed by ICON (Rybka et al., 2022). For regional climate
simulations, ICON-CLM was developed (Pham et al., 2021).
Here, CCLM version 5-0-16 at 3 km resolution (Brienen et
al., 2022) is still directly driven by the atmospheric condi-
tions from ERA5, where the forcing is updated every hour
(Rybka et al., 2022). The simulation domain covers Ger-
many, the surrounding catchments, and parts of the Alps.
Hence, the analysis domain is well within the simulation
domain. The resolution of 3 km allows for the explicit sim-
ulation of deep convection, whereby shallow convection is
parametrised. The land-surface model TERRA_ML is im-
plemented in COSMO-CLM and represents soil, vegetation,
and snow dynamics (Doms et al., 2021; Schulz and Vogel,
2020). It features multiple soil layers and either one inter-
ception reservoir or one snow reservoir on top of the soil,
depending on the predicted temperature of the stored water.
However, no canopy layer is implemented, which is com-

mon in NWP models but represents a major simplification
for climate models (Schulz et al., 2016). Mass and energy
fluxes between the atmosphere, the interception/snow reser-
voir, and the soil layers govern the temperature of the water
in the reservoir. In the case of snow cover, the mean snow
temperature is calculated based on the heat capacity of the
snow, the atmospheric forcing at the snow surface, the heat
flux to the soil, and melting processes (Doms et al., 2021).
The density of fresh snow is assumed to range from 50 to
150 kgm−3 and is dependent on the temperature conditions.
The empirical estimation of the mean snow density within
the single snow layer includes two processes. Ageing, which
is dependent on the snow temperature and time, increases
the mean snow density of the reservoir, whereas newly fallen
snow decreases the mean density. The range of densities is
fixed between 50 and 400 kgm−3. Doms et al. (2021) claim
that extreme snow depths cannot be properly accounted for
by the model’s concept. The range of possible snow depths
is restricted to between 0.01 and 1.5 m. A time-dependent
snow surface albedo is calculated, where the albedo covers
the range between 0.4 for old snow and 0.7 for fresh snow
(Doms et al., 2021). As the model features no canopy layer,
no shading effects of vegetation are simulated. Instead, an
empirical reduction factor for the snow albedo under vegeta-
tion is applied (Daloz et al., 2022). The CCLM data are avail-
able publicly (see https://esgf.dwd.de/projects/dwd-cps/, last
access: 15 February 2024). However, albedo data were pro-
vided separately without quality checks (Susanne Brienen,
German Weather Service, personal communication, 2023).

2.2 Land-surface model in ERA5-Land

ERA5-Land (ERA5L) directly derives its atmospheric forc-
ing from the 10 m level of ERA5 at hourly resolution
(Muñoz-Sabater et al., 2021). The 31 km resolution of ERA5
is linearly interpolated on the 9 km grid of ERA5-Land.
The land-surface model Carbon Hydrology-Tiled ECMWF
Scheme for Surface Exchanges over Land (CHTESSEL)
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then simulates energy and water cycles globally over land
at hourly resolution. The snow scheme features one layer
with a single temperature and density on top of the four-
layered soil (ECMWF, 2018). The snow temperature is cal-
culated based on the energy fluxes between the atmosphere
and the snow skin, melting processes, and the basal heat
flux. Snow temperature, mass, and density are used to de-
rive the liquid water content within the snow pack. Inter-
ception of liquid water by the snow pack is accounted for.
The snow density of fresh snow is modelled as being depen-
dent on the atmospheric temperature and near-surface wind
speed (Dutra et al., 2010). The snow density is assumed
to change due to the overburden, thermal metamorphisms
(Anderson, 1976), and compaction (Lynch-Stieglitz, 1994).
The range of snow densities is restricted to between 50 and
450 kgm−3. The calculation of the snow surface albedo for
exposed areas follows Verseghy (1991), with values ranging
between 0.5 and 0.85. For forested areas, lower albedo val-
ues between 0.27 and 0.38 are applied following Moody et
al. (2007), who based their calculations on remote-sensing
products from MODIS. Further details of the land-surface
scheme are provided by ECMWF (2018) and, especially
for the snow scheme, by Dutra et al. (2010). The ERA5L
data are openly available (https://cds.climate.copernicus.
eu/cdsapp#!/dataset/reanalysis-era5-land?tab=overview, last
access: 22 February 2024). Boussetta et al. (2021) present
the new ECLand next-generation land-surface model, which
introduces a multi-layer snow scheme following Arduini et
al. (2019).

2.3 The hydroclimatological model AMUNDSEN

The hydroclimatological model AMUNDSEN has been de-
veloped to dynamically resolve the mass and energy bal-
ance of snow and ice in high-mountain regions (Strasser,
2008a; Hanzer et al., 2018). The model can be set up to
be spatially distributed at high resolution (e.g. 10 to 100 m)
and includes snow redistribution processes and a radiation
scheme accounting for terrain slope and hill shading, for
example (Hanzer et al., 2016). Here, we apply the model
at point scale at the locations of the 83 climate stations.
We use the CCLM output of hourly temperature, precipita-
tion, wind speed, relative humidity, and short-wave radiation
to drive openAMUNDSEN, the open model version imple-
mented in Python (Warscher et al., 2021). No model-internal
correction for precipitation undercatch is applied, as the cli-
matological input stems from simulated precipitation by the
CCLM. AMUNDSEN uses the wet-bulb temperature to dif-
ferentiate between solid and liquid precipitation (Hanzer et
al., 2018). The model features three snow layer categories,
which are named “new snow”, “old snow”, and “firn”, de-
pending on the snow density and age. The fresh snow density
is calculated following Anderson (1976) and Jordan (1991)
as being dependent on the air temperature. Compaction and
metamorphism also follow empirical formulations by Ander-

son (1976) and Jordan (1991). Snow with a density above
200 kgm−3 is transferred to the old snow layer. The firn layer
does not apply for the 83 locations, as no multi-year snow
cover is simulated. Melting water in the snowpack may be re-
tained by applying a parametrisation by Braun (1984). Snow
albedo is parametrised as depending on the age of the snow
and ranges between 0.55 and 0.85 for exposed surfaces fol-
lowing Hanzer et al. (2016). Snow-free albedo is set to 0.23,
representing grassland, according to the climate conditions at
the stations.

2.4 Study area and observational data

The study area covers large parts of southern Germany, with
the boundaries given by the smallest simulation domain of
the WRF model and the national borders. It includes a wide
range of elevations of between roughly 100 and 3000 m
above sea level (see Fig. 1a), which, therefore, have different
snow dynamics. For the comparison to snow depth obser-
vations, we select 83 climate stations in the elevation range
between 150 and 1000 m with less than 30 % missing data,
which are operated by the German Weather Service (DWD,
2023). In order to assess the climatology, temperature and
precipitation are analysed as well, where the precipitation
is not corrected for undercatch. The mean annual temper-
atures of the locations range from 5.4 to 10.9 °C, and the
mean annual precipitation covers the range between 580 and
1700 mm. The analysis period spans from November 1987
to April 2018, yielding 31 extended winter seasons. In this
study, the extended winter season is defined as 6-month pe-
riod from November to April. All analysis is carried out at
daily resolution.

The comparison between the measured snow depth at a
climate station and the simulated gridded snow depth is car-
ried out via the nearest-neighbour approach. As the elevation
within the gridded model varies according to the spatial res-
olution (Fig. 1b–d; see also Fig. S1 in the Supplement), the
elevations of the climate station and the nearest model grid
cell may differ. Figure 2 shows the degree to which a finer
spatial resolution improves the representation of the altitude.
The mean absolute deviation amounts to 24 m for WRF, 42 m
for CCLM, and 93 m for ERA5L.

Due to the limited station density, we also include remote-
sensing data for the model evaluation. Snow depth can-
not be derived directly via optical remote sensing, but the
snow cover fraction and the surface albedo can be derived.
Therefore, we employ the daily snow cover and albedo from
MODIS Terra at 0.05° resolution (Hall and Riggs, 2021;
Schaaf and Wang, 2021), which is available for the pe-
riod 2000–2018, although we only consider data qualified as
“mixed”, “okay”, or better. Snow depth and SWE can be de-
rived from microwave remote sensing by applying various
retrieval algorithms (Tanniru and Ramsankaran, 2023; Tsang
et al., 2022), but these result in considerable deviations for
widely available products (Mortimer et al., 2020). New sen-
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Figure 1. Representation of elevation in the WRF (a). Lakes are masked out. The black markers show the 83 climate stations where the snow
depth is observed. Dots (triangles) refer to stations with less (more) than 5 cm mean snow depth during the extended winter season. Zoomed
displays of the complex terrain in the southern study area in WRF (b), CCLM (c), and ERA5-Land (d).

Figure 2. Comparison of the climate station elevation (OBS) and
the model elevation.

sors and more-complex data-driven algorithms have shown
the potential to improve these estimations (Daudt et al., 2023;
Tsang et al., 2022), but are out of scope for this evaluation
study.

2.5 Evaluation criteria

We evaluate the RCMs at the 83 climate stations and cal-
culate the deviations for each winter season. The perfor-
mance is assessed with four measures: the mean absolute
error (MAE), the root-mean-square error (RMSE), the bias
(BIAS) or percentage bias (PBIAS), and the Pearson rank
correlation (r). For n observed values xobs and simulated val-

ues xsim, the measures are defined as follows:

MAE=
∑n
i=1|xobs,i − xsim,i |

n
, (1)

RMSE=

√∑n
i=1(xobs,i − xsim,i)

2

n
, (2)

BIAS=
∑n
i=1xsim,i − xobs,i

n
, (3)

PBIAS=
∑n
i=1xsim,i − xobs,i∑n

i=1xobs,i
· 100, (4)

r =

∑n
i=0(xobs,i − xobs)(xsim,i − xsim)√∑n

i=1(xobs,i − xobs)2
∑n
i=1(xsim,i − xsim)2

. (5)

In addition, we evaluate the simulations regarding the inten-
sity and time-related measures of snow dynamics. Here, the
mean winter snow depth refers to the mean snow depth over
November to April. We define the number of “snow days” as
the number of days with more than 1 cm snow depth across
the whole year.

A “white Christmas” is defined as more than 1 cm snow
depth on the 24, 25, and 26 December according to the Ger-
man Weather Service (DWD, 2020). As this single 3 d pe-
riod is rather selective, we also extend the same analysis to
a 3 d moving window between November and April. In ad-
dition, we also assess the simulation of 5 d moving windows
between December and February where snow depth is above
10 cm on each of the 5 d. This metric reflects the ability to do
cross-country skiing (Vassiljev et al., 2010), as 5 d stays are
typical for such vacations in the German mountain ranges
(Hodeck and Hovemann, 2015). As these criteria lead to a
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binary classification for each moving window, the Matthews
correlation coefficient (Matthews, 1975) is used as the evalu-
ation metric. This considers true and false positives (TP and
FP, respectively) as well as true and false negatives (TN and
FN, respectively), which is why Luque et al. (2019) recom-
mend it if classification success and errors are to be assessed.
The MCC is defined as ranging between −1 and 1, where 0
indicates that the classification is as good as a random clas-
sifier.

MCC=
TP ·TN−FP ·FN

√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

(6)

In order to assess extreme conditions, we sample the annual
maxima of snow depth. Based on this sampling, we fit the
generalised extreme value (GEV) distribution, which can be
applied to derive return levels of snow depth.

GEV(x;ξ)={
exp

(
−
[
1+ ξ

(
x−µ
σ

)]−1/ξ
)
, ξ 6= 0

exp
(
−exp

(
−
x−µ
σ

))
, ξ = 0

x ∈ R
(7)

Here, µ is the location, σ is the scale, and ξ is the shape.
The location parameter governs the centre of the distribution,
the scale parameter corresponds to its spread, and the shape
parameter governs the tail behaviour (Coles, 2001). We es-
timate these GEV parameters using a Markov chain Monte
Carlo algorithm (Bocharov, 2022; Foreman-Mackey et al.,
2013), generating confidence intervals at the 95 % level.

3 Model evaluation

3.1 Biases in winter air temperature and precipitation

Precipitation and air temperature govern the snow dynamics
to a large degree. A comparison of simulated and observed
values of the winter temperature and precipitation is shown
in Fig. 3. WRF systematically simulates winter temperatures
that are too low, which has already been noted by Collier
and Mölg (2020). Winter temperature is closely reproduced
by CCLM with no bias (Fig. 3b). ERA5L has a slight cold
bias, mostly due to single stations where the underestimation
amounts to 4 °C (see Fig. 3c); this is a result of the eleva-
tion bias (Fig. 2). The WRF model slightly underestimates
winter precipitation. However, as we do not correct the ob-
served precipitation for undercatch, we would expect a slight
overestimation from the RCMs. CCLM can reproduce winter
precipitation with smaller errors, with the positive percentage
bias of 9.5 % falling within the range of possible undercatch-
induced deviations in southern Germany (Richter, 1995). The
coarser-resolved ERA5L shows the biggest deviations, with
a stronger positive deviation and the lowest rank correlation.

The differences between station elevation and mean grid-
cell altitude also contribute to these biases. Elevation gov-
erns the temperature and also orographic precipitation effects

(Warscher et al., 2019). Hence, Fig. 4a–f provide a compar-
ison of the 31-year mean bias per location and the elevation
difference. The Pearson rank correlations of elevation bias
with temperature and precipitation bias are given in Table 2.
For the biases in ERA5L, there is a clearly visible relation-
ship (Fig. 4c and f) in which higher (lower) elevation bias
leads to the overestimation (underestimation) of precipita-
tion (r = 0.49) and the underestimation (overestimation) of
temperature (r =−0.88). For WRF and CCLM, no strong
correlation is found; only a weak correlation of r = 0.22 for
the temperature bias in WRF is seen.

However, when compared with the absolute model eleva-
tion of each location, CCLM shows systematic deviations
(Fig. 4h and k). Locations at higher (lower) model elevations
tend to have temperatures that are too high (low) (r = 0.50)
and to be too wet (dry) (r = 0.32). WRF shows higher tem-
perature biases for higher elevations (Fig. 4g), yielding an
overall rank correlation of r = 0.60. The negative correlation
between ERA5L model elevation and temperature bias (r =
−0.58) is governed by the locations at high and medium-high
elevation (see the lower-right corner of Fig. 4i), as their tem-
perature bias results from the high elevation bias (see Figs. 2
and 4c).

3.2 Snow depth evaluation

The evaluation of snow depth time series is challenging due
to the long memory of the system and the error propagation
over time. Furthermore, a proper evaluation depends on the
intended use of the model data. If, for example, snow depth is
simulated differently from an observation on the first day and
it is correctly calculated that there is no change in snow depth
for weeks, the error for the first day propagates for weeks,
even though the model only simulated the accumulation dif-
ferently on the first day.

To visualise this behaviour, we present the temporal evo-
lution of snow depth during the winter season of 2005/06
at five selected locations (Fig. 5). In this season, continuous
snow cover with several freezing and thawing cycles caused
roof collapses and building evacuations in Bavaria (Strasser,
2008b). The time series show the temporal variability, the
propagation of deviations, and the variability between mod-
els.

In a further evaluation, 31 of these time series for 83 loca-
tions are condensed into different evaluation measures. We
try to evaluate the simulations based on different impact-
relevant measures.

The mean snow depth over the 31 winter half-years in
1987–2018 varies widely between the models (Fig. 6). The
deviations are minor for the climate stations in flat areas with
generally lower snow depths. WRF, ERA5L, and AMUND-
SEN slightly overestimate snow depth in the flat areas, while
CCLM slightly underestimates it. In the topographically
complex northern regions of the low mountain range known
as the Ore Mountains (in the far north-east), Thuringian For-
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Figure 3. Mean winter temperature (a–c) and precipitation (d–f) for each extended winter season and location in 1987–2018. Simulations
by the WRF model (a, d), CCLM (b, e), and ERA5L (c, f) are compared to observations.

Figure 4. Relationships of mean winter temperature and precipitation bias to the elevation bias (a–f) and the model elevation (g–l). Each
location is averaged over 1987–2018. Elevation bias is calculated as model elevation minus station elevation.
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Table 2. Pearson rank correlations for elevation and climatological biases. Significant correlations at the 95 % (99 %) level are marked with
one asterisk (two asterisks).

Rank correlation between . . . WRF CCLM ERA5L

Elevation bias and temperature bias 0.22∗ 0.00 −0.88∗∗

Elevation bias and precipitation bias −0.03 −0.18 0.49∗∗

Model elevation and temperature bias 0.60∗∗ 0.50∗∗ −0.58∗∗

Model elevation and precipitation bias 0.05 0.32∗∗ −0.10
Station elevation and temperature bias 0.55∗∗ 0.48∗∗ −0.03
Station elevation and precipitation bias 0.05 0.37∗∗ −0.47∗∗

Figure 5. Observed and simulated daily snow depth over the winter season 2005/06 at five locations.

est (north-central), and Rhön (to the north at 10° E), WRF,
CCLM, and ERA5L underestimate snow depth (red dots in
the north in Fig. 6a–c), whereas AMUNDSEN overestimates
it. In the Alps, ERA5L largely overpredicts the snow depths,
whereas CCLM heavily underestimates them. WRF underes-
timates them to a moderate degree and AMUNDSEN shows
almost no bias. A general overview of simulated and ob-
served snow depths against the elevation is provided in Fig. 7.

When mean winter snow depth is assessed separately for
each season and location, the WRF model shows low bias
and errors (Fig. 8a and e). CCLM can give good metrics for

stations that are less affected by snow (Fig. 8b), but it sys-
tematically underestimates snow depth at all stations. This
negative bias of CCLM manifests itself in the fact that an
overestimation of snow depth is not simulated for almost any
station during any season (Fig. 8b and f; the magnitude of
the bias is almost equal to the MAE). The ERA5L simula-
tions have the highest bias and errors, with the biggest devi-
ations seen over complex terrain (Fig. 8g). Especially during
snow-rich seasons, strong overestimation is present for the
Alpine stations, such that the stations in the low mountain
ranges are heavily underestimated. AMUNDSEN shows the
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Figure 6. Mean winter snow depth for 1987–2018 simulated by the
WRF model (a), CCLM (b), ERA5L (c), and AMUNDSEN (d).
The differences at the stations (coloured dots) are calculated as
model minus observation. A red (blue) colour refers to underesti-
mation (overestimation) by the model. Note the logarithmic colour
scaling.

Figure 7. Comparison of seasonal mean snow depths averaged over
1987–2018 for the whole range of elevations in the study area. The
seasons considered are September–November (SON), December to
February (DJF), and March to May (MAM). The shaded areas show
the ranges for all grid cells at the respective elevation, and each line
represents the median. Note the different x axis scaling for each
plot. Also note that the elevations used in AMUNDSEN stem from
CCLM, which is why they differ from the elevations of the obser-
vations.

best overall rank correlation and the best reproduction of ob-
served high-snow-depth seasons, although it has a tendency
to overestimate.

3.3 Snow duration and cover

Mapping the number of snow days averaged for 1987–2018
leads to similar spatial patterns to the mean snow depth (com-
pare Fig. 9 to Fig. 6), which also applies to the differences
from the observations. CCLM generally underestimates the
duration (Fig. 9b), whereas ERA5L generally overestimates
it, apart from four locations in the northern low mountain
ranges (Fig. 9c). WRF and AMUNDSEN show lower differ-
ences but a similar spatial pattern (Fig. 9a and d).

A separate evaluation of each year is presented in Fig. 10,
where WRF and AMUNDSEN show a strong rank correla-
tion and comparably low error metrics. Despite high inter-
seasonal and inter-station correlation, the CCLM simulation
predicts, on average, 16 fewer snow days than observed at
the low-lying localities (Fig. 10b) and 37 snow days fewer
at snow-rich localities (Fig. 10f). ERA5L, on the other hand,
simulates durations that are 29–35 d too long (Figs. 8c and g).

The snow cover fraction during December to February av-
eraged for 2000–2018 amounts to 42 %, based on MODIS
(see Fig. 11). The CCLM strongly underestimates the snow
cover in the whole study area (20 %), resulting in less than
half of the remotely sensed fraction. ERA5L shows overesti-
mation in the southern Alpine part and slight underestimation
in the remaining study area (Fig. 11c), amounting to 37 %
over the whole study area. For the WRF simulation, this pa-
rameter is not openly available.

3.4 White Christmas and short periods

The tendencies to over- and underestimate the mean winter
snow conditions (Sects. 3.2 and 3.3) also manifest when as-
sessing shorter time periods than seasonal averages. There
are four very different predictions for the percentage of white
Christmases during 1987–2018. The spatial pattern follows
the previous evaluations of mean snow depth and snow cover
duration (compare Fig. S3 to Figs. 6 and 8). Averages over all
seasons and locations are provided in Table 3. There, CCLM
and AMUNDSEN are seen to outperform WRF and ERA5L,
with Matthews correlation coefficients of 0.67 for CCLM and
0.66 for AMUNDSEN, but they also show a tendency to un-
derestimate (CCLM) and overestimate (AMUNDSEN) the
occurrence of a white Christmas.

As a white Christmas refers to only one selected time win-
dow in the year, we furthermore assess all 3 d moving win-
dows over the extended winter season. In this case, the MCC
scores slightly improve (see MCC_3d in Table 4).

As a proxy for the opportunity to do cross-country skiing,
we assess 5 d moving windows during which the snow depth
needs to be above 10 cm on all 5 d. This analysis is only car-
ried out at the locations where the mean snow depth is above
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Figure 8. Mean winter snow depth for each winter season and location in 1987–2018. The upper row (a–d) refers to locations with less than
5 cm mean winter snow depth (dots in Fig. 6), whereas the lower row shows locations above this threshold (triangles in Fig. 6).

Table 3. White Christmas percentages averaged over 1987–2018 and all locations in the study area.

WRF CCLM ERA5L AMUNDSEN

Correct prediction 76.3 % 89.0 % 69.3 % 84.7 %
. . . of a white Christmas 19.8 % 14.1 % 22.4 % 20.9 %
. . . of a non-white Christmas 56.5 % 74.9 % 46.9 % 63.8 %
False positives 20.6 % 2.2 % 30.2 % 13.3 %
False negatives 3.1 % 8.8 % 0.5 % 2.0 %
MCC 0.51 0.67 0.49 0.66

5 cm (see the triangular markers in Fig. 1). For these condi-
tions, the MCC scores of CCLM and ERA5L drop, whereas
the MCC scores of WRF and AMUNDSEN amount to 0.62
and 0.69, respectively (MCC_XC in Table 4).

3.5 Evaluation of extreme snow depths

Figure 12 provides simulated and observed maxima of snow
depth, with the WRF model showing small deviations and al-
most no bias at low-lying localities (Fig. 12a). Observations
at snow-rich locations are slightly underestimated (Fig. 12e).
The general underestimation of CCLM also applies for the
maximum snow depths (Fig. 12b and f). The strong nega-
tive bias suggests that the model is not appropriate to assess
extreme snow depths, as already described in the documen-
tation by Doms et al. (2021). The rank correlations (r) of
0.79 and 0.71, however, suggest that the model is able to re-
produce inter-site and interannual differences well. ERA5L
can even reproduce annual extreme snow depths at low-
lying stations slightly better than WRF can (Fig. 12c), but

it tends to overestimate extreme snow depths, yielding the
highest RMSE and lowest rank correlation over complex ter-
rain (Fig. 12g). The largest deviations occur for snow depths
above 50 cm over complex topography (Fig. 12g). The dif-
ference in the mean annual maximum snow depth for the 83
stations correlates strongly with the elevation bias of ERA5L
(see Fig. 4c and f and Table S1 in the Supplement; r = 0.91).
We argue that the overly low spatial resolution is a major con-
tributor to the deviations of extreme snow dynamics in the
low mountain ranges and Alps. For the other models, no sig-
nificant correlation is found for this dependence. AMUND-
SEN slightly overpredicts extreme snow depths, with a mod-
erate positive bias seen for all stations.

We further assess if the GEV location parameters µ fitted
on the modelled annual maxima of snow depth are within
the 95 % confidence interval of the respective observation-
based µ for each station (see Fig. 13). We find that CCLM is
not able to reproduce this extreme-value statistical property
within the observational range at any station. AMUNDSEN
shows the highest level of agreement (57 % of stations), fol-
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Table 4. MCC scores for 3 d moving windows with at least 1 d where the snow depth is above 1 cm, averaged over 1987–2018 and all
locations in the study area. MCC scores for 5 d moving windows with snow depths above 10 cm on all 5 d.

WRF CCLM ERA5L AMUNDSEN

MCC_3d (3 d where any day > 1 cm) 0.64 0.66 0.59 0.70
MCC_XC (5 d where all 5 d > 10 cm) 0.62 0.46 0.36 0.69

Figure 9. Mean annual number of snow days during 1987–2018
simulated by the WRF model (a), CCLM (b), ERA5L (c), and
AMUNDSEN (d). Snow days are defined as days with more than
1 cm snow depth. The differences at the stations (coloured dots) are
calculated as model minus observation. A red (blue) colour refers
to underestimation (overestimation) by the model.

lowed by WRF (51 %) and ERA5L (34 %). ERA5L cannot
capture the rank correlation between the stations (r = 0.61)
as well as the other models (r > 0.91) due to larger deviations
at snow-rich localities. The WRF model shows good agree-
ment for stations with location parameters below 20 mm but
underestimates the upper range (Fig. 13).

The seasonality of the annual maximum snow depth is vi-
sualised as the bivariate kernel density estimation (Fig. 14).
The general timing of annual maximum snow depths is repro-
duced well by all models (compare the marginal histograms
in Fig. 14), although the CCLM does not simulate enough
snow depth maxima after February (Fig. 14b). For the com-
parison of each station–year combination in 1987–2018, the
WRF model (Fig. 14a) shows the highest agreement with low
bias.

4 Discussion of uncertainties

The representation of snow dynamics is important for impact
assessments (see Sect. 1) and for the coupling within the re-
gional climate model in the WRF and CCLM.

Depending on the measure of interest, the evaluation
yields very different results, even though all simulations are
driven by the same large-scale atmospheric conditions from
ERA5. This indicates the presence of large model uncer-
tainties regarding snow dynamics. These uncertainties result
from different sources and are interconnected, which is why
they are difficult to disentangle (Monteiro and Morin, 2023).

In addition, the comparison between point in situ mea-
surements and gridded simulations is affected by the spatial
variability of snow depth (Clark et al., 2011). The standard-
ised local environment of the climate station might not cap-
ture the land cover and topography of the surrounding area,
which in turn governs the gridded simulation (Meromy et al.,
2012). The resulting deviations are expected to be higher for
a coarser model resolution, a complex topography, in areas
covered by forest vegetation, and in open areas prone to wind
redistribution (Mortimer et al., 2020).

Furthermore, the rather low station density leads to un-
satisfactory coverage in parts of the study area. However,
the stations were selected according to their low amounts of
missing data, and they represent the range of elevations be-
tween 150 and 1000 m well (Fig. 2). Additionally, the anal-
ysis was supplemented by satellite data from MODIS to en-
sure spatial representativeness.

In Table 2, the significant correlation between elevation
bias and the biases of temperature and precipitation for
ERA5L indicates that the spatial resolution of the model con-
tributes considerably to the deviations. Due to the 9 km grid
cell size, the complexity of the terrain cannot be reproduced
in parts of the study area.

For the WRF simulation, a significant correlation between
elevation and temperature bias is found, indicating that the
less-elevated stations show a more pronounced cold bias.
Overall, the WRF shows a systematic underestimation of
temperature. Collier and Mölg (2020) relate this behaviour to
a miscalculation of the mean grid-cell albedo in NOAH_MP
(Tomasi et al., 2017). Generally, it should be emphasised that
the albedo of exposed snow surfaces differs from that of snow
over surfaces with shrub or forest vegetation. The areal sim-
ulations of WRF, CCLM, and ERA5L represent mean grid-
cell values and depend on the land cover parametrisation of
the respective grid cell. At the point representing the climate
station, exposed snow areas predominate due to the standard-
ised environmental conditions with grass cover. Hence, the
comparability is limited for grid cells in which the model
assumes there to be forest. Furthermore, the temporal vari-
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Figure 10. Number of snow days for each year and location in 1987–2018. The upper row (a–d) refers to locations with less than 5 cm mean
winter snow depth (dots in Fig. 9), whereas the lower row shows locations above this threshold (triangles in Fig. 9).

Figure 11. Mean snow cover fraction during DJF averaged over the period 2000–2018. For the remote-sensing product (a, MODIS
MOD10C1.061), only data with at least “okay” quality are considered. The differences (b, c) are calculated as model minus remote-sensing
product, where a red (blue) colour refers to an underestimation (overestimation) of the model. The extended winter season (November to
April) is shown in Fig. S2 in the Supplement.

ability of snow and albedo at the point scale can be higher
than for areal averages (Clark et al., 2011). Remote-sensing
products provide observation-based areal estimations for the
albedo. We compare the albedo of the WRF, CCLM, and
ERA5L simulations to the remote-sensing product MODIS
MCD43C3 at 0.05° resolution (Schaaf and Wang, 2021) for
the whole study area without the Alps (Fig. 15a) and for the
Alps only (Fig. 15b) and confirm the strong overestimation
within the WRF simulation.

ERA5L agrees over the non-Alpine area but overestimates
in the Alps, with the strongest deviations occurring during
early and late winter, reflecting the huge positive bias in the
snow cover duration in the Alps (Fig. 9c). As ERA5L is an
offline simulation driven by the climate of ERA5, the simu-

lated albedo of ERA5L has only very minor effects on the
temperatures shown in Fig. 3. The empirical parametrisa-
tion in CCLM agrees with MODIS for the first month (un-
til mid-January and the beginning of February, respectively),
but it underestimates the albedo afterwards. This is due to the
underestimation of snow cover duration (Figs. 9b and 10b
and f). As the land surface scheme TERRA_ML is run cou-
pled with the atmospheric simulation, the albedo affects the
simulated air temperature. However, the low biases in tem-
perature (Fig. 3) suggest that the overall representation of
the albedo in TERRA_ML does not translate into strong dis-
crepancies in temperature for CCLM.

The different albedo simulations are compared over one
selected winter season at five locations (Fig. S4 and Table S2
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Figure 12. Annual maxima of snow depth for each year and location in 1987–2018. The upper row (a–d) refers to locations with less than
5 cm mean winter snow depth, whereas the lower row shows locations above this threshold.

Figure 13. Fitted GEV location parameters for the observed and
simulated annual maxima of snow depth. Note the logarithmic scal-
ing of the y axis.

in the Supplement). Here, the negative temperature bias of
the WRF simulations (Fig. 3) occurs mainly during peri-
ods with snow and, therefore, overestimated snow albedo
(Fig. 16), confirming the assumption by Collier and Mölg
(2020). Liu et al. (2021) propose a modified snow-albedo
scheme for the NOAH_MP with lower albedo values on aver-
age than the default scheme, improving the representation of
sensible heat flux, air temperature, and snow depth over the
Tibetan Plateau. The albedo scheme of AMUNDSEN for ex-
posed snow surfaces yields a similar albedo estimation to the
WRF simulation for non-forested grid cells (Fig. S4). How-
ever, AMUNDSEN represents the point scale and is not run
coupled with atmospheric modelling, so it does not affect the
modelled climate.

Furthermore, the snow surface albedo also governs the
energy budget of the snow layer (Essery et al., 2013). The
slight overestimation of mean snow depth and snow cover

duration in the WRF simulations can be attributed to the bi-
ases in albedo and temperature. Applying different albedo
parametrisations induces considerable differences in the sim-
ulated snow depth and snow cover duration. For the WRF
simulations, 17 of the 83 locations are classified as forest.
The mean biases of winter snow depth and snow cover dura-
tion over all stations amount to +0.4 cm and +6.8 d (Figs. 8
and 10). For the 17 forest grid cells, however, the deviations
amount to −0.9 cm and +3.2 d, whereas the remaining non-
forested locations show larger overestimations of snow dy-
namics (+0.9 cm and +7.7 d).

Even though ERA5L simulates a lower surface albedo
over non-forested areas than WRF, it shows the strongest
positive bias in mean snow depth and snow cover duration.
The largest overestimations are located in the (pre-)alpine ar-
eas in the south of the study area; however, the snow cover
duration is overestimated for almost the whole region. Daloz
et al. (2022) also report positive deviations of ERA5L in
the extent, fraction, and duration of snow cover over Europe
compared to MODIS. In an evaluation with various satellite-
based data, Kouki et al. (2023) find that ERA5L also over-
estimates the SWE in the Northern Hemisphere in spring.
Monteiro and Morin (2023) confirm these findings over the
Alps, where ERA5L shows the strongest positive bias in
snow depth and snow cover duration of all intercompared
models for all elevation ranges. When developing the new
snow scheme for the next-generation ECLand model (Bous-
setta et al., 2021), these deviations should be accounted for.

Despite its skilful reproduction of precipitation and air
temperature (Fig. 3b and e) and realistic ranges of simulated
albedo (Figs. 15 and S4), CCLM simulates snow depth, num-
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Figure 14. Bivariate kernel density plot of dates for annual snow-depth maxima above 10 cm for each year and location in 1987–2018
simulated by the WRF model (a), CCLM (b), ERA5L (c), and AMUNDSEN (d). Marginal distributions aggregated over all years and
stations are given as histograms at the edges of the plots. The solid grey histogram and grey line histogram refer to the observations.

ber of snow days, snow cover fraction, and snow depth ex-
tremes with large negative biases. In contrast to our analysis,
Lüthi et al. (2019) diagnosed a slight overestimation of SWE
over Switzerland for a similar model setup, i.e. employing
COSMO-CLM at 2.2 km with the TERRA_ML land-surface
model driven by ERA-Interim (Ban et al., 2014). The CCLM
and TERRA_ML setup analysed in this study, however, sug-
gests that it is not appropriate for any further impact analysis.

Based on the same climatic conditions as in CCLM,
AMUNDSEN tends to slightly overpredict snow depth and
snow cover duration. The larger overestimations of the
AMUNDSEN simulation are located in the low mountain
ranges (Figs. 6d and 9d). Especially during snowy winter
seasons, AMUNDSEN produces snow depths that are heav-
ily overestimated. An exploration of these locations reveals
that the CCLM has a general positive precipitation bias there,
which is partly diagnosed by the rank correlation of r = 0.32
between elevation and precipitation bias. However, this posi-
tive bias mostly applies to the stations above 500 m elevation
north of 48.5° N (Fig. S5 in the Supplement).

Apart from the sources of uncertainties discussed above,
the parametrisation of snow density also adds uncertainty
(Essery et al., 2013). The density of newly fallen snow is usu-
ally in the range of 20 to 300 kgm−3 and depends on whether
the air temperature induces dry to wet snow characteristics
and on the wind speed (Lee et al., 2023). Here, all models
parametrise the density of fresh snow differently depending
on the temperature, with only ERA5L additionally including
the near-surface wind speed. Also, compaction and metamor-
phism are parametrised differently, with three models (WRF,
ERA5L, AMUNDSEN) following Anderson (1976) for the
description of compaction. This semi-empirical scheme is
widely used in snow and land-surface models and assumes
a two-stage compaction due to metamorphism and pressure
from the snow mass above (Aschauer et al., 2023). It fur-
ther employs a viscosity coefficient that is dependent on tem-
perature to model stress-induced compaction. Settling of the
snowpack is described with wet snow in the respective snow
layer. Even though this approach is quite sophisticated, not
all processes leading to densification are captured, which

https://doi.org/10.5194/tc-18-1959-2024 The Cryosphere, 18, 1959–1981, 2024



1974 B. Poschlod and A. S. Daloz: Snow depth in high-resolution regional climate models

Figure 15. Albedo for the years 2000 to 2018. Daily albedo val-
ues are averaged over the whole study area (a) without the Alps
and (b) for the Alps (south of 47.8° N and west of 10° E) only. The
thick lines denote the median over all seasons. The area between the
dashed lines and the grey-shaded area shows the inner-50 % range.
For the remote-sensing product (MODIS MCD43C3), only data of
at least “mixed” or good quality are considered, and at least half of
the area needs to be covered with valid values.

may partly contribute to deviations between the modelled
and observed snow depth. Koch et al. (2019) note that rain-
on-snow events or periods of warm weather, which are ex-
pected to occur in the elevation range of our study area, may
cause such deviations. Hence, the estimation of snow density
contributes to inter-model differences and also induces un-
certainty in the evaluation of snow depth. However, neither
snow density nor SWE is measured at the climate stations, so
they cannot be evaluated.

In addition, the number of snow layers considered is found
to be relevant to the reproduction of snow depth and cover
(Arduini et al., 2019; Jin et al., 1999). Jin et al. (1999) em-
phasise that using multiple snow layers improves the rep-
resentation of temporal variability at diurnal and seasonal
timescales. Xue et al. (2003) highlight the importance of
multiple snow layers for the ablation period, as using multi-
ple layers allows the separation of the soil temperature from
the surface temperature. This is considered beneficial for re-
producing the variability of snow surface temperatures, as
single-layer setups tend to simulate surface temperatures that
are around freezing point, with little variability. Here, the
multi-layer setups of WRF and AMUNDSEN show better
performance for the snow cover duration and the timing and
intensity of annual maximum daily snow. The new five-layer
snow scheme of ECLand (Arduini et al., 2019) improves the
simulation of melting periods compared to the single-layer
scheme of ERA5L.

The evaluation of simulations of short periods within the
year is very relevant to tourism-related topics. AMUNDSEN
can achieve the highest classification scores for the predic-

tion of a white Christmas, snow during any 3 d period, and
snow consistently above 10 cm depth during a 5 d period.
All models perform with MCCs in the range from 0.36 to
0.70, indicating a moderate-to-strong positive relationship
between the model classification and the observation. Still,
the tendency to classify a period as “snowy” follows the gen-
eral behaviour of the respective model to overestimate or un-
derestimate snow depth.

For the representation of extremes in snow depth, the dif-
ferences between point scale and areal simulations may af-
fect the comparison. Averaged over all locations, one would
expect a slight underestimation of simulated annual maxi-
mum snow depth, as the climate station shows an exposed
snow surface, whereas grid cells may represent mixed sur-
faces or forested areas. Furthermore, the point scale shows
a higher temporal variability than areal averages, leading to
more pronounced extremes. Still, even considering these lim-
itations, the assessment reveals that WRF, AMUNDSEN, and
ERA5L can reproduce snow depth extremes well in low-
lying areas, whereas WRF and AMUNDSEN can clearly add
value to the representation of extremes over complex terrain
compared to ERA5L.

5 Conclusions and recommendations

In conclusion, the high-resolution climate model WRF and
the hydro-climatological model AMUNDSEN driven by
CCLM can add value compared to the state-of-the-art reanal-
ysis product ERA5L. CCLM provides a skilful reproduction
of the climate but systematically underestimates all snow dy-
namics. Based on this assessment, one can draw some rec-
ommendations for model application and further model de-
velopment.

First, simulations of snow dynamics have to be carefully
evaluated according to the intended use of the data. As also
shown by other studies, such as SnowMIP (Essery et al.,
2013), this evaluation has confirmed that the setup of the re-
gional climate model or land-surface model can greatly in-
fluence the snow depth simulations, even when they are all
driven by the same large-scale atmospheric conditions. Here,
we have shown that this variability also occurs at lower eleva-
tion ranges (150 to 1000 m). With coarse-resolution climate
models, the complexity of the terrain often prevents com-
parability between the results of the climate model and the
observations. The 83 locations in southern Germany show
different degrees of terrain complexity, but the resolution of
the high-resolution RCMs is sufficient to reproduce the el-
evations with moderate-to-low deviations. For the represen-
tation of the winter climate, high-resolution RCMs can add
value compared to ERA5L. This also translates into a ben-
efit for the representation of snow dynamics, except if the
snow model is not appropriately parametrised for the study
area (as in the case of CCLM and TERRA_ML). Hence, for
a study area with topography of medium complexity, we can
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Figure 16. Daily albedo based on remote sensing (MODIS MCD43C3) and the WRF simulation over the winter season 2005/06 at five
locations. For the MODIS time series, only data of at least “mixed” or good quality are shown. The second y axis shows the temperature
bias of WRF compared to the weather stations. The vegetation type of the respective WRF grid cell (which affects the simulated albedo) is
grassland (a, c, e), evergreen needleleaf forest (b), and urban and built-up land (d).

generally recommend the use of the snow depth from a high-
resolution RCM snow scheme. In case of a well-represented
climate but strong biases in the snow simulation (as in the
CCLM here), the added value of the high-resolution climate
simulation can be utilised by setting up a separate snow
model (such as AMUNDSEN in this study), where a cal-
ibration to the local conditions might further improve the
reproduction of observed snow depth. Hence, for local and
regional snow impact assessments, high-resolution climate
models can be a valuable tool. However, we recommend that
climate and snow biases should be analysed carefully. In or-
der to fully make use of this potential in high-resolution sim-
ulations, it would be advisable to store and provide not only
the simulated snow depth but also the SWE and fraction of
snow cover.

Second, with regard to future climate model and land-
surface model development, the evaluation in this study has
revealed some potential for improvement. A thorough review
or revision of the TERRA_ML snow scheme in the ICON-
CLM model is recommended. For NOAH_MP, the prob-

lem of overly high albedos has been addressed by Tomasi
et al. (2017), and the resulting cold bias during winter as
well as the overestimation of snow dynamics were confirmed
for southern Germany in this study. New albedo parametri-
sations are already proposed (Liu et al., 2021) and will be
evaluated. The overprediction of mean snow depth and snow
cover duration in the ERA5L simulations partly result from
the elevation bias and the corresponding temperature bias.
However, the general tendency to overestimate snow cover
duration and the underestimation of extreme daily snow
melting indicate that the snow scheme needs to be revised
accordingly in the course of the development of the new
ECLand model.

Generally, parametrisations and snow models for alpine
and arctic areas tend to be developed and evaluated dispro-
portionately infrequently (e.g. Essery et al., 2013; Krinner
et al., 2018; Liu et al., 2021). This is understandable, as
snow dynamics have a high relevance in these areas, and long
records without non-natural influences are available. How-
ever, considering the relevance of snow-related impacts, it
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is also important to ensure that the snow dynamics in more
densely populated areas are well represented in the simula-
tions. Hence, we propose the study area in southern Germany
as a testbed for further investigations, such as LUCAS phase
3 (Daloz et al., 2022).

On the other hand, high-resolution climate model or earth
system model simulations could further improve our knowl-
edge of snow dynamics in topographically highly com-
plex regions, where state-of-the-art reanalysis data and earth
system models show large deviations from observations
(Daloz et al., 2020; Kouki et al., 2022). However, observa-
tions are sparsely distributed in these regions. Snowfall and
snow storage play an important role in freshwater availabil-
ity, with strong implications of rising temperatures (Simp-
kins, 2018). Hence, high-resolution models could support
decision-making regarding water infrastructure design and
management.

Lastly, we recommend evaluating the performance of
snow models regarding extreme snow dynamics. Possible
measures are proposed in this study, such as daily maxima
of snow depth and their seasonality. They could be extended
by assessing the daily maxima of snow melt and accumu-
lation by analysing the SWE. Our knowledge about future
snow dynamics depends on model simulations. Due to the
high impacts of extreme snow conditions on human society,
it is important to capture these events in the simulations.

Data availability. The ERA5-Land data are available from
https://doi.org/10.24381/cds.e2161bac (Muñoz-Sabater, 2019;
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2020). The COSMO-CLM simulations are available from
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al., 2022). The observational data are provided by the German
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