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Abstract. Reanalysis products provide spatially homoge-
neous coverage for a variety of climate variables in re-
gions such as the Arctic where observational data are lim-
ited. Soil temperatures are an important control of many
land–atmosphere exchanges and hydrological processes, and
permafrost soils are thawing as the climate warms. How-
ever, very little validation of reanalysis soil temperatures in
the Arctic has been performed to date, because widespread
in situ reference observations have historically been lim-
ited there. Here we validate pan-Arctic soil temperatures
from eight reanalysis and land data assimilation system prod-
ucts, using a newly assembled database of in situ observa-
tions from diverse measurement networks across Eurasia and
North America. We examine product performance across the
extratropical Northern Hemisphere between 1982 and 2018,
and find that most products have soil temperatures that are bi-
ased cold by 1–5 K, with an RMSE of 2–9 K, and that biases
and RMSE are generally largest in the cold season. Monthly
mean values from most products correlate well with in situ
data (r > 0.9) in the warm season but show lower correla-
tions (r = 0.55–0.85) in the cold season. Similarly, the mag-
nitude of monthly variability in soil temperatures is well cap-
tured in summer but overestimated by 20 %–50 % for sev-
eral products in winter. The suggestion is that soil tempera-
tures in reanalysis products are subject to much higher uncer-
tainty when the soil is frozen and/or when the ground is snow
covered, suggesting that the representation of processes con-
trolling snow cover in reanalysis systems should be urgently
studied. We also validate the ensemble mean of all available
products and find that, when all seasons and metrics are con-
sidered, the ensemble mean generally outperforms any in-

dividual product, in terms of its correlation and variability,
while maintaining relatively low biases. As such, we recom-
mend the ensemble mean soil temperature product for a wide
range of applications, such as the validation of soil temper-
atures in climate models, and to inform models that require
soil temperature inputs, such as hydrological models.

1 Introduction

Soil temperatures, both near the surface and at depth, are
an important control of many physical, hydrological, and
land surface processes, as soils act as a reservoir for energy
and moisture underground. They provide an important initial
condition for numerical weather prediction, as energy and
water fluxes from the land are important for convective pro-
cesses (Dirmeyer et al., 2006; Kim and Wang, 2007; Siqueira
et al., 2009). As soils react relatively slowly to variations in
weather, soil temperature is also an important predictor of
seasonal and mid-term weather forecasts (Xue et al., 2011).
Soils over large portions of the Arctic are perennially frozen
(permafrost soil). Roughly 1400–1600 Gt of carbon are es-
timated to be stored in soils in permafrost-affected regions
of the Northern Hemisphere (Hugelius et al., 2014). Con-
tinued warming and thawing of permafrost soils as well as
related decomposition of carbon could act as a potential pos-
itive feedback on warming – the permafrost carbon feed-
back – by releasing more methane (CH4) and carbon diox-
ide (CO2) into the atmosphere (Koven et al., 2011). In situ
based soil temperature monitoring networks using thermistor
probes, particularly at high latitudes, are limited in terms of
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their spatial and temporal coverage (Yi et al., 2019), making
it difficult to assess hemispheric scale changes in permafrost.

Reanalysis products have been used in a variety of weather
and climate applications to provide information on a regular
spatial grid, particularly in regions where limited or no obser-
vational data are available (Koster et al., 2004; Zhang et al.,
2008). Previous studies validating reanalysis soil tempera-
ture have primarily focused on the middle latitudes, such as
across China (Yang and Zhang, 2018; Zhan et al., 2020; Zhao
et al., 2022), the Qinghai–Tibetan Plateau (Hu et al., 2019;
Jiao et al., 2023; Wu et al., 2018), Europe (Albergel et al.,
2015; Johannsen et al., 2019), and the continental United
States (Albergel et al., 2015; Xia et al., 2013), with a cou-
ple of recent studies validating soil temperatures globally (Li
et al., 2020; Cao et al., 2020; Ma et al., 2021). Relative to
in situ ground temperature probe networks, most reanalysis
products are biased cold by about 2–5 °C, on average (Hu
et al., 2019; Qin et al., 2020; Yang and Zhang, 2018). Ma
et al. (2021) found that most reanalysis products show larger
cold biases over polar regions than they do over tropical and
temperate regions, while a recent study by Cao et al. (2020)
found that ERA5-Land soil temperatures were biased warm
over the Arctic, particularly in winter.

Several explanations have been suggested for the biases
in reanalysis soil temperatures, including model parameteri-
zations (Albergel et al., 2015; Cao et al., 2020; Chen et al.,
2015; Wu et al., 2018; Xiao et al., 2013), air temperature bi-
ases (Cao et al., 2020; Hu et al., 2017), errors in topography
and elevation, arising from the coarse resolution of reanaly-
sis products (Yang and Zhang, 2018; Zhao et al., 2008; Ma
et al., 2021), and errors in simulated snow cover and snow
thermal insulation (Cao et al., 2020; Royer et al., 2021; Cao
et al., 2022).

While soil temperature biases in individual reanalysis
products may limit their utility, a consensus is emerging that
multi-product ensembles, based on the same principle as en-
semble weather prediction (World Meteorological Organiza-
tion, 2012), are an effective way to increase the signal-to-
noise ratio for many important geophysical variables. En-
semble mean datasets based on combinations of in situ,
model, satellite, and reanalysis data have been used to re-
duce biases in estimates of snow water equivalent (Mudryk
et al., 2015), soil moisture (Dorigo et al., 2017; Gruber et al.,
2019), and precipitation (Beck et al., 2019), as well as for
local-scale permafrost simulations (Cao et al., 2019). Li et al.
(2020) suggest that a similar method could be used to reduce
biases in reanalysis soil temperatures.

Reanalysis soil temperatures have been relatively well
characterized over the middle latitudes. Studies validating
Arctic soil temperatures in reanalysis products, however,
have either focused on a single product (Cao et al., 2020) or
have only considered a limited spatial extent (Li et al., 2020;
Ma et al., 2021). Here we perform a validation of pan-Arctic
(and Boreal) soil temperatures from eight reanalysis and land
data assimilation system (LDAS) products. The main objec-

tives are to (1) validate the eight reanalysis and LDAS soil
temperature products in terms of their bias, RMSE, correla-
tion, and standard deviation, and (2) investigate whether an
ensemble mean soil temperature product outperforms the in-
dividual reanalysis products.

2 Data

2.1 Reanalysis and LDAS data

Tables 1 and 2 outline the six reanalysis and two LDAS soil
temperature products used in this study. For simplicity, the
term “reanalysis” will hereafter be used to describe both re-
analysis and LDAS products. A summary of each product
follows below. Products were remapped onto the European
Reanalysis – Interim (ERA-Interim) grid for comparison us-
ing three different methods: nearest-neighbour, bilinear inter-
polation, and first-order conservative remapping. The choice
of remapping method did not affect the overall conclusions
of the study, and the analysis is based on data remapped us-
ing the conservative remapping method, as it facilitated the
use of the largest number of validation sites and grid cells.

The reanalysis products investigated span a wide range
of horizontal resolutions, ranging between 0.1°, in the case
of ERA5-Land and FLDAS, to 0.75° for ERA-Interim (Ta-
ble 1). Most products – CFSR, ERA-Interim, ERA5, ERA5-
Land, and the Famine Early Warning Systems Network Land
Data Assimilation System (FLDAS) – simulate soil tempera-
ture across four vertical layers, while MERRA2 includes six
vertical layers and JRA55 calculates soil temperature across
a single layer. The topmost soil layer has the highest reso-
lution (7–10 cm in most cases), while the bottom soil layer
often averages soil properties over 1 m or more (Table 2).

The Noah Land Surface Model (Noah-LSM) (Chen et al.,
1996; Betts et al., 1997; Koren et al., 1999; Ek, 2003) is
used by CFSR and FLDAS. CFSR uses the Noah-LSM in
a fully coupled mode to obtain a first-guess land–atmosphere
simulation before operating in a semi-coupled mode with
GLDAS to obtain information about the state of the land sur-
face (Saha et al., 2010a). FLDAS, however, is run in an of-
fline mode utilizing meteorological forcing from MERRA2
(McNally et al., 2017) and rainfall information from NOAA’s
Global Data Assimilation (GDAS) (Derber et al., 1991), the
Climate Hazards Group Infrared Precipitation with Stations
(CHIRPS) (Funk et al., 2015), and the African Rainfall Esti-
mation version 2.0 (RFE2) (Xie and Arkin, 1997).

ERA-Interim, ERA5, and ERA5-Land use versions of the
Tiled ECMWF Scheme for Surface Exchanges over Land
(TESSEL) land model (Viterbo and Beljaars, 1995; Viterbo
and Betts, 1999). In the case of ERA-Interim, TESSEL is in-
formed by empirical corrections from 2 m (surface) air tem-
perature and humidity (Dee et al., 2011). Meanwhile, ERA5
and ERA5-Land use an updated version of TESSEL, known
as the Hydrology-Tiled ECMWF Scheme for Surface Ex-
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changes over Land (HTESSEL) (Balsamo et al., 2009). In
ERA5, a weak coupling exists between the land surface and
atmosphere. It includes an advanced LDAS that incorporates
information regarding the near-surface air temperature, rela-
tive humidity, as well as snow cover (de Rosnay et al., 2014),
along with satellite estimates of soil moisture and soil tem-
perature from the top 1 m of soil (de Rosnay et al., 2013).
ERA5-Land, unlike ERA5, does not directly assimilate ob-
servational data. Instead, the ERA5 meteorology (such as air
temperature, humidity, and atmospheric pressure) is used as
forcing information for HTESSEL, allowing it to be run at
higher resolutions (Muñoz-Sabater et al., 2021). It includes
an improved parameterization of soil thermal conductivity
allowing for it to account for ice content in frozen soil, im-
provements to soil water balance conservation, and the abil-
ity to capture rain-on-snow events (Muñoz-Sabater et al.,
2021).

MERRA2 utilizes the Catchment Land Surface Model
(CLSM) (Ducharne et al., 2000; Koster et al., 2000). Though
MERRA2 does not include a land surface analysis (Gelaro
et al., 2017), CLSM is informed using an updated version of
the Climate Prediction Center’s unified gauge-based analysis
of global daily precipitation (CPCU) precipitation correction
algorithm that originated in MERRA-Land (Reichle et al.,
2017b). No corrections are available, however, for high lati-
tude regions north of 62.5° N (Reichle et al., 2017a). Finally,
JRA55 uses the Simple Biosphere Model (SiB) (Onogi et al.,
2007; Sato et al., 1988; Sellers et al., 1986) in offline mode,
forced by atmospheric data and data from land surface anal-
yses that incorporate microwave satellite retrievals of snow
cover (Kobayashi et al., 2015).

2.2 Observational data

Owing to the lack of dense soil temperature monitoring
networks in the Arctic, most of the observed soil temper-
ature record is characterized by a soil temperature record
that is temporally and spatially sparse (Luo et al., 2020).
While Russia has a more complete record of permafrost tem-
peratures extending back to the 1980s (Sherstiukov, 2012),
longer-term permafrost records over North America are gen-
erally limited to the western Arctic (Smith et al., 2010). Por-
tions of coastal Nunavik, in northern Quebec, have records
of permafrost temperatures from the 1990s onwards (CEN,
2020a, b, c, d, e, f, g), while soil temperature measurements
in the central Arctic are rather sparse (Smith et al., 2010).
Rather than limit our validation to a small geographic region
in the permafrost zone, as several prior studies have done (Hu
et al., 2019; Qin et al., 2020; Wu et al., 2018; Ma et al., 2021;
Li et al., 2020), we choose to combine data from a variety of
sparse and dense networks. Such an approach has been used
to validate soil temperature and permafrost performance in
ERA5-Land (Cao et al., 2020), and allows for the examina-
tion of larger geographic regions as well as for the inclusion

of a more diverse set of vegetation types across the continent
(Ma et al., 2021).

The study compiles a comprehensive set of in situ soil tem-
perature measurements, approximately 1700 stations in total,
from across extratropical Eurasia and North America (Ta-
ble 3; also see the Supplement). Incorporating data from mul-
tiple diverse sparse networks, the dataset includes data from
the Yukon Geological Survey (Yukon Geological Survey,
2021), the Northwest Territories (Cameron et al., 2019; En-
som et al., 2020; Gruber et al., 2019; Spence and Hedstrom,
2018a, b; Street et al., 2018), Roshydromet network in Russia
(Sherstiukov, 2012), Nordicana series D (Nordicana) (Allard
et al., 2020; CEN, 2020a, b, c, d, e, f, g), Global Terrestrial
Network for Permafrost (GTN-P) (GTN-P, 2018), and Kropp
et al. (2020) – in an attempt to provide a representative esti-
mate of soil temperature across the circumpolar Arctic. Our
validation data also include sites from outside regions typ-
ically underlain by permafrost in order to facilitate a com-
parison of the performance of reanalysis soil temperatures at
high latitudes with their performance in regions outside the
permafrost zone. These include stations from Kropp et al.
(2020), Sherstiukov (2012), and GTN-P (2018), as well as
locations from the Manitoba Mesonet network (RoTimi Ojo
and Manaigre, 2021), the Michigan Enviroweather network
(MAWN) (Enviroweather, 2024), the North Dakota Agri-
cultural Weather Network (NDAWN) (North Dakota Agri-
cultural Weather Network, 2022), and the Alberta Climate
Information Service (ACIS) network (Alberta Agriculture,
Forestry and Rural Economic Development, 2022). Data are
also sourced from a peatland ecosystem in Metro Vancouver
(British Columbia) (Lee et al., 2017), as well as several loca-
tions in central and northern British Columbia. (Déry, 2017;
Hernández-Henríquez et al., 2018; Morris et al., 2021). This
provides a unique baseline upon which to perform a hemi-
spheric wide assessment of soil temperature in reanalysis and
LDAS systems, and to the authors’ knowledge, it presents
the most comprehensive analysis to date of soil temperatures
across Canada and the Great Lakes basin.

2.3 Collocation of station and reanalysis data

In order to compare with data from reanalysis and LDAS
products, temperatures were averaged across two depth bins:
a near-surface layer (0–30 cm) and soil temperatures at
depths ranging from 30 to 300 cm. For each site, tempera-
tures from all depths residing within a layer were averaged,
producing an estimated layer-averaged temperature for every
time step. In order to maximize the amount of observational
data available, layer-averaged soil temperatures were calcu-
lated at each time step with all available data. This tradeoff
meant that layer averages often included a different number
of depths at different time steps, and as such, we needed to
limit our analysis of soil temperature trends and variability
to locations where layer averages had a consistent number of
depths.
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Table 1. Summary of the eight reanalysis and LDAS products, their equatorial resolution, land model, and relevant references.

Product Data period Resolution Land model Reference

CFSR 1979–2010 0.31°× 0.31° Noah LSM Saha et al. (2010a)
CFSv2 2011–present 0.2°× 0.2° Noah LSM Saha et al. (2014)
ERA5 1940–present 0.25°× 0.25° HTESSEL Hersbach et al. (2020)
ERA5-Land 1950–present 0.1°× 0.1° HTESSEL Muñoz-Sabater et al. (2021)
ERA-Interim 1979–August 2019 0.75°× 0.75° TESSEL Dee et al. (2011)
FLDAS 1982–present 0.1°× 0.1° Noah LSM McNally et al. (2017)
JRA55 1956–present 0.56°× 0.56° Simple Biosphere Model Harada et al. (2016)

Kobayashi et al. (2015)
MERRA2 1980–present 0.5°× 0.625° Catchment LSM Gelaro et al. (2017)

Figure 1. Panel (a) shows the location of the validation grid cells collocated with in situ stations in the near-surface layer. Grid cells
excluded from the soil temperature trend analysis are shown as an “×”. Type 1 refers to grid cells where the ensemble mean simulates a
winter minimum soil temperature that is too cold. Type 2 refers to grid cells where the ensemble mean simulates a summer maximum soil
temperature that is too cold. Type 3 refers to grid cells where the ensemble mean underestimates the seasonal cycle of soil temperatures. The
number in brackets beside each legend entry displays the number of grid cells in each category. The contour lines encircle regions where the
Obu et al. (2018) permafrost cover is at least 50 %. Panel (b) shows the impact of spatial variation and depth variation on the spread of soil
temperatures in a grid cell. The mean is shown by a green triangle and outliers are shown as grey diamonds.

Many of the in situ (station) sites reported measurements
at hourly or daily frequency; however, we chose to perform
the analysis at monthly time scales in order to focus on pro-
cesses controlling the seasonal cycle of soil temperatures. As
such, we use monthly averages of soil temperatures for vali-
dation purposes. Outlier observations with anomalies greater
than ±3.5σ were removed before monthly averaging.

Since the station data often included days with missing
observations, the sensitivity of the monthly averages to miss-
ing data was tested by computing monthly averages in five
ways: using all months with at least 1 valid day in a month,
using all months with at least 25 %, 50 %, and 75 % valid
data, and finally, using all months with no missing data in a
month. It was found that Tsoil was not substantially impacted
by the inclusion or exclusion of months containing missing

data. In order to increase sample size, we therefore included
all months with at least 50 % valid data.

In order to be considered as a validation location, the grid
cell was required to include soil temperature data for all eight
reanalysis/LDAS products and be collocated with at least one
in situ station. Duplicate stations across datasets were ex-
cluded. In situ locations were only included if there was at
least 2 years of in situ data in order to properly assess the
station’s seasonal cycle. For grid cells containing multiple in
situ stations, the value used in the comparison is a simple
spatial average of the in situ stations in that grid cell on each
calendar day.

Over Eurasia, grid cells contained a single in situ mea-
surement location. In North America, however, a number of
the grid cells contain two or more in situ stations. The near-
surface layer includes 430 validation grid cells (Fig. 1a),
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Table 2. Summary of the eight reanalysis and LDAS products, as
well as the number and depths of the soil layers included.

Product Soil Soil depths (cm)
layers

CFSR 4 0–10, 10–40, 40–100, 100–200
CFSv2 4 0–10, 10–40, 40–100, 100–200
ERA5 4 0–7, 7–28, 28–100, 100–289
ERA5-Land 4 0–7, 7–28, 28–100, 100–289
ERA-Interim 4 0–7, 7–28, 28–100, 100–289
FLDAS 4 0–10, 10–40, 40–100, 100–200
JRA55 3∗ Temperature averaged over soil column
MERRA2 6 0–9.88, 9.88–29.4, 29.4–67.99,

67.99–144.25, 144.25–294.96, 294.96–1294.96

∗ The JRA55 Simple Biosphere Model contains up to three soil layers (whose depths vary
depending on vegetation type), but the soil temperature is averaged over all layers to produce a
singular value at each grid cell.

while at depth there are 377 grid cells (not shown). A sub-
set of stations with longer time series and a more com-
plete data record are used to calculate soil temperature trends
(Sect. 4.2). Stations included in the soil temperature trend
and variability analysis are shown as circles of varying size
and colour, while those excluded from the soil temperature
trend and variability analysis are shown as an “×” (Fig. 1a).
The details of Fig. 1a will be described further in Sect. 5.3.

To calculate spatial averages, a simple average of (layer-
averaged) soil temperatures from all stations within the
bounds of a particular grid cell was calculated at each time
step using all available stations. This meant that the number
of stations included at each time step was not always consis-
tent, and the analysis of soil temperature trends was limited
to a subset of 52 grid cells in Eurasia where the following
conditions were met:

1. The time series included data between January 1985 and
December 2010, with no missing data.

2. The number of stations included in the spatially aver-
aged grid cell temperature was consistent over all time
steps.

3. The number of depths included in the layer-averaged
soil temperature of each contributing station remained
consistent over all time steps.

As a result, North American grid cells were excluded from
the soil temperature trend analysis, and the analysis is based
on grid cells from Eurasia (where grid cells often only con-
tained a single station) (Fig. 1a). Using a subset of grid cells
that incorporate multiple stations in the spatial average, and
include a consistent number of stations and depths in the time
series, we quantified the variability in soil temperatures be-
tween stations within a grid cell and across depths within
a layer average. It was found that the median temperature
range between stations within a grid cell was approximately
1.5 °C, roughly 1.75 times larger than the median temper-
ature range across depths within the near-surface layer of

a station (Fig. 1b), suggesting that temperature variability
within a grid cell is substantially larger than variations in
temperatures within the near-surface layer of a particular sta-
tion.

3 Methods

3.1 Validation metrics

Reanalysis and observational (station) soil temperature data
were collocated with one another spatially and temporally.
Grid-cell-level soil temperatures from each product were
compared against in situ soil temperatures using the follow-
ing statistical metrics: bias (Eq. 1), root-mean-squared er-
ror (RMSE) (Eq. 2), normalized standard deviation (σnorm)
(Eqs. 3 and 4), and the Pearson correlation coefficient (R)
(Eq. 5). We also include an overall skill score for each model,
i.e., a Thackeray et al. (2015) type formulation of the Taylor
(2001) skill score (SS) (Eq. 6). Statistical metrics were cal-
culated as follows:

Bias=
1
N

N∑
n=1
(Tp− Ti) (1)

RMSE=

√√√√ 1
N

N∑
n=1
(Tp− Ti)

2 (2)

σ =

√∑N
n=1(xn− x)

2

N − 1
(3)

σnorm =
σTp

σTi

(4)

R =

1
N

∑N
n=1(Tp− Tp)(Ti− Ti)

σTpσTi

(5)

SS=
2(1+R)(

σnorm+
1

σnorm

)2 , (6)

where Tp is the Tsoil from the reanalysis product and Ti is the
Tsoil of the in situ data. Tp and Ti refer to the mean Tsoil of
the reanalysis product and in situ data, respectively, and N is
the number of monthly soil temperature values. σTp and σTi

are the standard deviations of the reanalysis product soil tem-
peratures and in situ soil temperatures, respectively. Finally,
x refers to the Tsoil (from a particular time step in a dataset)
and x is the mean Tsoil of the dataset.

Metrics were calculated separately for each grid cell and
then averaged to obtain regional values. Estimates for the
permafrost zone and the zone with little to no permafrost
were also calculated by averaging together metrics from grid
cells falling within a particular zone. Skill scores were cal-
culated separately for the near surface and depth, while the
“overall” skill score represents an average of the near-surface
and depth skill scores.
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Table 3. Summary of the observational data networks included in this study, with the dataset name, number of stations, and their references.
Note that Nordicana D references are listed by site in the supplemental metadata.

Dataset No. of Reference
stations

GTN-P 68 GTN-P (2018)
Heather Kropp 229 Kropp et al. (2020)
Roshydromet network 458 Sherstiukov (2012)
Nordicana D 34 See supplemental station metadata
NWT Open Report 2017-009 73 Cameron et al. (2019)
NWT Open Report 2018-009 214 Gruber et al. (2019)
NWT Open Report 2019-004 9 Ensom et al. (2020)
NWT Open Report 2019-017 31 Rudy et al. (2020)
Street and Wookey (2016) 5 Street and Wookey (2016)
Yukon Permafrost Database 112 Yukon Geological Survey (2021)
Baker Creek 6 Spence and Hedstrom (2018b)
Cariboo Alpine Mesonet 12 Hernández-Henríquez et al. (2018)

Déry (2017)
Morris et al. (2021)

Burns Bog 1 Lee et al. (2017)
Manitoba mesoscale network 85 RoTimi Ojo and Manaigre (2021)
Enviroweather network 75 Enviroweather (2024)
ACIS 31 Alberta Agriculture, Forestry and Rural Economic Development (2022)
NDAWN 150 North Dakota Agricultural Weather Network (2022)

3.2 Binning of datasets by season and permafrost

Datasets were binned into a cold season and warm season us-
ing the University of East Anglia’s Climatic Research Unit
(CRU) TS version 4.07 2 m air temperature (Tair) (Harris
et al., 2020) for each grid cell. Cold season months are
those where Tair ≤−2 °C, while the warm season refers to
months with Tair >−2 °C, where Tair is the monthly mean
air temperature. Sensitivity testing on the cold/warm season
revealed no substantive impact on our conclusions using a
threshold of 0, −5, and −10 °C. We also tested the impact of
using a different temperature dataset to perform the binning:
the ERA5 2 m air temperature, which resulted in similar find-
ings.

Permafrost zonation was estimated using the Obu et al.
(2018) permafrost map, which employs a temperature at
the top of the permafrost (TTOP) model based on a 2000–
2016 climatology, driven by a combination of remotely
sensed land surface temperatures, downscaled atmospheric
data from ERA-Interim, and land-cover information from
The European Space Agency (ESA) Climate Change Initia-
tive (CCI) (Obu et al., 2019). To maximize the sample size
in each group, we merge the “continuous” and “discontinu-
ous” permafrost zones into a single category called the “per-
mafrost zone” and compare it against the zone with “little
to no permafrost”, which includes all regions with < 50 %
permafrost cover.

3.3 Elevation impacts

The authors examined the potential impacts of elevation dif-
ferences between in situ datasets and reanalysis products by
estimating the station elevation using the 90 m Copernicus
Global Digital Elevation Model (GLO-90) (European Space
Agency, 2021) and obtaining reanalysis elevations at their
native resolution for the nearest grid cell to the station. For
grid cells with more than one station, station elevations were
averaged together to obtain a grid cell estimate of the “sta-
tion” elevation.

Grid cells were grouped into three elevation bins based on
the station elevation, and it was found that over 70 % of grid
cells are located in regions where the in situ station(s) are
below 500 m (Table 4). Only 15 grid cells had station eleva-
tions above 1000 m, so the authors grouped all grid cells at
or above 500 m together for the purposes of validation. While
reanalysis products generally underestimated the elevation of
higher elevation stations, with an average RMSE of between
144 and 589 m (not shown), this did not appear to have a
major impact on soil temperature performance. (Readers are
referred to Sect. 4.3 (“Spatial variability”) for more details.)

3.4 Regridding of reanalysis products and calculation
of ensemble mean soil temperature

All products were first regridded to the ERA-Interim grid
using a first-order conservative remapping technique (Jones,
1999). The near-surface soil layers, which are representative
of the top 30 cm of soil, were calculated as a simple aver-
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Table 4. Number of grid cells in each elevation bin for the near
surface and at depth.

Elevation range Near-surface Depth grid
grid cells cells

Below 500 m 310 275
500–1000 m 105 87
1000+m 15 15

age of the top two soil layers in each reanalysis product. For
JRA55, the single soil layer was used as a near-surface es-
timate. Soil temperatures at depth, for each product, were
calculated as a simple average of all layers which fell be-
tween 30 and 300 cm, beginning with the third soil layer. For
JRA55, the single averaged soil layer was used as an estimate
of soil temperatures at depth. (Readers are referred to Table 2
for further information about product soil layers.) While the
vertical discretization is coarser than that of the individual
products, this approach allows the ensemble mean product
to incorporate soil temperatures from products with different
land models, whose vertical resolution is not constant.

After the near-surface and deep soil layer average temper-
atures were calculated for each product, the ensemble mean
soil temperature, for each layer, was calculated as the un-
weighted arithmetic mean from six individual soil temper-
ature products (CFSR, ERA-Interim, ERA5, ERA5-Land,
FLDAS, and MERRA2). Owing to JRA55’s simplified land
model, which is unable to capture near-surface soil temper-
atures, we decided to exclude it from the ensemble mean
product, as its inclusion dramatically increased the bias and
RMSE of the ensemble mean.

4 Validation of reanalysis products

4.1 Annual mean

The Taylor skill score ranges between a minimum of zero
and a theoretical maximum of one. A product with a skill
score of 1.0 would display a perfect correlation of 1.0 relative
to in situ soil temperatures and a soil temperature variance
identical to that of the in situ data. Near the surface, most
products display relatively high annual mean skill scores of
> 0.9, suggesting that they generally capture the overall sea-
sonal cycle of soil temperatures. At depth, skill scores are
typically about 0.1 lower (Fig. 2; Tables S1 and S2 in the
Supplement), arising from the lag between air temperatures
and soil temperatures at depth. JRA55, however, displays an
annual mean skill score of 0.54 near the surface and a skill
score of 0.79 at depth (Fig. 2). This arises because JRA55
uses a simplified land model that uses just a single vertical
layer, i.e., the soil temperatures used are computed as aver-
ages over the soil column and are, therefore, more similar to
deeper soil layers than to the surface. Consequently, JRA55

underestimates the seasonal cycle of observed soil tempera-
tures in the near surface, and the timing of its annual max-
imum and minimum soil temperatures is offset by roughly
1 month relative to other products (not shown).

Most products are biased cold over the annual mean
and display soil temperature biases of between +0.3 and
−3.1 °C, with RMSE values ranging between 2.5 and 7.7 °C
over the extratropical Northern Hemisphere (Fig. 2; Ta-
bles S1 and S2). ERA5-Land is a notable exception as it
shows a warm bias over the annual mean, driven by warm
biases in winter, a factor that will be discussed further in
Sects 4.2 and 6.1.

4.2 Seasonal cycle

As alluded to above, strong seasonal differences exist in re-
analysis performance, with noticeably lower skill scores in
the cold season. This is particularly true near the surface,
where cold season skill scores are 0.08–0.35 lower than their
warm season counterparts. Skill score declines at depth are
reduced but still show a decline of 0.02–0.08 relative to the
warm season (Fig. 2; Tables S1 and S2).

The decline in skill score is mirrored by increases in near-
surface bias and RMSE for several products. This is particu-
larly true for ERA-Interim, whose bias and RMSE are 4.1
and 3.7 °C larger, respectively. Interestingly, biases for all
products are somewhat larger in the warm season at depth,
though seasonal differences are also generally smaller in the
deeper soil layers (Fig. 2). JRA55 and ERA5-Land are no-
ticeable outliers to this trend, as they both exhibit positive
(warm) biases in the cold season. In the case of JRA55, this
is due to an underestimation of the seasonal cycle of tem-
peratures, while for ERA5-Land, it is likely due to issues
with snow cover properties (which will be discussed further
in Sect. 6.1).

Near the surface, most products show a maximum cold
(negative) bias when soil temperatures are between −2 and
−10 °C, and there is a tendency for the biases of most prod-
ucts to decrease or flip sign over the coldest temperatures
(Fig. 3), suggesting that they may underestimate the coldest
in situ temperatures. At depth, however, most products dis-
play larger cold biases over warmer temperatures (Fig. 3b).
JRA55 displays a maximum cold (negative) bias over the
warmest temperatures and the bias flips sign as tempera-
tures approach freezing, linked to its reduced seasonal cycle
(Fig. 3). In the case of ERA-Interim, the largest cold (neg-
ative) biases are found over the coldest temperatures, likely
linked to issues with its snow cover representation (discussed
in Sect. 6.1).

Most products generally capture the observed soil temper-
ature variance during the warm season. This is evident in
Fig. 4b and d, as the normalized standard deviation is within
25 % of the observed variance for all products. This is con-
trasted by the cold season, where several products overesti-
mate soil temperature variability (particularly at depth), con-
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Figure 2. Bias (solid colour), RMSE (hatching), and skill scores (circles) of each product for the cold season (blue) (≤−2 °C) and the
warm season (red) (>−2 °C) performance of reanalysis products. Bias, RMSE, and skill score over the annual mean are displayed in purple.
Panel (a) displays the bias, RMSE, and skill score for the near-surface (0–30 cm) layer, while (b) displays the bias, RMSE, and skill score at
depth (30–300 cm). The ensemble mean is shown beside for comparison.

tributing to a decline in product skill (Fig. 4a and c). For
example, ERA5-Land’s (blue diamond) cold season skill is
impacted by its underestimation of cold season soil temper-
ature variability (which is roughly half of the near-surface
observed variance) and arises in part because of its warm
(positive) bias in winter (Fig. 2).

The overestimation in soil temperature variance is also
apparent in Fig. 5 as products display larger soil tempera-
ture variances (as measured by their standard deviation) for
a given in situ soil temperature over colder temperatures.
The spread in standard deviation between products (similar
to their biases) is also generally largest over colder tempera-

tures. The reduced standard deviation near the surface in the
−32 °C bin is likely a function of the small sample size (11).

Similar seasonal variation is seen in reanalysis soil tem-
perature correlations (against station data), as most products
show warm season correlations of greater than 0.93 near the
surface, with reductions of between 0.20 and 0.39 for most
products over the cold season. At depth, warm season corre-
lations are generally 0.09–0.18 lower than near the surface,
and seasonal differences are much smaller (Fig. 4b and d).
The poor JRA55 correlation near the surface arises from its
mismatched seasonal cycle.
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Figure 3. Reanalysis soil temperature bias as a function of station soil temperature for (a) the near-surface (0–30 cm) layer and (b) at depth
(30–300 cm). Station temperatures are binned into 4 °C intervals, beginning with the −32 to −28 °C bin and ending with the 26–30 °C bin.
The midpoint of each temperature bin is plotted along the x axis. The secondary y axis displays the number of data points in each bin (in
conjunction with the histogram).

4.3 Spatial variability

Similar to the strong seasonal differences in product perfor-
mance, we also see substantial spatial variability in perfor-
mance that is strongly linked to latitude. Over the permafrost
regions, where snow cover lasts longer, soil temperature per-
formance is typically worse than over regions further south.
Near the surface, skill scores over permafrost regions are typ-
ically 0.05–0.1 lower over the annual mean than in regions
with little to no permafrost, and at depth, they are generally
between 0.07 and 0.26 lower (Fig. 6). The one exception is
JRA55, which actually sees a slightly higher skill score over
permafrost regions, driven by slight declines in RMSE over
the cold season relative to regions further south. It remains
for future studies to determine whether these differences are

due to permafrost regions being colder or due to structural
issues with the land models, as this is beyond the scope of
this study.

Mirroring the lower skill scores in most products are larger
RMSEs over the permafrost regions. This is particularly true
during the cold season, when the RMSE for most products is
typically 1.3–4.5 °C larger (Fig. 6) than over the zone with
little to no permafrost. Warm season RMSE is also larger
for most products in the permafrost zone, though by a lesser
margin (0.1–2.1 °C).

Bias is also typically larger over permafrost regions by
0.63–3.9 °C. The ERA5-Land warm (positive) bias in the
cold season is largest over permafrost regions (Fig. 6). In the
case of JRA55, however, the warm (positive) biases over the
cold season are largest further south. In fact, over many grid
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Figure 4. Taylor diagram of the cold season and the warm season performance of reanalysis products. Panels (a) and (c) refer to the cold
season, while panels (b) and (d) refer to the warm season. The top panels, (a) and (b), are for the near surface, while the bottom panels, (c)
and (d), refer to soil temperatures at depth. The concentric rings (solid grey lines) refer to the centralized root-mean-squared error (CRMSE),
and a product would have a CRMSE of zero, with a normalized standard deviation of one and a correlation of one, if the time series of the
reanalysis matched the station data perfectly.

cells in the permafrost zone, JRA55 exhibits a cold (negative)
bias during the cold season (not shown).

Reduced agreement between products is also apparent
over permafrost regions, particularly at depth, where the
spread in standard deviation between products is roughly
1.6–3.7 times larger over the permafrost zone (Fig. S1 in the
Supplement), because of substantial differences in the vari-
ance of ERA5-Land, JRA55, and ERA-Interim. Interestingly,
the differences in correlation and standard deviation between
the permafrost zone and the zone with little to no permafrost,
in the near-surface soil layers, are less dramatic (Fig. S2).

Generally, the skill is higher over Eurasia than over North
America (Fig. 7). The lower skill in North America arises in
part due to the underestimation of seasonal cycle over many
grid cells in the Yukon and an overestimation of variability
in cold season temperatures over much of the Great Lakes
region (Fig. S3). CFSR and JRA55 are exceptions, however,
as they greatly overestimate the cold season variability over
much of western Eurasia (not shown) and consequently ex-
hibit lower Eurasian skill scores. Soil temperature correla-
tions (with in situ soil temperatures) are also lower by about
0.02–0.08 for most products in the warm season over North
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Figure 5. Reanalysis soil temperature standard deviation as a function of station soil temperature for (a) the near-surface (0–30 cm) layer
and (b) at depth (30–300 cm). Station temperatures are binned into 4 °C intervals, beginning with the −32 to−28 °C bin and ending with the
26–30 °C bin. The midpoint of each temperature bin is plotted along the x axis. The secondary y axis displays the number of data points in
each bin (in conjunction with the histogram).

America, relative to Eurasia (not shown), which further con-
tributes to reduced skill over North America.

As there are few stations above 1000 m, elevation does not
have a substantial impact on product performance (Fig. 8).
The slight improvement in near-surface cold season per-
formance in CFSR at higher elevations can be linked to
a slightly higher correlation, while in ERA-Interim, the
slightly higher skill score is due to a slight improvement in
cold season temperature variance (not shown). Skill scores
and correlations at depth (not shown in Fig. 8) are lower by
about 0.05–0.1 over higher elevation stations; however, the
overall conclusions are not altered.

4.4 Soil temperature trends

We calculate product trends over the 1985–2010 period in
order to be able to calculate a station estimate from a sub-
set of 52 Eurasian grid cells that have a continuous time se-
ries, as well as a consistent number of sites and depths in-
cluded over all dates and times (denoted as the “Eurasian
subset” hereafter). Trends at depth are very similar in mag-
nitude and spatial pattern to the near surface, so we focus on
the near-surface results here. Trends in the Eurasian subset
(hatched bars in Fig. 9c) are generally representative of the
Eurasian average (solid blue bars), though they are overesti-
mated slightly in the case of CFSR.

Regionally averaged annual mean soil temperature trends
show a small positive trend of < 0.5 °C per decade in most
products, over both Eurasia and North America, and trends in
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Figure 6. Bias (solid colours), RMSE (hatching), and skill scores (circles) of each product for the cold season (blue) and the warm season
(red) performance of reanalysis products over the zone with little to no permafrost (a, c) and the permafrost zone (b, d). The skill score is
also shown for the annual cycle (purple circles). Panels (a) and (b) display the bias, RMSE, and skill score for the near-surface layer, while
(c) and (d) display the bias, RMSE, and skill score at depth. The ensemble mean is shown beside for comparison.

most products are generally consistent with the station esti-
mate over the Eurasian subset (Fig. 9c). In CFSR (purple cir-
cles), however, the trend is near zero over North America and
tends towards negative in Eurasia, arising because of anoma-
lously cold years in 2009 and 2010 (see inset in Fig. 9a), and
anomalously warm periods in the 1980s and early 1990s at
the beginning of the time series (Fig. 9a and b). It is likely
that the cold anomalies in 2009 and 2010 can be linked to
issues with CFSR snow cover (Fig. S4, purple line) between
January 2009 and January 2011.

Similar to skill score and RMSE, products show greater
disagreement over higher latitudes (Fig. S5) and during win-
ter (Fig. S6). ERA5 in particular, ERA5-Land, and to a lesser
extent, ERA-Interim show several pockets of cooling over
Siberia and the western Arctic over North America (Fig. S5),
driven by strong cooling trends during December, January,
and February (DJF) (Fig. S6). Meanwhile, the cooling trends

in DJF are not as apparent in FLDAS, JRA55, and MERRA2.
Trends over June, July, and August show good agreement
between products, with most regions showing small warm-
ing trends of < 1 °C per decade and pockets of slight cool-
ing over portions of Eurasia and western North America
(Fig. S7).

4.5 Variability in seasonal extremes

The winter minimum and summer maximum show a cold
bias over all latitude bands for most products (Fig. 10c
and d), similar to the mean biases in the warm and cold sea-
sons (Fig. 2). Similarly, the warm biases in ERA5-Land (blue
diamond) and JRA55 (red circle) also extend to their winter
maximum temperatures (Fig. 10c). The conclusions regard-
ing variability in soil temperature extremes, at depth, are gen-
erally similar to those near the surface (Fig. S8c and d).
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Figure 7. Bias (solid colours), RMSE (hatching), and skill scores (circles) of each product for the cold season (blue) and the warm season
(red) performance of reanalysis products over North America (a, c) and Eurasia (b, d). The skill score is also shown for the annual cycle
(purple circles). Panels (a) and (b) display the bias, RMSE, and skill score for the near-surface (0–30 cm) layer, while (c) and (d) display the
bias, RMSE, and skill score at depth (30–300 cm). The ensemble mean is shown beside for comparison.

Table 5. Standard deviation (as a measure of spread between prod-
ucts) of the mean biases in winter minimum and summer maximum
soil temperature, as a function of latitude and depth (from Figs. 10
and S8c and d). Latitude bands are 10° in width, such that the 40° N
latitude band is an average between 40 and 50° N, while the 60° N
latitude band is an average between 60 and 70° N, for example.

Latitude band
Near surface Depth

Winter Summer Winter Summer
minimum maximum minimum maximum

40° N 2.80 °C 2.32 °C 1.51 °C 1.25 °C
50° N 2.80 °C 2.41 °C 1.56 °C 1.43 °C
60° N 3.81 °C 2.95 °C 2.41 °C 1.90 °C

The spread between products in the bias of the summer
maximum sees less latitudinal variation than the spread in
the winter maximum over both depths, though the spread is

largest near the surface (Table 5). Using the standard devia-
tion as a measure of spread between product biases, the near-
surface standard deviation in winter minimum bias increases
from 2.80 °C over the 40° N latitude band to 3.81 °C north
of 60° N (Table 5), in large part because of the large win-
ter biases in ERA-Interim (Fig. 10c, green squares). Mean-
while, the spread in the summer maximum bias sees smaller
increases (from 2.32 °C at 40° N to 2.95 °C at 60° N) (Ta-
ble 5).

5 Ensemble mean product

5.1 Ensemble mean validation

The ensemble mean soil temperature product shows closer
agreement with in situ soil temperatures than any of the in-
dividual products, when all depths, seasons, and regions are
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Figure 8. Bias (solid colour), RMSE (hatching) and skill scores (circles) of each product the cold season (blue) and the warm season (red)
performance of reanalysis products over low elevation grid cells (below 500 m) (a, c), and grid cells at or above 500 m elevation (b, d).
The skill score is also shown for the annual cycle (purple circles). (a) and (b) displays the bias, RMSE and skill score for the near-surface
(0–30 cm) layer, while (c) and (d) display the bias, RMSE and skill score at depth (30–300 cm). The ensemble mean is shown beside for
comparison.

considered as a whole. First, its annual mean and cold season
skill scores are higher than in any individual product. Second,
its bias and RMSE are generally close in magnitude to the
product with the lowest bias and RMSE over all depths and
seasons (Fig. 2). Third, the ensemble mean product (Fig. 4,
pink triangles) displays a temporal variance within 20 % of
the observed variability over all depths and seasons, includ-
ing in the cold season when many products fail to capture
observed variance (Fig. 4).

The value of using the ensemble mean soil temperature
is particularly noticeable in the cold season when individ-
ual products see a decline in skill, and a larger spread in
performance. This is particularly noticeable in that its near-
surface skill score in the cold season is nearly 10 % higher
than the next best product (Fig. 2). Next, its correlation is
roughly 0.05 larger than best individual product in cold sea-

son over both depths (Fig. 4). Moreover, its bias and RMSE
only see relatively small increases over permafrost regions
(Fig. 11), while products such as ERA5-Land, which have a
small RMSE over more southern regions, see more substan-
tial increases in bias and RMSE over the permafrost zone
(Fig. S1). Thus, the ensemble mean soil temperature dataset
provides the best estimate of in situ temperatures for the
broadest range of conditions.

5.2 Ensemble mean soil temperature trends

We focus our analysis of trends on the near-surface data, as
the spatial pattern of soil temperature trends near the surface
and at depth show a pattern correlation of greater than 0.95
(not shown), and the conclusions regarding performance are
generally similar.
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Figure 9. Near-surface soil temperature anomalies and trends for each of the reanalysis products. Panel (a) displays the regionally averaged
1982–2018 annual mean soil temperature anomalies for each reanalysis product north of 40° N over Eurasia, while (b) displays the same but
over North America. The CFSR time series is also shown as an inset to display the full range of values. Panel (c) exhibits an estimate of the
regionally averaged 1985–2010 annual mean decadal soil temperature trend for each of the products and the ensemble mean for comparison.
(The error bars represent the 95 % CI for the mean trend.)

The ensemble mean shows a small positive soil tempera-
ture trend of 0.23 °C± 0.09 °C per decade over Eurasia and
0.20 °C± 0.109 °C per decade over North America between
1985 and 2010 (Fig. 9c). Most regions show small positive
mean annual trends of < 0.5 °C per decade, though portions
of North America and Siberia exhibit slight cooling trends of
< 0.5 °C per decade (Fig. 12a).

Annual mean soil temperature trends in the ensemble
mean over Eurasia show a strong correlation of 0.82 with
observations (Fig. 12b). The ensemble mean also generally
captures the correct sign of the observed trends, though it

has a slight tendency to underestimate the magnitude of the
trend (Fig. 12b). Trends at depth show a pattern correlation
of 0.98 with the near surface (not shown in Fig. 12) and the
conclusions are generally the same.

5.3 Ensemble mean variability in seasonal extremes

Similar to most products, the ensemble mean is biased cold
in both the winter minimum (Fig. 10a) and the summer max-
imum (Fig. 10b) soil temperature. As Fig. 10a and b show,
however, there is a fair degree of variability in the behaviour
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Figure 10. Performance of the near-surface soil temperature variability in the ensemble mean. Panel (a) is a scatterplot of the station
and ensemble mean winter minimum soil temperature. Panel (b) is a scatterplot of the station and ensemble mean summer maximum soil
temperature. Panel (c) shows latitudinal averages (from Eurasian grid cells) of the near-surface soil temperature winter minimum for the
ensemble mean and contributing products. Panel (d) shows latitudinal averages (from Eurasian grid cells) of the near-surface soil temperature
summer maximum for the ensemble mean and contributing products.

of the ensemble mean seasonal extremes – making an assess-
ment of the mean behaviour in seasonal extremes somewhat
tricky. Therefore, in the following paragraphs, we will focus
on the most robust findings.

Near the surface, biases in the winter minimum soil tem-
perature (Fig. 10a) are generally larger than in the sum-
mer maximum (Fig. 10b). This can also be seen in the lat-
itudinally averaged soil temperatures, where the ensemble
mean (pink line) is further from the station (black line) in
the winter minimum (Fig. 10c) than in the summer maxi-
mum (Fig. 10d), which agrees with the findings that the near-
surface cold season bias is generally larger than the bias in
warm season (Fig. 2).

At depth, however, the summer maximum shows a larger
bias (Fig. S8c) than the winter maximum (Fig. S8d), consis-
tent with the finding that the extratropical mean bias is largest
in the warm season at depth (Fig. 2). From Fig. S8b, we also
see that the greatest disagreement in summer maximum oc-
curs over the coldest regions.

Referring to Fig. 1a, several different types of grid cells are
denoted. The first group, type-1 (16 occurrences) grid cells,
is characterized by a strong cold bias in (underestimating)
the winter minimum soil temperature (Fig. 13a). A second
group of grid cells, which we refer to as type-2 (6 occur-
rences) grid cells, is defined as those which have a strong
warm bias in (overestimating) the summer maximum tem-
perature (Fig. 13b).

A common feature of the third group, type-3 grid cells,
is that they underestimate the observed seasonal cycle of
soil temperatures (Fig. 13c). While only one occurrence was
found in the 52 Eurasian grid cells used for trend analysis,
many grid cells in the Yukon would also show a similar un-
derestimation of the seasonal cycle. This is evident as the
ensemble mean normalized standard deviation (a measure of
soil temperature variability) is substantially smaller than 1.0
in both seasons (Fig. S3). Often the in situ stations located
within type-3 grid cells are located in areas devoid of veg-
etation, and it is likely that disagreements in the simulated
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Figure 11. Spatial map of bias for the ensemble mean product. Values for the cold season are shown in the left-hand panels and those for the
warm season are shown in the right-hand panels. Panels (a) and (b) show the near-surface bias, while biases at depth are shown in (c) and (d).

vegetation cover in the contributing reanalysis products may
partially account for the reduced seasonal cycle.

6 Discussion and conclusions

This study conducted a validation of pan-Arctic soil temper-
atures for eight reanalysis products and validated a new en-
semble mean pan-Arctic soil temperature dataset. The results
are qualitatively similar to the findings of previous studies ex-
ploring reanalysis soil temperature performance in the extra-
tropical Northern Hemisphere, which generally highlighted a
cold bias in most products (Hu et al., 2019; Qin et al., 2020;
Wu et al., 2018; Xu et al., 2019; Yang and Zhang, 2018; Zhan
et al., 2020). Similar to Li et al. (2021), we note greater bi-
ases in cold season soil temperatures, and our results quali-
tatively reflect the findings of Cao et al. (2020), who found
that ERA5-Land exhibited warm soil temperature biases –
particularly over higher latitudes.

The soil temperature trends reported here are of a similar
magnitude to those reported by Biskaborn et al. (2019), who
found that permafrost soil temperatures generally warmed at
a rate of 0.29 °C± 0.12 °C per decade, though ours differ in
that they represent the mean extratropical Northern Hemi-
sphere north of 40° N, whereas Biskaborn et al. (2019) pre-
dominantly focus on permafrost regions.

Other major differences here are that we developed an en-
semble mean soil temperature product and had a greater fo-
cus on higher latitude regions than most other studies. We
also note a strong difference in seasonal performance. Rel-
ative to the warm season, the cold season is generally char-
acterized by lower skill, larger near-surface temperature bi-
ases, a larger spread in the reanalysis products’ soil tem-
perature variability, and lower correlations with in situ soil
temperatures. When all depths and seasons are considered,
the ensemble mean product performs better than any individ-
ual product, exhibiting a consistently high skill, realistic soil
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Figure 12. Panel (a) shows the 1985–2010 ensemble mean decadal soil temperature trends, near the surface, with the locations of validation
grid cells included in the trend analysis shown as green dots. The grey contour line represents the boundary of the permafrost zone (regions
with at least 50 % permafrost cover). Panel (b) shows the relationship between the near-surface ensemble mean and station soil temperature
trends (per decade).

temperature variability, and relatively small biases over all
seasons.

Here we show an approximate estimate of the magnitude
of soil temperature uncertainty associated with instrumental
uncertainties, and those associated with structural differences
and parameterizations in land models, using the standard de-
viation in soil temperature across time and as a function of
station temperature. A complete quantitative assessment of
the contributions of various sources of uncertainty is not pos-
sible using this dataset, as time series did not have a consis-
tent start or end date, and consequently, the metrics are calcu-
lated using different climatologies across different grid cells.
A more complete uncertainty analysis is beyond the scope
of this study but in the future could be achieved by limit-
ing analysis to a subset of grid cells with consistent time se-
ries, for example, by focusing on soil temperature networks
such as the Michigan Enviroweather network or the North
Dakota Agricultural Weather Network, or limiting the uncer-
tainty analysis to a smaller portion of the permafrost region.

We find that the median spread in the spatially averaged
soil temperature of stations in a grid cell is approximately
1.49 °C (Fig. 1b) – several degrees smaller than the standard
deviation of reanalysis soil temperatures for a given station
soil temperature – particularly over frozen soils (Fig. 5). For
example, when soil temperatures are below−20 °C, soil tem-
perature standard deviations increase to near 10 °C in several
products. Reanalysis 2 m air temperatures maintain a rela-
tively consistent standard deviation between 1.25 and 1.75 °C
for most products, and they only increase slightly to between
2.25 and 3.5 °C over the coldest station air temperatures (not
shown). Unlike with soil temperatures, the spread in reanal-

ysis 2 m air temperatures only increases modestly over the
cold season (not shown). This would suggest that the largest
degree of uncertainty in reanalysis soil temperatures over the
Arctic is most likely caused by differences in the land models
between products, rather than by uncertainties in observed
soil temperatures, or from differences in product air temper-
atures.

6.1 Uncertainties associated with land model
parameterizations and structural differences

Uncertainties in soil temperatures associated with structural
differences and parameterizations in land models can be
grouped into several categories. The first category surrounds
the simplified parameterizations controlling frozen soil pro-
cesses. For example, in the Noah LSM, utilized by CFSR and
FLDAS, freeze–thaw processes are highly simplified and un-
suited for permafrost simulations (Hu et al., 2019) – and may
have contributed to the relatively large soil temperature bi-
ases simulated in these products. Even the best-performing
products – ERA5 and ERA5-Land – are unsuited for simula-
tion of permafrost soil temperatures, as they fail to simulate
phase-dependent changes in soil thermal conductivity (Cao
et al., 2020).

Yang et al. (2020) noted that larger soil temperature bi-
ases over the Qinghai–Tibetan Plateau in deeper soil layers
were likely related to the fact that soil temperatures are less
constrained by air temperature observations (and soil prop-
erties). This could also explain why soil temperature biases
in the warm season are larger at depth than near the surface
in this study. Moreover, the near-surface soil layers tend to
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Figure 13. Time series from selected grid cells showing the ensemble mean (pink) and station (black) soil temperatures. Panel (a) displays
a time series where the ensemble mean simulates a winter minimum that is too cold, (b) a time series where the ensemble mean simulates a
summer maximum that is too cold, and (c) a time series where the ensemble mean underestimates the seasonal cycle of soil temperatures.

fall within the active layer (which undergoes seasonal freeze–
thaw cycles), while deeper soil layers are more likely to con-
tain permafrost. Permafrost has a high degree of imperme-
ability, which prevents soil water from infiltrating below the
bottom of the active layer, and owing to latent heat consid-
erations, leads to soil water freezing at the base of the active
later (Zhao et al., 2000); however, these processes are not
well represented in reanalysis LSMs (Yang et al., 2020; Hu
et al., 2019).

LSMs, such as the Simple Biosphere Model (used in
JRA55), that use the force restore method to estimate soil
temperature are prone to overestimating diurnal soil temper-
ature ranges (Gao et al., 2004; Kahan et al., 2006) as well
as the seasonal cycle of soil temperatures (Luo et al., 2003).
This is because they underestimate heat capacity and overes-
timate temporal variation in ground heat flux compared with
more complex land models (Hong and Kim, 2010). More-
over, the force restore method assumes a strong diurnal forc-
ing from above, an assumption that is likely violated when

snow cover is present (Tilley and Lynch, 1998; Slater et al.,
2001), because snow cover leads to a decoupling of the sur-
face forcing from the soil below. These factors may help
explain why JRA55 is unable to simulate near-surface soil
temperatures as accurately as the other products explored in
this study which explicitly incorporate representations of soil
heat flux between soil layers (Niu et al., 2011; Koster et al.,
2000; van den Hurk et al., 2000; Balsamo et al., 2009), and
hence they are able to simulate a dampening of seasonal vari-
ability in soil temperatures at depth (and greater variability
near the surface).

Burke et al. (2020) note that differences in snow cover
properties were important in explaining soil temperature bi-
ases of several Coupled Model Intercomparison Project 6
(CMIP6) models, and it is likely that differences in snow
cover properties between the LSMs studied here could ac-
count for some of the observed spread, particularly in the
cases of ERA-Interim, ERA5, and ERA5-Land, because dur-
ing the warm season, these products have similar soil tem-
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perature biases, but their performance varies widely during
the cold season (Figs. 2 and 10), in large part because of
snow density biases (Cao et al., 2020; Gao et al., 2022). In
ERA-Interim, the large cold (negative) bias during the cold
season is strongly related to the fact that it overestimates
the observed snow density (Gao et al., 2022) and, conse-
quently, also overestimates the thermal conductivity of the
snow pack. Conversely, snow density (and thermal conduc-
tivity) in ERA5-Land (and ERA5) is too low, and hence bi-
ases in snow density are a large contributing factor to the
warm (positive) bias during the cold season (Cao et al.,
2020).

Snow was also cited as a major controlling factor in soil
temperature biases in ECMWF’s Integrated Forecast System,
which also uses the HTESSEL land surface model (Albergel
et al., 2015). In the case of the Noah LSM, which is in-
cluded in CFSR/CFSv2 and FLDAS, Li et al. (2021) found
that an overestimation of snow cover was a major contributor
to larger soil temperature biases in winter over the Qinghai–
Tibetan Plateau. Shukla et al. (2019) and Shukla and Huang
(2020) found that overestimation of snow cover in CFSR dur-
ing autumn and early winter leads to an overactive snow-
albedo feedback and excessive cooling of the near-surface
soil layers. This translates into a strong cold bias at depth
over the spring and summer, and likely explains why CFSR’s
warm season bias and RMSE at depth are the largest of all
seven products examined in this study (Fig. 2).

6.2 Uncertainties associated with scale effects

Here we evaluated soil temperatures at a relatively coarse res-
olution of 0.75°. As such, it is difficult for reanalysis prod-
ucts to capture local-scale variability in soil temperature. The
subgrid-scale variability in soil temperatures calculated in
Fig. 1b is of a similar magnitude to those calculated by previ-
ous studies exploring subgrid-scale variability in cryospheric
soil temperatures (Gubler et al., 2011; Morse et al., 2012;
Gisnås et al., 2014), though they are generally smaller than
those reported by Cao et al. (2019). We found that the spatial
variability in soil temperatures in one high latitude grid cell
is larger than 10 °C at times (Fig. 1) – of a similar magnitude
to those reported by Cao et al. (2019).

Moreover, as many grid cells in Eurasia only included a
single in situ station, there is a significant chance that this
single in situ station may not necessarily be reflective of con-
ditions elsewhere in the grid cell (Gubler et al., 2011). When
multiple in situ stations were available, we took the spatial
mean of all stations in an attempt to estimate the mean soil
temperature over the grid cell.

6.3 Uncertainties arising from sampling variability

As was described in Sect. 5.2, the presence of missing data
created a challenge for calculating in situ soil temperature av-
erages. While most grid cells in Eurasia had relatively consis-

tent time series, and fewer issues with missing data, this was
not the case over North America. Rather than limit our anal-
ysis to a small number of grid cells with little to no missing
data (as we did for the calculation of soil temperature trends),
we chose to make use of all available data at each time step
when calculating our validation metrics (bias, RMSE, stan-
dard deviation, correlation, and skill score). Thus, the spa-
tially averaged in situ soil temperature did not always contain
a constant number of depths or grid cells at each time step in
many grid cells over North America.

From Fig. 1b, it is apparent that the median variability in
soil temperatures between stations within a grid cell (spa-
tial variation), 1.49 °C, is roughly 1.75 times larger than the
median variability in soil temperatures at different depths,
0.84 °C, for a particular station (depth variation). Thus, it
would appear that fluctuations in the number of stations com-
prising the spatially averaged soil temperature are responsi-
ble for a greater proportion of the uncertainty than fluctua-
tions in the number of depths included. However, it is also
apparent that the uncertainties arising from variations in the
number of grid cells included in a station average are sub-
stantially smaller than the spread between reanalysis prod-
ucts. During the cold season, the uncertainty in soil tempera-
tures associated with the spread between reanalysis products
is often two to three times larger than the uncertainty arising
from fluctuations in station availability.

6.4 Applications and future work

The ensemble mean data product provides gridded, monthly-
averaged soil temperature estimates of near-surface and
deeper soil temperatures at a 0.75° resolution. Therefore, it
is most suitable for regional or hemispheric-scale analyses of
soil temperature climatologies, or their seasonal cycle, or to
explore recent trends in soil temperatures. The product could
also be used to provide boundary conditions for models that
require soil temperature inputs, such as hydrological models,
and for the validation of model soil temperatures. While the
ensemble mean product still exhibits substantial cold biases
over permafrost regions, and therefore is likely unsuitable for
permafrost modelling, the RMSE over the permafrost zone
of the ensemble mean product outperforms the RMSE of the
best-performing product by 0.5 °C, on average (Fig. S1), in
the cold season, and hence it may still provide some added
value for estimation of high latitude soil temperatures rela-
tive to the individual products.

A robust ensemble mean can be computed with four prod-
ucts (not shown), which means a higher resolution ensem-
ble mean data product could be created using a subset of the
higher resolution reanalysis products. For example, ERA5,
ERA5-Land, MERRA2, and CFSR have resolutions lower
than 0.5°. Using a similar blending methodology, we have
been investigating the performance of a 0.31° product (us-
ing a smaller subset of products that provide data at higher
spatial resolution). We have also performed similar analyses
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with a 0.05° soil temperature product, using interpolated soil
temperatures from the Arctic System Reanalysis version 2
(ASR), ERA5-Land, and FLDAS. The goal has been to as-
sess the impact of spatial resolution on the performance of
the ensemble mean product. We hope to include these results
in a follow-up paper. Future work should aim to investigate
how differences in snow cover and snow density between
the reanalysis products may influence biases in the individ-
ual products. On a related note, future studies should also
emphasize how differences in the land model structure and
parameterization may account for the spread in soil temper-
atures.

Data availability. The CRU TS v 4.07 2 m air tempera-
ture dataset can be found on the CRU TS dataset website
(https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.07/, Harris et al.,
2020). The Obu et al. (2018) permafrost map is available
from https://doi.org/10.1594/PANGAEA.888600. GTN-P data
(https://doi.org/10.1594/PANGAEA.884711; GTN-P, 2018)
are available from The Global Terrestrial Network for Per-
mafrost (https://gtnp.arcticportal.org/) and the Kropp et al.
(2020) dataset is available from Heather Kropp’s Arctic Data
Center page (https://doi.org/10.18739/A2736M31X). Roshy-
dromet data are available from RIHMI-WDC (http://aisori-m.
meteo.ru/waisori/index0.xhtml, Sherstiukov, 2012; Veselov et
al., 2021) and Nordicana data can be obtained from Nordicana
D (https://www.cen.ulaval.ca/nordicanad/en_index.aspx, CEN,
2022). CFSR (https://doi.org/10.5065/D6DN438J, Saha et al.,
2010b), CFSv2 (https://doi.org/10.5065/D69021ZF, Saha et
al., 2012), ERA-Interim (https://doi.org/10.5065/D6CR5RD9,
European Centre for Medium-Range Weather Forecasts, 2012),
ERA5 (https://doi.org/10.5065/P8GT-0R61, European Cen-
tre for Medium-Range Weather Forecasts, 2019), and JRA55
(https://doi.org/10.5065/D60G3H5B, Japan Meteorological
Agency, 2014) data were obtained from the National Center for
Atmospheric Research’s (NCAR) Research Data Archive (RDA)
(https://rda.ucar.edu/, University Corporation for Atmospheric Re-
search, 2024). FLDAS (https://doi.org/10.5067/5NHC22T9375G;
McNally and NASA/GSFC/HSL, 2018) and MERRA2
(https://doi.org/10.5067/RKPHT8KC1Y1T; Global Model-
ing and Assimilation Office, 2015) were obtained from the
Goddard Earth Sciences Data and Information Services Cen-
ter (GES DISC) (https://disc.gsfc.nasa.gov/datasets/, Goddard
Earth Sciences Data and Information Services Center, 2024).
ERA5-Land data (https://doi.org/10.24381/cds.68d2bb30,
Muñoz-Sabater, 2019) were downloaded from the Coper-
nicus Climate Change Service (C3S) Climate Data Store
(CDS) (https://cds.climate.copernicus.eu/, Copernicus and
ECMWF, 2024). The ensemble mean soil temperature
dataset has been made available on the Arctic Data Center
(https://doi.org/10.18739/A2GF0MZ00; Herrington and Fletcher,
2023).
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of the Land Surface and Boundary Layer Models in Two Opera-
tional Versions of the NCEP Eta Model Using FIFE Data, Mon.
Weather Rev., 125, 2896–2916, 1997.

Biskaborn, B. K., Smith, S. L., Noetzli, J., Matthes, H., Vieira, G.,
Streletskiy, D. A., Schoeneich, P., Romanovsky, V. E., Lewkow-
icz, A. G., Abramov, A., Allard, M., Boike, J., Cable, W. L.,
Christiansen, H. H., Delaloye, R., Diekmann, B., Drozdov, D.,
Etzelmüller, B., Grosse, G., Guglielmin, M., Ingeman-Nielsen,
T., Isaksen, K., Ishikawa, M., Johansson, M., Johannsson, H.,
Joo, A., Kaverin, D., Kholodov, A., Konstantinov, P., Kröger, T.,
Lambiel, C., Lanckman, J.-P., Luo, D., Malkova, G., Meiklejohn,
I., Moskalenko, N., Oliva, M., Phillips, M., Ramos, M., Sannel,
A. B. K., Sergeev, D., Seybold, C., Skryabin, P., Vasiliev, A.,
Wu, Q., Yoshikawa, K., Zheleznyak, M., and Lantuit, H.: Per-
mafrost is warming at a global scale, Nat. Commun., 10, 264,
https://doi.org/10.1038/s41467-018-08240-4, 2019.

Burke, E. J., Zhang, Y., and Krinner, G.: Evaluating permafrost
physics in the Coupled Model Intercomparison Project 6
(CMIP6) models and their sensitivity to climate change, The
Cryosphere, 14, 3155–3174, https://doi.org/10.5194/tc-14-3155-
2020, 2020.

Cameron, E., Lantz, T., O’Neill, H., Gill, H., Kokelj, S., and Burn,
C.: Permafrost Ground Temperature Report: Ground tempera-
ture variability among terrain types in the Peel Plateau region
of the Northwest Territories (2011–2015), Tech. Rep. NWT
2017-009, Northwest Territories Geological Survey, North-
west Territories, Canada, https://doi.org/10.5885/45309SL-
15611D6EC6D34E23, 2019.

Cao, B., Quan, X., Brown, N., Stewart-Jones, E., and Gruber, S.:
GlobSim (v1.0): deriving meteorological time series for point lo-
cations from multiple global reanalyses, Geosci. Model Dev., 12,
4661–4679, https://doi.org/10.5194/gmd-12-4661-2019, 2019.

Cao, B., Gruber, S., Zheng, D., and Li, X.: The ERA5-Land soil
temperature bias in permafrost regions, The Cryosphere, 14,
2581–2595, https://doi.org/10.5194/tc-14-2581-2020, 2020.

Cao, B., Arduini, G., and Zsoter, E.: Brief communication: Improv-
ing ERA5-Land soil temperature in permafrost regions using an
optimized multi-layer snow scheme, The Cryosphere, 16, 2701–
2708, https://doi.org/10.5194/tc-16-2701-2022, 2022.

CEN: Climate station data from Whapmagoostui-Kuujjuarapik
Region in Nunavik, Quebec, Canada, v. 1.5 (1987–2019),
Nordicana D4 [data set], https://doi.org/10.5885/45057SL-
EADE4434146946A7, 2020a.

CEN: Climate station data from the Sheldrake river re-
gion in Nunavik, Quebec, Canada, v. 1.1 (1986–2019),
Nordicana D61 [data set], https://doi.org/10.5885/45480SL-
C89DEB92A4FE4536, 2020b.

CEN: Climate station data from the Clearwater lake re-
gion in Nunavik, Quebec, Canada, v. 1.1 (1986–2019),
Nordicana D57 [data set], https://doi.org/10.5885/45475SL-
5A33FE09B0494D92, 2020c.

CEN: Climate station data from the Little Whale River re-
gion in Nunavik, Quebec, Canada, v. 1.1 (1993–2019),
Nordicana D58 [data set], https://doi.org/10.5885/45485SL-
78F4F9C368364100, 2020d.

CEN: Climate station data from the Biscarat river region in
Nunavik, Quebec, Canada, v. 1.0 (2005–2019), Nordi-

cana D62 [data set], https://doi.org/10.5885/45495SL-
78FA5A95C5FB4D21, 2020e.

CEN: Climate station data from Northern Ellesmere Island in
Nunavut, Canada, v. 1.7 (2002–2019), Nordicana D8 [data set],
https://doi.org/10.5885/44985SL-8F203FD3ACCD4138, 2020f.

CEN: Environmental data from Boniface river region in Nunavik,
Quebec, Canada, v. 1.3 (1988–2019), Nordicana D7 [data
set], https://doi.org/10.5885/45129SL-DBDA2A77C0094963,
2020g.

CEN: Nordicana D, Centre for Northern Studies [data set],
https://www.cen.ulaval.ca/nordicanad/en_index.aspx (last ac-
cess: 19 January 2022), 2024.

Chen, F., Mitchell, K., Schaake, Y., Xue, Y., Pan, H.-L., Koren, V.,
Duan, Q., Ek, M., and Betts, A.: Modeling of land surface evapo-
ration by four schemes and comparison with FIFE observations,
J. Geophys. Res., 101, 7251–7268, 1996.

Chen, H., Nan, Z., Zhao, L., Ding, Y., Chen, J., and Pang, Q.:
Noah Modelling of the Permafrost Distribution and Character-
istics in the West Kunlun Area, Qinghai-Tibet Plateau, China:
Noah Modelling of Permafrost, Permafrost Periglac., 26, 160–
174, https://doi.org/10.1002/ppp.1841, 2015.

Copernicus and ECMWF: Copernicus Climate Change Ser-
vice, https://cds.climate.copernicus.eu/cdsapp#!/home (last ac-
cess: 10 April 2024), 2024.

Dee, D. P., Uppala, S. M., Simmons, A. J., Berrisford, P., Poli,
P., Kobayashi, S., Andrae, U., Balmaseda, M. A., Balsamo, G.,
Bauer, P., Bechtold, P., Beljaars, A. C. M., van de Berg, L., Bid-
lot, J., Bormann, N., Delsol, C., Dragani, R., Fuentes, M., Geer,
A. J., Haimberger, L., Healy, S. B., Hersbach, H., Hólm, E. V.,
Isaksen, L., Kållberg, P., Köhler, M., Matricardi, M., McNally,
A. P., Monge-Sanz, B. M., Morcrette, J.-J., Park, B.-K., Peubey,
C., de Rosnay, P., Tavolato, C., Thépaut, J.-N., and Vitart, F.: The
ERA-Interim reanalysis: configuration and performance of the
data assimilation system, Q. J. Roy. Meteor. Soc., 137, 553–597,
https://doi.org/10.1002/qj.828, 2011.

Derber, J., Parrish, D. F., and Lord, S. J.: The New Global Oper-
ational Analysis System at the National Meteorological Center,
Weather Forecast., 6, 538–547, 1991.

de Rosnay, P., Drusch, M., Vasiljevic, D., Balsamo, G., Albergel,
C., and Isaksen, L.: A simplified Extended Kalman Filter for the
global operational soil moisture analysis at ECMWF, Q. J. Roy.
Meteor. Soc., 139, 1199–1213, https://doi.org/10.1002/qj.2023,
2013.

de Rosnay, P., Balsamo, G., Albergel, C., Muñoz-Sabater, J., and
Isaksen, L.: Initialisation of Land Surface Variables for Numeri-
cal Weather Prediction, Surv. Geophys., 35, 607–621, 2014.

Dirmeyer, P. A., Koster, R. D., and Guo, Z.: Do Global Mod-
els Properly Represent the Feedback between Land and Atmo-
sphere?, J. Hydrometeorol., 7, 1177–1198, 2006.

Dorigo, W., Wagner, W., Albergel, C., Albrecht, F., Balsamo, G.,
Brocca, L., Chung, D., Ertl, M., Forkel, M., Gruber, A., Haas, E.,
Hamer, P. D., Hirschi, M., Ikonen, J., de Jeu, R., Kidd, R., La-
hoz, W., Liu, Y. Y., Miralles, D., Mistelbauer, T., Nicolai-Shaw,
N., Parinussa, R., Pratola, C., Reimer, C., van der Schalie, R.,
Seneviratne, S. I., Smolander, T., and Lecomte, P.: ESA CCI Soil
Moisture for improved Earth system understanding: State-of-the
art and future directions, Remote Sens. Environ., 203, 185–215,
https://doi.org/10.1016/j.rse.2017.07.001, 2017.

The Cryosphere, 18, 1835–1861, 2024 https://doi.org/10.5194/tc-18-1835-2024

https://doi.org/10.1038/s41467-018-08240-4
https://doi.org/10.5194/tc-14-3155-2020
https://doi.org/10.5194/tc-14-3155-2020
https://doi.org/10.5885/45309SL-15611D6EC6D34E23
https://doi.org/10.5885/45309SL-15611D6EC6D34E23
https://doi.org/10.5194/gmd-12-4661-2019
https://doi.org/10.5194/tc-14-2581-2020
https://doi.org/10.5194/tc-16-2701-2022
https://doi.org/10.5885/45057SL-EADE4434146946A7
https://doi.org/10.5885/45057SL-EADE4434146946A7
https://doi.org/10.5885/45480SL-C89DEB92A4FE4536
https://doi.org/10.5885/45480SL-C89DEB92A4FE4536
https://doi.org/10.5885/45475SL-5A33FE09B0494D92
https://doi.org/10.5885/45475SL-5A33FE09B0494D92
https://doi.org/10.5885/45485SL-78F4F9C368364100
https://doi.org/10.5885/45485SL-78F4F9C368364100
https://doi.org/10.5885/45495SL-78FA5A95C5FB4D21
https://doi.org/10.5885/45495SL-78FA5A95C5FB4D21
https://doi.org/10.5885/44985SL-8F203FD3ACCD4138
https://doi.org/10.5885/45129SL-DBDA2A77C0094963
https://www.cen.ulaval.ca/nordicanad/en_index.aspx
https://doi.org/10.1002/ppp.1841
https://cds.climate.copernicus.eu/cdsapp#!/home
https://doi.org/10.1002/qj.828
https://doi.org/10.1002/qj.2023
https://doi.org/10.1016/j.rse.2017.07.001


T. C. Herrington et al.: Validation of pan-Arctic soil temperatures 1857

Ducharne, A., Koster, R. D., Suarez, M. J., Stieglitz, M., and Ku-
mar, P.: A catchment-based approach to modeling land surface
processes in a general circulation model: 2. Parameter estimation
and model demonstration, J. Geophys. Res.-Atmos., 105, 24823–
24838, https://doi.org/10.1029/2000JD900328, 2000.

Déry, S.: Cariboo Alpine Mesonet (CAMnet) Database, Zenodo
[data set], https://doi.org/10.5281/zenodo.1195043, 2017.

Ek, M.: Implementation of Noah land surface model advances
in the national centers for environmental prediction opera-
tional mesoscale Eta model, J. Geophys. Res., 108, 8851,
https://doi.org/10.1029/2002JD003296, 2003.

Ensom, T., Kokelj, S., and McHugh, K.: Permafrost Ground
Temperature Report: Inuvik to Tuktoyaktuk Highway
stream crossing and alignment sites, Northwest Territories,
Tech. Rep. NWT Open Report 2019-004, Northwest Ter-
ritories Geological Survey, Northwest Territories, Canada,
https://doi.org/10.46887/2019-004, 2020.

Enviroweather: Enviroweather Network, Enviroweather [data set],
https://enviroweather.msu.edu/ (last access: 12 April 2024),
2024.

European Centre for Medium-Range Weather Fore-
casts: ERA-Interim Project, Monthly Means,
https://doi.org/10.5065/D6CR5RD9, 2012.

European Centre for Medium-Range Weather Forecasts: ERA5 Re-
analysis (Monthly Mean 0.25 Degree Latitude-Longitude Grid),
https://doi.org/10.5065/P8GT-0R61, 2019.

European Space Agency: Copernicus Global Digital Elevation
Model GLO-90 [data set], https://doi.org/10.5069/G9028PQB,
2021.

Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J.,
Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., and
Michaelsen, J.: The climate hazards infrared precipitation with
stations – a new environmental record for monitoring extremes,
Sci. Data, 2, 150066, https://doi.org/10.1038/sdata.2015.66,
2015.

Gao, S., Li, Z., Zhang, P., Zeng, J., Chen, Q., Zhao, C., Liu,
C., Wu, Z., and Qiao, H.: An Assessment of the Applicability
of Three Reanalysis Snow Density Datasets Over China Using
Ground Observations, IEEE Geosci. Remote Sens. Lett., 19, 1–
5, https://doi.org/10.1109/LGRS.2022.3202897, 2022.

Gao, Z., Chae, N., Kim, J., Hong, J., Choi, T., and Lee, H.:
Modeling of surface energy partitioning, surface tempera-
ture, and soil wetness in the Tibetan prairie using the Sim-
ple Biosphere Model 2 (SiB2): MODELING OF THE SUR-
FACE PROCESSES, J. Geophys. Res.-Atmos., 109, D06102,
https://doi.org/10.1029/2003JD004089, 2004.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Gisnås, K., Westermann, S., Schuler, T. V., Litherland, T., Isak-
sen, K., Boike, J., and Etzelmüller, B.: A statistical ap-
proach to represent small-scale variability of permafrost tem-

peratures due to snow cover, The Cryosphere, 8, 2063–2074,
https://doi.org/10.5194/tc-8-2063-2014, 2014.

Global Modeling and Assimilation Office: MERRA-2
tavg1_2d_lnd_Nx: 2d,1-Hourly,Time-Averaged,Single-
Level,Assimilation,Land Surface Diagnostics V5.12.4,
Greenbelt, MD, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/RKPHT8KC1Y1T, 2015.

Goddard Earth Sciences Data and Information Services Center
(GES DISC): https://disc.gsfc.nasa.gov/, last access: 10 April
2024.

Gruber, S., Brown, N., Stewart-Jones, E., Karunaratne, K., Riddick,
J., Peart, C., Subedi, R., and Kokelj, S. V.: Permafrost Ground
Temperature Report: Ground temperature and site characterisa-
tion data from the Canadian Shield tundra near Lac de Gras,
Northwest Territories, Canada, Tech. Rep. NWT Open Report
2018-009, Northwest Territories Geological Survey, Northwest
Territories, Canada, https://doi.org/10.46887/2018-009, 2019.

GTN-P: GTN-P global mean annual ground tempera-
ture data for permafrost near the depth of zero an-
nual amplitude (2007–2016), PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.884711, 2018.

Gubler, S., Fiddes, J., Keller, M., and Gruber, S.: Scale-
dependent measurement and analysis of ground surface temper-
ature variability in alpine terrain, The Cryosphere, 5, 431–443,
https://doi.org/10.5194/tc-5-431-2011, 2011.

Harada, Y., Kamahori, H., Kobayashi, C., Endo, H., Kobayashi, S.,
Ota, Y., Onoda, H., Onogi, K., Miyaoka, K., and Takahashi, K.:
The JRA-55 Reanalysis: Representation of Atmospheric Circu-
lation and Climate Variability, J. Meteorol. Soc. Jpn. Ser. II, 94,
269–302, https://doi.org/10.2151/jmsj.2016-015, 2016.

Harris, I., Osborn, T. J., Jones, P., and Lister, D.: Version 4 of the
CRU TS monthly high-resolution gridded multivariate climate
dataset, Sci. Data, 7, 109, https://doi.org/10.1038/s41597-020-
0453-3, 2020.

Hernández-Henríquez, M. A., Sharma, A. R., Taylor, M., Thomp-
son, H. D., and Déry, S. J.: The Cariboo Alpine Mesonet: sub-
hourly hydrometeorological observations of British Columbia’s
Cariboo Mountains and surrounding area since 2006, Earth Syst.
Sci. Data, 10, 1655–1672, https://doi.org/10.5194/essd-10-1655-
2018, 2018.

Herrington, T. and Fletcher, C. G.: Ensemble Mean Reanalysis Soil
Temperature Dataset at 0.75 degree latitude/longitude resolution
(60 South to 90 North), 1982–2018, Arctic Data Center [data set],
https://doi.org/10.18739/A2GF0MZ00, 2023.

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schep-
ers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Bal-
samo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M.,
Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R.,
Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger,
L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley,
S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.: The ERA5
global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049,
https://doi.org/10.1002/qj.3803, 2020.

Hong, J. and Kim, J.: Numerical study of surface energy partitioning
on the Tibetan plateau: comparative analysis of two biosphere

https://doi.org/10.5194/tc-18-1835-2024 The Cryosphere, 18, 1835–1861, 2024

https://doi.org/10.1029/2000JD900328
https://doi.org/10.5281/zenodo.1195043
https://doi.org/10.1029/2002JD003296
https://doi.org/10.46887/2019-004
https://enviroweather.msu.edu/
https://doi.org/10.5065/D6CR5RD9
https://doi.org/10.5065/P8GT-0R61
https://doi.org/10.5069/G9028PQB
https://doi.org/10.1038/sdata.2015.66
https://doi.org/10.1109/LGRS.2022.3202897
https://doi.org/10.1029/2003JD004089
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5194/tc-8-2063-2014
https://doi.org/10.5067/RKPHT8KC1Y1T
https://disc.gsfc.nasa.gov/
https://doi.org/10.46887/2018-009
https://doi.org/10.1594/PANGAEA.884711
https://doi.org/10.5194/tc-5-431-2011
https://doi.org/10.2151/jmsj.2016-015
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.1038/s41597-020-0453-3
https://doi.org/10.5194/essd-10-1655-2018
https://doi.org/10.5194/essd-10-1655-2018
https://doi.org/10.18739/A2GF0MZ00
https://doi.org/10.1002/qj.3803


1858 T. C. Herrington et al.: Validation of pan-Arctic soil temperatures

models, Biogeosciences, 7, 557–568, https://doi.org/10.5194/bg-
7-557-2010, 2010.

Hu, G., Zhao, L., Wu, X., Li, R., Wu, T., Xie, C., Pang,
Q., and Zou, D.: Comparison of the thermal conductivity
parameterizations for a freeze-thaw algorithm with a multi-
layered soil in permafrost regions, Catena, 156, 244–251,
https://doi.org/10.1016/j.catena.2017.04.011, 2017.

Hu, G., Zhao, L., Li, R., Wu, X., Wu, T., Xie, C., Zhu, X., and
Su, Y.: Variations in soil temperature from 1980 to 2015 in
permafrost regions on the Qinghai-Tibetan Plateau based on
observed and reanalysis products, Geoderma, 337, 893–905,
https://doi.org/10.1016/j.geoderma.2018.10.044, 2019.

Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J. W., Schuur, E.
A. G., Ping, C.-L., Schirrmeister, L., Grosse, G., Michaelson, G.
J., Koven, C. D., O’Donnell, J. A., Elberling, B., Mishra, U.,
Camill, P., Yu, Z., Palmtag, J., and Kuhry, P.: Estimated stocks
of circumpolar permafrost carbon with quantified uncertainty
ranges and identified data gaps, Biogeosciences, 11, 6573–6593,
https://doi.org/10.5194/bg-11-6573-2014, 2014.

Japan Meteorological Agency: JRA-55 Product Users’ Hand-
book: Model Grid Data, Japan Meteorological Agency, Japan,
https://jra.kishou.go.jp/JRA-55/document/JRA-55_handbook_
TL319_en.pdf (last access: 28 September 2023), 2014.

Jiao, M., Zhao, L., Wang, C., Hu, G., Li, Y., Zhao, J., Zou, D., Xing,
Z., Qiao, Y., Liu, G., Du, E., Xiao, M., and Hou, Y.: Spatiotem-
poral Variations of Soil Temperature at 10 and 50 cm Depths in
Permafrost Regions along the Qinghai-Tibet Engineering Corri-
dor, Remote Sens., 15, 455, https://doi.org/10.3390/rs15020455,
2023.

Johannsen, F., Ermida, S., Martins, J. P. A., Trigo, I. F., Nogueira,
M., and Dutra, E.: Cold Bias of ERA5 Summertime Daily Maxi-
mum Land Surface Temperature over Iberian Peninsula, Remote
Sens., 11, 2570, https://doi.org/10.3390/rs11212570, 2019.

Jones, P. W.: First- and Second-Order Conservative Remap-
ping Schemes for Grids in Spherical Coordinates, Mon.
Weather Rev., 127, 2204–2210, https://doi.org/10.1175/1520-
0493(1999)127<2204:FASOCR>2.0.CO;2, 1999.

Kahan, D. S., Xue, Y., and Allen, S. J.: The impact of veg-
etation and soil parameters in simulations of surface energy
and water balance in the semi-arid sahel: A case study us-
ing SEBEX and HAPEX-Sahel data, J. Hydrol., 320, 238–259,
https://doi.org/10.1016/j.jhydrol.2005.07.011, 2006.

Kim, Y. and Wang, G.: Impact of vegetation feedback on the
response of precipitation to antecedent soil moisture anoma-
lies over north america, J. Hydrometeorol., 8, 534–550,
https://doi.org/10.1175/JHM612.1, 2007.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifi-
cations and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Koren, V., Schaake, J., Mitchell, K., and Chen, F.: A parame-
terization of snowpack and frozen ground intended for NCEP
weather and climate models, J. Geophys. Res.-Atmos., 104,
19569–19585, 1999.

Koster, R. D., Suarez, M. J., Ducharne, A., Stieglitz, M.,
and Kumar, P.: A catchment-based approach to modeling
land surface processes in a general circulation model: 1.

Model structure, J. Geophys. Res.-Atmos., 105, 24809–24822,
https://doi.org/10.1029/2000JD900327, 2000.

Koster, R. D., Suarez, M. J., Liu, P., Jambor, U., Berg, A.,
Kistler, M., Reichle, R., Rodell, M., and Famiglietti, J.: Re-
alistic initialization of land surface states: Impacts on sub-
seasonal forecast skill, J. Hydrometeorol., 5, 1049–1063,
https://doi.org/10.1175/JHM-387.1, 2004.

Koven, C. D., Ringeval, B., Friedlingstein, P., Ciais, P.,
Cadule, P., Khvorostyanov, D., Krinner, G., and Tarnocai,
C.: Permafrost carbon-climate feedbacks accelerate global
warming, P. Natl. Acad. Sci. USA, 108, 14769–14774,
https://doi.org/10.1073/pnas.1103910108, 2011.

Kropp, H., Loranty, M. M., Sannel, B., O’Donnell, J., and Blanc-
Bates, E.: Synthesis of soil-air temperature and vegetation mea-
surements in the pan-Arctic 1990–2016. Arctic Data Center [data
set]. https://doi.org/10.18739/A2736M31X, 2020.

Lee, S.-C., Christen, A., Black, A. T., Johnson, M. S., Jassal, R. S.,
Ketler, R., Nesic, Z., and Merkens, M.: Annual greenhouse gas
budget for a bog ecosystem undergoing restoration by rewetting,
Biogeosciences, 14, 2799–2814, https://doi.org/10.5194/bg-14-
2799-2017, 2017.

Li, M., Wu, P., and Ma, Z.: Comprehensive evaluation of soil
moisture and soil temperature from third-generation atmospheric
and land reanalysis datasets, Int. J. Climatol., 40, joc.6549,
https://doi.org/10.1002/joc.6549, 2020.

Li, X., Wu, T., Wu, X., Chen, J., Zhu, X., Hu, G., Li, R., Qiao,
Y., Yang, C., Hao, J., Ni, J., and Ma, W.: Assessing the sim-
ulated soil hydrothermal regime of the active layer from the
Noah-MP land surface model (v1.1) in the permafrost regions of
the Qinghai–Tibet Plateau, Geosci. Model Dev., 14, 1753–1771,
https://doi.org/10.5194/gmd-14-1753-2021, 2021.

Luo, D., Liu, L., Jin, H., Wang, X., and Chen, F.: Char-
acteristics of Ground Surface Temperature at Chalap-
ing in the Source Area of the Yellow River, Northeast-
ern Tibetan Plateau, Agr. Forest Meteorol., 281, 107819,
https://doi.org/10.1016/j.agrformet.2019.107819, 2020.

Luo, L., Robock, A., Vinnikov, K. Y., Schlosser, C. A., Slater,
A. G., Boone, A., Etchevers, P., Habets, F., Noilhan, J., Braden,
H., Cox, P., de Rosnay, P., Dickinson, R. E., Dai, Y., Zeng,
Q.-C., Duan, Q., Schaake, J., Henderson-Sellers, A., Gedney,
N., Gusev, Y. M., Nasonova, O. N., Kim, J., Kowalczyk,
E., Mitchell, K., Pitman, A. J., Shmakin, A. B., Smirnova,
T. G., Wetzel, P., Xue, Y., and Yang, Z.-L.: Effects of Frozen
Soil on Soil Temperature, Spring Infiltration, and Runoff:
Results from the PILPS 2(d) Experiment at Valdai, Russia,
J. Hydrometeorol., 4, 334–351, https://doi.org/10.1175/1525-
7541(2003)4<334:EOFSOS>2.0.CO;2, 2003.

Ma, H., Zeng, J., Zhang, X., Fu, P., Zheng, D., Wigneron, J.-P.,
Chen, N., and Niyogi, D.: Evaluation of six satellite- and model-
based surface soil temperature datasets using global ground-
based observations, Remote Sens. Environ.t, 264, 112605,
https://doi.org/10.1016/j.rse.2021.112605, 2021.

McNally, A. and NASA/GSFC/HSL: FLDAS Noah Land
Surface Model L4 Global Monthly 0.1 x 0.1 degree
(MERRA-2 and CHIRPS), Tech. rep., Goddard Earth Sci-
ences Data and Information Services Center (GES DISC),
Greenbelt, Maryland, USA, Goddard Earth Sciences Data
and Information Services Center (GES DISC) [data set],
https://doi.org/10.5067/5NHC22T9375G, 2018.

The Cryosphere, 18, 1835–1861, 2024 https://doi.org/10.5194/tc-18-1835-2024

https://doi.org/10.5194/bg-7-557-2010
https://doi.org/10.5194/bg-7-557-2010
https://doi.org/10.1016/j.catena.2017.04.011
https://doi.org/10.1016/j.geoderma.2018.10.044
https://doi.org/10.5194/bg-11-6573-2014
https://jra.kishou.go.jp/JRA-55/document/JRA-55_handbook_TL319_en.pdf
https://jra.kishou.go.jp/JRA-55/document/JRA-55_handbook_TL319_en.pdf
https://doi.org/10.3390/rs15020455
https://doi.org/10.3390/rs11212570
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2
https://doi.org/10.1016/j.jhydrol.2005.07.011
https://doi.org/10.1175/JHM612.1
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.1029/2000JD900327
https://doi.org/10.1175/JHM-387.1
https://doi.org/10.1073/pnas.1103910108
https://doi.org/10.18739/A2736M31X
https://doi.org/10.5194/bg-14-2799-2017
https://doi.org/10.5194/bg-14-2799-2017
https://doi.org/10.1002/joc.6549
https://doi.org/10.5194/gmd-14-1753-2021
https://doi.org/10.1016/j.agrformet.2019.107819
https://doi.org/10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
https://doi.org/10.1175/1525-7541(2003)4<334:EOFSOS>2.0.CO;2
https://doi.org/10.1016/j.rse.2021.112605
https://doi.org/10.5067/5NHC22T9375G


T. C. Herrington et al.: Validation of pan-Arctic soil temperatures 1859

McNally, A., Arsenault, K., Kumar, S., Shukla, S., Peterson,
P., Wang, S., Funk, C., Peters-Lidard, C. D., and Verdin,
J. P.: A land data assimilation system for sub-Saharan Africa
food and water security applications, Sci. Data, 4, 170012,
https://doi.org/10.1038/sdata.2017.12, 2017.

Morris, J., Hernández-Henríquez, M., and Déry, S.: Cariboo Alpine
Mesonet meteorological data, 2017–2021, Zenodo [data set],
https://doi.org/10.5281/zenodo.6518969, 2021.

Morse, P., Burn, C., and Kokelj, S.: Influence of snow on near-
surface ground temperatures in upland and alluvial environ-
ments of the outer Mackenzie Delta, Northwest Territories, Can.
J. Earth Sci., 49, 895–913, https://doi.org/10.1139/e2012-012,
2012.

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown,
R.: Characterization of Northern Hemisphere Snow Water
Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051,
https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.

Muñoz-Sabater, J.: ERA5-Land monthly averaged data
from 1981 to present, Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.68d2bb30, 2019.

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C.,
Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., Harri-
gan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M.,
Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., and
Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis
dataset for land applications, Earth Syst. Sci. Data, 13, 4349–
4383, https://doi.org/10.5194/essd-13-4349-2021, 2021.

Niu, G.-Y., Yang, Z.-L., Mitchell, K. E., Chen, F., Ek,
M. B., Barlage, M., Kumar, A., Manning, K., Niyogi,
D., Rosero, E., Tewari, M., and Xia, Y.: The commu-
nity Noah land surface model with multiparameterization op-
tions (Noah-MP): 1. Model description and evaluation with
local-scale measurements, J. Geophys. Res., 116, D12109,
https://doi.org/10.1029/2010JD015139, 2011.

North Dakota Agricultural Weather Network: The North Dakota
Agricultural Weather Network [data set], https://ndawn.ndsu.
nodak.edu/ (last access: 3 August 2022), 2022.

Obu, J., Westermann, S., Kääb, A., and Bartsch,
A.: Ground Temperature Map, 2000-2016, North-
ern Hemisphere Permafrost, PANGAEA [data set],
https://doi.org/10.1594/PANGAEA.888600, 2018.

Obu, J., Westermann, S., Bartsch, A., Berdnikov, N., Christiansen,
H. H., Dashtseren, A., Delaloye, R., Elberling, B., Etzelmüller,
B., Kholodov, A., Khomutov, A., Kääb, A., Leibman, M. O.,
Lewkowicz, A. G., Panda, S. K., Romanovsky, V., Way, R. G.,
Westergaard-Nielsen, A., Wu, T., Yamkhin, J., and Zou, D.:
Northern Hemisphere permafrost map based on TTOP modelling
for 2000–2016 at 1 km2 scale, Earth-Sci. Rev., 193, 299–316,
https://doi.org/10.1016/j.earscirev.2019.04.023, 2019.

Onogi, K., Tsutsui, J., Koide, H., Sakamoto, M., Kobayashi,
S., Hatsushika, H., Matsumoto, T., Yamazaki, N., Kama-
hori, H., Takahashi, K., Kadokura, S., Wada, K., Kato, K.,
Oyama, R., Ose, T., Mannoji, N., and Taira, R.: The JRA-
25 Reanalysis, J. Meteorol. Soc. Jpn. Ser. II, 85, 369–432,
https://doi.org/10.2151/jmsj.85.369, 2007.

Qin, Y., Liu, W., Guo, Z., and Xue, S.: Spatial and temporal
variations in soil temperatures over the Qinghai–Tibet Plateau
from 1980 to 2017 based on reanalysis products, Theor. Appl.

Climatol., 140, 1055–1069, https://doi.org/10.1007/s00704-020-
03149-9, 2020.

Reichle, R. H., Draper, C. S., Liu, Q., Girotto, M., Mahanama, S.
P. P., Koster, R. D., and De Lannoy, G. J. M.: Assessment of
MERRA-2 Land Surface Hydrology Estimates, J. Climate, 30,
2937–2960, https://doi.org/10.1175/JCLI-D-16-0720.1, 2017a.

Reichle, R. H., Liu, Q., Koster, R. D., Draper, C. S., Mahanama, S.
P. P., and Partyka, G. S.: Land Surface Precipitation in MERRA-
2, J. Climate, 30, 1643–1664, https://doi.org/10.1175/JCLI-D-
16-0570.1, 2017b.

RoTimi Ojo, E. and Manaigre, L.: The Manitoba Agri-
culture Mesonet: Technical Overview, B. Am. Meteorol.
Soc., 102, E1786–E1804, https://doi.org/10.1175/BAMS-D-20-
0306.1, 2021.

Royer, A., Picard, G., Vargel, C., Langlois, A., Gouttevin, I., and
Dumont, M.: Improved Simulation of Arctic Circumpolar Land
Area Snow Properties and Soil Temperatures, Front. Earth Sci.,
9, 685140, https://doi.org/10.3389/feart.2021.685140, 2021.

Rudy, A., Kokelj, S., Morse, P., and Ensom, T.: Permafrost Ground
Temperature Report: Inuvik to Tukyoyaktuk Highway Sen-
tinel Sites, Northwest Territories, Northwest Territories Geo-
logical Survey, Yellowknife, NWT, Canada, Technical Report,
NWT Open Report 2019-017, https://doi.org/10.46887/2019-
017, 2020.

Saha, S., Moorthi, S., Wu, X., Wang, J., Nagida, S., Tripp, P.,
Behringer, D., Hou, Y., Chuang, H., Iredell, M., Ek, M., Meng,
J., Yang, R., Mendez, M. P., van den Dool, H., Zhang, Q.,
Wang, W., Chen, M., and Becker, E.: NCEP Climate Fore-
cast System Version 2 (CFSv2) Monthly Products, Research
Data Archive at the National Center for Atmospheric Research,
Computational and Information Systems Laboratory [data set],
https://doi.org/10.5065/D69021ZF, 2012.

Saha, S., Moorthi, S., Pan, H.-L., Wu, X., Wang, J., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes,
D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-
y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist, D.,
Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei,
H., Yang, R., Lord, S., van den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W.,
Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds,
R. W., Rutledge, G., and Goldberg, M.: The NCEP Climate Fore-
cast System Reanalysis, B. Am. Meteorol. Soc., 91, 1015–1058,
https://doi.org/10.1175/2010BAMS3001.1, 2010a.

Saha, S., Moorthi, N., Pan, H.-L., Wu, X., Wang, J., Nadiga, S.,
Tripp, P., Kistler, R., Woollen, J., Behringer, D., Liu, H., Stokes,
D., Grumbine, R., Gayno, G., Wang, J., Hou, Y.-T., Chuang, H.-
Y., Juang, H.-M. H., Sela, J., Iredell, M., Treadon, R., Kleist,
D., Van Delst, P., Keyser, D., Derber, J., Ek, M., Meng, J., Wei,
H., Yang, H., Lord, S., van den Dool, H., Kumar, A., Wang,
W., Long, C., Chelliah, M., Xue, Y., Huang, B., Schemm, J.-K.,
Ebisuzaki, W., Lin, R., Xie, P., Chen, M., Zhou, S., Higgins, W.,
Zou, C.-Z., Liu, Q., Chen, Y., Han, Y., Cucurull, L., Reynolds,
R. W., Rutledge, G., and Goldberg, M.: NCEP Climate Forecast
System Reanalysis (CFSR) Monthly Products, January 1979 to
December 2010, Research Data Archive at the National Center
for Atmospheric Research, Computational and Information Sys-
tems Laboratory [data set], https://doi.org/10.5065/D6DN438J,
2010b.

https://doi.org/10.5194/tc-18-1835-2024 The Cryosphere, 18, 1835–1861, 2024

https://doi.org/10.1038/sdata.2017.12
https://doi.org/10.5281/zenodo.6518969
https://doi.org/10.1139/e2012-012
https://doi.org/10.1175/JCLI-D-15-0229.1
https://doi.org/10.24381/cds.68d2bb30
https://doi.org/10.5194/essd-13-4349-2021
https://doi.org/10.1029/2010JD015139
https://ndawn.ndsu.nodak.edu/
https://ndawn.ndsu.nodak.edu/
https://doi.org/10.1594/PANGAEA.888600
https://doi.org/10.1016/j.earscirev.2019.04.023
https://doi.org/10.2151/jmsj.85.369
https://doi.org/10.1007/s00704-020-03149-9
https://doi.org/10.1007/s00704-020-03149-9
https://doi.org/10.1175/JCLI-D-16-0720.1
https://doi.org/10.1175/JCLI-D-16-0570.1
https://doi.org/10.1175/JCLI-D-16-0570.1
https://doi.org/10.1175/BAMS-D-20-0306.1
https://doi.org/10.1175/BAMS-D-20-0306.1
https://doi.org/10.3389/feart.2021.685140
https://doi.org/10.46887/2019-017
https://doi.org/10.46887/2019-017
https://doi.org/10.5065/D69021ZF
https://doi.org/10.1175/2010BAMS3001.1
https://doi.org/10.5065/D6DN438J


1860 T. C. Herrington et al.: Validation of pan-Arctic soil temperatures

Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P.,
Behringer, D., Hou, Y.-T., Chuang, H.-y., Iredell, M., Ek, M.,
Meng, J., Yang, R., Mendez, M. P., van den Dool, H., Zhang,
Q., Wang, W., Chen, M., and Becker, E.: The NCEP Cli-
mate Forecast System Version 2, J. Climate, 27, 2185–2208,
https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.

Sato, N., Sellers, P., Randall, D., Schneider, E., Shukla, J., Kinter,
III, J., Hou, Y.-T., and Albertazzi, E.: Effects of Implementing
the Simple Biosphere Model in a General Circulation Model,
J. Atmos. Sci., 46, 2757–2782, https://doi.org/10.1175/1520-
0469(1989)046<2757:EOITSB>2.0.CO;2, 1988.

Sellers, P. J., Mintz, Y., Sud, Y. C., and Dalcher, A.: A Simple Bio-
sphere Model (SIB) for Use within General Circulation Mod-
els, J. Atmos. Sci., 43, 505–531, https://doi.org/10.1175/1520-
0469(1986)043<0505:ASBMFU>2.0.CO;2, 1986.

Sherstiukov, A.: Dataset of daily soil temperature up to 320 cm
depth based on meteorological stations of Russian Federation,
Trudy VNIIGMI-MTsD, 176, 224–232, 2012 (in Russian).

Shukla, R. P. and Huang, B.: Cumulative Influence of Summer Sub-
surface Soil Temperature on North America Surface Temperature
in the CFSv2, J. Geophys. Res.-Atmos., 125, e2019JD031899,
https://doi.org/10.1029/2019JD031899, 2020.

Shukla, R. P., Huang, B., Dirmeyer, P. A., and Kinter,
J. L.: The Influence of Summer Deep Soil Temperature
on Early Winter Snow Conditions in Eurasia in the NCEP
CFSv2 Simulation, J. Geophys. Res.-Atmos., 124, 9062–9077,
https://doi.org/10.1029/2019JD030279, 2019.

Siqueira, M., Katul, G., and Porporato, A.: Soil Moisture
Feedbacks on Convection Triggers: The Role of Soil–
Plant Hydrodynamics, J. Hydrometeorol., 10, 96–112,
https://doi.org/10.1175/2008JHM1027.1, 2009.

Slater, A. G., Schlosser, C. A., Desborough, C. E., Pitman, A. J.,
Henderson-Sellers, A., Robock, A., Vinnikov, K. Y., Entin, J.,
Mitchell, K., Chen, F., Boone, A., Etchevers, P., Habets, F.,
Noilhan, J., Braden, H., Cox, P. M., Rosnay, P. d., Dickin-
son, R. E., Yang, Z.-L., Dai, Y.-J., Zeng, Q., Duan, Q., Ko-
ren, V., Schaake, S., Gedney, N., Gusev, Y. M., Nasonova,
O. N., Kim, J., Kowalczyk, E. A., Shmakin, A. B., Smirnova,
T. G., Verseghy, D., Wetzel, P., and Xue, Y.: The Representa-
tion of Snow in Land Surface Schemes: Results from PILPS
2(d), J. Hydrometeorol., 2, 7–25, https://doi.org/10.1175/1525-
7541(2001)002<0007:TROSIL>2.0.CO;2, 2001.

Smith, S., Romanovsky, V., Lewkowicz, A., Burn, C., Allard,
M., Clow, G., Yoshikawa, K., and Throop, J.: Thermal State
of Permafrost in North America: A Contribution to the In-
ternational Polar Year, Permafrost Periglac., 21, 117–135,
https://doi.org/10.1002/ppp.690, 2010.

Spence, C. and Hedstrom, N.: Baker Creek Research
Catchment Hydrometeorological and Hydrological
Data, Federated Research Data Repository [data set],
https://doi.org/10.20383/101.026, 2018a.

Spence, C. and Hedstrom, N.: Hydrometeorological data
from Baker Creek Research Watershed, Northwest Ter-
ritories, Canada, Earth Syst. Sci. Data, 10, 1753–1767,
https://doi.org/10.5194/essd-10-1753-2018, 2018b.

Street, L. and Wookey, P.: Soil temperature, soil mois-
ture, air temperature and relative humidity for vegetation
at Siksik Creek, North West Territories, Canada [data

set], https://doi.org/10.5285/10839b38-cc29-4a07-999a-
ac32e3f70609, 2016.

Street, L. E., Mielke, N., and Woodin, S. J.: Phosphorus Avail-
ability Determines the Response of Tundra Ecosystem Carbon
Stocks to Nitrogen Enrichment, Ecosystems, 21, 1155–1167,
https://doi.org/10.1007/s10021-017-0209-x, 2018.

Taylor, K. E.: Summarizing multiple aspects of model performance
in a single diagram, J. Geophys. Res.-Atmos., 106, 7183–7192,
https://doi.org/10.1029/2000JD900719, 2001.

Thackeray, C. W., Fletcher, C. G., and Derksen, C.: Quan-
tifying the skill of CMIP5 models in simulating seasonal
albedo and snow cover evolution: CMIP5-SIMulated albedo
and SCF skill, J. Geophys. Res.-Atmos., 120, 5831–5849,
https://doi.org/10.1002/2015JD023325, 2015.

Tilley, J. S. and Lynch, A. H.: On the applicability of cur-
rent land surface schemes for Arctic tundra: An inter-
comparison study, J. Geophys. Res., 103, 29051–29063,
https://doi.org/10.1029/1998JD200014, 1998.

University Corporation for Atmospheric Research: NSF NCAR Re-
search Data Archive (RDA), https://rda.ucar.edu/ (last access: 10
April 2024), 2024.

van den Hurk, B. J. J. M., Viterbo, P., Beljaars, A. C. M., and
Betts, A. K.: Offline Validation of the ERA-40 Surface Scheme,
Tech. Rep. Technical Memorandum 295, European Centre for
Medium-Range Weather Forecasts, Shinfield Park, Reading,
United Kingdom, https://www.ecmwf.int/node/12900 (last ac-
cess: 23 July 2020), 2000.

Veselov, V. M., Pribylskaya, I. R., Mirzeabasov, O. A., and
VNIIGMI-WCD: All-Russian Research Institute of Hydromete-
orological Information – World Data Center – Specialized arrays
for climate research [data set], http://aisori-m.meteo.ru/waisori/
index0.xhtm (last access: 3 May 2021), 2022.

Viterbo, P. and Beljaars, A. C. M.: An improved land surface
parametrization scheme in the ECMWF model and its vali-
dation, J. Climate, 8, 2716–2748, https://doi.org/10.1175/1520-
0442(1995)008<2716:AILSPS>2.0.CO;2, 1995.

Viterbo, P. and Betts, A.: Impact on ECMWF forecasts of changes
to the albedo of the boreal forests in the presence of snow, J.
Geophys. Res., 104, 27803–27810, 1999.

World Meteorological Organization: Guidelines on Ensemble Pre-
diction Systems and Forecasting, Tech. Rep. WMO-No. 1091,
World Meteorological Organization, Geneva, Switzerland, https:
//library.wmo.int/idurl/4/48473 (last access: 1 November 2021),
2012.

Wu, X., Nan, Z., Zhao, S., Zhao, L., and Cheng, G.: Spa-
tial modeling of permafrost distribution and properties on
the Qinghai-Tibet Plateau, Permafrost Periglac., 29, 86–99,
https://doi.org/10.1002/ppp.1971, 2018.

Xia, Y., Ek, M., Sheffield, J., Livneh, B., Huang, M., Wei, H.,
Feng, S., Luo, L., Meng, J., and Wood, E.: Validation of Noah-
Simulated Soil Temperature in the North American Land Data
Assimilation System Phase 2, J. Appl. Meteorol. Climatol., 52,
455–471, https://doi.org/10.1175/JAMC-D-12-033.1, 2013.

Xiao, Y., Zhao, L., Dai, Y., Li, R., Pang, Q., and Yao, J.: Repre-
senting Permafrost Properties in CoLM for the Qinghai-Xizang
(Tibetan) Plateau, Cold Reg. Sci. Technol., 87, 68–77, 2013.

Xie, P. and Arkin, P. A.: Global Precipitation: A 17-Year
Monthly Analysis Based on Gauge Observations, Satellite
Estimates, and Numerical Model Outputs, B. Am. Me-

The Cryosphere, 18, 1835–1861, 2024 https://doi.org/10.5194/tc-18-1835-2024

https://doi.org/10.1175/JCLI-D-12-00823.1
https://doi.org/10.1175/1520-0469(1989)046<2757:EOITSB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1989)046<2757:EOITSB>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
https://doi.org/10.1175/1520-0469(1986)043<0505:ASBMFU>2.0.CO;2
https://doi.org/10.1029/2019JD031899
https://doi.org/10.1029/2019JD030279
https://doi.org/10.1175/2008JHM1027.1
https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2
https://doi.org/10.1175/1525-7541(2001)002<0007:TROSIL>2.0.CO;2
https://doi.org/10.1002/ppp.690
https://doi.org/10.20383/101.026
https://doi.org/10.5194/essd-10-1753-2018
https://doi.org/10.5285/10839b38-cc29-4a07-999a-ac32e3f70609
https://doi.org/10.5285/10839b38-cc29-4a07-999a-ac32e3f70609
https://doi.org/10.1007/s10021-017-0209-x
https://doi.org/10.1029/2000JD900719
https://doi.org/10.1002/2015JD023325
https://doi.org/10.1029/1998JD200014
https://rda.ucar.edu/
https://www.ecmwf.int/node/12900
http://aisori-m.meteo.ru/waisori/index0.xhtm
http://aisori-m.meteo.ru/waisori/index0.xhtm
https://doi.org/10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2
https://doi.org/10.1175/1520-0442(1995)008<2716:AILSPS>2.0.CO;2
https://library.wmo.int/idurl/4/48473
https://library.wmo.int/idurl/4/48473
https://doi.org/10.1002/ppp.1971
https://doi.org/10.1175/JAMC-D-12-033.1


T. C. Herrington et al.: Validation of pan-Arctic soil temperatures 1861

teorol. Soc., 78, 2539–2558, https://doi.org/10.1175/1520-
0477(1997)078<2539:GPAYMA>2.0.CO;2, 1997.

Xu, W., Sun, C., Zuo, J., Ma, Z., Li, W., and Yang, S.: Homogeniza-
tion of Monthly Ground Surface Temperature in China during
1961–2016 and Performances of GLDAS Reanalysis Products,
J. Climate, 32, 1121–1135, https://doi.org/10.1175/JCLI-D-18-
0275.1, 2019.

Xue, Y., Huang, B., Hu, Z.-Z., Kumar, A., Wen, C., Behringer, D.,
and Nadiga, S.: An assessment of oceanic variability in the NCEP
climate forecast system reanalysis, Clim. Dynam., 37, 2511–
2539, https://doi.org/10.1007/s00382-010-0954-4, 2011.

Yang, K. and Zhang, J.: Evaluation of reanalysis datasets against
observational soil temperature data over China, Clim. Dynam.,
50, 317–337, https://doi.org/10.1007/s00382-017-3610-4, 2018.

Yang, S., Li, R., Wu, T., Hu, G., Xiao, Y., Du, Y., Zhu, X., Ni, J.,
Ma, J., Zhang, Y., Shi, J., and Qiao, Y.: Evaluation of reanaly-
sis soil temperature and soil moisture products in permafrost re-
gions on the Qinghai-Tibetan Plateau, Geoderma, 377, 114583,
https://doi.org/10.1016/j.geoderma.2020.114583, 2020.

Yi, Y., Kimball, J. S., Chen, R. H., Moghaddam, M., and
Miller, C. E.: Sensitivity of active-layer freezing process to
snow cover in Arctic Alaska, The Cryosphere, 13, 197–218,
https://doi.org/10.5194/tc-13-197-2019, 2019.

Yukon Geological Survey: Yukon permafrost reports data, in:
Yukon Permafrost Database, Government of Yukon, https://
service.yukon.ca/permafrost (last access: 26 July 2022), 2021.

Zhan, M.-J., Xia, L., Zhan, L., and Wang, Y.: Eval-
uation and Analysis of Soil Temperature Data over
Poyang Lake Basin, China, Adv. Meteorol., 2020, 1–11,
https://doi.org/10.1155/2020/8839111, 2020.

Zhang, J., Wang, W.-C., and Wei, J.: Assessing land-atmosphere
coupling using soil moisture from the Global Land Data Assimi-
lation System and observational precipitation, J. Geophys. Res.-
Atmos., 113, D17119, https://doi.org/10.1029/2008JD009807,
2008.

Zhao, C., Gong, C., Duan, H., Yan, P., Liu, Y., and Zhou,
G.: Evaluation of Three Reanalysis Soil Temperature Datasets
with Observation Data over China, Earth, 3, 1042–1058,
https://doi.org/10.3390/earth3040060, 2022.

Zhao, L., Cheng, G., Li, S., Zhao, X., and Wang, S.: Thaw-
ing and freezing processes of active layer in Wudaoliang re-
gion of Tibetan Plateau, Chin. Sci. Bull., 45, 2181–2187,
https://doi.org/10.1007/BF02886326, 2000.

Zhao, T., Guo, W., and Fu, C.: Calibrating and evaluating reanalysis
surface temperature error by topographic correction, J. Climate,
21, 1440–1446, 2008.

https://doi.org/10.5194/tc-18-1835-2024 The Cryosphere, 18, 1835–1861, 2024

https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
https://doi.org/10.1175/1520-0477(1997)078<2539:GPAYMA>2.0.CO;2
https://doi.org/10.1175/JCLI-D-18-0275.1
https://doi.org/10.1175/JCLI-D-18-0275.1
https://doi.org/10.1007/s00382-010-0954-4
https://doi.org/10.1007/s00382-017-3610-4
https://doi.org/10.1016/j.geoderma.2020.114583
https://doi.org/10.5194/tc-13-197-2019
https://service.yukon.ca/permafrost
https://service.yukon.ca/permafrost
https://doi.org/10.1155/2020/8839111
https://doi.org/10.1029/2008JD009807
https://doi.org/10.3390/earth3040060
https://doi.org/10.1007/BF02886326

	Abstract
	Introduction
	Data
	Reanalysis and LDAS data
	Observational data
	Collocation of station and reanalysis data

	Methods
	Validation metrics
	Binning of datasets by season and permafrost
	Elevation impacts
	Regridding of reanalysis products and calculation of ensemble mean soil temperature

	Validation of reanalysis products
	Annual mean
	Seasonal cycle
	Spatial variability
	Soil temperature trends
	Variability in seasonal extremes

	Ensemble mean product
	Ensemble mean validation
	Ensemble mean soil temperature trends
	Ensemble mean variability in seasonal extremes

	Discussion and conclusions
	Uncertainties associated with land model parameterizations and structural differences
	Uncertainties associated with scale effects
	Uncertainties arising from sampling variability
	Applications and future work

	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

