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Abstract. A novel generation of sea-ice models with elasto-
brittle rheologies, such as neXtSIM, can represent sea-ice
processes with an unprecedented accuracy at the mesoscale
for resolutions of around 10 km. As these models are compu-
tationally expensive, we introduce supervised deep learning
techniques for surrogate modeling of the sea-ice thickness
from neXtSIM simulations. We adapt a convolutional U-Net
architecture to an Arctic-wide setup by taking the land–sea
mask with partial convolutions into account. Trained to emu-
late the sea-ice thickness at a lead time of 12 h, the neural net-
work can be iteratively applied to predictions for up to 1 year.
The improvements of the surrogate model over a persistence
forecast persist from 12 h to roughly 1 year, with improve-
ments of up to 50 % in the forecast error. Moreover, the pre-
dictability gain for the sea-ice thickness measured against the
daily climatology extends to over 6 months. By using atmo-
spheric forcings as additional input, the surrogate model can
represent advective and thermodynamical processes which
influence the sea-ice thickness and the growth and melting
therein. While iterating, the surrogate model experiences dif-
fusive processes which result in a loss of fine-scale struc-
tures. However, this smoothing increases the coherence of
large-scale features and thereby the stability of the model.
Therefore, based on these results, we see huge potential for
surrogate modeling of state-of-the-art sea-ice models with
neural networks.

1 Introduction

Sea-ice models are used to simulate and predict changes in
sea-ice cover and their effects on the Arctic and global cli-
mate. These models are based on a combination of obser-
vational data and theoretical understanding of the physical
processes that govern sea-ice dynamics. They are essential
conceptual and numerical tools for understanding the past,
current, and future states of Arctic sea ice and identifying the
key processes that drive its changes.

Here, we present a novel way of making use of data com-
ing from theoretical understanding of the physical processes:
based on neural networks, we build a surrogate model for the
sea-ice thickness as simulated by the Arctic-wide neXtSIM
model (Rampal et al., 2016; Ólason et al., 2022).

Several sea-ice models, like CICE (Hunke et al., 2017)
and SI3 (Sievers et al., 2022), are concurrently developed
for operational purposes: short-term predictions for maritime
route and weather forecast as well as long-term simulations
for climate projections. The recent development of mod-
els based on brittle rheologies (Girard et al., 2011; Ram-
pal et al., 2016; Dansereau et al., 2016), like neXtSIM, can
represent the observed effects of small-scale processes on
the resolved mesoscale with ∼ 10km horizontal resolution
(Bouchat et al., 2022). Small-scale sea-ice dynamics also im-
pact the global sea-ice mass balance (Boutin et al., 2023).
Divergent features in the ice, like leads, are associated with
localized intense ocean heat loss that enhances sea-ice pro-
duction in winter (Kwok, 2006; von Albedyll et al., 2022),
accounting for about 30% of the total ice production in the
Arctic Ocean. The assumption that models correctly repre-
senting the effects of such small-scale processes could also
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have an advantage in representing the thermodynamics of sea
ice is an ongoing topic of research.

Geophysical models are computationally expensive, espe-
cially for operational forecasts. However, geophysical mod-
els can be partially or completely emulated using data-driven
surrogate models. Such surrogate models can speed up the
forecasting process once their costly training phase is fin-
ished. Notably, the development of more powerful graphical
processing units (GPUs) in the past few years favors the use
of neural networks for surrogate modeling.

Over the past years, emulating or replacing geophysical
models with neural networks has become a promising topic
of research, with recent overviews by Bocquet (2023) and
Cheng et al. (2023). Emulating ERA5 data (Hersbach et al.,
2020), the European Centre for Medium-Range Weather
Forecasts (ECMWF) reanalysis product, recent examples
of global-scale surrogate models adopt developments from
computer vision by using graph neural networks (Keisler,
2022; Lam et al., 2022) and vision transformers (Bi et al.,
2022; Nguyen et al., 2023).

By employing convolutional neural network architectures,
Y. Liu et al. (2021) and Andersson et al. (2021) successfully
showed that probabilistic sea-ice concentration and sea-ice
extent can be predicted in a probabilistic way. Furthermore,
Horvat and Roach (2022) and Finn et al. (2023b) recently
presented neural network approaches to emulate wave–ice
interactions and high-resolution sea-ice dynamics. Convo-
lutional long short-term memory (LSTM)-based neural net-
works were previously investigated by Q. Liu et al. (2021),
Y. Liu et al. (2021), and Kim et al. (2020) for sea-ice concen-
tration forecasts.

Encouraged by such examples, we introduce a neural
network to emulate the sea-ice thickness from Arctic-wide
neXtSIM simulations. Using a convolutional U-Net archi-
tecture, we train the network to predict the thickness for a
lead time of 12 h based on initial thickness conditions and
atmospheric forcings. This surrogate model can then be se-
quentially applied to obtain sea-ice thickness predictions for
seasonal timescales.

We concentrate the surrogate model on the sea-ice thick-
ness, as it is an important quantity for the forecast of sea
ice and yet difficult to predict, especially on short timescales
(Zampieri et al., 2018; Xiu et al., 2022). Nonetheless, the
thickness contains useful information for seasonal forecast
(Balan-Sarojini et al., 2021), with direct links to other im-
portant quantities, like the sea-ice concentration and sea-ice
extent.

Our surrogate model is trained to minimize the L2 error.
This type of error metric tends to smooth out features of the
fields that lead to double-penalty errors, like leads in sea ice.
This diffusion process has been previously observed for de-
terministic neural networks (Ravuri et al., 2021) when op-
timized on L2 errors, but also within many forecasting and
data assimilation problems in the geosciences (e.g., Amodei
and Stein, 2009; Farchi et al., 2016; Vanderbecken et al.,

2023). To quantify the diffusion, we propose in this paper
an analysis based on power spectral density (PSD).

Section 2 introduces the dataset from which we train the
data-driven model and its structure. Section 3 presents the
neural network framework, the choices we made about its
architecture, and its optimization. Section 4 introduces the
metrics for evaluating the results of the surrogate model. Sec-
tion 5 delivers and discusses the results of the neural network
training, forecast skill abilities and advection capabilities of
the surrogate model, as well as an analysis of the diffusion
phenomenon introduced above. The discussion and conclu-
sions are given in Sects. 6 and 7. The Appendices provide
technical information and further illustrations of the results.

2 Description of the dataset

Our goal is to train a neural network to emulate the sea-
ice thickness (SIT) for a lead time of 12h. As a training
dataset, we extract the SIT from neXtSIM simulations and
atmospheric forcings from the ERA5 reanalysis, which we
introduce in the following.

2.1 The neXtSIM model and the sea-ice thickness

neXtSIM is a dynamic and thermodynamic sea-ice model
(Rampal et al., 2016). It currently uses brittle Bingham–
Maxwell rheology (Boutin et al., 2023; Ólason et al., 2022)
to emulate the mechanical behavior of sea ice. neXtSIM can
represent the observed fine-scale dynamics of sea ice, includ-
ing its scaling and multifractal properties in space and in time
(Rampal et al., 2019; Bouchat et al., 2022). The model is dis-
cretized on a Lagrangian triangular mesh. The model output
is projected onto a static quadratic grid on which our surro-
gate model is based. The sea-ice model is coupled with the
ocean part of NEMO, OPA (version 3.6, Madec et al., 1998;
Rousset et al., 2015). The model configuration is further de-
tailed in Appendix A.

In this study, we only extract the sea-ice thickness, the
variable predicted by the neural network. We rely on sim-
ulations from 2006 to 2018. As a simulation model area,
the simulations use the regional CREG025 configuration (Ta-
landier and Lique, 2021), a regional extraction of the global
ORCA025 configuration developed by the Drakkar consor-
tium (Bernard et al., 2006). This area encompasses the Arctic
and parts of the North Atlantic down to 27° N latitude with a
nominal horizontal resolution of 0.25° (' 12km in the Arctic
basin). The outputs projected onto the static grid can be seen
as two-dimensional images with 603× 528 grid cells. With-
out loss of information, we can crop the data to 512× 512
grid cells: lower latitudes are removed as well as zones in
eastern Europe and North America where no sea ice appears.
An example of the simulated sea-ice-thickness snapshot is
presented in Fig. 1.
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Figure 1. SIT simulated by neXtSIM at 15:00 UTC on
3 March 2009. The shaded area represents the cropped grid cells
that are further removed in order to keep a 512× 512 grid cell SIT
field without loss of information.

2.2 Forcing fields

Several atmospheric forcings are added as input fields to the
neural network, as the dynamics of the sea-ice thickness are
especially driven by the atmosphere (Guemas et al., 2014):
the subseasonal to interannual variability in the Arctic sur-
face circulation is predominantly influenced by patterns in
the atmospheric wind (Serreze et al., 1992). The atmospheric
winds play a crucial role in shaping and driving the circula-
tion patterns of the Arctic Ocean, which in turn affects the
movement and distribution of sea ice. Additionally, fluctua-
tions in the atmospheric surface temperature have a signif-
icant impact on the Arctic sea-ice variability (Olonscheck
et al., 2019). Changes in atmospheric temperature directly
affect the growth, melt, and overall state of sea ice in the
Arctic region. Warmer atmospheric temperatures accelerate
sea-ice melting, leading to reductions in ice extent and thick-
ness, while colder temperatures can promote ice growth and
expansion.

Based on these considerations, we supplemented the sea-
ice thickness with the 2m temperature (T2M) and the atmo-
spheric u and v velocities at a height of 10m (U10 and V10).
Those forcings come from the ERA5 reanalysis dataset.

ERA5 forcings are interpolated onto the neXtSIM La-
grangian grid using a nearest-neighbor scheme. Furthermore,
to guide the temporal development of the sea-ice forcing
times, t + 6h and t + 12h are added as predictors to the neu-
ral network, as commonly done in sea-ice forecasting (Grig-
oryev et al., 2022). We chose to incorporate future forcings

based on the understanding that, in sea-ice modeling, the evo-
lution of sea ice is strongly influenced by the atmospheric
forcings. In the simulations on which our dataset is based
(Boutin et al., 2023), neXtSIM is uncoupled from an atmo-
spheric model and uses ERA5 forcings. In such uncoupled
settings, the atmospheric forcing can be given by forecasts
and thus be known for the future. Consequently, using fu-
ture forcings during training is nonrestrictive in terms of its
potential operational capability.

Let us note that, for neXtSIM simulations, the atmospheric
forcings consist of the two 10m wind velocity components,
the 2m temperature, the mixing ratio, the mean sea level
pressure, the total precipitation, and the snow fraction. We
decided to limit ourselves to the first three for our surrogate
model. Plueddemann et al. (1998) and Kwok et al. (2013),
for example, showed that the sea-ice drift is strongly linked
to the wind velocity. Hence, there exists a strong correlation
between the atmospheric winds and the sea-ice motion, up to
0.8 in the central Arctic (Thorndike and Colony, 1982; Ser-
reze et al., 1989; Zhang et al., 2000). Those forcings can be a
good proxy for the advection of sea ice, which is required to
correctly emulate the dynamics of the sea-ice thickness. Note
however that T2M forcings from ERA5 are known to have an
important bias during the freezing period (Yu et al., 2021;
Wang et al., 2019; Køltzow et al., 2022; Nielsen-Englyst
et al., 2021). Nonetheless, to stay close to the configuration
of neXtSIM simulations, we maintain the ERA5 reanalysis
as a forcing. We thus assume perfect knowledge of the forc-
ings, although operational sea-ice forecasts use atmospheric
forecasts as forcings.

3 Learning the dynamics of sea-ice thickness with
neural networks

In this section, we provide a description of the neural network
structure, its input and output, the training process, and the
various neural networks that were trained. During training,
the neural network is trained in a supervised setting. The in-
put to the network consists of the concatenated sea-ice thick-
ness and atmospheric fields, whereas the predicted target is
the increment in sea-ice thickness over the subsequent 12h
period. One challenge in training the neural network is deal-
ing with unavailable data points caused by land grid cells. To
address this challenge, a technique called partial convolution
is employed.

3.1 Preparation of the dataset for supervised learning

Let us represent the sea-ice thickness at time t by xt ∈

R512×512. The land-masked grid cells are systematically as-
signed a value of zero thickness. For small signal levels, the
noise induced by the imperfections of the neural network can
overshadow the signal contained in the data. Consequently,
to increase the signal in the target and decrease the auto-
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correlation, we chose a lead time of 12h, even though the
data are available at a 6h frequency.

The neural network is trained to predict the increment in
SIT instead of the absolute SIT. The increments of the SIT
yt+1t for 1t = 12 h are given by the difference from a per-
sistence forecast.

yt+1t , xt+1t − xt . (1)

Based on the current SIT xt and given forcings F, our objec-
tive is to construct a neural network fθ (xt ,F)with its param-
eters θ , which predicts the SIT increment yft+1t :

y
f
t+1t = fθ (xt ,F). (2)

The neural network is hereby trained to approximate the real
increment estimated from neXtSIM simulations (Eq. 1) such
that yt+1t ≈ y

f
t+1t approximately holds.

The inputs and target for the neural network are shown in
Table 1. In order to represent the temporal development of
the sea-ice thickness with the neural network, we also add to
the inputs the fields at time t −1t , both SIT and the atmo-
spheric forcings. When the neural networks are trained on
those fields at times t −1t and t , these are called later “with
two inputs”. Otherwise, the neural networks are trained “with
one input”, which corresponds to the last three columns of
the inputs described in the table.

Data from 2009 to 2016 are used for training, giving
11584 training samples; 2017 is used for the validation of
the learned neural network and all the preliminary tests of
the surrogate model, and 2018 is used as the year for testing:
the results were evaluated once on this year at the end of the
study after the hyperparameters were chosen for the neural
network. For longer forecasts, to evaluate seasonal forecasts,
another test dataset was built from the years 2006, 2007, and
2008.

The input and target data are normalized by a global per-
variable mean and standard deviation. These statistics are es-
timated over the entire training dataset and applied to all the
datasets.

3.2 Neural network architecture

Convolutional neural networks (CNNs) are largely used in
computer vision and have been shown to be scalable to high-
dimensional datasets (e.g., Pinckaers et al., 2022). These net-
works are based on convolutional layers designed to rec-
ognize translation-invariant patterns. In the case of sea-ice
thickness, the neural networks need to detect, e.g., leads as
well as the marginal ice zone, irrespective of their actual lo-
cations.

U-Net (Ronneberger et al., 2015) is an encoder–decoder
convolutional neural network architecture with skip connec-
tions. In the encoding part, convolutional layers and max-
pooling layers are stacked in order to extract spatially more
and more compressed features. As convolutional layers are

localized by definition, the spatial compression helps the
network to extract more globalized features. The number
of successive resolution reductions defines the depth of U-
Net. At the lowest resolution, the bottleneck, several con-
volutional layers are stacked with 256 features (channels).
In the decoding part, the features are up-sampled through a
nearest-neighbor interpolation and convolutional layers. Skip
connections couple the encoding and decoding parts at the
same resolution level to facilitate training and to retain fine-
granular information in the network. This neural network ar-
chitecture is designed to extract multiscale features, which
is known to be notably present in sea-ice dynamics (Rampal
et al., 2019). The U-Net used here is described in detail in
Appendix C and is schematically outlined in Fig. 2.

The last layer of the neural network is a linear function
without any activation, as we cast learning of the SIT incre-
ment as a regression problem. For all other layers, the mish
activation function (Misra, 2019) is used. As opposed to the
more-often used rectified linear unit, mish is a continuously
differentiable function and has been previously proven to be
effective in computer vision tasks (Bochkovskiy et al., 2020;
Zhang et al., 2019), demonstrating improvements in training
CNNs, particularly in addressing issues such as gradient ex-
plosion and gradient dispersion.

3.3 Partial convolution

As we can see in Fig. 1, the information on sea-ice thick-
ness is only defined for ice and ocean grid cells. Land grid
cells are masked. When performing two-dimensional convo-
lutions on land cells, the presence of masked values has a
detrimental effect on the local averages computed during the
convolution operation. The convolution kernels then also in-
clude the land cells with an assigned value of 0. One solution
is to use partial convolutions (Liu et al., 2018) in every con-
volutional layer of the neural network. The key idea of partial
convolutions is to separate the missing points from informa-
tive ones during convolutions, such that the results of con-
volutions only depend on ocean and ice grid cells; land grid
cells are simply omitted in the convolutional kernel. Let us
see how it works in a simple example for a single convolu-
tion window.

Let us define W ∈ Rks×ks and b ∈ R as the weights and
bias of a convolution filter. ks is the kernel size of each con-
volution, always set to 3, except for the last layer of the neu-
ral network, where it is set to 1. X ∈ Rks×ks represents the
pixel values (or feature activation values) being convoluted,
and M ∈ Rks×ks is the corresponding binary mask which in-
dicates the validity of each pixel or feature value: 0 for miss-
ing (land) pixels and 1 for valid (ocean and ice) pixels. The
output of the proposed partial convolution x′ ∈ R, computed
in a convolution window, is then

x′ =

WT (X�M)
sum(1)
sum(M)

+ b if
∑
i,j

Mi,j > 0,

0 otherwise,
(3)

The Cryosphere, 18, 1791–1815, 2024 https://doi.org/10.5194/tc-18-1791-2024



C. Durand et al.: Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic 1795

Table 1. Inputs and targets for the neural networks. The table shows the predictors, including sea-ice thickness (SIT) at different time steps,
and atmospheric variables: 2m temperature (T2M) and 10m wind components (U10 and V10). The target is the increment of the SIT 12h
later (1t = 12h). The evaluated neural networks use either the last three columns as input, learning with a single time step for SIT (xt ) later
called neural networks with one input, or all the columns, learning with both xt−1t and xt later called neural networks with two inputs. Note
that, as the SIT is the predicted quantity, there are no SIT values in the inputs for time steps larger than t .

Figure 2. Architecture of the U-Net-based neural networks. The U-Net consists of three levels of depth with image sizes of 512, 256, and
128 in the x and y directions. The input of the U-Net includes either 10 or 14 channels, depending on whether only the current time step (xt )
or both the current and previous time steps (xt and xt−1t ) are used, alongside their associated atmospheric forcings. The input channels
comprise sea-ice thickness, air velocity, and temperature. The number of channels for each convolution is indicated below it, with the first
block having 32 channels. The upward arrows represent skip connections, allowing the neural network to retain information from earlier
stages and incorporate it into subsequent stages, bypassing the bottleneck.

where � is an element-wise multiplication and 1 is a ma-
trix of ones that has the same shape as M. In comparison, a
normal convolution would be defined as

x′ =WTX + b, (4)

independent of the validity of the grid cells.
From Eq. (3), we can see that the results of the partial

convolution only depend on valid input values (as X�M).
The scaling factor sum(1)/sum(M) adjusts the results as the
number of valid input values for each convolution varies.
It has been used previously in order to recover missing re-
gions from observational datasets (Kadow et al., 2020). In
this study, the goal is not to recover data but to avoid artifacts
near land caused by underestimation in normal convolutions.

The algorithm for partial convolution is further described in
Appendix C1.

3.4 Global constraint on loss training

Emulating physical systems with neural networks can lead
to a non-physical response (Beucler et al., 2021). In order to
reduce a systematic bias of the surrogate model and to en-
sure that the neural network can correctly predict the global
amount of sea ice, we add an additional penalization term to
the loss. The non-penalized loss is defined by a pixel-wise
mean-squared error (MSE), with x and y two vectors of di-

https://doi.org/10.5194/tc-18-1791-2024 The Cryosphere, 18, 1791–1815, 2024



1796 C. Durand et al.: Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic

mension (Nx , Ny):

Llocal(x,y)=MSE(x,y)=
1

Nx ·Ny

Nx ,Ny∑
i,j

(xi,j − yi,j )
2. (5)

The penalization term is defined by the squared difference
between the global mean of x and y:

Lglobal(x,y)= (x̄− ȳ)
2
=

 1
Nx ·Ny

Nx ,Ny∑
i,j

xi,j − yi,j

2

. (6)

This term weighted against the local loss with the help of a
scalar λ is

L(x,y)= Llocal(x,y)+ λLglobal(x,y). (7)

Let us note that Llocal refers to the local dynamics of the sea-
ice thickness and that Lglobal refers to the global dynamics of
the sea-ice thickness.
λ is manually tuned to 100. Details on how this value was

set are provided in Sect. C3.2. The local loss is approxi-
mately 4 orders of magnitude larger than the global loss. By
setting λ= 100, the global loss represents 1% of the local
loss. In the following parts, we show results for λ= 0 and
λ= 100. The former case will be called unconstrained and
the latter constrained.

3.5 Neural network training

The neural networks are trained on a single NVIDIA A100
GPU with a batch size of eight samples. As an optimizer,
AdamW (Loshchilov and Hutter, 2017) is used with a learn-
ing rate of γ = 5× 10−5 and a weight decay scheduled with
a three-step piecewise constant decay and starting at w =
1× 10−6. If the loss in the independent validation dataset
plateaus for 20 epochs, the training is stopped early.

We trained four different neural networks, as described in
Table 2. By setting λ to either 0 or 100, we switch the ad-
ditional loss function constraint on or off, checking its influ-
ence on the performance. Additionally, we test whether ad-
ditional temporal guidance by giving an additional time step
as input helps the neural network to predict the increment in
the sea-ice thickness.

4 Surrogate modeling and evaluation methods

4.1 Surrogate modeling

To emulate the physical model Mp, we built a surrogate
model Ms by applying the neural network fθ (·, ·) that pre-
dicts the sea-ice thickness increment. Initializing the model
with given initial conditions xt0 and given forcings F, the
surrogate model propagates the sea-ice thickness forward in
time, predicting the sea-ice thickness 1t = 12h later:

xf
t0+1t

= xt0 + fθ (xt0 ,F)=Ms(xt0). (8)

Note that, for ease of notation, we omit the forcings in the
surrogate model notation Ms. Using the forecasted state
xf
t0+1t

as the next initial conditions, we can cycle the surro-
gate model and predict the sea-ice thickness for longer lead
times than 1t :

xf
t0+N1t

=Ms
◦Ms

◦ · · · ◦Ms(xt0)︸ ︷︷ ︸
N times

(9)

= xt0 + fθ (xt0 + fθ (. . .,F),F). (10)

The forecast at longer lead times is consequently the initial
conditions plus a recursive increment term.

Our baseline for the model comparison is constantly pre-
dicting the initial conditions without any increment, a so-
called persistence forecast; i.e., the sea-ice thickness is un-
changed over time. It is a commonly used baseline in sea-ice
forecasting, as the auto-correlation of the sea-ice thickness in
time is high up to a 1-month lead time (Lemke et al., 1980;
Blanchard-Wrigglesworth et al., 2011). We also compare the
surrogate model to the daily climatology, computed on a day-
of-year basis over the complete training dataset.

4.2 Evaluation metrics for the surrogate

The goal of the surrogate model is to predict as accurately as
possible sea-ice thickness over lead times longer than 12h,
i.e., after several iterations of the surrogate model. We de-
fine the forecast skill of the surrogate at the kth iteration by
computing the root-mean-squared error (RMSE) between the
predicted SIT and the actual SIT as simulated by neXtSIM:

RMSE(k)=
1
Ns

Ns∑
n=1

√√√√ 1
Nvalid

Nvalid∑
i

(
xf
tn+k1t,i

− xtn+k1t,i

)2
. (11)

The RMSE between the prediction xf
n+k1t and the simula-

tion xn+k1t is computed over all valid pixels i of the field of
size Nvalid, i.e., pixels which are not land grid cells, for each
sample n of the test set containing Ns trajectories initialized
at time tn.

The global RMSE is calculated by averaging the RMSE
values obtained when the whole sea-ice thickness fields are
treated as a single data point. It represents the discrepancy
in averaged sea-ice thickness between the prediction and the
simulation. By considering the global RMSE, we can assess
the performance of the surrogate model in accurately repro-
ducing the average sea-ice thickness compared to the refer-
ence model.

In order to quantify systematic errors of the surrogate
model, we compute its mean error (bias). This metric tells us
about the ability of the neural network to correctly estimate
the total amount of sea ice in the full domain:

bias(k)=
1
Ns

Ns∑
n=1

1
Nvalid

Nvalid∑
i

(
xf
tn+k1t,i

− xtn+k1t,i

)
. (12)
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Table 2. Comparison of the trained U-Net-based neural networks in the study. Four neural network configurations are evaluated, varying
in the number of inputs and the presence of a constraining term in the loss function. The inputs include either xt alone or both xt−1t and
xt , representing sea-ice thickness and atmospheric variables. The addition of a constraining term in the loss function regulates the neural
network based on the global sea-ice thickness.

Neural network Constraint (λ) Inputs

NN one-input – unconstrained 0 xt (10 channels)
NN one-input – constrained 100 xt (10 channels)
NN two-input – unconstrained 0 xt−1t , xt (14 channels)
NN two-input – constrained 100 xt−1t ,xt (14 channels)

The sea-ice extent (SIE) can be derived from the sea-ice
thickness. We define a threshold σacc = 0.1m for the SIT
(see Appendix B for its definition) above which a grid point
is considered sea ice. By obtaining a classification mask be-
tween ice and no ice, we can easily define an accuracy metric
based on the SIE. Similarly to the ice-integrated edge error
defined by Goessling et al. (2016) on sea-ice concentration,
we define a metric which counts the pixels where the surro-
gate model disagrees with neXtSIM on the presence or not
of sea ice. Two terms are defined: the first one N>σacc indi-
cates the number of pixels where xf

tn+k1t
overestimates the

presence of sea ice, and the second one N<σacc is where the
surrogate model underestimates the presence of sea ice com-
pared to neXtSIM. The accuracy is averaged over all the Ns
samples:

accSIE(k)=
1
Ns

Ns∑
n=1

·

(
1−

N>σacc(tn+ k1t)+N<σacc(tn+ k1t)

Nsea-ice pixels

)
. (13)

4.3 Quantification of the diffusion effect

Diffusion can impact the accuracy and fidelity of the surro-
gate model’s predictions. Excessive diffusion may lead to the
loss of important details and reduce the model’s ability to
capture complex patterns. By quantifying diffusion, we can
evaluate the model’s performance and how the diffusion pro-
cess evolves with increasing lead time.

To analyze the smoothing of features across multiple itera-
tions, we want to find a metric that can describe the evolution
of these features across different scales. Mathematicians have
proposed several metrics for quantifying multifractality, such
as box-counting algorithms and fractal dimensions (Xu et al.,
1993). For two-dimensional geophysical fields, the PSD has
the ability to detect spatial properties over the different space
scales (Lovejoy et al., 2008). This quantity allows for a quan-
titative assessment of the changes in the features and its mul-
tiscale distribution as a function of the forecast lead time. Let
x be a snapshot of the sea-ice thickness at a given time, ei-
ther from neXtSIM or from the surrogate model. We define
the PSD of x by

P(kh,kv)= ‖dft(x)(kh,kv)‖2, (14)

where dft(x) is the discrete Fourier transform of x. The PSD
P is indexed by the spatial wave numbers kh and kv . The
energy as a function of the wave vector is in turn related to
P via

E(kh,kv)= (P (kh,kv))
2. (15)

The power-law behavior of a field’s energy spectrum can be
caused by the underlying self-similarity or fractal nature of
the image. Fractals are patterns or objects that display sim-
ilar structures and statistical properties at various scales. In
the case of an image, this means that certain statistical char-
acteristics, such as texture or pixel intensity variations, repeat
themselves across different scales. This energy spectrum can
be identified with a power law:

E(k)∼ C‖k‖−β , (16)

where β is called the spectral exponent and C the normal-
ization constant. Details of the computation of the spectral
exponent are provided in Appendix D5. The power-law na-
ture of the energy spectrum reflects the scaling properties of
the field, where the statistical variations remain consistent
regardless of the scales being observed. The power-law ex-
ponent β determines the degree of self-similarity and how
quickly the energy decreases as the frequency or spatial scale
increases.

We define the spectral exponent ratio Qβ after t iterations
by

Qβ(t)=
1
Ns

Ns∑
i=1

βisurr(t)

βineXtSIM(t)
, (17)

which is the average over the full testing set of the ratio
between the spectral exponent of predicted fields from the
surrogate model and the spectral exponent of the fields as
simulated with neXtSIM at the same time. If the surrogate
model exhibits processes which lead to over-diffusion, then
the spectral exponent of the predicted SIT should be larger
than that of the actual SIT, resulting in a ratioQb > 1. Hence,
the ratio corroborates the emergence of diffusion in the fore-
cast.
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5 Numerical results

5.1 Short-term forecasting

In this paragraph, we assess the performance of the surrogate
model on a short-term timescale, specifically up to a 1-month
lead time. The metrics mentioned in Sect. 4.2 are computed
using the 2018 test dataset. They are reported in Table 3.

We believe that the global RMSE serves as a proxy for
the consistency of the surrogate model, which we define as
the averaged sea-ice thickness in the domain. Based on this
idea, we anticipate that the globally constrained neural net-
work will demonstrate improved performance for forecast
lead times exceeding 12h.

The introduction of a global penalization term into the
constrained neural network reduces the global RMSE by 1
order of magnitude within 12 h compared to the absence of
penalization. However, the impact of the global loss term (as
defined in Eq. 6) is relatively small on the classical RMSE,
as defined in Eq. (11), compared to the influence of including
additional time steps.

On average, for the constrained neural network with one
time step as input, we observe a 33% improvement after a
lead time of 12h and a 33% improvement after 15 d over the
persistence on the RMSE. For the constrained neural network
with two time steps in the input, we observe a 41% improve-
ment after 12h and a 31% improvement after 15 d over per-
sistence. It is worth noting that all the surrogate models ex-
hibit significant improvements over climatology in forecast-
ing sea-ice dynamics for a 15 d period. On average, these im-
provements amount to a 46% enhancement compared to re-
lying solely on climatology-based predictions for the RMSE.
Adding the penalization term slightly increases the RMSE
of the surrogate after 12h but improves the RMSE after 15 d
(see Fig. 3a for the comparative evolution of the RMSE for
one input up to a lead time of 25 d). The major improve-
ment of adding the penalization term comes from the global
RMSE, which is reduced by a factor of 9 after 12h. Re-
garding the two-input surrogate, the impact on the global
RMSE after 12h is only 4%. The global RMSE is much
more volatile during training, being smaller than the local
RMSE. In the case of the two-input NN, the unconstrained
model had a given global RMSE which happened to be simi-
lar to the model trained with the constraint despite not being
trained with the global term. The fact that the results are still
better in the constrained case after 15 d is also proof that the
model improves with the global loss term.

We note that the global RMSE after 15 d is better on av-
erage for the unconstrained surrogate. However, as seen in
Fig. 3, the strong advantage of the constrained surrogate is
the important reduction of the bias standard deviation, rep-
resented transparently in panel (b). This improvement is fur-
ther supported by evaluating the averaged SIT over the en-
tire year, as illustrated in panel (c). During periods of sig-
nificant sea-ice production and melting, the surrogate model

with the global constraint exhibits a closer alignment with the
neXtSIM output, indicating a higher level of accuracy. These
findings suggest that integrating a global constraint term dur-
ing the optimization process enhances the surrogate model’s
ability to capture and reproduce the complex dynamics asso-
ciated with sea-ice formation and melting.

As the neural network is trained for a 12h lead time, the
first iteration of the surrogate model corresponds to its tar-
geted lead time. In this first iteration, we observe that stack-
ing two time steps in the inputs of the neural network im-
proves the surrogate by 13% in terms of RMSE. In prelimi-
nary tests, we observed no further gain in performance with
more than two time steps as input.

The forecast skill for a lead time of up to 25 d highlights
the overall improvement of the constrained surrogate model
compared to the persistence forecast (Fig. 4), as similarly ob-
served in Table 3. For the constrained surrogates, the two-
input surrogate gains 14% after 12h over the one-input sur-
rogate, but the results are reversed after 15 d, with a 3% im-
provement for the one-input surrogate, as we can also ob-
serve in Fig. 4. Even if those results would favor the surro-
gate model with two inputs, biases for either one or two in-
puts are close to zero and are thus acceptable. It is expected
that the neural network will give a better RMSE with more
inputs in the neural network. We hypothesize that increasing
the number of inputs leads to a bigger accumulation of errors
being introduced into the input data when we predict with the
surrogate model, since the model was non-auto-regressively
trained on perfect input data. In other words, as we cycle the
neural network, the predictions from previous iterations are
used as inputs for subsequent iterations, so that if there are er-
rors or inaccuracies in these predictions, they can propagate
and accumulate over time, potentially leading to a degrada-
tion in the quality of the outputs. As the surrogate learns the
dynamics with “perfect” conditions, we increase the error of
the inputs by having two time steps as the input of the neu-
ral network after several iterations. Even if the two-time-step
neural network provides better results for the first iterations
and for the global RMSE, it seems more relevant to focus on
longer lead times for model selection. In the next paragraphs,
we only present results for a surrogate model with one time
step in the input.

The evaluation of SIE accuracy supports and strengthens
our previous findings, providing additional evidence for the
reliability of the results. In particular, we observe that the
constrained neural network with one time step as input con-
sistently outperforms other models in predicting SIE. The
higher accuracy achieved by the constrained neural network
with one time step as input suggests that this configuration ef-
fectively captures the relevant information and patterns nec-
essary for accurate sea-ice dynamics prediction. This indi-
cates that the specific constraints imposed during training,
along with the inclusion of a single time step as input, con-
tribute to better understanding and modeling the underlying
dynamics of SIT. The consistent performance of this model
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Table 3. Statistical indicators to assess the performance of the surrogate models. The table shows the results for two lead-time scenarios:
12 h and 15 d. Two types of surrogate models are evaluated: those with one input (representing sea-ice thickness at time xt ) and those with
two inputs (with SIT and atmospheric forcings at time (xt−1t ,xt )). The models are trained with and without the addition of constraints,
represented by a regularization parameter (“Constraint”). The evaluation metrics include the RMSE, global RMSE, and SIE accuracy (ACC).
Climatology and persistence baselines are included for comparison. Bold numbers indicate the best-performing model in a given column.

12 h lead time 15 d lead time

Surrogate Constraint (λ) RMSE ↓ Global RMSE ↓ RMSE ↓ Global RMSE ↓ ACC ↑

Climatology – 7.75× 10−1 2.97× 10−1 0.775 2.97× 10−1 0.953
Persistence – 1.28× 10−1 3.01× 10−2 0.603 1.01× 10−1 0.949

One-input 0 8.49× 10−2 1.35× 10−2 0.406 1.43× 10−4 0.963
One-input 100 8.59× 10−2 8.00× 10−4 0.401 1.76× 10−3 0.970
Two-input 0 7.34× 10−2 3.73× 10−3 0.445 2.91× 10−3 0.966
Two-input 100 7.48× 10−2 3.59× 10−3 0.416 1.81× 10−4 0.966

across different evaluation metrics (see Table 3 and Figs. 3
and 4) and scenarios further validates its reliability and ro-
bustness. This surrogate configuration is able to capture the
essential features and patterns of SIT dynamics, enabling
more accurate predictions compared to other configurations.

Despite its ability to predict sea-ice thickness over the full
domain, the forecast skill is not homogeneous over the differ-
ent regions of the Arctic. The delimitation of the region from
the National Snow and Ice Data Center was interpolated on
the neXtSIM grid to then compute the forecast skill in the dif-
ferent regions (see Fig. 5) and numerical results for 25 lead
days in Table 4. In the central Arctic, the surrogate forecast
skill has an improvement of the RMSE of 31% on average
for a 25 d lead time over the persistence. The variability of
the forecast skill is equal to 0.0590 and is 34% lower than
the variability of the persistence after the same lead time. In
the Greenland Sea, the forecast skill of the surrogate is 35%
better than persistence for a 25 d lead time. The forecast skills
of both the persistence and the surrogate are on average low
because of the number of sea-only pixels in this region during
the full year. In every region, we systematically observe an
improvement in both RMSE and its standard deviation of the
surrogate over the persistence. This means that we improve
over most samples the ability of the surrogate to predict the
dynamics across all the regions. Notably, the Beaufort Sea
exhibits a higher RMSE compared to the other regions. This
discrepancy prompts further investigation into the surrogate
model’s limitations in accurately predicting sea-ice dynamics
near land in this region.

5.2 Advection

The surrogate model exhibits favorable advection properties
encompassing both large-scale and fine-scale dynamics. This
successful advection can be attributed to the incorporation
of atmospheric forcings in the model. The atmospheric forc-
ings, which capture the influence of atmospheric conditions

Table 4. Comparison of RMSE and its standard deviation (σRMSE)
between the surrogate model and persistence for different regions.
The table presents the mean RMSE and σRMSE values for the cen-
tral Arctic, Greenland Sea, East Siberian Sea, Kara Sea, and Beau-
fort Sea as defined in Fig. 5a. The RMSEs are computed for a lead
time of 15 d.

Surrogate Persistence

Regions RMSE σRMSE RMSE σRMSE

Central Arctic 0.550 0.0590 0.777 0.0892
Greenland Sea 0.286 0.0591 0.423 0.0786
East Siberian Sea 0.507 0.0727 0.754 0.0967
Kara Sea 0.474 0.1103 0.771 0.1822
Beaufort Sea 0.758 0.0921 1.140 0.1376

such as winds and temperatures, play a crucial role in driving
the movement and behavior of sea ice.

The thickness field and the SIE are represented in Fig. 6a
for neXtSIM and in Fig. 6b for the surrogate. Additional SIT
fields are presented in the Appendix for a lead time of 5 d and
a lead time of 25 d in Figs. D2 and D3. The surrogate model
seems to correctly advect the sea-ice sheet on the large scale.
The inclusion of atmospheric forcings as inputs to the surro-
gate is crucial for capturing and learning the driving dynam-
ics of sea ice. When training the surrogate model without
incorporating any atmospheric forcings, the absence of ad-
vection becomes apparent. Without the driving influence of
atmospheric conditions such as winds and temperatures, the
surrogate model lacks the necessary information to simulate
and reproduce the advection of sea ice, and it tends to exhibit
behavior similar to persistence.

In order to verify this visual impression, we manually fol-
lowed four remarkable features: (c) on the MIZ, (d) a fea-
ture in the Beaufort Sea, (e) a persistent crack in the central
Arctic, and (f) on the MIZ in the Barents Sea for 1-month
prediction. We compared the motion of those features be-
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Figure 3. Analysis of the additional constraint during neural network training on the surrogate model over several iterations. In panel (a), the
forecast skill of the surrogate model is depicted with solid lines representing the average. The unconstrained neural network is represented
by the brown dashed line, while the constrained network is shown in purple. The black dotted line represents persistence. Panel (b) displays
the bias error associated with the surrogate, and the standard deviation is represented in transparency to outline the variance reduction of the
constrained surrogate. In panel (c), the global conservation of sea ice is plotted. The full-year trajectory is constructed by concatenating 60
forecast iterations. Every 30 d, the forecast is initialized using neXtSIM at the corresponding time and run for 60 iterations. The surrogate
models are compared to the neXtSIM output over the same period.

tween the surrogate model and the actual neXtSIM dynam-
ics. The results depicting the sea-ice advection are illustrated
in Fig. 6c, d, e and f. Notably, several features, particularly
in the MIZ, demonstrate nearly identical displacements over
this 1-month period. These features appear to be accurately
captured and reproduced by the surrogate model, reflecting
its ability to simulate the advection of sea ice. Slight devia-
tions in trajectories are observed for features such as cracks
within the sea ice, but these differences do not indicate inco-
herent or erratic behavior: the trajectories keep similar paths,
which could be due to the advection of the features by atmo-
spheric forcings.

5.3 Diffusion quantification

The observation of a smoothing effect on fine-scale features
which increases with the forecast lead time aligns with the L2
optimization of a deterministic neural network: while scor-
ing well, the surrogate model can deviate from the genuine
physics with a prominent smoothing of the fine scales. The
goal of training is to minimize the MSE, which entails re-
ducing discrepancies and errors by creating an average over
the features. This smoothing effect can be seen in Fig. 7.
While the surrogate model is able to predict the global and
local advection patterns of sea ice, it tends to average out the
fine-scale features over successive iterations. The observed
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Figure 4. Comparison of the root mean square error (RMSE) be-
tween the constrained surrogate models for either one (purple solid
line) or two inputs (green dashed line) and the persistence (black
dotted line) approach for SIT prediction over a 25 d forecast hori-
zon. While the one-input surrogate yields better results in terms of
RMSE for more than 5 d, the surrogate with two inputs gives better
results at the beginning of the forecast, as can be observed in the
zoom window.

smoothing effect highlights the trade-off between capturing
large-scale dynamics and preserving fine-scale features in the
surrogate model. While the model may sacrifice some fine-
scale details, it still retains the essential advection patterns
and provides reliable predictions on a global scale.

This smoothness can be quantified by computing the PSD
(Hess et al., 2023; Neuhauser et al., 2022) and the Qb ratio
as defined in Sect. 4.3. The results are presented in Fig. 8.
After 12 h, the PSD of neXtSIM and the surrogate are close:
the surrogate model exhibits similar multiscale properties to
the physical model. We found the spectral exponent to be a
good quantitative measurement of the diffusion process of
the surrogate model. As the number of iterations of the sur-
rogate model grows, we observe that the smoothness of the
field increases. This means that we lose information at high
frequencies, and thus the PSD decreases for high frequencies
(see Fig. 8b). This reduction for high frequencies further sup-
ports the notion that the diffusion processes within the surro-
gate model lead to a loss of detailed information and finer-
scale features. When computing β, we see a fast increase in
β when the number of cycles increases (see Fig. 8c). At a
10-lead-day time, we have an increase in the β exponent of
6% averaged over the full year. Interestingly, the spectral ex-
ponent does stabilize after 20 lead days and then slowly de-
crease. We hypothesize that the neural network has reached
its highest possible resolution for a correct representation
of sea-ice advection at the global scale by reducing the in-
herently chaotic and stochastic fine-scale dynamics. In other
words, the surrogate model is able to correctly advect sea-ice

thickness up to a given resolution, beyond which smoothing
the fine-scale dynamics yields lower RMSEs.

5.4 Long-term forecast

In this section, we discuss the ability of the surrogate model
to forecast the dynamics of sea-ice thickness at a seasonal
scale, focusing on the constrained one-input surrogate model.
Seasonal forecast of Arctic sea ice is complex (Sigmond
et al., 2013) and even more so on a high-resolution grid.
While previous results were presented with at most 60 it-
erations of the surrogate model, here we present runs of
the surrogate with 720 iterations which correspond to 360 d
forecasts of sea-ice thickness. Those forecasts are initial-
ized from January 2006 to January 2008, with initial con-
ditions sampled every 30 d. In total, we have 25 runs of
360 d to evaluate the surrogate model (see Fig. 9). In Ap-
pendix D2, we show some snapshots of the seasonal forecast
model over the full year, accompanied by the SIE delimita-
tion (see Fig. D4). The surrogate model is stable over the full
year, and the RMSE is lower than that of the daily climatol-
ogy for 6 months. In the bottom panel of Fig. 9, the global
averaged SIT for the surrogate model aligns with both the
neXtSIM output and the climatology-based approach. The
non-negligible bias of the climatology comes from the fact
that the daily climatology is computed over 2009–2016 and
is directly linked to sea-ice thinning. This consistency can be
attributed to the low bias exhibited by the constrained sur-
rogate model (see Fig. 3). The constrained model’s low bias
helps maintain a physically realistic behavior of the sea ice,
even during long-term forecasts. The low error values of the
bias observed during each iteration contribute to maintaining
the physical integrity and conservation of the sea ice in the
surrogate model. This indicates that the surrogate model’s
predictions remain consistent with the overall dynamics of
sea ice, supporting its ability to capture the essential charac-
teristics and behavior of the system. However, it is worth not-
ing that, when testing the surrogate model on a 2-year fore-
cast, difficulties were encountered in accurately predicting
the dynamics beyond 1 year due to the constant, albeit slow,
increase in the error of the surrogate.

In terms of SIE prediction, the surrogate model demon-
strates the capability to accurately forecast the edge of the
sea ice throughout the year, regardless of the initialization pe-
riod, as shown in Fig. 10. As anticipated, the surrogate model
performs significantly better than persistence during periods
of high variation, particularly during summer and fall. In pe-
riods where the ice edge is almost static, persistence is a good
baseline prediction for the position of the ice edge. While our
surrogate model still correctly advects SIT, the results for the
SIE accuracy do not differ much from those of persistence.
Indeed, since the SIE is post-processed from SIT and only
partially relies on the position of the MIZ, we lose most of
the benefit of a correct SIT prediction by the surrogate model.
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Figure 5. Regional forecast skills. Panel (a) illustrates the delineation of the regions used for computing the regional forecast skill. Panels (b)
to (f) show the averaged forecast skill over the full test year for specific regions: (b) central Arctic, (c) Greenland Sea, (d) East Siberian Sea,
(e) Kara Sea, and (f) Beaufort Sea. The purple solid line represents the surrogate model forecast skill, while the black dashed line represents
persistence.

Even though it is a useful marker for the Marginal Ice Zone
(MIZ), this post-processed variable is inadequate for repre-
senting large-scale dynamics of SIT, e.g., in the central Arc-
tic. It only compares the position of the ice edge and removes
the information about global motion of sea-ice thickness in-
side the ice sheet.

6 Discussion

6.1 Fast emulation of the high-resolution SIT

Our proposed surrogate model based on a U-Net neural net-
work can emulate the large-scale sea-ice thickness as simu-
lated by neXtSIM on daily and seasonal timescales. The main
advantage of the emulator is the computational time needed
for a forecast. Once the neural network is trained, computing
one iteration of the surrogate, a 12h forecast, takes approxi-
mately 72ms on a single NVIDIA A100 GPU. A forecast for
1 year takes under 1min. This opens the perspective to run
a large ensemble of simulations for complex sea-ice mod-
els, which could facilitate data assimilation. However, the
observed smoothing effects might cause a collapse of the en-

semble for longer lead times. This would require further anal-
ysis or a subsequent improvement of the surrogate model.

Note that the training of the neural network remains
slightly costly, around 18h on a single NVIDIA A100 GPU.
Approximately 10000h on NVIDIA A100 GPUs were nec-
essary to conduct this study.

Training a surrogate model for a coarser resolution is
faster. However, a surrogate model for high resolutions can
resolve more processes. To showcase this, we display results
for additional experiments on a coarse-grained dataset with
128×128 grid cells compared to 512×512 grid cells at high
resolution. The neural network has the same configuration
as the high-resolution dataset and follows the same train-
ing procedure. To compare the surrogate trained on the high-
resolution dataset to the surrogate trained on the aforemen-
tioned coarse resolution, we plot the root-mean-squared er-
ror (RMSE) for both resolutions in Fig. D1. Surrogate mod-
eling at high resolution decreases the RMSE by 31% after
12 h compared to the coarse surrogate. This improvement
similarly holds throughout the resolution levels and also for
longer lead times. Since this improvement is visible at all
resolutions, it can be linked to a better representation of
the small-scale dynamics and their impacts on larger scales
for the high-resolution surrogate. While the training and in-
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Figure 6. Evaluation of the advection from the one-input constrained surrogate model. (a) neXtSIM SIT on 30 May 2018, with zoomed
regions indicated for panels (c), (d), (e), and (f). (b) Surrogate model output on 30 May 2018 after a 30 d forecast initialized on 15 May,
with sea-ice extent (SIE) computed from neXtSIM (red) and the surrogate (yellow). Similar delimitation of sea-ice edges is observed in both
curves. Panels (c), (d), (e), and (f) depict manual feature tracking in different Arctic regions: (c) MIZ in the Greenland Sea, (d) Beaufort Sea,
(e) central Arctic, and (f) Barents Sea. The trajectories for 30 d are shown in purple for neXtSIM and in white for the surrogate model.

Figure 7. Comparison of neXtSIM (a) and surrogate (b) runs for a
25 d period in the central Arctic. The fine-scale dynamics observed
in panel (a) are smoothed in the surrogate model (b).

ference of this high-resolution surrogate model are signifi-
cantly more time-consuming than the coarse-grained surro-
gate, it is still about 100 times faster than physical model
simulations. Consequently, we see a gain from using high-

resolution data for surrogate modeling, even if the surrogate
leads to smoothed-out forecasts.

6.2 Architecture of the neural network

Several neural networks have been investigated on a lower-
resolution setup by coarse-graining the dataset down to a
128×128 grid-cell array. In this lower-resolution setup, both
the ResNet (He et al., 2016) and ConvLSTM (Shi et al.,
2015) architectures have been studied, yielding quite similar
results in terms of forecast skills on the validation dataset.
From our experiments, the specific architecture of the convo-
lutional neural network does not matter much. The LSTM-
based approach with a lag of 48h led to satisfactory forecast
skills but, because of the high training costs (441s per epoch)
compared to U-Net (108s per epoch), we chose to focus on
the U-Net structure for the high-resolution dataset. Regard-
ing the ResNet architecture, also implemented with partial
convolution, the results were also quite similar despite higher
training costs (172s per epoch).
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Figure 8. Evaluation of the power spectral density (PSD) and diffusion process in surrogate modeling. (a) PSD of one neXtSIM output
(orange points) and one surrogate output after 12 h (purple points), indicating a close match. (b) PSD after a 30 lead-day time of the
surrogate model compared to neXtSIM at the same time, showing lower values for high spatial frequencies in the surrogate model. (c) Qβ
values quantifying the diffusion process for the surrogate, with the orange dashed line representing neXtSIM for comparison.

6.3 Smoothness of the fields and deterministic neural
networks

Using the power spectral density as a quantification of the
diffusion shows that the diffusion process reaches a thresh-
old. By omitting the inherently chaotic fine-scale dynam-
ics, which exhibit stochastic behavior, the surrogate model
achieves a balance between capturing the essential large-
scale patterns and minimizing the impact of unpredictable
fluctuations: chaotic and stochastic processes lead to high
sensitivity to initial conditions, making these processes diffi-
cult to model accurately. By prioritizing the larger-scale dy-
namics and averaging out fine-scale features, the surrogate
model mitigates the influence of these chaotic and stochastic
processes. This mitigation results in more stable and reliable
predictions on a global scale. This hypothesis implies that the
surrogate model focuses on capturing the dominant advec-
tion patterns that drive the overall behavior of sea ice while
sacrificing some of the finer details. While this trade-off may
result in a loss of information for fine-scale dynamics, it al-

lows the model to provide valuable insights into global-scale
advection patterns.

The smoothing effects are directly linked to the training
of the neural network as a deterministic surrogate model.
We can expect less smoothing for better models as the un-
certainty is decreased. However, due to the availability of
the training data and computational considerations, we focus
on predicting lead times of 12h, and there are always situ-
ations that cannot be predicted from the available data. By
maintaining a deterministic neural network, there will conse-
quently be a smoothing effect, and we generally do not an-
ticipate significant improvements in the quality of the details.
By adapting generative neural networks, however, the surro-
gate model could learn to properly sample from the forecast
distribution and hence increase the level of fine-scale details
(Ravuri et al., 2021). It is worth noting that generative models
and especially denoising diffusion models are currently un-
der investigation by different teams for diverse geoscientific
problems (e.g., Finn et al., 2023a; Leinonen et al., 2023; Mar-
dani et al., 2023; Price et al., 2023). Nonetheless, the training
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Figure 9. Performance evaluation of the constrained surrogate model and comparison with the persistence and climatology for seasonal
forecast. (a) Forecast skill of the constrained surrogate model for 1-year long forecasts, based on 25 runs with different initialization times.
The surrogate model (solid purple) is compared against persistence (dashed black) and daily climatology (dotted green). (b) Global averaged
sea-ice thickness throughout the year, starting in January 2008, comparing the surrogate model (solid purple), the physical model neXtSIM
(dashed orange), and the daily climatology (dotted green). The seasonality of the SIT is well-preserved by the surrogate.

of such models is notoriously more difficult than that of de-
terministic models.

Smooth fields are good in terms of RMSE. Caused by
the discrete-continuous sea-ice processes, the RMSE might
not be an optimal evaluation metric. Training for other met-
rics can become increasingly more complicated and would
exceed the scope of the study. Furthermore, the surrogate
model is statistically driven, whereas models like neXtSIM
are based on our physical understanding. Such models based
on physical principles can have advantages, especially for fu-
ture cases where we have an extrapolation task caused by cli-
mate change.

6.4 Seasonal forecasts

Regarding seasonal forecasts, the model is stable for lead
times of up to 1 year, even if the climatology has a smaller
forecast error after 6 months. Our surrogate can conserve the
average sea-ice thickness over a full year, while also repre-
sents advection. This indicates that our surrogate model can
capture the large-scale dynamical and thermodynamical evo-
lution of the sea ice over the full year. These phenomena are
driven by external forcings from the atmosphere and ocean.
However, the surrogate model can represent the influence of
the forcing on SIT, something that a climatology and, espe-
cially, a persistence forecast cannot exhibit. Furthermore, for
short-term forecasts, the surrogate model consistently out-
performs persistence and the daily climatology, and it shows
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Figure 10. Estimation of the sea-ice extent forecasting performance for different initialization times and forecast horizons. Panel (a) illustrates
the sea-ice extent (SIE) accuracy on the 2006–2008 test dataset with varying initialization times. Panel (b) displays the relative difference
between the SIE accuracy of the surrogate model and persistence.

better forecasts than a daily climatology for more than 6
months in terms of forecast skill.

6.5 Towards data assimilation and multivariate
emulation

The implementation of the surrogate model as a neural net-
work allows us to easily compute its adjoint. Thus, we could
use a four-dimensional variational (4D-Var) data assimilation
scheme. Our current 4D-Var approach under investigation
uses the surrogate model primarily for short-term forecast-
ing. Despite the smoothing effect, we believe that the utiliza-
tion of the adjoint could prove beneficial.

The definition of an adjoint is meaningful for the sea-ice
thickness on the projected grid. While performing variational
data assimilation on this grid poses no issues, it is impor-
tant to acknowledge that the constructed adjoint would differ
from the one of neXtSIM on the original triangular mesh.
However, a common approach in operational variational data
assimilation is to apply inner and outer loops (e.g., Rabier
et al., 2000). In inner loops, cheaper surrogate models, e.g.,
the model at a lower resolution, are used, whereas the full
high-resolution model is only run in a few outer loops. This
could be implemented by applying our neural network sur-
rogate in inner loops and the full neXtSIM model in outer
loops.

This study only focuses on predicting the sea-ice thick-
ness, an important variable, especially in operating forecast.
However, other variables, like the sea-ice velocity compo-
nents, as prognostic variables, could be predicted at the same

time. Using the interactions between different variables can
provide valuable information to the surrogate model. Hence,
learning to emulate these variables has the potential to im-
prove the prediction of the sea-ice thickness. Nevertheless,
multivariate modeling is a more complex objective for the
neural network than univariate modeling. However, a suc-
cessful multivariate surrogate model might offer new per-
spectives for multivariate variational data assimilation.

6.6 Influence of the forcing fields

In this study, we use ERA5 reanalysis forcings, the same
forcing product that has forced neXtSIM in our used sim-
ulations. Preliminary results of running the surrogate model
with forcings derived from CMIP6 model output show that
the surrogate can be run with other forcings (Fig. D5). Since
these forcing data are based on a free-running simulation,
this results in a different evolution of the sea-ice thickness
than with the ERA5 reanalysis product. However, the model
is stable even for other types of forcing. Therefore, the sur-
rogate model has learned to represent the large-scale sea-ice
dynamics needed to simulate the sea-ice thickness on daily
and seasonal timescales.

7 Conclusions

A neural network can emulate the sea-ice thickness at a reso-
lution of 10km as simulated by neXtSIM. Trained for predic-
tion of a 12h lead time, the neural network can be iteratively
applied for surrogate modeling to forecast the thickness for
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up to 1 year. The advantage of the surrogate model over a
persistence forecast prevails from the daily timescales, with
improvements of around 36%, to seasonal timescales with
more than 50% improvement.

We introduce a regularization method for the training of
the neural network, constraining the deviations of the global
averaged sea-ice thickness from the targeted simulations.
This regularization reduces the bias of the neural network
and increases the global consistency. The increased consis-
tency then results in a decreased forecast error on daily to
weekly timescales.

By adding atmospheric forcings, the surrogate model can
represent advective and thermodynamical processes that in-
fluence the sea-ice thickness on a large, Arctic-wide, scale.
Hence, the seasonal predictions with the surrogate have a
predictability of up to 8 months, measured by comparison
to the daily climatology.

When the surrogate model is iterated, it exhibits diffusive
processes, which lead to a smoothing of the prediction. The
predictions are smoothed during the first iterations, as shown
by a power spectral density analysis. While the smoothing in-
duces a loss of fine-scale features, it allows the model to stay
coherent for the large-scale dynamics that impact the sea-ice
thickness. Thanks to this coherency, the surrogate model cor-
rectly manages to estimate the global amount of sea ice over
the entire Arctic. Consequently, the surrogate model can of-
fer a stable low-resolution adjoint for the sea-ice thickness
in neXtSIM that is for example useable in a variational data
assimilation framework.

The surrogate model can make 1-year long forecasts
within 1 min. Therefore, the surrogate model presents itself
as an opportunity to estimate a large ensemble of simula-
tions. Such a large ensemble can enable the assimilation of
previously unused observations into the sea-ice thickness.

Appendix A: neXtSIM configuration

In this Appendix, we describe more precisely the configu-
ration of neXtSIM used. The model relies for its rheology
on the brittle Bingham–Maxwell rheology (Ólason et al.,
2022), which is an improvement on the Maxwell elasto-
brittle (MEB) rheology (Dansereau et al., 2016). The model
equations are solved on an adaptive Lagrangian triangular
mesh (Rampal et al., 2016) using a finite-element method
with a re-meshing protocol. This method helps preserve the
gradients in the sea-ice fields which can come from the for-
mations of leads and ridges. The main parameters used for
the model are presented in Table A1. neXtSIM in this case is
coupled with an ocean model (NEMO).

Table A1. The main neXtSIM parameters: see Boutin et al. (2023)
for more details about the model coupling.

Parameter Symbol Value

Ice–atmosphere drag coefficient Ca 1.6× 10−3

Ice–ocean drag coefficient Cw 6.7× 10−3

Scaling parameter for the ridging threshold P 3 kPa/m3/2

Main model time step 1tm 450s
Time step for the sea-ice dynamics solver 1t 6 s
Maximum thickness of newly formed ice hmax 18 cm
Sea-ice albedo aice 0.57
Snow albedo asnow 0.8
Critical thickness parameter for ice grounding k1 5

Appendix B: Definition of the accuracy

In order to build an accuracy metric to evaluate the ability of
the surrogate to predict the sea-ice thickness, it is necessary
to define a threshold value to differentiate non-sea-ice grid
points from sea-ice grid points. Sea-ice experts commonly
define the MIZ as having a sea-ice concentration between
0.15 and 0.8 (Strong, 2012; Comiso, 2006; Rolph et al.,
2020). In 1 month of neXtSIM output (124 snapshots), we
compute the grid points included in this MIZ definition, and
then we compute the cumulative distribution of SIT on those
grid points: see Fig. B1. We select a value of σacc = 0.1 for
the threshold on SIT to define the sea-ice extent. If the grid
point has a SIT above σacc, it is considered a sea-ice pixel;
otherwise, it is considered either open sea or land.

Figure B1. Choice of SIT thickness threshold. In the left panel is
shown the SIT thickness on the MIZ commonly defined with SIC.
In the right panel is shown the cumulative distribution of this MIZ
SIT. The blue vertical line outlines the mean of this distribution and
the red line the 25th percentile which coincides with our chosen
threshold for the SIT to define the SIE.

Appendix C: Neural network architecture

We detail in this section the structure of the neural networks
used in the paper. The models are implemented using Ten-
sorflow and Keras. The next sections describe the implemen-
tation of partial convolution and the detailed structure of the
U-Net neural network.
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Algorithm C1 Partial-convolution pseudo code: it takes as
input a tensor of size (nb,nx,ny,nc), with nb the batch size,
nx and ny the image size, and nc the number of channels. It
also requires a maskM of size (nx,ny), the kernel size of the
convolution ks, an ε hereafter set to 10−8, and an activation
function σ .

Require: X,M,ks,ε,σ
Compute image kernel
Compute np the zero padding around (nx ,ny)
M̃ =M+ padding
X̃ =X+ padding
Compute W = #ks
Compute V =

∑
[M = 1]

Compute rm = W×M
V+ε

X̃ = Conv2D(X̃+ M̃)
X̃ = σ(rmX+ b )
return X̃

C1 Partial-convolution algorithm

Instead of the Y. Liu et al. (2021) and Kadow et al. (2020) im-
plementation of the partial convolution where the masks are
convoluted alongside the images, we want to keep the mask
constant only to represent the land around the sea ice. Let us
define M as the mask for which 0 means a land pixel and 1 a
valid pixel representing either ice or sea. Our implementation
of partial convolution is reported in Algorithm C1.

C2 U-Net

The detailed structure of the neural network is described in
Table C1. It has three levels of depth, which means that the
fields are coarse-grained down to (128× 128) pixels and a
total number of 2.4× 106 parameters.

C3 Neural network training

C3.1 Losses during training

The losses as described in Sect. 3 are shown in Fig. C1 for
the neural network with one input. The validation losses are
plotted in transparency for each associated training loss. We
do not observe overfitting, which validates the size of the U-
Net with regard to the size of the dataset. The training of one
U-Net takes 18 h on a single Nvidia A100 GPU.

C3.2 Tuning of λ

In this section, we describe how the value for λ was selected.
The value was chosen out of several experiments for differ-
ent values of λ: 1, 10, 100, and 1000. After training the sur-
rogate models with those values of λ, an evaluation based on
the bias and the forecast skill (see Sect. 4.2) was done on the
validation dataset. The impact of λ on the forecast skill was
negligible and was important for the bias. Selecting a value

Table C1. U-Net architecture.

Stage Layer No. of nx ny nchannels
parameters

Input PConv 3776 512 512 32

Down 1

PConv 9248 512 512 32
PConv 9248 512 512 32
PConv 9248 512 512 32
BatchNormalization 128 512 512 32
MaxPooling2D 0 256 256 32

Down 2

PConv 18496 256 256 64
PConv 36928 256 256 64
PConv 36928 256 256 64
BatchNormalization 256 256 256 64
MaxPooling2D 0 128 128 64

Bottleneck

PConv 14771 128 128 256
PConv 59008 128 128 256
PConv 59008 128 128 256
PConv 59008 128 128 256
BatchNormalization 1024 128 128 256

Up 2

UpSampling2D 0 256 256 256
PConv 14752 256 256 64
Concatenate 0 256 256 96
PConv 55360 256 256 64
PConv 36928 256 256 64
BatchNormalization 256 256 256 64

Up 1

UpSampling2D 0 512 512 64
PConv 18464 512 512 32
Concatenate 0 512 512 64
PConv 18464 512 512 32
PConv 9248 512 512 32

Output
PConv 9248 512 512 32
BatchNormalization 128 512 512 32
PConv 33 512 512 1

for λ that is excessively large could result in a loss of infor-
mation at the fine scale. A value of λ= 100 seems to keep a
good balance between fine-scale dynamics and global sea-ice
thickness.

The Cryosphere, 18, 1791–1815, 2024 https://doi.org/10.5194/tc-18-1791-2024



C. Durand et al.: Data-driven surrogate modeling of high-resolution sea-ice thickness in the Arctic 1809

Figure C1. Training and validation (in transparency) losses for the neural networks with one time step in the input. Yellow line represents the
unconstrained neural network and purple the constrained neural network. We observe that adding the global term in the loss during training
allows an important decrease in the global RMSE.

Appendix D: Surrogate modeling

In this section, we present more snapshots of the surrogate
model predictions and results with different types of forcings
and resolutions.

D1 Impact of the resolution

While we observe some smoothing, we wonder about the
gain in training a surrogate model on such a high-resolution
model output from neXtSIM since the fine-scale dynamics
in the data are smoothed by the surrogate model. Experi-
ments were conducted on a smaller-resolution grid by coarse-
graining the original dataset down to 128× 128 pixels. The
surrogate model is trained on this coarse dataset with the ex-
act same method as previously described. The RMSEs from
several resolutions are plotted in Fig. D1. This shows a sys-
tematic improvement over all the resolutions of the surrogate
model trained on the high resolution compared to the coarse
surrogate model, for different lead times.

D2 Short-term forecast

In Figs. D2 and D3 we display several snapshots obtained
from the constrained surrogate model alongside its corre-
sponding neXtSIM state.

D3 Seasonal forecast

In Fig. D4 we can observe several snapshots obtained from
the stable constrained surrogate model alongside its corre-
sponding neXtSIM state. For every time step shown, the sur-
rogate model correctly manages to estimate the global state
of the system. However, the smooth advection appears at the
leading process. It is nonetheless a good approximation of
the sea-ice structure during the full year.

Figure D1. Evaluation of the surrogate model RMSE at various
resolutions. Two surrogate models trained at high resolution (solid
line) and coarse-grained resolution (dashed line) are assessed in
terms of RMSE, in comparison to neXtSIM, and at different scales
and lead times: after 1 iteration (round markers), after 10 iterations
(star markers), and after 20 iterations (hexagonal markers).

D4 CMIP forcings

As explained in Sect. 6, we evaluate our surrogate model ap-
proach with another type of forcing. The forcings are taken
from the ECMWF-IFS-HR (25 km atmosphere and 25 km
ocean) climate model (Roberts et al., 2017). The surface tem-
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Figure D2. The figure presents the surrogate model using three different initialization states (15 May, 1 July, and 1 September). The surrogate
model, with constrained inputs and one-time-step configuration, is run for 5 lead days. The top panel illustrates the neXtSIM output, while
the middle panel showcases the surrogate model output. Contour lines representing the sea-ice extent are displayed in the neXtSIM panel for
both neXtSIM (red) and the surrogate (yellow), while the surrogate model examples omit these contours for clarity.

Figure D3. The figure presents the surrogate model using three different initialization states (15 May, 1 July, and 1 September). The surrogate
model, with constrained inputs and one-time-step configuration, is run for 25 lead days. The top panel illustrates the neXtSIM output, while
the middle panel showcases the surrogate model output. Contour lines representing the sea-ice extent are displayed in the neXtSIM panel for
both neXtSIM (red) and the surrogate (yellow), while the surrogate model examples omit these contours for clarity.
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Figure D4. Snapshots for seasonal forecast of neXtSIM and the surrogate. The surrogate model is run starting from 1 January 2006 for 720
iterations. Results after 100, 300, and 600 iterations are presented in this figure. Results are plotted with the neXtSIM output above and the
surrogate model in the middle panel. In the neXtSIM panel are plotted the contour of the sea-ice extent for both neXtSIM (red) and the
surrogate (yellow). For better clarity, those contours are not represented in the surrogate model examples.

Figure D5. Seasonal forecast of the surrogate model while changing the type of forcing in 2018. The neural network remains exactly the
same as the trained one. It is thus trained with ERA5 forcings. In the test part, the forcings are changed to CMIP6 forcings (blue dotted line).
This forecast skill is compared with neXtSIM and ERA5 forcings (purple solid line), persistence (black dashed line) and daily climatology
(green dashed line).

perature and velocities are taken, projected onto the neXtSIM
grid and normalized to be able to be fit into the input of
the surrogate model. The results are presented in Fig. D5.
We see that there is after 50 d a constant bias difference be-
tween the surrogate with the different forcings, with the same
global behavior. The surrogate model with CMIP6 forcings
correctly handles the decrease in the SIE during September,
but it has difficulties in matching neXtSIM during the next
refreezing period. We hypothesize that this is caused by the
important bias difference between the forcings, neXtSIM be-
ing simulated with ERA5 forcings. In any case, our surrogate
model remains stable when changing the forcings.

D5 Quantification of diffusion

In this section, we describe how the spectral exponent of the
power law is computed, following Clauset et al. (2009). After
normalizing the data coming from Eq. (15), with Simpson’s
rule, we fit the distribution with a function of the form

p(x)=
β − 1
xmin

(
x

xmin

)−β
(D1)
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for x > xmin, which is manually chosen. The log-likelihood
function becomes

L(β)= log
n∏
i=1

β − 1
xmin

(
xi

xmin

)−β
, (D2)

with xi∈(1,...,n) representing the n points above xmin. By dif-
ferentiating this likelihood with respect to β and setting the
result to 0, we obtain its maximum, which yields the estima-
tor equation:

β̂ = 1+ n

[
n∑
i=1

log
xi

xmin

]−1

. (D3)

The computation of the spectral exponent is performed using
this technique across all samples of the test dataset and all
lead times, under the same restrictions. We exclude the first
10 points and the last 20 points of the distribution to focus
on the linear part of the PSD. Indeed, as depicted in Fig. 8b,
after some time, a flattening of the PSD is observed on the
fine scale directly linked to the smoothing of the emulated
sea-ice thickness.

Code and data availability. The source code to build the dataset,
train the neural networks and plot the figures is publicly avail-
able at https://doi.org/10.5281/zenodo.10784995 (Durand, 2024).
neXtSIM simulation outputs can be found at https://github.com/
sasip-climate/catalog-shared-data-SASIP following Boutin et al.
(2022) (https://doi.org/10.5281/zenodo.7277523) and the associ-
ated code therein. Additional atmospheric forcings can be down-
loaded at https://doi.org/10.24381/cds.adbb2d47 (Hersbach et al.,
2023).

Video supplement. A video of the seasonal forecast for the year
2017 is available at https://doi.org/10.5446/62131 (Durand, 2023).
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