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Abstract. Regional-scale surface energy balance (SEB)
models of glacier melt require forcing by coarse-gridded
data from reanalysis or global climate models that need to
be downscaled to glacier scale. As on-glacier meteorologi-
cal observations are rare, it generally remains unknown how
exact the reanalysis and downscaled data are for local-scale
SEB modeling. We address this question by evaluating the
performance of reanalysis from the European Centre for
Medium-Range Weather Forecasts (ERA5 and ERA5-Land
reanalysis), with and without downscaling, at four glaciers
in western Canada with available on-glacier meteorological
measurements collected over different summer seasons. We
dynamically downscale ERA5 with the Weather Research
and Forecasting (WRF) model at 3.3 and 1.1 km grid spac-
ing. We find that our SEB model, forced separately with the
observations and the two reanalyses, yields less than 10 %
difference in simulated total melt energy and shows strong
correlations (0.86) in simulated time series of daily melt en-
ergy at each site. The good performance of the reanalysis-
derived melt energy is partly due to cancellation of biases be-
tween overestimated incoming shortwave radiation and sub-
stantially underestimated wind speed and subsequently tur-
bulent heat fluxes. Downscaling with WRF improves the
simulation of wind speed, while other meteorological vari-
ables show similar performance to ERA5 without downscal-
ing. The choice of WRF physics parameterization schemes
is shown to have a relatively large impact on the simulations
of SEB components but a smaller impact on the modeled to-
tal melt energy. The results increase our confidence in dy-
namical downscaling with WRF for long-term glacier melt
modeling in this region.

1 Introduction

In western Canada, streamflow from glacier runoff during hot
and dry seasons is essential for water supply, hydropower
generation, and agricultural irrigation (Schindler and Don-
ahue, 2006; Anderson and Radić, 2020). Over the last sev-
eral decades, glaciers in this region have already lost and are
increasingly losing a considerable amount of mass (Larsen
et al., 2007; Arendt et al., 2009; Zemp et al., 2015; Hugonnet
et al., 2021). This trend of glacier retreat will continue as
western Canada is expected to see unprecedented changes to
glacierized watersheds, with a predicted loss of more than
70 % of current glacier ice volume by 2100 (Clarke et al.,
2015; Rounce et al., 2023). The regional projections, how-
ever, still carry a large extent of uncertainty, especially at the
local scale of individual glacierized watersheds, where the
impact of glacier retreat on freshwater resources will be the
most consequential (Anderson and Radić, 2020). One of the
main sources of this uncertainty comes from the use of em-
pirical models of glacier melt, commonly known as temper-
ature index models. While these models are relatively sim-
ple to implement in the regional and global assessments of
glacier mass balance, they are heavily reliant on calibration
and on temperature as the sole driving variable of glacier melt
(Hock, 2005). Because of their high sensitivity to calibration
parameters and to downscaled temperature data from reanal-
ysis or global climate models, the mismatch between mod-
eled and observed seasonal melt rates of individual glaciers
can exceed 50 % (e.g., Radić et al., 2014; Clarke et al.,
2015). While substantial progress has been made over the last
decade to advance the ice dynamics modeling by transition-
ing from empirical towards physics-based approaches (e.g.,
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Rounce et al., 2023), melt modeling of glaciers in western
Canada, as well as worldwide, still heavily relies on empiri-
cal approaches.

In contrast to the empirical models, physics-based models
of glacier melt account for all components in the surface en-
ergy balance (SEB) that affect surface melt. Since these mod-
els capture the physical processes that are happening at the
glacier surface, they do not rely on the temporal stationarity
of melt factors, as is the case in temperature index models.
However, they require a larger number of input variables, in-
cluding incoming shortwave and longwave radiation, temper-
ature, relative humidity, wind speed, and precipitation. SEB
models of various complexity have been applied to individ-
ual glaciers worldwide, including several glaciers in west-
ern Canada (e.g., Ebrahimi and Marshall, 2016; Fitzpatrick
et al., 2017; Marshall and Miller, 2020; Kinnard et al., 2022),
showing good resemblance between modeled and observed
melt, as long as the SEB models are forced by on-glacier
meteorological observations. The caveat with these models,
however, is that the on-glacier measurements of all SEB com-
ponents are sparse in space (fewer than 100 sites worldwide
and only a handful in western Canada) and of short duration
(over one or two melt seasons on average). Thus, to produce
long-term simulations of glacier melt and mass balance at re-
gional scales, the input to SEB models needs to come from
readily available climate reanalysis datasets or global climate
models (GCMs). Since their native output is provided on a
spatial grid that is too coarse to adequately resolve key pro-
cesses contributing to local-scale melt, the scale mismatch
is often addressed through statistical and, to a much lesser
extent, dynamical downscaling.

Due to its simplicity, statistical downscaling (e.g., correct-
ing temperature with elevation using an atmospheric lapse
rate) is a more popular technique than the computation-
ally expensive dynamical downscaling, i.e., running a high-
resolution regional climate model. Nevertheless, as statistical
downscaling relies on simplified assumptions (e.g., the ex-
istence of linear relationships between local and large-scale
climate variables), the technique introduces another source
of error or uncertainty into the model output (Marzeion et al.,
2020). The coarse spatial resolution of reanalysis and GCMs,
as well as the limitations with statistical downscaling, led to
a relatively poor performance of SEB models in the few ex-
isting modeling studies applied on regional and global scales
(e.g., Noël et al., 2017; Shannon et al., 2019). An alternative
to statistical downscaling is dynamical downscaling, which
is a physics-based approach that utilizes a regional climate
model (RCM), nested within a reanalysis or global climate
model, to compute meteorological fields at a desirable spa-
tial resolution, often shorter than 10 km. A well-configured
high-resolution RCM, for example, can outperform radar and
satellite-derived estimates of total annual rain and snowfall
within mountainous regions (Lundquist et al., 2019). While
dynamical downscaling does not rely on on-glacier meteoro-
logical observations, as is the case with the statistical down-

scaling, these observations are still critical for the evaluation
of dynamically downscaled fields.

Over the last few decades, a commonly used RCM
for a broad range of downscaling applications has been
the Weather Research and Forecasting (WRF) model, an
open-source and continuously upgraded mesoscale numeri-
cal weather prediction model (Skamarock and Klemp, 2008).
To date, however, relatively few studies have evaluated the
use of WRF for SEB simulations of glacier melt, and to our
knowledge, no evaluation was performed for glaciers in west-
ern Canada. A challenge in using WRF for glacier studies
is the lack of on-glacier meteorological observations needed
to evaluate the downscaled variables and the high computa-
tional cost in running WRF to obtain long-term climate simu-
lations. Out of the existing studies, only a few used on-glacier
station data (e.g., Mölg and Kaser, 2011; Claremar et al.,
2012; Eidhammer et al., 2021), while others relied on the
observations from weather stations in the glaciers’ vicinity
(e.g., Collier et al., 2013, 2015). One of the first applications
of WRF in glacier studies has simulated 2 months of SEB and
mass balance at a glacier on Mount Kilimanjaro (Mölg and
Kaser, 2011). Their downscaled fields at an hourly time step
and at around 0.8 km grid spacing showed strong a correla-
tion with on-glacier hourly meteorological observations. The
successful WRF performance was not corroborated, how-
ever, at the coarser 3 km grid spacing. Another study applied
WRF with a nesting scheme of 24 km (original domain),
8 km (nested domain), and 2.7 km (innermost nested domain)
grid spacing to simulate a 2-year surface mass balance for
three glaciers in Svalbard (Claremar et al., 2012). Strong
correlations between the output at 2.7 km grid spacing and
the on-glacier observations were obtained for most down-
scaled variables, except for the near-surface wind speed. Col-
lier et al. (2013, 2015) developed a high-resolution interac-
tive model at a glacier–atmosphere interface and applied it to
several glaciers in Karakoram over two melt seasons. The
model used three WRF domains (33, 11, and 2.2 km grid
spacing) and was directly coupled with the incorporated SEB
model, allowing for the feedback mechanism at the glacier–
atmosphere interface. Although on-glacier observations were
not available for the model evaluation, the downscaled near-
surface air temperature and wind speed at 2.2 km grid spac-
ing agreed well with observations from the glaciers’ vicinity,
while poor performance was found for incoming shortwave
radiation and precipitation (Collier et al., 2013). More re-
cently, Eidhammer et al. (2021) used WRF downscaling to
1 km grid spacing coupled with snowpack modeling through
the WRF-Hydro model (Gochis et al., 2020) and showed a
good agreement between the WRF output and in situ meteo-
rological observations at a glacier in Norway over 4 years.

The relatively short periods (from a few months to sev-
eral years) of WRF simulations in the aforementioned glacier
studies highlight the high computational cost of dynami-
cal downscaling to a fine (∼ 1 km) spatial resolution. While
there are studies at glacierized and mountainous terrain that
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used a sub-kilometer (∼ 100 m) grid spacing in WRF, their
fine-resolution simulations were produced for only a hand-
ful of selected days (e.g., Gerber et al., 2018; Goger et al.,
2022). Considering the high computational cost, the finest
used spatial resolution in WRF for downscaling long-term
climate simulations over a region has been on the order of
a kilometer (e.g., Erler et al., 2015; Annor et al., 2018; Li
et al., 2019). Therefore, when incorporating WRF into long-
term glacier evolution modeling at regional scales, downscal-
ing to a grid spacing of approximately 1 km seems to be the
computationally optimal target.

A relatively underexplored limitation in using WRF in
glacier studies is the model’s potentially large sensitivity to
the choice of physics parameterization schemes, as noted in
many non-glacier studies (e.g., Liu et al., 2011; Zeyaeyan
et al., 2017; Gbode et al., 2019; Pervin and Gan, 2020; Shi-
rai et al., 2022). When deciding on a WRF configuration for
a given application, users can choose among different pa-
rameterization schemes in each category, including those for
radiation, cumulus convection, microphysics, and the plan-
etary boundary and surface layers. The WRF model is not
only sensitive to the choice of parameterization schemes in
each physics category but also to their combination across
different categories (Jung and Lin, 2016). Since it is compu-
tationally expensive to run all possible combinations of pa-
rameterizations in order to determine an optimally perform-
ing configuration, a common practice is to adopt the same
or similar WRF configuration to that used in previous appli-
cations. While the WRF sensitivity to the choice of physics
parameterizations has been explored extensively in studies
on climate dynamics and related disciplines, to our knowl-
edge, no systematic sensitivity analysis has been conducted
for glacier melt modeling.

A majority of aforementioned glacier studies with WRF
have downscaled the climate fields from European Cen-
tre for Medium-Range Weather Forecasts (ECMWF) Re-
Analysis Interim (ERA-I; Dee et al., 2011). Relatively re-
cently, ECMWF released ERA5 (Hersbach et al., 2020), the
ERA-I successor with an enhanced modeling and data as-
similation framework that utilizes a larger number of im-
proved observations compared to ERA-I. ERA5 data are also
provided at a denser grid (30 km versus 80 km) and shorter
time step (hourly versus 3 h) than its predecessor. As part of
the ERA5 framework, ERA5-Land reanalysis was created at
even denser grid (9 km) by forcing the land component of
the ERA5 (Muñoz Sabater et al., 2021). Since the releases of
both ERA5 and ERA5-Land, several studies have success-
fully applied these datasets for mass balance modeling of
individual glaciers, inducing several glaciers in central and
high-mountain Asia (e.g., Azam and Srivastava, 2020; Arndt
et al., 2021; Srivastava and Azam, 2022; Kronenberg et al.,
2022) and two glaciers in western Canada (Mukherjee et al.,
2022). To evaluate the data from ERA5-Land, Mukherjee
et al. (2022) used meteorological observations from a range
of sources, but none of them included observations from their

study glaciers. Despite the fine spatial resolution and im-
proved performance of ERA5 relative to its predecessor, it
remains unknown how well the reanalysis resolves key input
variables for SEB modeling at glaciers in western Canada.

Our ultimate goal is to develop a regional glaciation
model, with an incorporated SEB component for melt mod-
eling, in order to project a long-term glacier evolution across
western Canada. This study, as a first step toward this goal,
aims to close several identified knowledge gaps by address-
ing the following questions:

1. How well can ERA5 and ERA5-Land resolve the key
input variables for SEB modeling at glaciers in western
Canada?

2. For the SEB modeling at these glaciers, how well can
WRF downscale the ERA5 reanalysis to a grid spacing
of several kilometers?

3. How sensitive are the downscaled variables to the
choice of WRF parameterization schemes, and is there
one most optimally performing set of parameterization
schemes for our WRF application?

To address these questions, we will make use of our multi-
summer and multi-station meteorological observations at
four glaciers in western Canada, including three in the inte-
rior of British Columba and one in the Yukon. The downscal-
ing with WRF will be performed to 3.3 and 1.1 km grid spac-
ing, using a set of different physics parameterization schemes
in order to determine the “optimal” schemes for our research
objectives. In the sections that follow, we start by introduc-
ing the study sites and meteorological observations, followed
by the description of the WRF configuration and the SEB
model. We then describe the evaluation analysis and sensi-
tivity tests used to determine the optimal WRF parameteriza-
tion schemes. The paper is finalized with the presentation of
results, a discussion, and conclusions.

2 Data and methods

In this section, we present the observations collected from
automatic weather stations (AWSs) at our four study glaciers,
which are used as a reference dataset for the evaluation of
ERA5 and ERA5-Land reanalysis data, as well as WRF-
downscaled data. We then describe the setup of the WRF
model, including the choice of parameterization schemes to
be used in the sensitivity tests. The AWS data, as well as
the reanalysis and WRF output, are used to force a simple
SEB model to simulate daily time series of surface energy
available for melt over the observational period at the study
glaciers. We briefly describe the SEB model and introduce
the evaluation metrics used to investigate the optimal con-
figurations with the physics parameterization schemes in the
WRF model.
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2.1 Field sites and measurements

On-glacier meteorological measurements, as part of differ-
ent research projects over the last decade, have been col-
lected from three glaciers in the Interior Mountains of British
Columbia and one large glacier in the St. Elias Mountains in
the Yukon (Fig. 1). The AWSs intermittently recorded data
for glacier sites within different summer seasons between
2012 and 2019 (Table 1). Five AWSs recorded local mete-
orological variables and energy and mass fluxes in ablation
zones (Castle Creek Glacier, 2012; Nordic Glacier, 2014;
Conrad Glacier, 2015, 2016; Kaskawulsh Glacier, 2019),
while one AWS was set up in the accumulation zone of the
Conrad Glacier in 2016. Topographic maps of these glaciers
with the AWS locations are shown in Fig. 2.

All AWSs measured the following variables: incoming and
outgoing components of shortwave and longwave radiation
fluxes, 2 m air temperature and humidity, atmospheric pres-
sure, 2 m wind speed and direction, liquid precipitation, tem-
perature in the surface layer from the surface down to 4 m
depth, and surface height changes as an indicator of solid
precipitation and ablation at the site. In addition to these
observations, high-frequency (20 Hz) measurements of wind
speed, air temperature, and humidity were collected by sonic
anemometers and gas analyzers to assess the turbulent heat
fluxes through the eddy-covariance (EC) method. More de-
tails on the specifications of the sensors and accuracy control
at each site are given in Radić et al. (2017), Fitzpatrick et al.
(2017, 2019), and Lord-May and Radić (2023). The meteo-
rological sensors at all the sites, except Castle Creek Glacier,
were housed on a quadpod, which provided a stable plat-
form (where any tilt was monitored by an inclinometer) that
lowered as the ice melted and maintained a nearly constant
height of the sensors above the surface (Fig. 1). All variables
were saved as 1 min averages, except for rainfall, which was
saved as 1 min totals, while the EC-derived turbulent fluxes
were calculated as 30 min averages. A time-lapse camera in
close proximity (∼ 30 m) to each AWS was used for a vi-
sual record of surface and atmospheric conditions during the
observational period.

Castle Creek Glacier is located in the Cariboo Mountains
and contributes meltwater to Castle Creek, a tributary of the
Fraser River. The AWS on Castle Creek Glacier operated at
the lower part of the glacier, which was gently sloping, with
an approximate mean gradient of 7◦ (Fig. 2). A melting ice
surface was present during the observational period of 24 d
in 2012, with some intermittent fresh snowfall events (Radić
et al., 2017). Nordic and Conrad glaciers lie in the Purcell
Mountains in eastern British Columbia and are located within
the Columbia River basin. The surface slope at the location
of the AWS on Nordic Glacier was 13 ◦, while 8 ◦ were ob-
served for Conrad Glacier in the ablation area (AWS1) and
3 ◦ in the accumulation area (AWS2). Over the course of 46 d
in 2014 at the Nordic Glacier site, a transitional snow surface
was present for the first 4 d, with partial snow cover dimin-

ishing to a fully bare ice surface (Fitzpatrick et al., 2017).
A melting ice surface was present during observations for
Conrad Glacier in 2015 and for most of the observational
period in 2016 at the AWS in the ablation zone (Fitzpatrick
et al., 2019). At the AWS in the accumulation zone of Conrad
Glacier, a snow surface was present throughout the observa-
tional period in 2016 and for the first 10 d at the AWS in the
ablation zone (Fitzpatrick et al., 2019). Kaskawulsh Glacier
is located in the St. Elias Mountains and is part of the Klu-
ane Icefield. The surface slope at the location of the AWS
in the summer of 2019 was smaller than 2 ◦. Throughout the
observational period, the ice surface was at the melting point
(Lord-May and Radić, 2023).

2.2 Reanalysis data

Global climate reanalysis products combine modeled data
with observations from across the world to provide a glob-
ally complete and consistent dataset of multiple climate vari-
ables of the recent past. ERA5 reanalysis provides hourly es-
timates of a large number of atmospheric, land, and ocean
surface variables from 1950 to the present at a horizontal grid
spacing of 30 km for the surface, as well as 37 pressure lev-
els from 1 hPa (top level) to 1000 hPa (bottom level; Hers-
bach et al., 2020). ERA5-Land provides only surface vari-
ables on land at the interpolated 9 km grid spacing (Muñoz
Sabater et al., 2021). These data are a refinement of the
land component of the ERA5 reanalysis, with a higher spa-
tial resolution forced by meteorological fields from ERA5.
We use mainly the surface variables (details given below)
from hourly ERA5 and ERA5-Land reanalysis. Hourly two-
and three-dimensional ERA5 reanalysis data are also used to
provide initial and lateral boundary conditions to the WRF
model.

2.3 WRF setup and parameterization schemes

The Advanced Research WRF (ARW) dynamics solver is a
non-hydrostatic atmospheric model, with fully compressible
Euler equations, solved on an Arakawa C grid stagger in the
horizontal and a terrain-following hydrostatic pressure co-
ordinate in the vertical (Skamarock et al., 2019). The model
uses a time split integration, using a third-order Runge–Kutta
scheme, with a smaller time step for the acoustic wave and
gravity wave modes (Skamarock et al., 2019). We ran the
WRF model, version 4.1.3, configured with four nested do-
mains of 30 km (d1), 10 km (d2), 3.3 km (d3), and 1.1 km (d4)
horizontal grid spacing, with the parent domain (d1) covering
the bulk of North America and the northeastern section of the
Pacific Ocean (Fig. 3). The domains d1 and d2 are kept the
same for the three glaciers in the interior of British Columbia
(Castle Creek, Nordic, and Conrad), while d3 and d4 are set
differently for each of the three glaciers in order to be cen-
tered at the AWS location. We use a one-way nesting ap-
proach, where WRF is first run for the outer domain and then
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Figure 1. Map of western Canada with the geographic locations of the four study glaciers (black triangles on map), as well as photographs
of the station setup for (a) Kaskawulsh Glacier in 2019 (photo by Cole Lord-May), (b) Conrad Glacier in 2016 (photo by Noel Fitzpatrick),
(c) Nordic Glacier in 2014 (photo by Noel Fitzpatrick), and (d) Castle Creek Glacier in 2012 (photo by Valentina Radić).

Table 1. Characteristics of the study sites. Only days with 24 h observations have been taken into account for the observational period.

Glacier Elevation range (m) AWS coordinates (lat, long) Observation period

Castle Creek 1900–2800 53.0508 ◦, −120.4443 ◦ 23 Aug–15 Sep 2012

Nordic 2000–2900 51.4343 ◦, −117.6997 ◦ 13 Jul–27 Aug 2014

Conrad 1800–3200 50.8249 ◦, −116.9225 ◦ 18 Jul–5 Sep 2015
AWS1: 50.8233 ◦, −116.9199 ◦ 20 Jun–24 Aug 2016
AWS2: 50.7822 ◦, −116.9120 ◦ 20 Jun–24 Aug 2016

Kaskawulsh 760–2580 60.7589 ◦, −139.1246 ◦ 1 Jul–26 Aug 2019

iteratively fed into the nested domains as lateral boundary
conditions. Since the outer domain has a larger grid spacing
and time step than the nested domains, interpolations in both
space and time are required. This process is repeated for each
pair of nested domains. WRF is initiated at the beginning of
the observational period for each summer season, while the
first 24 h are discarded as a spin-up period. We chose 60 ver-
tical levels, with a model top level at 50 hPa. We use a time
step of 2.2 s for the innermost domain (d4) and save the se-
lected set of variables as hourly and daily averages.

All WRF model runs use the same forcing (ERA5) and in-
put data on land characteristics, such as topography and land
categories (Tables 2, 3). Examples of the land cover data used
for WRF runs at Conrad and Kaskawulsh glaciers are shown
in Fig. 4, while examples for the topography data are shown
in Fig. S1 in the Supplement. Land cover data are taken
from the European Space Agency (ESA) Climate Change
Initiative (CCI) dataset (Earth Resources Observation And
Science (EROS) Center, 2017) but are converted to the 24
United States Geological Survey (USGS) land use categories

(Anderson et al., 1976) implemented in WRF. Initially, the
land category for a few grid cells overlapping with our glacier
locations in the d3 and d4 domains did not correctly display
the snow/ice category but showed the bare ground tundra or
evergreen needleleaf forest category instead. These incorrect
categories were manually corrected to the snow/ice land cat-
egory. The elevation of the AWSs in reality differs from the
elevation of grid cells representing these AWS locations in
ERA5, ERA5-Land, and WRF (Table S1), with the small-
est differences, as expected, for the d4 domain (1.1 km grid
spacing) in WRF. As our sites are located in complex moun-
tainous terrain, slope and shadow effects on shortwave radi-
ation are activated in WRF. The sea surface temperature is
updated daily in WRF, with hourly input data from ERA5 re-
analysis. The WRF model was run on our department’s high-
performance computing cluster using three nodes (each with
20 cores) per glacier site.

The WRF model comes with various options for physics
parameterizations (Skamarock et al., 2019), but previous
glacier studies with WRF have used some parameterization
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Figure 2. Topography maps with total glacier area (in parentheses) of the domain containing the study glaciers, including the outline of each
glacier from the Randolph Glacier Inventory (RGI V6; RGI Consortium, 2017). The map with the Kaskawulsh Glacier, showing the bulk
of the glacier’s ablation area, also illustrates the outlines of other smaller glaciers in the region. Different markers on the map (diamond,
triangle, circle, etc.), corresponding to different years of observations, are the locations of the AWSs. The topography maps were created
from the United States Geological Survey (USGS) Global Multi-resolution Terrain Elevation Data 2010 (GMTED2010) digital elevation
model (DEM; Earth Resources Observation And Science (EROS) Center, 2017).

Figure 3. Topography map of the region with the borders of the nested domains used in the WRF model setup. (a) Conrad and (b) Kaskawulsh
Glacier. The insets are d1 (the outermost domain) with 30 km grid spacing, d2 with 10 km grid spacing, d3 with 3.3 km grid spacing, and
d4 (the innermost domain) with 1.1 km grid spacing including the glacier (black dot). The topography maps were created from USGS
GMTED2010 DEM (Earth Resources Observation And Science (EROS) Center, 2017).
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Figure 4. Land cover categories for the domain covering the (a) Conrad and (b) Kaskawulsh glaciers from ESA CCI Land Cover at 300 m
grid spacing (European Space Agency (ESA), 2017) in comparison to the land categories from WRF at 3.3 and 1.1 km grid spacing. Markers
indicate the AWS sites in different years. The outlines of the glaciers (black lines) are taken from the Randolph Glacier Inventory (RGI V6;
RGI Consortium, 2017). There are 24 land cover categories, while the category enumerated as 24 corresponds to snow/ice (colored as white
in the figures). In the map in panel (b) with the Kaskawulsh Glacier, the neighboring glaciers are also shown.

schemes more often than others. For example, the most com-
monly used schemes in glacier studies include RRTMG (Ia-
cono et al., 2008), CAM (Collins et al., 2004), Dudhia (Dud-
hia, 1989) and Goddard (Max and Suarez, 1994; Matsui
et al., 2018) for radiation, the Grell 3D ensemble (Grell,
1993; Grell and Dévényi, 2002), the Kain–Fritsch (Kain,
2004) and the Betts–Miller–Janjić (Janjić, 1994) schemes
for cumulus convection, and the Morrison two-moment
(Morrison et al., 2009), the Thompson (Thompson et al.,
2008) and the updated aerosol-aware Thompson–Eidhammer
(Thompson and Eidhammer, 2014) schemes for micro-
physics. The local closure Mellor–Yamada–Nakanishi–Niino
(MYNN) level 2.5 (Nakanishi and Niino, 2006, 2009; Ol-
son et al., 2019) and Mellor–Yamada–Janjić (Janjić, 1994;
Mesinger, 1993) schemes, as well as the non-local closure
Yonsei University (Hong et al., 2006) scheme, are the ones
most commonly used for the boundary layer, and the re-
vised MM5 (Jiménez et al., 2012) and Eta similarity (Monin
and Obukhov, 1954; Janjić, 1994, 1996, 2002) schemes are
most often used for the surface layer. The Unified Noah
(Tewari et al., 2004) and Noah-MP (Niu et al., 2011; Yang
et al., 2011) land surface models are most commonly used
in glacier studies. Noah-MP, which is a more sophisticated
version of the Unified Noah model, includes multiple snow
layers, representing percolation, retention, and refreezing of
meltwater within the snowpack rather than in the snow–

atmosphere and snow–soil interface, as is the case with the
Unified Noah model (Suzuki and Zupanski, 2018). The WRF
simulations over non-glacierized terrain are shown to vary
substantially, depending on which of the two land surface
models is used (Milovac et al., 2016).

We chose our initial set of parameterizations based on
those most commonly used in previous glacier studies (e.g.,
Mölg and Kaser, 2011; Claremar et al., 2012; Mölg et al.,
2012; Collier et al., 2013, 2015). This set of parameteri-
zations represents our reference (REF) model configuration
(Table 3), while we also test different parameterizations as
part of our sensitivity analysis. In this analysis, we perform
25 independent WRF runs, each with only one different pa-
rameterization scheme from those used in REF (Table S2).
The different parameterizations are selected from a set of
previously used ones in a range of WRF glacier studies, as
well as a study that used WRF for hydrological modeling
across western Canada (Erler et al., 2014). For each set of
parameterizations, WRF is run for a period of 7 d (6 d af-
ter discarding 24 h of spin-up time) at the four sites, namely
Conrad Glacier in 2015 and in 2016 (accumulation and ab-
lation zone) and Nordic Glacier in 2014. The 6 d periods
are selected randomly to represent different time windows
throughout the early, middle, and late melt season.

We use these sensitivity runs to investigate whether there is
a better configuration than REF, i.e., a best-performing con-
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Table 2. WRF model setup for this study. The WRF physics param-
eterization schemes are given in Table 3.

Model configuration

Simulation period Conrad: 19 Jun–24 Aug 2016
17 Jul–5 Sep 2015
Nordic: 12 Jul–27 Aug 2014
Castle: 22 Aug–15 Sep 2012
Kaskawulsh: 30 Jun–26 Aug
2019

Time step 60, 20, 6.7, 2.2 s

Spin-up time 24 h

Map projection Lambert conformal conic

Horizontal grid spacing 30 km: 121× 121 grid points,
10 km: 121× 121,
3.3 km: 121× 121,
1.1 km: 121× 121 (Nordic,
Kaskawulsh: 91× 91)

Vertical levels 60 eta levels

Model top 50 hPa

Lateral boundaries and input

Forcing data ERA5a (30 km)

Land cover ESA CCIb (300 m)

Topography USGS GMTED2010c (1 km)

Dynamics

Vertical velocity damping On

Horizontal diffusion Computed in physical space

Sixth-order numerical diffusion On, with prohibited up-gradient
diffusion

Damping coefficient 0.02

Model physics

Sea surface temperature update Hourly from ERA5

Effects on shortwave radiation Slope effects and neighboring
point shadow effects

Sea ice albedo Function of air and skin temper-
ature and snowd

a Hersbach et al. (2018); b European Space Agency (ESA) (2017); c Earth Resources
Observation And Science (EROS) Center (2017); d Mills (2011)

figuration for our study sites. To this end, we evaluate the
output from each sensitivity run against our AWS observa-
tions over the same 6 d period. The evaluation is performed
for the meteorological variables relevant for the SEB model-
ing (described in Sect. 2.4). Our goal is to determine the best-
performing sensitivity run in each category of physics param-
eterization schemes (radiation, cumulus convection, micro-
physics, planetary boundary, surface layer, and land surface
model). We focus on the following two approaches:

– minNRMSE configuration. We determine the best-
performing sensitivity run in each category of physics
parameterizations as the one with a minimum normal-
ized root mean square error (NRMSE) in the modeled
melt energy, where the reference data are the time se-
ries of modeled daily melt energy derived from the
AWS data. The final optimal configuration, labeled min-
NRMSE, includes the best parameterization schemes
from each of the categories.

– TOPSIS configuration. We determine the best-
performing sensitivity run in each category using the
multi-criteria decision-making method known as the
Technique for Order Preference by Similarity to the
Ideal Solution (TOPSIS), as originally introduced in
Hwang and Yoon (1981). TOPSIS aims to identify
the best alternative based on the shortest geometric
distance from the positive ideal solution and the longest
geometric distance from the negative ideal solution.
Instead of using just one evaluation metric, such as
NRMSE, we introduce additional metrics, including the
Spearman rank correlation coefficient (rsp), normalized
Nash–Sutcliffe model efficiency coefficient (NNSE;
Nash and Sutcliffe, 1970; Nossent and Bauwens, 2012),
and mean absolute percentage error (MAPE). The
evaluation metrics are all weighted equally across the
sites. Similar to the minNRMSE method above, the
reference data are the modeled melt energy assessed
from AWS observations. This method has been applied
in multiple studies to find the best physics parameter
schemes in WRF (e.g., Stergiou et al., 2017; Wang
et al., 2021). We follow the TOPSIS methodology
described in Tzeng and Huang (2011).

2.4 Surface energy balance model

Surface melt modeling through SEB accounts for the surface
energy budget at the glacier–atmosphere interface and thus
calculates the energy available for melt once the surface is at
the melting point. Here we use a relatively simple SEB model
that considers only the key contributors to total surface melt
energy over a summer season at mid-latitude glaciers (Hock,
2005). The modeled energy available for melt, QM (Wm−2)
at a given point on a glacier, is derived as

QM =Kin(1−α)+Lin− σT
4

0 +QH+QL, (1)

where Kin and Lin are the incoming shortwave and long-
wave radiation, respectively, α is the surface albedo, and
QH and QL are the sensible and latent heat fluxes, respec-
tively. T0 is the glacier’s surface temperature, and σ is the
Stefan–Boltzmann constant. The outgoing longwave radia-
tion is approximated using the Stefan–Boltzmann law with
an emissivity set to unity, where T0 is set to 0 ◦C, as it is
also confirmed with measurements at our glacier sites (Fitz-
patrick et al., 2017, 2019; Lord-May and Radić, 2023). All
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Table 3. WRF physics parameterizations, for different physical processes, used in the three configurations, namely REF, minNRMSE, and
TOPSIS. In the parameterization for the cumulus process, the on/off label in parentheses refers to the parameterization being switched “on” or
“off” in each of the WRF domains, with the following order: d1 (30 km), d2 (10 km), d3 (3.3 km), and d4 (1.1 km). REF is the reference model
configuration, and minNRMSE and TOPSIS are the configurations of the best-performing physics parameterization schemes according to
the 25 sensitivity runs (Table S2) based on minimum normalized root mean square error (NRMSE) and the Technique for Order Preference
by Similarity to the Ideal Solution (TOPSIS; Hwang and Yoon, 1981), respectively.

Process REF minNRMSE TOPSIS

Microphysics Thompsona Thompson Thompson
Land surface model Noah-MPb Unified Noahc Noah-MP
Longwave radiation RRTMGd RRTMe RRTM
Shortwave radiation RRTMG Dudhiaf Dudhia
Cumulus Grell 3D ensembleg Grell 3D ensemble Betts–Miller–Janjićh

(on – on – off – off) (on – on – on – off) (on – on – on – on)
Planetary boundary layer MYNN i Level 3 MYNN Level 3 MYNN Level 3
Surface layer MYNN MYNN MYNN

a Thompson et al. (2008); b Niu et al. (2011); Yang et al. (2011); c Tewari et al. (2004); d Iacono et al. (2008); e Mlawer et al.
(1997); f Dudhia (1989); g Grell (1993); Grell and Dévényi (2002); h Janjić (1994); i Nakanishi and Niino (2006, 2009), Olson
et al. (2019)

variables in the model are represented as their daily mean val-
ues. Fluxes are defined as positive (negative) when directed
towards (away from) the surface. Once the surface tempera-
ture reaches 0 ◦C and stays at the melting point throughout
the summer season, a positive QM in Eq. (1) drives melt.

Given our focus on the key seasonal SEB components,
we neglect the ground heat flux and the heat flux from rain,
since both have been shown to give negligible contributions
to the total seasonal melt at mid-latitude glaciers (Sicart et al.,
2005; Andreassen et al., 2008; Gillett and Cullen, 2011), as
well as at our study sites (Fitzpatrick et al., 2017; Fitzpatrick,
2018; Lord-May and Radić, 2023). The rain heat flux, how-
ever, can be a substantial contributor (up to 20 %) to daily
melt energy on a day with extreme rainfall (Fitzpatrick et al.,
2017), but the uncertainty in the model used to assess the rain
heat flux is relatively large (Hock, 2005; Fitzpatrick et al.,
2017). For these reasons, we neglect the heat flux in the
SEB model but will include precipitation, both as rainfall and
snowfall, in the evaluation analysis.

For the simplicity of the model, we also neglect empiri-
cal correction schemes commonly applied to the shortwave
radiation fluxes, such as separation into direct and diffuse
components, as in Hock and Holmgren (2005). These correc-
tions, however, are shown to have minor effect on simulated
seasonal melt at our sites in the interior of British Columbia
(Fitzpatrick et al., 2017). The turbulent heat fluxes are calcu-
lated using the bulk aerodynamic method as follows:

QH =
p

p0
ρa cp CH Uz (Tz− T0), (2)

QL =
0.622
p0

ρa Lv CL Uz (ez− e0), (3)

where Uz is the mean near-surface wind speed at height z,
and Tz and ez are mean air temperature and vapor pressure

at height z (2 m at our AWSs), respectively. e0 is the mean
vapor pressure, ρa is air density, cp is specific heat capacity
of air at constant pressure, and Lv is the latent heat of va-
porization of snow or ice. p0 is the air pressure at standard
sea level, p is the actual air pressure, and CH and CL are
dimensionless exchange coefficients for sensible and latent
heat, respectively. The exchange coefficients are parameter-
ized following the Monin–Obukhov stability theory (Monin
and Obukhov, 1954) and depend on the surface roughness
for momentum (z0v), temperature (z0T ), and humidity (z0q ),
as well as on the atmospheric stability conditions in the sur-
face boundary layer. On the one hand, we use constant values
for these three roughness lengths for each site, which have
been adopted from the EC-derived values determined from
previous studies at these sites (Table S3; Radić et al., 2017;
Fitzpatrick et al., 2017, 2019; Lord-May and Radić, 2023).
On the other hand, for the stability corrections and based on
the assessed stability conditions, we use the functions ap-
plied previously in Fitzpatrick et al. (2017). The order of
magnitude in these EC-derived values for roughness lengths
(z0v = 10−3 m; z0T = z0q = 10−5 m) agree with commonly
assumed values for glaciers in mid-latitudes (Hock, 2005).
Vapor pressure ez at height z is calculated from the relative
humidity RH at height z using the August–Roche–Magnus
formula (Alduchov and Eskridge, 1997).

2.5 Evaluation analysis

The primary goal of the evaluation analysis is to assess the
performance of the SEB model, forced with either ERA5 or
WRF data, in simulating seasonal melt energy at our sites.
To do so, we evaluate the total simulated energy available
for melt (QM; Eq. 1) and the daily time series of QM, as
calculated from the SEB model forced with the reanalyses
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Table 4. Mean seasonal roughness lengths (m) for momentum (z0v)
derived from the observations (AWS), ERA5, and WRF (3.3 km and
1.1 km) at each study site.

Site AWS
ERA5 WRF WRF

(30 km) (3.3 km) (1.1 km)

Castle Creek 2012 0.003 0.067 0.002 0.002
Nordic 2014 0.003 0.936 0.002 0.002
Conrad 2015 0.003 1.169 0.002 0.002
Conrad 2016 AWS1 0.001 1.166 0.002 0.002
Conrad 2016 AWS2 0.003 1.166 0.002 0.002
Kaskawulsh 2019 0.001 0.001 0.002 0.002

(ERA5; ERA5-Land) and the WRF output, against the refer-
ence calculations when the same SEB model is forced with
the AWS data. Thus, the input for the SEB model, i.e., the
atmospheric variables Kin, Lin, T , RH, and U , are taken
from (1) the AWS at each site, representing the reference or
true values, (2) ERA5, (3) ERA5-Land, and (4) WRF at grid
spacings of 3.3 and 1.1 km, using each of the three config-
urations (REF, minNRMSE, and TOPSIS). For the reanaly-
sis and WRF, only the data from the grid cell covering each
study site are used.

As we are interested in the evaluation of meteorological
rather than surface variables (albedo and surface roughness),
we use in situ observations of daily surface albedo and sea-
sonally averaged roughness lengths in the SEB model. These
surface variables could have been taken directly from the re-
analysis and WRF; however, we found that these values can
differ substantially from the observed ones throughout the
observational period (Fig. 5 and Table 4). The discrepancy
between WRF and the observed albedo on glaciers, espe-
cially in the ablation zone, has also been noted in previous
glacier studies (Collier et al., 2013; Eidhammer et al., 2021).
Thus, to avoid any evaluation biases originating in poorly
assigned surface variables, we stick to the choice of using
observed surface variables in the SEB model. We note that
while we incorporate observed albedo into the SEB model,
the inaccurately simulated albedo in WRF still influences
the near-surface meteorological forcing fields. The observed
daily surface albedo is calculated as the ratio of measured
daily totals (in local daylight hours) of reflected and incom-
ing shortwave radiation at each site. The incoming shortwave
radiation at the surface is taken from these datasets without
any further modifications (e.g., separation into direct and dif-
fuse radiation).

Since the elevations of the grid cells from the reanalyses
and WRF differ from the actual AWS elevations (Table S1),
we perform a lapse rate correction on the temperature data
from these datasets. Here we do so by calculating a daily
averaged lapse rate from a regression between ERA5 tem-
perature and geopotential height at multiple pressure levels
for each glacier site. This time series of daily lapse rates is
then used to correct the time series of daily 2 m air tempera-

ture (T ) from the reanalyses and WRF over the observational
period.

Near-surface wind speeds in the reanalyses and WRF are
given at a height of 10 m above the surface, while the AWS
wind data were measured at a height of 2 m above the sur-
face. A common correction for the difference in wind speed
heights is based on the assumption of a logarithmic wind pro-
file (e.g., Claremar et al., 2012; Giese et al., 2022), which
rarely takes place at our study sites, especially those in the
interior of British Columbia, where katabatic flow with low
(< 3 m above surface) wind speed maxima prevails during
a summer season (e.g., Fitzpatrick et al., 2017; Radić et al.,
2017). The correction based on the logarithmic wind profile
may therefore introduce an additional bias (underestimation)
of wind speed relative to the observed wind speed at 2 m.
We therefore chose not to correct for the height difference in
the wind datasets. The remaining variables, Lin and RH, are
also taken directly from the reanalysis and WRF without any
modifications.

For each glacier site, we evaluate how closely ERA5,
ERA5-Land, and WRF (1.1 and 3.3 km) resemble the ob-
served components of the SEB, as well as the total energy for
melt (QM) derived from the SEB model forced by AWS data.
To do so, we use the same evaluation metrics as in the TOP-
SIS method (rsp, NRMSE, MAPE, and NNSE) and also add
the normalized mean bias error (NMBE). While we evaluate
the reanalysis and WRF performance in simulating day-to-
day variability in those variables, our main focus is on eval-
uating their daily values as a mean over the whole observa-
tional period at each site.

In addition to the aforementioned variables, we also look
into how well the reanalyses and WRF simulate the time se-
ries of daily precipitation (P ), both in liquid and solid form.
While an extreme rainfall event can present a strong con-
tribution to the daily melt energy (Fitzpatrick et al., 2017),
fresh snowfall events over a summer season can substan-
tially alter the glacier albedo and consequently the net ra-
diative fluxes and the SEB (e.g., Hock, 2005; MacDougall
et al., 2011; Marshall and Miller, 2020). Despite our choice
to use the observed albedo in the SEB model, we look into
how well the reanalysis and WRF capture the frequency of
fresh snowfall events over the observational period at our
sites. To differentiate between rainfall and snowfall, we use
a simple model that relies on the temperature threshold of
0 ◦C; rainfall (snowfall) is assumed when the near-surface
temperature at the given site is above (below) the threshold.
We note that the overall quality of in situ precipitation mea-
surements, based on tipping bucket rain gauges, is likely to
be lower relative to the quality of other measurements at our
sites (Fitzpatrick et al., 2017). The rain gauges can have ex-
tensive underestimation of rainfall amounts (of up to 50 %),
primarily due to the acceleration of airflow over the top of the
gauge, with other error sources including splashing, and the
finite time required for the buckets to reset between tips dur-
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Figure 5. Modeled (ERA5, WRF at 3.3 km, and WRF at 1.1 km) and observed (AWS data) time series of daily albedo over the observational
period (starting at day 1) at each site. WRF is run with the REF configuration.

ing heavy rain (e.g., Devine and Mekis, 2008; Duchon and
Biddle, 2010).

3 Results

3.1 Evaluation of meteorological variables

Here we evaluate the performance of ERA5, ERA5-Land,
and WRF (3.3 and 1.1 km) in simulating the selected vari-
ables (T , RH, P , U , Kin, and Lin) from the six study sites
over the observational period. A summary of results based
on the relative error and NRMSE is shown in Table 5, while
the results based on other evaluation metrics are shown in
the Supplement (Tables S4 and S5). Looking first at the re-
sults for the reanalysis data, we find that ERA5 and ERA5-
Land yield a similar performance (difference of a few per-
cent in NRMSE), with an overall slightly better performance,
though not statistically significant (Table S5), by ERA5 over
ERA5-Land. ERA5 and, similarly, ERA5-Land are found to
simulate the mean daily radiative fluxes (Kin and Lin) rela-
tively close to observations, with a relative error (overesti-
mation) of 11 % in Kin and no relative error in Lin (Fig. 6).
The mean daily sensible heat flux from ERA5 is substantially
underestimated (relative error of 87 %), mainly due to the
substantial underestimation of mean wind speed (relative er-
ror of 64 %), despite the well-simulated lapse-rate-corrected
mean daily near-surface air temperature (overestimated by
14 %). Similarly, the mean daily latent heat flux is also sub-
stantially overestimated. However, as the contribution of the
latent heat flux to the total melt energy is small (< 5 %),
the large errors here reflect the differences in small num-
bers (e.g., 0.5 Wm−2 versus 3 Wm−2). Correlating the daily
time series between ERA5 or ERA5-Land and the AWS-
equivalent variables reveals that all correlations are statisti-

cally significant (p value < 0.05), except for QL for ERA5
and except for U , QH, and QL for ERA5-Land (Table S4).
On the one hand, the seasonally averaged total daily precipi-
tation (P ) from ERA5 is overestimated at some glacier sites
(relative error of 130.3 % for Kaskawulsh 2019 and 84.5 %
for Conrad 2016 AWS1), while being underestimated at other
sites (relative error of −37.9 % for Conrad 2016 AWS2,
−33.2 % for Conrad 2015, and −18.7 % for Nordic 2014;
Figs. S2 and S3). On the other hand, the modeled time series
of daily precipitation all show statistically significant correla-
tion (p value< 0.05) with the observed time series (Fig. S2).
The frequency of days with heavy snowfall is overestimated
in the ablation zones (Castle Creek 2012; Kaskawulsh 2019)
and underestimated in the accumulation zone (Conrad 2016
AWS2). On average, ERA5-Land precipitation simulations
perform worse than ERA5 (mean overestimation of 35.6 %
in ERA5-Land versus 20.3 % in ERA5 across all sites).

The results from WRF reveal similar performance patterns
to those for the reanalysis but with some differences, de-
pending on the three configurations (REF, minNRMSE, and
TOPSIS; Table 5). For the REF configuration, the mean in-
coming longwave radiation is slightly underestimated (5 %
for WRF at 3.3 and 1.1 km), while the mean sensible heat
flux is substantially underestimated (43 % for WRF at 3.3 km
and 64 % for WRF at 1.1 km; Fig. 6). The REF configu-
ration yields an overestimation in the mean Kin (12 % for
WRF at 3.3 km and 19 % for WRF at 1.1 km), while the min-
NRMSE configuration gives an underestimation (16 % for
WRF at 3.3 km and 11 % for WRF at 1.1 km) and TOPSIS
has only a small relative error (4 % underestimation for WRF
at 3.3 km and 1 % overestimation for WRF at 1.1 km). Cor-
relating the daily time series between equivalent variables
from WRF and AWSs reveals that all correlations are statis-
tically significant (p value < 0.05), except for U (Table S5).
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Table 5. Relative difference (%) between modeled and observed seasonally averaged values, as well as NRMSE, between modeled and
observed daily values of air temperature (T ), relative humidity (RH), total precipitation (P ), wind speed (U ), incoming shortwave (Kin) and
longwave (Lin) radiation, sensible (QH) and latent (QL) heat fluxes, and total melt energy (QM). The melt energy is estimated according to
the SEB model (Eq. 1). The WRF runs are based on the three configurations of physics parameterizations, namely REF, minNRMSE, and
TOPSIS. For comparison, we also include the results of the ensemble mean, where T , RH, P , U , Kin, and Lin are derived as a mean across
the three configurations. The turbulent heat fluxes and QM in the ensemble mean are derived according to the aerodynamic bulk method
(Eqs. 2 and 3) and SEB model (Eq. 1), respectively. The results of each evaluation metric are shown as the mean (± 1 standard deviation)
across the six study sites, with the equal weighing of each site. For seasonally averaged values ofQM, we only take into account the positive
values of QM that drive melt. Values in bold highlight the best-performing model for the given variable, according to the metric used.

Variable
ERA5 ERA5-Land WRF 3.3 km WRF 1.1 km

30 km 9 km REF minNRMSE TOPSIS Ensemble REF minNRMSE TOPSIS Ensemble

Relative error (%)

T 14± 24 23± 23 3± 37 −21± 48 9± 37 −3± 40 6± 30 −25± 39 11± 29 −3± 32
RH 30± 12 28± 12 −2± 14 17± 22 −6± 12 3± 14 −9± 11 10± 16 −12± 9 −4± 12
P 20± 70 36± 99 29± 88 46± 101 1± 45 25± 77 −5± 51 12± 53 −15± 27 −3± 43
U −64± 10 −74± 6 −26± 18 −42± 12 −22± 20 −30± 15 −44± 16 −46± 14 −42± 15 −44± 14
Kin 11± 8 11± 8 12± 6 −16± 16 −4± 9 −3± 9 19± 16 −11± 18 1± 11 3± 14
Lin 0± 4 −1± 4 −5± 3 0± 4 −3± 3 −3± 3 −5± 3 −1± 3 −3± 2 −3± 2
QH −87± 11 −95± 5 −43± 38 −81± 14 −40± 40 −58± 22 −64± 16 −82± 13 −64± 16 −73± 13
QL 520± 977 113± 335 −613± 1203 −115± 207 −804± 1533 −399± 758 −383± 453 −235± 298 −531± 702 −368± 437
QM −6± 7 −10± 7 −5± 10 −28± 10 −15± 15 −26± 16 −8± 7 −27± 10 −19± 8 −29± 15

NRMSE (%)

T 22± 10 24± 10 23± 8 28± 6 24± 8 21± 8 21± 13 25± 6 22± 14 21± 10
RH 50± 8 47± 7 32± 22 47± 20 32± 23 32± 20 33± 22 35± 13 35± 21 29± 17
P 21± 5 24± 9 31± 14 35± 16 30± 13 28± 12 27± 10 30± 13 27± 12 24± 10
U 55± 15 62± 16 40± 8 44± 9 38± 8 38± 9 43± 10 45± 13 44± 9 43± 10
Kin 17± 2 17± 3 26± 2 30± 11 26± 5 23± 4 29± 5 29± 9 27± 4 24± 2
Lin 18± 6 18± 6 30± 7 28± 5 32± 8 27± 6 31± 8 27± 7 30± 8 26± 8
QH 39± 13 41± 12 31± 8 35± 8 30± 7 31± 9 31± 9 35± 9 32± 9 34± 10
QL 25± 6 23± 8 23± 5 22± 6 24± 3 22± 6 21± 5 21± 6 22± 5 20± 6
QM 14± 4 15± 4 18± 3 23± 7 21± 4 19± 4 16± 3 22± 6 19± 3 18± 3

Figure 6. Modeled (ERA5, ERA5-Land, WRF at 3.3 km, and WRF at 1.1 km) versus observed (AWS data) daily averages over the observa-
tional period of incoming shortwave (Kin) and longwave (Lin) radiation, sensible (QH) and latent (QL) heat fluxes, and melt energy (QM).
The melt energy is estimated according to the SEB model (Eq. 1). WRF is run with the REF configuration.

In contrast to ERA5 and ERA5-Land, WRF does yield statis-
tically significant correlations (p value < 0.05) for both QH
and QL. WRF at 1.1 km underestimates the seasonally aver-
aged total precipitation (P ) for all glacier sites (relative er-
rors ranging from −3.1 % for Conrad 2015 to −45.0 % for
Kaskawulsh 2019 with the REF configuration), except for

Conrad 2016 AWS1, where P is overestimated by 94.0 %.
The modeled time series of daily precipitation shows statis-
tically a significant correlation (p value < 0.05) with the ob-
served time series for all sites, except for Kaskawulsh Glacier
(Fig. S2). WRF tends to overestimate the frequency of days
with heavy snowfall in both the ablation zone (Castle Creek
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2012, Kaskawulsh 2019) and the accumulation zone (Con-
rad 2016 AWS2; Fig. S3). Additionally, it also overestimates
the frequency of days with light rainfall (< 2.5 mm). On av-
erage, precipitation values from WRF at 3.3 km perform sig-
nificantly worse than from WRF at 1.1 km (29.0 % versus
−5.0 % relative error with the REF configuration; Table 5).

When comparing the performance of the three WRF con-
figurations at 1.1 km for the whole observational period at
each study site, we find that no consistent pattern of out-
performance or underperformance is found across the vari-
ables and glacier sites (Fig. 7). Overall, there is a smaller
spread in NRMSE across the sites for the minNRMSE con-
figuration relative to the other two configurations, but even
this finding does not hold for each variable (Table 5). No-
tably, the simulation of RH at Kaskawulsh Glacier is partic-
ularly poor (NRMSE of 70 %) for both TOPSIS and REF,
while for the other sites the NRMSE in RH does not exceed
50 %. Wind speed is another variable, with a large NRMSE
(> 30 % across all the sites) that is most pronounced in the
ablation area of Conrad Glacier in 2016 (NRMSE of 57 %,
while at almost the same location on Conrad Glacier in 2016
the NRMSE is much smaller, with 38 %). Despite the poor
simulation of U , all three WRF configurations yield simi-
lar and statistically significant correlations (p value < 0.05)
between modeled and AWS-modeled daily QH values (Ta-
ble S5). The results highlight relatively large variability in
the WRF model performance across the study sites and ob-
servational period, as well as across the selected variables.
For comparison, we also looked into the WRF performance
as an ensemble mean across the three WRF configurations
(Table 5). To this end, we averaged the results from the three
configurations (REF, minNRMSE, and TOPSIS) for each
variable. Relative to at least two individual members, the en-
semble mean has slightly improved performance (smaller rel-
ative errors) for T , RH, P , andKin. Wind speed and turbulent
heat fluxes still remain substantially underestimated.

Of the variables that play an important role in the SEB
model, RH and U have, on average, the largest errors for the
two reanalyses and WRF (Fig. 7). The relatively poor sim-
ulation of wind speed and direction, in both reanalyses and
WRF, reveals the inability of the models to capture the kata-
batic (downglacier) flow that prevails during summer months
at the glacier sites. Failing to resolve the strong downslope
wind speeds with maxima close to the glacier surface, the
reanalysis and WRF substantially underestimate the wind
speed (Fig. 8). While WRF does resolve the wind speed bet-
ter than the reanalysis, the underestimation of wind speed in
WRF is still substantial (44 % in WRF at 1.1 km and REF
run, relative to 64 % in ERA5). During episodes of synop-
tic storms, when the katabatic flow is interrupted, there is a
slightly better agreement between the modeled and observed
wind speed and direction across the glacier sites for both
ERA5 and WRF (Fig. 8). However, these episodes are rel-
atively rare and too short-lasting to make any substantial dif-
ference in the overall model performance in simulating U .

We also investigated the use of surfaceQH andQL values,
as outputted directly from the reanalysis and WRF into the
SEB model, rather than calculating those fluxes with our bulk
method. In WRF, these fluxes are derived through a local or
non-local closure scheme in the planetary boundary and sur-
face layers, depending on the parameterizations used (Ska-
marock and Klemp, 2008). When QH is directly taken from
ERA5, the NRMSE of QH is 83 %, which is twice as large
as the original error when QH is calculated with the bulk
method. In WRF at 1.1 km, the error inQH is increased from
31 % when the bulk method is used to 60 %, while the error
for QL is increased from 21 % to 54 % with the REF config-
uration. For Kaskawulsh Glacier, the largest glacier among
our study sites, the performance of simulatedQH andQL di-
rectly from ERA5 is similar to or only slightly worse (few
percent) than the performance based on the bulk method.
Across all the sites, taking QH and QL values directly from
ERA5 leads to an increased underestimation, from 6 % in
the original estimate to 72 %, of the mean QM. For WRF
at 1.1 km, the relative error in QM increased from 8 % in the
original estimate to 17 %. These results justify our choice to
assess the turbulent heat fluxes via the bulk method instead
of taking them directly from the reanalyses and WRF.

3.2 Sensitivity analysis

Our sensitivity analysis to the choice of parameterizations in
WRF consists of running the WRF model with the REF con-
figuration over the selected 6 d period and study sites and al-
tering only one physics scheme in the REF confirmation per
run. This process yields in total 25 WRF independent runs
(Table S2), including the one with the REF configuration,
whose output is then evaluated against the AWS observations
over the same sites and time windows, using NRMSE (Figs. 9
and S4). The larger the range of NRMSE across these runs,
the larger the sensitivity to the choice of the schemes.

Altering the land surface model between Unified Noah and
Noah-MP yields the largest impact, i.e., the largest range of
NRMSE, in the simulations of RH (NRMSE in the range of
20 %–35 %) and T (NRMSE in the range of 20 %–29 %),
followed by the simulations of U (NRMSE in the range of
38 %–42 %) and Lin (NRMSE in the range of 35 %–40 %).
Altering the radiation scheme, where 12 different schemes
were tested, made the largest impact on the simulation of Lin
(NRMSE in the range of 34 %–50 %), while having a rela-
tively small impact (< 4 % range) on the simulation of all
other variables. Altering the cumulus scheme, with three dif-
ferent cumulus schemes and three parameterization config-
urations that were each tested, made the largest impact on
simulations of Lin (NRMSE in the range of 37 %–44 %) and
RH (NRMSE in the range of 19 %–24 %), while having a rel-
atively small impact (< 4 % range) on the simulation of the
remaining variables. The sensitivity to the choice of the four
schemes for the planetary boundary layer is the largest for
simulating Lin (NRMSE in the range of 40 %–51 %) and U
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Figure 7. Performance of the reanalysis (ERA5 and ERA5-Land) and WRF at 1.1 km grid spacing, according to NRMSE calculated for each
study site, for the following variables: air temperature (T ), relative humidity (RH), incoming shortwave (Kin) and longwave (Lin) radiation,
wind speed (U ), and total melt energy (QM). The melt energy is estimated according to the SEB model (Eq. 1). The WRF runs are presented
for REF, minNRMSE, and TOPSIS configurations.

Figure 8. Modeled (ERA5 and WRF at 1.1 km) versus observed
(AWS data) time series of daily averaged wind speed (U ; line), in-
cluding the range of 1 standard deviation (shaded) and the daily av-
eraged wind direction (Udir, dots) for Kaskawulsh Glacier in 2019.
Time windows with observed synoptic storms are marked with ver-
tical purple shading. Bold values of rsp indicate a statistically sig-
nificant correlation at the 5 % confidence level. WRF is run with the
REF configuration.

(NRMSE in the range of 42 %–52 %), with relatively small
sensitivity in other variables. Finally, none of these altered
WRF configurations yields a strong impact on the calculated
QM from the SEB model (Eq. 1), where NRMSE is in the
range of 12 %–15 % (Fig. 9). Note that when different opti-
mal configurations were used (REF, minNRMSE, and TOP-
SIS), the mean NRMSE for simulating QM over all the sites
and observational period was in the range of 16 %–22 % for
WRF at 1.1 km and 18 %–23 % for WRF at 3.3 km (Table 5).

Looking at the performance of the 25 sensitivity runs, as
well as the performance of the three optimal configurations,
we identified the schemes for each category that consistently
performed better in simulating the components of the SEB at
our sites. For the microphysics, the best-performing scheme
is the Thompson scheme, while for the planetary boundary
and surface layers, the best-performing scheme is the MYNN

Level 3 scheme. For the cumulus scheme, the results were
less conclusive in terms of identifying only one scheme that
consistently performed better. Instead, we found that two
cumulus schemes performed better than others, namely the
Betts–Miller–Janjić scheme that is switched “on” in all do-
mains and the Grell 3D ensemble scheme that is turned “off”
only in the innermost domain (d4) or the two inner domains
(d3 and d4). For the radiation scheme, both the minNRMSE
and TOPSIS method preferred the RRTMG scheme for long-
wave radiation and the Dudhia scheme for shortwave radi-
ation. The Noah-MP land surface model gave better results
than Unified Noah, in particular for the simulations of near-
surface temperature and relative humidity (Fig. 9). In both
land surface models, the glacier surface albedo is calculated
as a weighted average of land ice albedo and snow albedo,
based on the snow cover fraction (He et al., 2023). How-
ever, we modified the current Noah-MP albedo parameteri-
zations for land ice, as the default options were too high for
our glacier sites; the ice albedo values were changed from
0.80 to 0.6 for the visible spectrum and from 0.55 to 0.3 for
the near-infrared spectrum. No changes were applied to the
albedo representations within Unified Noah.

In addition to the parameterization schemes, the WRF out-
put is known to be sensitive to its “nesting” configuration,
including the choice of domain boundaries and their size and
grid spacing within. Due to the nature of our study domain,
we could not follow the general recommendation for placing
each of the domain boundaries outside of complex terrain
(Skamarock and Klemp, 2008). However, we assessed the
sensitivity of the WRF output to small latitudinal and lon-
gitudinal shifts (by a few grid cells) of the domain bound-
aries for our two inner domains (d3 and d4) at the Castle
Creek, Conrad, and Nordic glaciers. The results reveal a neg-
ligible difference in the WRF output at the study sites. Fur-
thermore, changing the grid refinement ratio from the origi-
nal 1 : 3 (30 km, 10 km, 3.3 km, and 1.1 km) to the 1 : 5 grid
refinement ratio (30 km, 6 km, and 1.2 km) yielded slightly
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Figure 9. Performance of the evaluated 25 sensitivity runs, as well as the runs with the three configurations (REF, minNRMSE, TOPSIS),
according to the NRMSE for the following variables: air temperature (T ), relative humidity (RH), incoming shortwave (Kin) and longwave
(Lin) radiation, wind speed (U ) and total melt energy (QM). The parameterization schemes are split into the following categories: micro-
physics (MP), land surface model (LSM), radiation (RAD, including shortwave and longwave), cumulus (CU), and planetary boundary and
surface layers (PBSLs). Configuration details on these runs are given in Tables 3 and S2. In each category, the scheme that is being used
in the three configurations (REF, minNRMSE, and TOPSIS) is marked with a triangle, while the performance of the three configurations
is presented in each plot under COMB. In each of the 25 independent sensitivity runs, only one parameterization scheme in each category
is different from REF, while COMB represents the combination of the best-performing physics schemes from each category according to
minNRMSE and TOPSIS.

worse WRF results (up to a few percent difference in relative
errors) in simulating the SEB components at our study sites.

Finally, we tested the sensitivity of our WRF simulations
to the initialization setup. In addition to our original WRF
runs, which have been initialized on day 1 of the simulation
period and continuously run for the whole observational pe-
riod (in addition to a 24 h spin-up period), we performed sep-
arate WRF runs that were re-initialized each day (in addition
to a 24 h spin-up period each). Our results, as illustrated by
the 6 d example for simulated temperature (Fig. 10), revealed
that after the initial 36 h, during which the two runs closely
match each other, the runs differed by up to 4 ◦C at a given
hour, which led to a difference of up to 2.5 ◦C (up to 40 % rel-
ative difference) for the daily averaged temperature. A simi-
larly large sensitivity to the choice of initialization procedure
was found for the other meteorological variables analyzed in
this study.

3.3 Evaluation of modeled melt energy

In simulating the daily averaged QM from the SEB model,
the results from the reanalyses and WRF with the REF con-
figuration benefit from the cancellation of biases between
the overestimation of Kin and the underestimation of QH
(Table 5; Fig. S5). For the reanalyses, the overestimation of
Kin partly compensates for the underestimation of turbulent
heat fluxes, resulting in a relatively good overall simulation

of QM, which is underestimated with 6 % relative error for
ERA5 and 10 % for ERA5-Land. This compensation of bi-
ases between Kin and QH has a lesser effect on the SEB
model being forced by the WRF output because the partial
cancellation of biases is only effective in the REF configu-
ration, as it is the only among the three configurations that
overestimatesKin. Thus, REF yields the lowest relative error
for QM (underestimation of 5 % or WRF at 3.3 km and 8 %
for WRF at 1.1 km), followed by TOPSIS (underestimation
of 15 % for WRF at 3.3 km and 19 % for WRF at 1.1 km)
and then minNRMSE (underestimation of 28 % for WRF at
3.3 km and 27 % for WRF at 1.1 km).

Looking at the time series of dailyQM, ERA5 and ERA5-
Land are shown to closely resemble the observed time series
but fail at times to capture peak values of daily QM (corre-
lation rsp of 0.86; Fig. 11). Across all sites, the SEB model
forced by ERA5 and ERA5-Land yields stronger correlations
between the modeled and observed time series of QM than
is the case for WRF data (rsp of 0.72 for WRF at 3.3 km and
0.74 for WRF at 1.1 km with the REF configuration; Fig. 11),
but all the correlations remain statistically significant at the
5 % confidence level.

While the model performance in simulating QM is simi-
lar across the study sites, the model forced with reanalyses
yields the best performance for Kaskawulsh Glacier (nearly
0 % relative error for ERA5 and an overestimation by 1 %
for ERA5-Land), while the worst performance is found for
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Figure 10. Time series of hourly temperature output from WRF at 1.1 km grid spacing derived from the 6 d sensitivity runs that are based on
the REF configuration. In green are the runs that are initialized on day 1 and continuously run for 6 d (in addition to a 24 h spin-up period),
while in yellow are the runs that are re-initialized per day and run for 1 d (in addition to a 24 h spin-up period each). Here, temperature data
are not lapse-rate-bias corrected.

Figure 11. Modeled (ERA5, WRF at 3.3 km, and WRF at 1.1 km) versus observed (AWS data) time series of daily melt energy (QM) over
the observational period. Bold values of rsp indicate a statistically significant correlation at the 5 % confidence level. WRF is run with the
REF configuration. The melt energy is estimated according to the SEB model (Eq. 1).

Nordic Glacier (QM underestimated by 15 % for ERA5 and
17 % for ERA5-Land). When the model is forced with WRF
data, the site with the best performance in QM is Nordic
Glacier (overestimated by 3 % for WRF at 3.3 km and no
relative error for WRF at 1.1 km with the REF configura-
tion), and the site with the worst performance is the station
in the accumulation zone on Conrad Glacier in 2016 (under-
estimated by 18 % for WRF at 3.3 km and 16 % for WRF at
1.1 km). We find no dependence of the model performance
on the size of glaciers in the sample or on their geographical
location; however, our sample size is too small to allow for a
robust analysis of these relationships. Finally, we find negli-

gible differences between the SEB model performance when
forced with the WRF at 3.3 km relative to 1.1 km (Table 5).

4 Discussion

In this study, we evaluated the use of ERA5 and ERA5-Land,
with and without dynamical downscaling by WRF, in simu-
lating meteorological variables needed to force a single-point
SEB model at four mountain glaciers in western Canada. We
found that, with the exception of near-surface wind speed and
relative humidity, all meteorological variables and energy
fluxes are similarly well simulated, based on NRMSE, by the
reanalyses, as well as by WRF at 3.3 and 1.1 km. However, to
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adequately resolve near-surface temperature, the reanalysis
and WRF needed to be lapse-rate-bias corrected. The good
performance of the reanalyses is, in part, expected, since the
reanalysis model incorporates data assimilation with avail-
able standard ground observations in the region, as well as
with remote sensing (Hersbach et al., 2020). Also, the good
performance of ERA5 in simulating the daily variability in
the 2 m temperature, radiative fluxes, and precipitation at our
study sites corroborates previous findings that focused on a
more general evaluation of ERA5 across the globe and in this
region. For example, an evaluation of ERA5 temperature and
precipitation for hydrological modeling over western Canada
found that the model gives almost identical results when
forced by observations and when forced by ERA5 (Tarek
et al., 2020). Nevertheless, the study reported the largest dif-
ference between the observations and ERA5, in both temper-
ature and precipitation, over mountainous terrain. Similarly,
for different mountainous terrain across the globe, relatively
large differences were found between observed and ERA5
near-surface wind speed (Gualtieri, 2021), corroborating our
findings of poorly simulated wind speed at our sites.

Our results reveal that the ERA5-Land reanalysis does not
show a better performance compared to ERA5. In fact, we
find that the performance of the SEB model forced by ERA5-
Land is, on average, worse than when forced by ERA5 (10 %
versus 6 % relative error for QM), though the differences are
not statistically significant (Table S5). For comparison, we
also looked into the output from WRF at 10 km grid spacing,
i.e., at a similar grid spacing as in ERA5-Land (9 km). We
found that, relative to ERA5-Land, WRF at 10 km performs
better in simulating wind speed (−24 % versus −74 % rela-
tive error), incoming shortwave radiation (−6 % versus 11 %
relative error), lapse-rate-adjusted temperature (−7 % versus
23 % relative error), and relative humidity (2 % versus 28 %
relative error). We note that ERA5-Land is produced without
coupling to the atmospheric module and to the ocean wave
models used by ERA5 (Muñoz Sabater et al., 2021), which
might introduce biases in the variables analyzed in this study.

The downscaling of ERA5 with WRF has slightly im-
proved the simulations of wind speed and therefore turbulent
heat fluxes, as calculated from the bulk aerodynamic method
in the SEB model. But more importantly, the WRF simula-
tions of the SEB components at our sites are found to re-
semble the observations similarly as well as that of ERA5.
In other words, the WRF model that is forced by ERA5 at its
boundaries and is run without any data assimilation or “nudg-
ing” to observations performs similarly as well as that of the
state-of-the-art reanalysis model. These results are promis-
ing in terms of WRF application in downscaling long-term
climate simulations from global climate models in order to
project glacier evolution across this region.

While both reanalyses and WRF are found to simulate the
daily melt energy at our sites similarly well, there are some
differences in their simulations of key components of the
SEB. Here we discuss these results in more detail.

(a) Radiative fluxes. Both reanalysis and WRF at 3.3 and
1.1 km grid spacing, based on the REF configura-
tion, overestimate the frequency of clear-sky days over
the observational period, which leads to overestimated
mean incoming shortwave radiation (Kin) and, to a
lesser extent, underestimated incoming longwave radi-
ation (Lin) as an average over the observational period.
While the local slope and shadow effects on Kin are un-
likely to be correctly captured in the reanalyses con-
sidering the coarseness (30 and 9 km) of their native
grid, capturing these effects in WRF more successfully
did not result in improved simulations of Kin. In fact,
at four of our six study sites, WRF at 1.1 km with the
REF configuration showed the largest overestimation of
Kin among the datasets analyzed. These results corrob-
orate previous findings arguing that the overestimation
of downscaled Kin indicates a problem in WRF with
resolving convective clouds over complex terrain (e.g.,
Claremar et al., 2012; Collier et al., 2013). In the min-
NRMSE configuration, however, the number of clear-
sky days was underestimated, highlighting the sensitiv-
ity of results to the parameterization schemes used.

In addition to the choice of parameterization schemes,
we investigated the impact on WRF output by switching
the cumulus parameterization on and off in the inner-
most domains (3.3 and 1.1 km), with the off state allow-
ing for the cumulus convection to be resolved explicitly.
We note that none of the cumulus schemes used in this
study is scale-aware. Theoretically, cumulus parameter-
izations are only valid for coarse spatial grids of more
than 10 km in order to release latent heat in the con-
vective columns (Zhang et al., 2012). The parameter-
izations can also help to trigger mesoscale convection
(5–10 km). For a grid spacing of 3–5 km or smaller, it is
recommended to switch off the cumulus schemes, as the
model can explicitly resolve deep convection and sim-
ulate convective storms (Skamarock and Klemp, 2008).
However, it has also been recommended to keep this pa-
rameterization on for a grid spacing of 1–10 km to avoid
accumulated energy at grid points (Gerard, 2007). The
cumulus parameterization scheme has been consistently
turned off below 3 km in previous glacier studies (e.g.,
Mölg and Kaser, 2011; Collier et al., 2013, 2015; Aas
et al., 2016). Between 3 and 5 km, some studies used
the cumulus parameterization scheme (e.g., Mölg and
Kaser, 2011), while others explicitly resolved deep con-
vection without parameterization (e.g., Aas et al., 2016).
Our results, in terms of the model performance in sim-
ulating Kin, show no systematic preference for either
keeping the cumulus parameterization switched on or
off. This result may indicate that the WRF’s 1.1 km grid
spacing might not be fine enough to correctly resolve
the cumulus convection at our sites. Some studies rec-
ommended a grid spacing on the order of 100 m (Bryan

https://doi.org/10.5194/tc-18-17-2024 The Cryosphere, 18, 17–42, 2024



34 C. Draeger et al.: Dynamical downscaling for surface energy balance modeling

et al., 2003; Petch, 2006) or even 10 m (Craig and Dörn-
brack, 2008) to capture the dominant length scales of
moist cumulus convection over complex terrain.

The commonly used land cover categories used for ini-
tializing WRF, based on the default MODIS data (Friedl
and Sulla-Menashe, 2004) or ESA CCI data as used in
this study (European Space Agency (ESA), 2017; Ta-
ble 2), do not distinguish between ice and snow cate-
gories. This distinction is crucial for the simulation of
albedo on glacier surfaces, and, consequently, the net
shortwave radiation. While WRF does simulate snow-
fall and therefore updates the surface albedo at each
time step, the time series of modeled daily albedo
can substantially differ from the in situ observations
(Fig. 5), justifying our approach to use the observed
daily albedo in the SEB model. Nevertheless, in the ab-
sence of observations, there are multiple albedo models
of varying complexity (e.g., Oerlemans and Knap, 1998;
Brock et al., 2000; Hirose and Marshall, 2013; Marshall
and Miller, 2020) that could be incorporated in the SEB
modeling, but this application is beyond the scope of our
study. A promising result for these albedo models is that
the ERA5 and WRF time series of daily precipitation,
including snowfall, are relatively well correlated with
the time series of observed precipitation (Fig. S2). This
correlation analysis, however, may not be robust, due to
the likely poor quality of our in situ precipitation mea-
surements, as highlighted before. More research is thus
needed to adequately assess the performance of ERA5
and WRF for precipitation modeling at our sites.

(b) Turbulent heat fluxes and temperature. Previous work
has found that ERA5 simulates high-quality surface tur-
bulent fluxes across the globe (Martens et al., 2020), but
the majority of the reference observations in this evalu-
ation came from stations in valleys and flat terrain, with
few stations in the mountains and none from glacier sur-
faces. In our study, instead of directly taking the turbu-
lent heat fluxes from the reanalysis and WRF, we cal-
culated them using the bulk aerodynamic method with
observed roughness lengths, as reported from previous
studies at our sites (Table S3). Our observed roughness
lengths agree with those estimated from other glaciers
across the world (e.g., Denby and Smeets, 2000; Sicart
et al., 2005). In the absence of any observations, a suf-
ficient assumption would be to set the roughness length
for momentum to 10−3 m and the roughness lengths
for temperature and humidity to 10−5 m. We note that
WRF at 1.1 km grid spacing correctly represents the
seasonally averaged roughness lengths for momentum
at our sites, while ERA5 does not (Table 4). With the
roughness length correctly prescribed, the performance
in simulating the turbulent fluxes in ERA5 and WRF de-
pends on how well their near-surface temperature and
wind speed resemble those measured at the AWSs. We

found that the lapse-rate-bias corrections for tempera-
ture are necessary in order to provide more reliable es-
timates of turbulent heat fluxes, despite the substantial
underestimation of wind speed in both the reanalyses
and WRF. For example, without the lapse rate correc-
tions in ERA5, the relative error for daily mean temper-
ature across all sites increased from the original 14 % to
54 %. We also showed that deriving the turbulent fluxes
from the bulk method is preferable to taking the fluxes
directly from the reanalyses and WRF.

(c) Wind speed. A study at large outlet glaciers (> 100 km2)
and ice caps showed that WRF at a grid spacing of
a few kilometers is able to successfully simulate kata-
batic winds (Claremar et al., 2012). However, the WRF
model at 1.1 km fails to do so at our sites, including
the large Kaskawulsh Glacier. Choosing an appropriate
grid spacing in WRF depends on the smallest weather
features intended to be captured. While the smallest re-
solvable horizontal wavelength is twice the grid spac-
ing, in practice, the finite-difference equations used for
advection and other dynamics in RCMs are unable to
handle waves of this size that either do not advect or are
numerically unstable (Stull, 2015). Hence, these wave-
lengths are commonly filtered out of the models, and
the smallest waves usually retained in RCMs are around
5 to 7 times the grid spacing. Therefore, to be able
to capture the local katabatic flow at our glacier sites,
in theory, we need a horizontal grid spacing smaller
than one-seventh of the glacier size (width and length).
Even for Kaskawulsh Glacier, the largest glacier in our
study, this would require a grid spacing of well be-
low 1 km. To test whether the performance in simulat-
ing wind speed improves at a sub-kilometer grid spac-
ing, we ran WRF at 370 m grid spacing for a 16 d pe-
riod for the Kaskawulsh Glacier site only. For those
runs, we use a high-resolution DEM with 30 m grid
spacing (NASA/METI/AIST/Japan Spacesystems and
U.S./Japan ASTER Science Team, 2019; Abrams et al.,
2020). In order for these runs to be numerically stable,
we also increased the number of vertical levels to 67 eta
levels, with a dense vertical layering in the proximity of
the surface (vertical spacing of 8 m in the first ∼ 60 m
above the surface). Our results show that the simula-
tion of wind speed is substantially improved, decreas-
ing the original relative wind speed error of −77 % for
WRF at 1.1 km for REF during the 16 d period (−81 %
for minNRMSE; −77 % for TOPSIS) to a relative error
of −14 % for REF (41 % for minNRMSE; −11 % for
TOPSIS; Fig. 12). The simulated wind direction also
improved in these high-resolution WRF runs, yielding
more resemblance with the downslope (katabatic) wind
direction at the site (Fig. 12). WRF at 370 m grid spac-
ing also improved simulations of all other variables rel-
ative to WRF at 1.1 km, except for Lin (Fig. 13). How-
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ever, the computational time of these high-resolution
simulations increased by a factor of 4 relative to WRF at
1.1 km grid spacing, making simulations over a longer
time frame challenging.

Apart from katabatic winds and synoptic storms, other
meteorological phenomena mainly governed by to-
pography, such as thermally induced circulations and
downslope windstorms, occur over mountain glaciers
(Goger et al., 2022). Therefore, accurately represent-
ing the topography is crucial for correctly simulating
the wind patterns. A better representation of topogra-
phy explains the improved accuracy in wind speed and
direction for smaller grid spacings in our simulations
(1.1 and 370 m). The finer grid spacing not only im-
proves the elevation representation of the analyzed grid
cell (Table S1) but also likely improves the elevation
representation of the neighboring grid cells, leading to
a more accurate representation of slopes and aspects of
the terrain. According to Wagner et al. (2014), the cor-
rect representation of topography is likely more impor-
tant for the simulation of local flow regimes and turbu-
lent heat fluxes than the choice of physics parameteriza-
tion schemes.

(d) Melt energy. We found that the SEB model, when forced
by the reanalyses and WRF, yields relatively small er-
rors in simulated daily QM relative to the SEB model
being forced by the AWS data. However, these rel-
atively small errors are in part due to the cancella-
tion of biases between overestimated Kin and underes-
timated QH in the reanalyses and, to a lesser extent,
in WRF. The underestimation of QH down to −87 %
in ERA5 and down to −64 % in WRF at 1.1 km is
mainly due to underestimated near-surface wind speeds
used in the bulk method. We note that the cancella-
tion of biases is mainly reducing the mean bias error
in QM and not necessarily the variance error that evalu-
ates the performance in simulating day-to-day variabil-
ity. The strong and statistically significant correlations
(rsp > 0.65) between the modeled and “observed” time
series of dailyQM give additional confidence in the per-
formance of both the reanalyses and WRF but especially
in ERA5, whose correlations from all the sites exceed
0.82 (Fig. 9).

Testing the sensitivity of the WRF output to the choice
of physics schemes revealed that the sensitivity is relatively
small for the simulated surface melt energy across our study
sites during the 6 d period (Fig. 9). Over the whole observa-
tional period, however, the choice of different physics con-
figurations leads to an underestimation of the mean QM by
8 %–27 % for WRF at 1.1 km with the differences in NRMSE
in the range of 16 %–23 % (Table 5). Our sensitivity analy-
sis also showed that, for the individual components of the
SEB, the choice of physics schemes can have a substantial

Figure 12. Left panel shows the modeled versus observed (AWS)
daily averaged wind speed for WRF runs at 1.1 km (yellow) and
370 m (purple) grid spacing over a 16 d period for the Kaskawulsh
Glacier site. WRF runs are based on three configurations, namely
minNRMSE, TOPSIS, and REF. The right panel shows the same
results as above, but these shown as the time series of the daily
wind speed (U ; line) and daily wind direction (Udir; dot). Bold val-
ues of rsp indicate a statistically significant correlation at the 5 %
confidence level.

impact on the simulations, with a difference of up to 50 % in
NRMSE (Fig. 9). This relatively high sensitivity corroborates
the findings in Wang et al. (2021) that the WRF model perfor-
mance in glacierized and that mountainous terrain strongly
depends on the choice of physics parameterizations.

The performance of each physics scheme is likely depen-
dent on the choice of schemes in other categories, which is
a phenomenon that we did not investigate with our sensi-
tivity tests in which only one physics scheme was altered
at a time. As a consequence, we did not sample the whole
space of physics parameterization options and their combi-
nations. However, from our relatively limited sampling, we
did find that a WRF configuration that combines the best-
performing schemes across the categories may not yield the
best-performing simulations overall, i.e., across all variables
in the SEB model. Similarly, the best-performing schemes
overall, as identified by minNRMSE and TOPSIS, may not
be the best-performing for each variable tested. To illustrate
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Figure 13. Modeled (WRF at 1.1 km and WRF at 370 m) versus observed (AWS) daily averaged air temperature (T ), relative humidity (RH),
incoming shortwave (Kin) and longwave (Lin) radiation, and total melt energy (QM) over a 16 d period for Kaskawulsh Glacier site. Bold
values of rsp indicate a statistically significant correlation at the 5 % confidence level. WRF is run with the REF configuration.

this example, we show the 6 d simulations ofKin from our 25
sensitivity runs, as well as from the minNRMSE and TOPSIS
configurations (Fig. 14). While the minNRMSE and TOP-
SIS configurations consist of the best-performing schemes,
according to the criteria used, neither of them yields the
best performance in simulatingKin among the configurations
tested, and their simulations differ substantially from each
other and from the sensitivity runs (Fig. 14).

To capture the characteristic synoptic timescales of 4 to
7 d, our sensitivity tests were performed over a time period of
6 d, but the simulations are shown to be sensitive to the length
of the time window and the timing during the melt season.
For example, the TOPSIS run gave the best performance for
the total melt energy in the sensitivity runs (6 d periods; four
study sites) but not the best performance in stimulating QM
over the whole observational period across all the sites. These
results, as well as the sensitivity of WRF output to the initial-
ization setup (Fig. 10), indicate that rather than settling with
one optimal WRF configuration, it would be preferable to use
an ensemble of WRF runs, each with a different configura-
tion of physics parameterizations and initialization. For the
application of WRF in downscaling long-term climate simu-
lations, however, the use of ensemble runs can substantially
increase the cost of already computationally expensive sim-
ulations.

5 Conclusions

Our study aimed to address several knowledge gaps linked
to the application of regional-scale physics-based models of
glacier melt that require forcing by coarse-gridded data from
reanalysis and global climate models. To address these gaps,
in particular for glacier melt modeling in western Canada, we
asked the following questions: how well do the state-of-the-
art reanalysis data, such as ERA5 and ERA5-Land, resem-
ble the local-scale surface energy fluxes that drive melt at a
glacier surface, and how well can these fluxes be resolved if

ERA5 is dynamically downscaled with WRF to a scale of a
few kilometers? To answer these questions, we focused on
the four study glaciers in western Canada with available in
situ measurements of all the key components of SEB, col-
lected by AWSs over different summer seasons, in the pe-
riod from 2012 to 2019. To dynamically downscale ERA5,
we used the WRF model with multiple nesting domains and
evaluated the WRF output at the two innermost domains at
3.3 and 1.1 km grid spacing. We also investigated the sensi-
tivity of WRF output to its configuration and initialization,
with a focus on the sensitivity to the choice of physics pa-
rameterization schemes.

We find that the mean melt energy over the observational
periods is similarly well simulated (average underestimation
of 6 %) when the SEB model is forced by ERA5 data and
when it is forced by the AWS data, as long as the ERA5 tem-
perature is lapse-rate-bias corrected. The good performance
of the reanalysis is also evidenced by the strong and statisti-
cally significant correlation (rsp > 0.82) between time series
of modeled and observed daily melt energy at each study site.
Relative to the observed fluxes at the sites, the mean radia-
tive fluxes are well represented in ERA5, with an 11 % aver-
age overestimation of incoming shortwave radiation and no
relative error for incoming longwave radiation. The sensible
heat fluxes, on the other hand, are relatively poorly simulated
(87 % average underestimation), mainly due to the substan-
tially underestimated near-surface wind speeds used to assess
the fluxes via the bulk aerodynamic method. This overesti-
mation of shortwave radiative fluxes and the underestimation
of turbulent heat fluxes lead to a partial cancellation of bi-
ases in the modeled seasonal melt at each study site. Using
ERA5-Land as input data, with a higher spatial resolution
than ERA5, does not lead to improved simulations of surface
energy fluxes.

Downscaling of ERA5 to 3.3 and 1.1 km grid spacing with
the WRF model improves the simulation of sensible heat
fluxes (43 %–64 % average underestimation) and latent heat
fluxes due to the improved simulations of wind speed, tem-
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Figure 14. Time series of total daily incoming shortwave radiation (Kin), as observed at the four study sites (dotted black line) and as
modeled according to the 25 WRF parameterization sensitivity runs (gray line), including the REF run (green line), and the two optimal runs
of minNRMSE (pink line) and TOPSIS (blue line). All WRF runs are for 1.1 km grid spacing over a period of 6 d.

perature, and relative humidity, while the other fluxes remain
similarly well simulated, as in the reanalyses. As is the case
with ERA5 data, but to a lesser extent, the SEB model forced
with the WRF data benefits from the partial cancellation of
biases in the SEB components, leading to an average under-
estimation of 5 %–8 % for the mean melt energy at our study
sites. However, these results depend on the WRF configura-
tion (i.e., the set of physics parameterization schemes used in
the model setup).

The sensitivity of WRF output to the choice of physics
parameterizations is shown to be relatively low in simulat-
ing the total melt energy over the observational period but
relatively high in simulating the individual components of
the SEB. For our sites and observational period, the pa-
rameterization schemes most commonly used in previous
glacier studies with WRF application generally yield well-
performing simulations of surface energy fluxes among the
configurations tested. These schemes include the Thomp-
son microphysics scheme, Noah-MP land surface model,
RRTMG shortwave and longwave radiation schemes, Grell
3D ensemble cumulus scheme, and MYNN Level 3 scheme
for planetary boundary and surface layers. The relatively
high sensitivity of WRF results to the choice of parameter-
ization schemes and the initialization setup highlights the
importance of ensemble WRF runs with different configura-
tions rather than reliance on one optimal WRF configuration.

The WRF runs at 1.1 km grid spacing show similar or
slightly worse results than those at 3.3 km grid spacing, but
the differences are not statistically significant. The similarly
successful performance of WRF and reanalysis, as input to
the SEB model at our glacier sites, increases the confidence
in using ERA5 for reconstructions of past glacier melt in this
region, as well as in using WRF for downscaling simulations
from global climate models to derive long-term projections
of glacier melt. The use of physics-based melt models, forced
with reliably downscaled fields from global climate models,
is a path toward narrowing the uncertainties in projections of
glacier contribution to streamflow and sea level rise.
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https://doi.org/10.5194/tc-18-17-2024 The Cryosphere, 18, 17–42, 2024

https://github.com/wrf-model/WRF
https://github.com/wrf-model/WRF
https://doi.org/10.5065/D6MK6B4K
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.5194/tc-18-17-2024-supplement


38 C. Draeger et al.: Dynamical downscaling for surface energy balance modeling

meteorological equipment has been supported by a NSERC Re-
search Tools and Instruments grant and a Canada Foundation for
Innovation grant (Valentina Radić).
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Janjić, Z. I.: The surface layer in the NCEP eta model, in: Eleventh
Conference on Numerical Weather Prediction, Norfolk, VA, 19–
23 August, Amererican Meteor Society, Boston, MA, 345–355,
1996.
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