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Abstract. Quantifying the link between microstructure and
effective elastic properties of snow, firn, and bubbly ice is
essential for many applications in cryospheric sciences. The
microstructure of snow and ice can be characterized by dif-
ferent types of fabrics (crystallographic and geometrical),
which give rise to macroscopically anisotropic elastic be-
havior. While the impact of the crystallographic fabric has
been extensively studied in deep firn, the present work in-
vestigates the influence of the geometrical fabric over the
entire range of possible volume fractions. To this end, we
have computed the effective elasticity tensor of snow, firn,
and ice by finite-element simulations based on 391 X-ray to-
mography images comprising samples from the laboratory,
the Alps, Greenland, and Antarctica. We employed a variant
of Eshelby’s tensor that has been previously utilized for the
parameterization of thermal and dielectric properties of snow
and utilized Hashin–Shtrikman bounds to capture the non-
linear interplay between density and geometrical anisotropy.
From that we derive a closed-form parameterization for all
components of the (transverse isotropic) elasticity tensor for
all volume fractions using two fit parameters per tensor com-
ponent. Finally, we used the Thomsen parameter to compare
the geometrical anisotropy to the maximal theoretical crys-
tallographic anisotropy in bubbly ice. While the geometrical
anisotropy clearly dominates up to ice volume fractions of
φ ≈ 0.7, a thorough understanding of elasticity in bubbly ice
may require a coupled elastic theory that includes geometri-
cal and crystallographic anisotropy.

1 Introduction

The elastic modulus can be used to represent the mechanical
property of snow, firn, or ice, and knowledge of the effec-
tive elasticity tensor plays a crucial role in a variety of ap-
plications throughout the field of cryospheric sciences. Ex-
amples include micro-mechanical modeling of snow com-
paction (Wautier et al., 2016), fracture propagation in weak
layers for slab avalanche release (Gaume et al., 2013; Bobil-
lier et al., 2020), or the interpretation of near-surface (Chaput
et al., 2022) or deep-firn (Diez and Eisen, 2015; Diez et al.,
2015; Schlegel et al., 2019) seismic signatures through the
link between wave velocities and elastic moduli.

The work of Schlegel et al. (2019) emphasized the role
of elastic anisotropy. Specifically, the retrieval of elasticity
profiles of snow, firn, and ice through seismic waves usually
relies on the assumption of isotropy, which constitutes an un-
certainty in the inversion method. Snow and firn are, how-
ever, known to be anisotropic due to both the ice matrix ge-
ometry (e.g., Löwe et al., 2013; Calonne et al., 2015; Leinss
et al., 2016; Moser et al., 2020; Montagnat et al., 2020) and
the crystallographic orientations of the ice crystals (e.g., Diez
et al., 2015; Petrenko and Whitworth, 2002). The geomet-
rical anisotropy arises from the geometrical orientation of
the structure that constitutes the ice matrix in snow (for in-
stance, if it is predominantly oriented towards the vertical di-
rection), while the crystallographic anisotropy is an inherent
characteristic of the ice crystals themselves. While the geo-
metrical fabric in firn is strong (leading to a strong geomet-
rical elastic anisotropy) near the surface due to temperature
gradient metamorphism (TGM; Montagnat et al., 2020) and
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decays with depth (Fujita et al., 2014), the crystallographic
fabric is weak near the surface (thus yielding a weak crystal-
lographic elastic anisotropy) but increases with depth under
densification and flow (e.g., Montagnat et al., 2014; Saruya
et al., 2022). Recent work by Hellmann et al. (2021) on mea-
suring wave propagation in glacier ice suggests that even at
low porosity (< 1%), the effective elastic (crystallographic)
anisotropy of polycrystalline ice is influenced by the geomet-
rical effects of the porosity.

The estimation of geometrical anisotropy usually relies on
advanced microstructural characterization, such as the esti-
mation correlation lengths (Krol and Loewe, 2016). Despite
its complexity, this microstructural characterization of snow,
firn, and ice has become a standard worldwide in the last
decade thanks to the development of micro-computed to-
mography (µCT) in the US (Baker, 2019), Japan (Ishimoto
et al., 2018), India (Srivastava et al., 2016), Norway (Sa-
lomon et al., 2022), Germany (Freitag et al., 2004), France
(Wautier et al., 2015), and Switzerland (Köchle and Schnee-
beli, 2014). The increasing role played by the microstructural
characterization of snow and firn, fostered by µCT, led to
the development of alternative retrieval methods, such as the
characterization of anisotropy from radar data (Leinss et al.,
2016).

For snow, the impact of the geometrical anisotropy has
been studied (Srivastava et al., 2016) only in a limited range
of porosities. Thus, a parameterization of the elastic modu-
lus based on density and geometrical anisotropy for the en-
tire possible range of porosities would constitute a first step
towards understanding this concurrent anisotropy problem.
This could have immediate applications, for example, for re-
trieving subsurface density and anisotropy through seismics
using advanced inversion methods (Wu et al., 2022). Leinss
et al. (2016) show that an electromagnetic inversion model
could be exploited to retrieve the geometrical anisotropy
of snow, despite a subdominant impact of the geometri-
cal anisotropy on the effective permittivity tensor. A better
understanding of the link between geometrical and elastic
anisotropy would thus enable the use of a similar technique
to retrieve the geometrical anisotropy of snow from seismic
surveys.

The effective elasticity tensor of snow, firn, or ice can
be directly obtained through numerical homogenization on
micro-tomography images. Using finite-element methods
(FEMs) via volume averaging, a solution for static lin-
ear elasticity yields the material effective elastic proper-
ties. Here, it is commonly assumed that the ice matrix is
isotropic, polycrystalline ice with known bulk and shear
moduli (see Garboczi, 1998; Köchle and Schneebeli, 2014;
Wautier et al., 2015). It has been recently confirmed that the
effective elastic properties obtained by microstructure-based
finite-element calculations agree well with acoustic mea-
surements (Gerling et al., 2017). Though straightforward,
the microstructure-based finite-element approach is compu-
tationally expensive and requires the microstructure to be

known. Therefore, accurate parameterizations are still highly
desirable and presently no parameterizations of the effective
elastic modulus exist that can be consistently applied without
restricting it to a limited range of volume fractions.

As an alternative to numerical simulations, it is often help-
ful to consider effective medium theories and rigorous ap-
proximations. Rigorous bounds such as Hashin–Shtrikman
(HS) bounds (Hashin and Shtrikman, 1962) can be used
to approximate the elastic properties of porous materials
(Torquato, 1991). Although bounds are widely known to
be inaccurate predictors of the elastic properties in absolute
value (Roberts and Garboczi, 2002), the HS bounds incor-
porate the nonlinear interplay between structural anisotropy
via Eshelby’s tensor and density (Torquato, 2002b) and they
have the correct limiting behavior for small and large volume
fractions. These properties can be systematically exploited
for constructing more sophisticated parameterizations.
The present work aims to derive a parameterization of the
effective elasticity tensor of snow, firn, and bubbly ice based
on volume fraction and structural anisotropy which can be
consistently applied to the entire range of volume fractions.
We achieve this by taking the anisotropic HS bounds (with-
out free parameters) as the functional starting point and by
using an empirical transformation (containing two fit param-
eters per tensor component). The proposed fitting function
matches observed characteristic features, namely the power-
law increase of the moduli for high porosities (for snow) and
the asymptotic behavior of dilute sphere dispersions (for bub-
bly ice) in the limit of low porosities. The paper is organized
as follows. Section 2 gives the background on the elastic-
ity theory, examines the limitation of existing parameteriza-
tions, and justifies the methodological idea that underlies the
proposed parameterization for the elasticity tensor. Section 3
presents an overview of the 391 tomography samples that
were used and the methods that were employed to calculate
correlation functions, fabric tensors, FEM simulations, and
fitting procedures for estimating the free parameters in the
elasticity formulas. In Sect. 4 we show the performance of
the new parameterization by comparing it with previous work
in which these parameters were not captured. We discuss in
Sect. 5 the expected interplay between crystallographic and
geometrical anisotropy for the elastic modulus for snow, firn,
and ice, and we finally conclude in Sect. 6.

2 Theoretical background

2.1 The effective elasticity tensor

Snow is a heterogeneous and porous material with an ice vol-
ume fraction φ (defined as the ratio between the volume oc-
cupied by the ice phase over that of the sample), whose ef-
fective macroscopic properties can be computed by volume
averaging over a sufficiently large volume, known as the rep-
resentative volume element (RVE) (see Hill, 1963; Hashin,
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1964; Nemat-Nasser and Hori, 1995; Torquato, 1997; Willis,
1981). The effective (fourth-order) elasticity tensor C of a
statistically homogeneous two-phase composite material is
defined by Hooke’s law of elasticity, using Hill’s lemma, as
follows:

〈σ 〉 = C : 〈ε〉, (1)

which relates the volume-averaged second-order
stress 〈σ 〉 and strain tensors 〈ε〉, given in Voigt
notation as [σ11,σ22,σ33,σ13,σ23,σ12]

T and
[ε11,ε22,ε33,0.5ε13,0.5ε23,0.5ε12]

T , respectively. An-
gular brackets denote volume averaging over a statistically
homogeneous region of interest and make the connection
between the volume-averaged strain energy of a hetero-
geneous material at the microscopic scale and that of a
macroscopically heterogeneous material under uniform
strain. The operator : denotes double contraction (Torquato,
1997). We consider snow to be a transversely isotropic (TI)
material, where the axis of transverse symmetry is chosen as
the vertical z axis perpendicular to the horizontal isotropic
xy plane. The elasticity tensor of a TI material can be
described by five independent moduli. Using Voigt notation,
it can be written (Torquato, 2002a) as a symmetric 6× 6
matrix as

C =


C11 C12 C13 0 0 0
C12 C11 C13 0 0 0
C13 C13 C33 0 0 0
0 0 0 C44 0 0
0 0 0 0 C44 0
0 0 0 0 0 1

2 (C11−C12)

 . (2)

For an isotropic material, the number of independent en-
tries reduces to two (e.g., the shear modulus G= C44 and
the P-wave modulus C33). Wherever necessary, the common
relations are employed (Torquato, 2002a) to connect to al-
ternative formulations in terms of Young’s modulus E, bulk
modulusK , shear modulusG, and Poisson’s ratio ν (see Ap-
pendix A).

To quantify the deviation from elastic isotropy, it is com-
mon to use the so-called Thomsen parameter ε, which is a
dimensionless quantity defined as (see Thomsen, 1986)

ε =
C11−C33

2C33
. (3)

For an isotropic material, the Thomsen parameter ε is 0.
Throughout this work, we consider the elastic properties of
snow/firn at a given instant in time, where the microstructure
gives pointwise information about the position of ice and air.
We do not consider any underlying time-dependent process
that would result in the evolution of the microstructure (such
as metamorphism).

2.2 Isotropic parameterizations based on ice volume
fraction

2.2.1 Snow: power-law models

For applications, the elastic moduli must be related to ac-
cessible parameters of snow. The most common ways are
empirical parameterizations based on ice volume fraction φ,
which is equivalent to density. Such density-based param-
eterizations use a power-law (Frolov and Fedyukin, 1998;
Sigrist, 2006; Gerling et al., 2017) or exponential relation-
ship (Köchle and Schneebeli, 2014; Scapozza, 2004) to com-
ply with the observed drastic increase of elasticity of snow
with increasing density. The different density-based param-
eterizations for low-density snow have been compared in
many publications (e.g., Köchle and Schneebeli, 2014). For
the purpose of the present paper we choose one example,
namely the power-law parameterization from Gerling et al.
(2017) as it was derived from microstructure-based FEM
simulations (as in this study) and experiments. We write the
parameterization in the form

CG
i j (φ)= ai j φ

bij , (4)

where CG
i j denotes the components of the elasticity tensor,

and aij and bij are the empirical parameters. These param-
eters need to be estimated by fitting experimental data and
FEM simulations, employing Eq. (4) in an optimization pro-
cedure (Gerling et al., 2017). In Gerling et al. (2017) only
the C33 component was computed through an optimization
procedure with FEM simulations and led to a33 = 6× 10−10

and b33 = 4.6 for snow with volume fractions in the range
0.1< φ < 0.4.

2.2.2 Firn: Kohnen’s parameterization

A conceptually similar parameterization, although valid for
an entirely different range of ice volume fractions, can be in-
ferred from the parameterization of acoustic wave velocities
in firn. Kohnen (1972) derived an empirical relationship be-
tween the S- and P-wave velocities in (isotropic) firn and the
density. By relating wave velocities to the respective elastic
moduli via density, Kohnen’s relations can be cast into an
ice-volume-fraction-based parameterization for the S- and P-
wave moduli (C33 and C44 components of the elastic modu-
lus), which are valid in low-porosity firn. Based on the origi-
nal work, we rewrite Kohnen’s empirical formula in the form

CKOH
i j (φ)= ρ

[
vice
ij −αij

(
1
φ
− 1

)1/βij
]2

, (5)

with the empirical parameters proposed by Kohnen (1972)
– α33 = 2250ms−1, β33 = 1.22, α44 = 950ms−1, and β44 =

1.17 – and the P-wave and S-wave velocities in ice vice
33 =

3900 and vice
44 = 2100 given in units of ms−1. The P-wave
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and S-wave velocities are provided by Diez (2013) and ap-
ply to ice volume fractions ranging from 0.43 to 0.98. Yet,
Kohnen’s parameterization is supposed to work best after the
firn–ice transition, i.e., for φ ranging from 0.88 to 0.98 (Diez,
2013).

2.2.3 Ice: exact limit for dilute dispersions of spheres

For bubbly ice at very low porosities (0.9< φ < 1), the air
phase can be commonly described as isolated, nearly spheri-
cal bubbles (e.g., Fourteau et al., 2019). This limiting case
can be addressed analytically by considering a dilute dis-
persion of spherical cavities with vanishing stiffness (Kair

=

Gair
= 0) in ice (Torquato, 1991). In this limit, the effective

elastic modulus CDDS can be computed exactly (Torquato,
2002a) and, due to isotropy, determined from the effective
bulk modulus KDDS and shear modulus GDDS given by

CDDS
ij = 3KDDS(3h)ij + 2GDDS(3s)ij ,

KDDS
=K ice

(
1−

3K ice
+ 4Gice

4Gice (1−φ)
)
,

GDDS
=Gice

(
1−

Gice
+H ice

H ice (1−φ)
)
, (6)

where

H ice
≡Gice

(
3K ice/2+ 4Gice/3
K ice+ 2Gice

)
. (7)

Here,3h and3s are the hydrostatic and shear projection ten-
sors, respectively, as defined in Torquato (2002a, Eqs. 13.96
and 13.97) and the CDDS

33 component is given by KDDS
+

4GDDS/3.

2.3 Anisotropic parameterizations based on ice volume
fraction and geometrical fabric

To overcome the restrictive assumption of isotropic parame-
terizations, it is necessary to extend the microstructural de-
scription. Cowin (1985) showed that the elasticity tensor of
porous materials can be estimated, based on symmetry ar-
guments, from the morphology and the elastic properties of
the matrix phase (Moreno et al., 2016). According to Cowin
(1985), the elasticity tensor can be determined as a function
of the Lamé constants of the porous material, λ and µ; vol-
ume fraction, φ; and the fabric tensor,M , which captures the
anisotropy of the material (Moreno et al., 2016). For snow,
this was utilized by Srivastava et al. (2016), who used the
Zysset–Curnier (ZC) formulation (Zysset and Curnier, 1995)
to incorporate the fabric tensor. This led to an orthotropic
elastic formulation of the elasticity tensor given by

CZC
i j (φ,M)=

3∑
i=1
(λ+ 2µ)φkm2l

i (M i ⊗M i)

−

3∑
i, j=1
i 6=j

λ′φkmlim
l
j (M i ⊗Mj )

+

3∑
i, j=1
i 6=j

2µφkmlim
l
j (M i⊗Mj ). (8)

Here, mi denotes the ith eigenvalues of the positive definite
fabric tensor M , and M i is the projector on the correspond-
ing eigenspace. The dependence on the eigenvalues and the
ice volume fraction φ are assumed to be of the power-law
type, characterized by the empirical exponents k and l, re-
spectively. This power-law form derives from a polynomial
expansion of the elasticity tensor expression in terms of the
fabric tensor eigenvalues (Zysset, 2003). The definition of the
double tensorial product A⊗B is given by Srivastava et al.
(2016).

Srivastava et al. (2016) derived the fit parameters
through an optimization procedure, employing Eq. (8) and
microstructure-based FEM simulations with snow samples
in the range 0.109< φ < 0.59. The parameters obtained by
Srivastava et al. (2016) are λ= 5.33,λ′ = 5.27,µ= 9.54,
k = 4.69, and l = 2.55.

2.4 Anisotropic Hashin–Shtrikman bounds

An alternative theoretical approach to the geometrically
anisotropic elasticity of heterogeneous materials can be real-
ized through bounds (Hashin and Shtrikman, 1962; Torquato,
1991). When using Hashin–Shtrikman (HS) bounds, the ef-
fective elastic properties of porous materials can be estimated
based on volume fraction and microstructural geometrical
anisotropy (incorporated through n-point correlation func-
tions). This results in tighter bounds over Voigt and Reuss
bounds, which are just based on the volume fraction of the
material. As the air phase of the snow microstructure has zero
elasticity, only the upper bound [0≤ C < CU

] is meaningful
(Roberts and Garboczi, 2002), and it is given by (Torquato,
2002a)

CU
= Cice

− (1−φ)φCice
: P ice

: Cice

: [I +φP ice
: −Cice

]
−1, (9)

where CU represents the Hashin–Shtrikman upper bound
on the effective elastic modulus C, the components of the
fourth-order identity tensor I are given as Ipqrs = (δprδqs+

δpsδqr)/2, and φ is the volume fraction of ice. The bound
involves the elasticity tensor Cice of ice as the host material,
which needs to be isotropic for the derivation of Eq. (9). Such
an assumption is consistent with our focus on the geometri-
cal, rather than crystallographic anisotropy and on the use of
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an isotropic material in our FEM simulations (see Sect. 3).
The bound thus involves the bulk modulusK ice and the shear
modulus Gice of ice. The tensor P ice is the polarization ten-
sor, which incorporates the structural anisotropy through the
aspect ratio α of the correlation lengths (Torquato, 1997).
The tensor P ice is related to Eshelby’s tensor Sice (Eshelby
and Peierls, 1957) of the matrix phase via the relation

P ice
= Sice

: [Cice
]
−1. (10)

Eshelby’s tensor (see Sect. B) in the Hashin–Shtrikman
bounds accounts for the anisotropic “shape” of the mi-
crostructure through the geometrical anisotropy ratio α and
is the equivalent of the fabric tensor M in the anisotropic
ZC model (see Eq. 8). A geometrical anisotropy ratio α > 1
corresponds to the predominant vertical orientation of the
ice matrix (prolate inclusions), α < 1 corresponds to the pre-
dominant horizontal orientation of the ice matrix (oblate in-
clusions), and α = 1 corresponds to the isotropic distribution
of the ice matrix. Finally, we note that while both the fab-
ric tensor M in the ZC formulation and Eshelby’s tensor
Sice in the HS formulation are used to described structural
anisotropy, they cannot be used interchangeably, as M is a
second-rank tensor, whereas Sice is a fourth-rank tensor.

2.5 Requirements for a consistent elasticity tensor
parameterization

The parameterizations and models presented above are all
designed for a specific range of validity. To demonstrate
the requirements for a consistent parameterization valid for
snow, firn, and ice, we provide an overview of all models
presented above evaluated by using their free parameters as
originally published. Figure 1 shows the C33 component as
a function of the volume fraction for all models. For the for-
mulations including geometrical anisotropy, three different
anisotropy ratios (α = 0.7, 1, and 1.6) were evaluated and
the corresponding spread in elastic properties is shown as the
shaded area for these models.

Due to its simple power-law dependence on density, the G
parameterization proposed by Gerling et al. (2017) exceeds
even the modulus of ice (black square for φ = 1). A very sim-
ilar behavior is found for the isotropic ZC (Srivastava et al.,
2016) variant, demonstrating the consistency of G and ZC
parameterizations for low volume fractions but failure for
high volume fractions. In addition, ZC shows an influence of
geometrical anisotropy that increases monotonically with ice
volume fraction, which is also nonphysical since in the limit
of φ→ 1 the elastic anisotropy behavior of the microstruc-
ture must tend to an isotropic state. In contrast, the upper
bound CU

33 correctly approaches the limiting value of ice
(black square), while the influence of geometrical anisotropy
tends to 0. In addition, the Hashin–Shtrikman “U” formula-
tion agrees also in the vicinity of φ = 1 with the prediction of
the dilute dispersion of spherical (DDS) cavities. In contrast,
the agreement of U and DDS formulations for φ > 0.8 with

Figure 1. Evolution of the elastic modulus C33 as a function of
volume fraction φ for all discussed models: density-based param-
eterization proposed by Gerling et al. (2017) (CG

33; see Eq. 4; ex-
pected range of validity 0.1< φ < 0.4), band of values predicted
by Srivastava et al. (2016) (CZC

33 ; see Eq. 8; expected range of va-
lidity 0.109< φ < 0.59), band of values predicted by the Hashin–
Shtrikman upper bound (CU

33; see Eq. 9), elastic modulus for dilute
dispersions (CDDS

33 ; see Eq. 6; valid for high ice volume fractions),
and the empirical relationship by Kohnen (1972) (CKOH

33 ; see Eq. 5;
expected range of validity 0.43< φ < 0.98) are shown as a func-
tion of the volume fraction (φ) with continuous lines. The black
square represents the maximum value of the elastic modulus in the
C33 direction for ice volume fraction φ = 1. The shaded area for the
anisotropic models represents the range of values between the two
aspect ratios α = 1.7 and α = 0.6.

Kohnen’s isotropic formulation (KOH) demonstrates the va-
lidity of this asymptotic behavior for ice, while in turn KOH
naturally fails for low volume fractions (snow) lying outside
its range of applicability.

2.6 The remedy: matching asymptotics

The best of all existing models can be combined in a sin-
gle model by constructing an empirical transition model that
(i) increases as a power law for low volume fraction, (ii) in-
cludes anisotropy but with vanishing influence when ap-
proaching ice, and (iii) approaches the limiting behavior of
dilute air bubbles for low porosity. Due to the properties of
the HS bounds (correct limiting behavior of the bounds for
low and high volume fraction, rational function for interme-
diate volume fractions), this can be achieved by using a trans-
formation in the following form, in which the HS bound CU

ij

is normalized by Cice
ij as

CPW
ij = C

ice
ij fij

(
CU
ij

Cice
ij

)
, (11)

with an empirical transition function fij : [0,1] → [0,1] for
each component of the elasticity tensor. Given that the HS
bound approaches the limiting behavior of dilute dispersions
for x→ 1 (Hashin and Shtrikman, 1962), the transition func-
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tions must obey fij (x)∼ x for x→ 1. Further, since the
modulus increases as a power law for lower volume fractions,
the scaling function must behave as fij (x)∼ xβ for x→ 0.
These two asymptotics can be matched in the following em-
pirical form:

fij (x)=
xβ

ξ(1− x)+ xβ−1 ∼

{
xβ/ξ, for x→ 0

x, for x→ 1,
(12)

which has the correct asymptotic behavior and contains only
two free parameters. The first free parameter β ensures that
at low volume fraction the modulus increases as a power law
of the ice volume fraction. The second free parameter ξ acts,
on the one hand, as a modification of the prefactor in the
power law and, on the other hand, as the transition scale that
controls the crossover to f (x)∼ x. Equations (11) and (12)
together with Eq. (9) constitute our empirical model that de-
pends on density and anisotropy in a physically consistent
way. The corresponding tensor components are henceforth
referred to as CPW

ij , which will be analyzed and parameter-
ized in the following from snow, firn, and ice tomography
samples and finite-element simulations of the elastic modu-
lus.

3 Material and computational methods

3.1 Tomography samples

For the parameterization of snow elastic properties we used
391 microstructure images of snow, firn, and bubbly ice ob-
tained with the help of µCT. Samples are taken from previ-
ous work and include laboratory, Alpine, Arctic, and Antarc-
tic snow and ice. A brief description is given in Table 1. We
considered the full range of porosities ranging from 0.06–
0.93 and anisotropy ratios α ranging from 0.45–1.87. Note
that all samples are cubic, with the same length L in the x, y,
and z directions.

3.2 Correlation functions

We use tomography images of snow to compute the cor-
relation functions of snow microstructures to calculate the
anisotropy. As dry snow is a two-phase composite material
consisting of air and ice phases, the indicator function I(x)
accounts for the spatial distribution of ice and air and is de-
noted by

I(§)=
{

1 if x ∈ ice,

0 if x ∈ air.
(13)

The two-point correlation function χ(r) (Torquato, 2002b)
entails information about the phase correlation of the end
points of the vector r and is defined by

χ(r)= 〈I(x+r)I(x)〉−φ2 . (14)

We assume a statistically homogeneous material, where χ is
independent of the reference point x ∈ R3. The function χ(r)
is computed from 3D images via a fast Fourier transforma-
tion (Krol and Loewe, 2016; Löwe et al., 2013). Correlation
lengths `z,`x , and `y are obtained by fitting χq(r) along the
Cartesian coordinate axes q = x,y, and z to an exponential
function χq(r)= χq,0 exp (−r/`q). From this, the geometri-
cal anisotropy parameter is defined by α = `z/`xy .

3.3 Geometrical fabric tensor

Srivastava et al. (2016) showed that the choice of the fabric
tensor M computed by either mean intercept length (MIL),
star length distribution (SLD), or star volume distribution
(SVD) methods did not play a significant role in the compu-
tation of the effective elasticity tensor of snow. Therefore, we
use the depolarization tensor M∗ given in Torquato (2002a),
which is based on two-point correlation lengths to estimate
the structural anisotropy of the microstructure. Using M∗ al-
lows us to connect to previous work (Löwe et al., 2013; Mon-
tagnat et al., 2020; Calonne et al., 2015; Leinss et al., 2016)
where this orientation tensor was employed to determine the
anisotropic effective thermal conductivity and permittivity of
snow. Analogous to MIL, M∗ is the symmetric depolariza-
tion tensor of a three-dimensional ellipsoid with the eigenval-
ues in the principle axes frame given by elliptical integrals,
whose trace is unity (Torquato, 2002a). In the case of trans-
verse isotropy around the z axis, the depolarization tensor
computed from two-point correlation function χ(r) reduces
to

M∗ =

Q(α) 0 0
0 Q(α) 0
0 0 1− 2Q(α)

 . (15)

The definition of the function Q(α) in terms of anisotropy
ratio α is given in Appendix C.

3.4 FEM simulations

Finite-element method (FEM) simulations were performed
using the code from Garboczi (1998) on all the CT im-
ages to determine the elasticity tensor of the snow mi-
crostructure by employing periodic boundary conditions.
For these simulations, we assumed elastically isotropic ice
with a shear modulus Gice

= 3.52 GPa and a bulk modulus
K ice
= 8.9 GPa, corresponding to a temperature of −16 °C

(Petrenko and Whitworth, 2002). We performed FEM sim-
ulations for five load states derived from Cartesian ba-
sis vectors in the six-dimensional deformation space. The
deformation ε of the five load states is taken from the
set {ε0e11, ε0e22, ε0e33, ε0(e13+e23), ε0e12}, with ε0 = 0.01
and with e11 to e12 being unit vectors in the deformation
space. Note that we combined load states 13 and 23 for the
fourth deformation state.

Next, for each sample the five independent components of
the elasticity tensor C (see Eq. 2) are estimated by minimiz-
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Table 1. µCT samples used for the parameterization of the elasticity tensor.

Name (count) Description (location) φ range α range Dimension L
[mm]

Obtained from

TS-TGM2 (45) Temperature gradient time
series (lab)

0.21–0.25 0.76–1.18 5.4 Löwe et al. (2013)

TS-TGM17
(49)

Temperature gradient time
series (lab)

0.30–0.32 0.90–1.15 7.5

TS-DH1 (6) Metamorphism box time
series (lab)

0.175–0.31 0.74–1.45 10.69

TS-ISO1 (10) Isothermal time series
(lab)

0.16–0.26 0.69–1.00 5.11

TS-ISO5 (10) Isothermal time series
(lab)

0.16–0.24 0.65–1.04 5.11

Alp-DIV (41) Various Alpine samples
(Davos, Switzerland)

0.06–0.39 0.56–1.67 6.86

Arc-EGRIP
(184)

Snow core (Greenland) 0.24–0.66 0.45–1.87 10.8 Montagnat et al. (2020)

Ant-B34 (4) Firn core (Antarctica) 0.43–0.93 1.07–1.11 12.0 Schlegel et al. (2019)

Ant-B54 (32) Firn core (Antarctica) 0.60–0.80 1.00–1.17 18.0

Ant-Lock-In
(10)

Ice core (Antarctica) 0.85–0.93 1.05–1.12 15.0 Fourteau et al. (2019)

ing the L2 norm of σ −CFEM
: ε = 0, where σ and ε are the

stress and deformation states from the simulations. The spe-
cific choice of load states naturally implies different weights
for the elasticity components during the least-squares opti-
mization, as, for instance, CFEM

33 is only involved in the e33
load state. This optimization strategy ensures the resulting
elasticity tensor is transverse isotropic and incompressible. It
also ensures that the components are consistently estimated
through the several load states in which they play a role.

To assess whether we fulfill the representative volume el-
ement (RVE) criterion, we employ the estimate of Wautier
et al. (2015), which is based on correlation functions. RVE
convergence is deemed to be satisfied when the ratio of linear
sample size L (given in Table 1) and the correlation length l
( 3
√
lx ly lz) exceed 30. From this, we deduce that 92% of our

samples fulfill this requirement, while 8% of the samples do
not fulfill it but were still kept in the data set, as they do not
appear as outliers in our results. The latter samples have ice
volume fractions ranging from 0.11 to 0.66.

3.5 Reparameterization of existing models

From the simulations we also reparameterize existing models
from Sect. 2. The unknown parameters in the Gerling model
(aij and bij ), the Zysset–Curnier model (λ,λ′,µ,k, and l),
and the present model (ξ and β) are obtained by perform-
ing least-squares regression on the simulated elasticity tensor

components against the models from Sect. 2.2. The free pa-
rameters of all models were adjusted using a log transforma-
tion of the elasticity tensor component, as done in Srivastava
et al. (2016) or Zysset (2003).

4 Results

4.1 Present study parameterization

Figure 2 shows an overview of all results by plotting the sim-
ulated elasticity components CFEM

ij (different rows) against
the ice volume fraction (column 1), the HS upper bound (col-
umn 2), and the normalized representation from Eq. (11). In
the top row (Fig. 2a–c), all elasticity components from all
the samples are represented with different colors depending
on the component of the elasticity tensor. In contrast, in the
rest of the rows, only one component is represented at a time,
and the colors and symbols highlight the different samples,
as defined in Table 1. The figure shows that the scatter of
the simulated elasticity tensor components (CFEM

ij ) is maxi-
mal when plotted as a function of ice volume fraction φ (left
column) and that this scatter is reduced when plotted as a
function of HS upper bound CU

ij instead (middle column).
Next, we use the improved correlation between CFEM

ij and
CU
ij to derive the parameterization for each component ac-

cording to Eq. (11), shown as the black curves (right col-
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Figure 2. Simulated elasticity components CFEM
ij

(different rows) are shown as a function of volume fraction φ (left column), as a function

of the HS upper bound CU
ij

(middle column), and in the normalized version CU
ij
/Cice
ij

(right column). The black curve represents the parame-
terization derived for all the components (two parameters each). In the top row, the color scheme represents the components of the elasticity
tensor. In the other rows, the colors and symbols represent the different samples considered in the present study, presented in Table 1.
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umn). Note that the nonlinear transition behavior from the
power law increases at low densities when approaching the
value of ice is well captured for all the components. The
performance, however, slightly differs for individual tensor
components and is the best for C33. We also stress that the
data collapse for all tensor components in the normalized plot
indicates that only two parameters are sufficient to obtain a
decent picture of elasticity from Eq. (12).

4.2 Comparison to previous parameterizations

To examine the performance of the parameterization derived
by fitting either individual components (see the top row of
Fig. 3) or all the components of the elastic modulus simul-
taneously (see the bottom row of Fig. 3), we show a scatter-
plot of the C33 component of the elastic modulus evaluated
from numerical simulations vs. the three parameterizations:
the density-based parameterization from Gerling (left), the
Zysset–Curnier parameterization (middle), and the present
study parameterization (right). As with Fig. 2, the colors
and symbols in the top row of Fig. 3 represent the differ-
ent samples, while the colors in the bottom row represent the
components of the elasticity tensor. A detailed overview of
the parameters obtained for different parameterizations and
their coefficient of regression is given in Table 2. Note that
these parameters differ from the values obtained in the origi-
nal publication as the models were readjusted to fit our FEM
simulations as explained in Sect. 3.5.

4.3 Comparison at high ice volume fractions

The improvement of the prediction of the elastic modulus
using the present-work parameterization CPW

33 at high vol-
ume fraction is compared with elastic modulus determined
by the formula from Kohnen (1972) in Eq. (5), where the P-
wave velocity of ice vice

p is calculated once by using the ge-
ometrical elastic modulus of ice (vice

p = (C
ice
33 /ρ

ice)0.5) and
with the literature P-wave velocity of ice vice

p ≈ 3900 m s−1,
which was notably estimated through vertical seismic profil-
ing in Antarctica (Diez, 2013). This comparison is depicted
in Fig. 4. We see that CKOH

33 , based on the elastic modulus
of ice used in this work, exactly approaches the correct limit
and is in line with our parameterization CPW

33 and the limit
of elastic modulus for bubbly ice CDDS

33 . This validity of the
CPW

33 , CKOH
33 , and CDDS

33 parameterizations at high density is
also confirmed by their agreement with the simulated CFEM

33
values.

4.4 Relative influence of geometrical anisotropy and
density

While the elasticity of snow, firn, and ice is predominantly
controlled by density, we can now quantify the additional
controls of geometrical anisotropy. To assess the distribu-
tion of geometrical anisotropy of the entire data set, we

plot the structural anisotropy parameter α = `z/`xy for all
391 microstructures as a function of the ice volume frac-
tion in Fig. 5a. The highest anisotropy parameter (α = 1.87,
φ = 0.39) is registered by an Arc-EGRIP sample.

The potential error induced by assuming isotropy (α = 1)
in determining parameterization of elastic modulus is shown
in an error plot in Fig. 5b. Here, the error CPW

33 (φ,α)−

CPW
33 (φ,1)/C

PW
33 (φ,1) is shown as a two-dimensional con-

tour plot as a function of the ice volume fraction and the
anisotropy parameter α. The relative error gives the percent-
age error induced between the elastic modulus computed as
a function of anisotropy and as a function of isotropy, with
zero relative error for isotropic structures. Figure 5 presents
the slice view of the microstructure for three different cases
of α (α > 1, α = 1, and α < 1). Note the vertical (α >1) and
horizontal (α < 1) geometrical orientation of the ice matrix.

Figure 5 shows that the structural anisotropy α is an im-
portant component of the parameterization proposed in this
work. However, as it is not straightforward to measure the
structural anisotropy and as elasticity is highly sensitive to
density, one may wonder how the errors induced by neglect-
ing anisotropy compare to typical errors due to uncertain-
ties in the density measurement. To answer this question,
we compared the impact of neglecting anisotropy (that is
to say assuming α = 1) to that of a typical 5% uncertainty
when measuring density using µCT (Proksch et al., 2015;
Hagenmuller et al., 2016). Specifically, we applied our pa-
rameterization of the C33 component to the following three
cases: case 1, which corresponds to the ideal case of taking
into account geometrical anisotropy (α 6= 1) and assuming no
uncertainty in density; case 2, which corresponds to a case
where geometrical anisotropy is accounted for (α 6= 1) but
with a 5% uncertainty in density; and case 3, which corre-
sponds to the case where geometrical anisotropy is neglected
(α = 1) but without density uncertainty. These three cases
are applied to the Arc-EGRIP samples (0.45< α < 1.87
and 0.24< φ < 0.66), which underwent temperature gradi-
ent metamorphism experiments under natural conditions, and
to the TS-TGM17 samples (0.9< α < 1.15 and 0.30< φ <
0.32), which in contrast underwent TGM in controlled con-
ditions. They are visible in Fig. 6 alongside the estimation
of the C33 component directly derived from the FEM simu-
lations, which serves as a reference. Neglecting anisotropy
(case 3) leads to average errors of 39.8% and 21.7% for
the Arc-EGRIP and TS-TGM17 samples, respectively. A 5%
error in density, while taking into account anisotropy (case
2), yields average errors of 23% and 11.96% for the Arc-
EGRIP and TS-TGM17 samples, respectively. This is to be
compared with average errors of 14.56% and 11.96% when
anisotropy is considered (case 1) and when there is no error
in density.
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Table 2. Parameters and regression coefficient obtained from the least-squares regression of the simulated elastic modulus employing differ-
ent models on the entire data set.

Isotropic parameterization fitted for all components (Gerling et al., 2017; Eq. 4) aij bij R2

CG
ij

6.73 4.08 0.76

Isotropic parameterization fitted for each component (Gerling et al., 2017; Eq. 4) aij bij R2

CG
11 9.51 3.93 0.992
CG

12 2.13 3.85 0.994
CG

13 5.31 4.46 0.997
CG

33 27.33 4.26 0.980
CG

44 4.70 3.88 0.978

Zysset–Curnier parameterization (Srivastava et al., 2016; Eq. 8) λ λ′ µ

CZC
ij

0.56 0.19 0.16

k l R2

CZC
ij

4.02 −1.23 0.950

The present study parameterization fitted for all components (Eq. 12) β ξ R2

CPW
ij

2.99 0.466 0.990

The present study parameterization fitted for individual components (Eq. 12) β ξ R2

CPW
11 3.21 0.39 0.991
CPW

12 2.69 0.90 0.976
CPW

13 3.11 0.30 0.996
CPW

33 3.32 0.18 0.998
CPW

44 3.15 0.47 0.991

4.5 Comparison of geometrical and crystallographic
anisotropy

To assess the geometrical anisotropy in reference to the crys-
tallographic anisotropy when determining the elastic prop-
erties of snow, firn, and ice for a given ice volume frac-
tion, we plot the geometrical Thomsen parameter εgeom, ob-
tained from Eq. (3), against φ in Fig. 7. For comparison,
we also show the maximum crystallographic anisotropy that
can be theoretically obtained, which is the known value of
monocrystalline ice at zero porosity (φ = 1) given by εcryst =

−0.0356 (Petrenko and Whitworth, 2002). The expected (but
unknown) decay of εcryst for φ < 1 is shown as a schematic
(see Discussion).

5 Discussion

5.1 Summary of main results

The proposed empirical parameterization offers a crucial ad-
vantage by being applicable across the range of natural ice
volume fractions, enabling accurate predictions of the effec-
tive elastic modulus (see Fig. 3). This broad range of appli-
cability is supported by the fact that some of the temperature

gradient experiment samples used in this study have been
independently compared with natural Arctic snow in terms
of geometrical anisotropy (Leinss et al., 2020). Furthermore,
these anisotropic samples fall into the intermediate density
range (250 to 500kgm3), where geometrical anisotropy ex-
erts a substantial influence, in contrast with the lesser dom-
inance of structural anisotropy at low and high densities.
Therefore, we expect that our parameterization is sufficiently
generic to capture typical anisotropic structures in snow. Fur-
thermore, the samples used to derive the parameterization
are diverse regarding their conditions of formation. Conse-
quently, we expect this parameterization to yield reasonably
accurate predictions of elastic properties for the whole range
of natural porous snow, firn, and ice formations.

Previous parameterizations of the elastic modulus, based
either on density alone (Eq. 4; Gerling et al., 2017) or on
density and anisotropy (Eq. 8; Srivastava et al., 2016), can
significantly overestimate the elastic modulus when applied
outside their validity range (see Fig. 1). The advantage of
HS bounds (Eq. 9) is that they comply with the limiting be-
havior of bubbly ice (see Sect. 2.6) and do not overestimate
the elastic properties as they approach high volume fractions
and incorporate the anisotropy (see Fig. 1). For construct-
ing the empirical parameterization, we exploited the fact that
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Figure 3. Comparison of simulated elastic modulus (CFEM
33 ) to the Gerling et al. (2017) (G) density-based power-law model given by Eq. (4),

the Zysset–Curnier (ZC) model (Srivastava et al., 2016) given by Eq. (8), and the present-work parameterization (PW) given by Eq. (12)
(from left to right). The given R2 values correspond to the performance of the parameterization by fitting (a, b, c) individual or (d, e, f) all
components, respectively. In panels (a), (b), and (c) the colors and symbols represent the different samples considered in the present study,
presented in Table 1. In panels (d), (e), and (f) the color scheme represents the components of the elasticity tensor.

Figure 4. Comparison of present-work parameterization CPW
33 with

the elastic modulus CKOH
33 determined by the empirical formula

from Kohnen (1972), which is based on P-wave velocity and den-
sity (P-wave velocity is determined from structural elastic modulus
of ice), the elasticity modulus CKOH

33 obtained by taking P-wave ve-
locity as 3900 ms−1, and the upper bound of elastic modulus for
dilute dispersion (CDDS

33 ). The black square represents the elastic
modulus of ice (Cice

33 ). The black dots correspond to simulations in
this density regime (CFEM

33 ).

the elastic modulus should asymptotically tend to the be-
havior of randomly diluted spheres, reflecting the fact that
low-porosity ice from ice cores mainly consists of convex

(sphere-like) air cavities (Fourteau et al., 2019). The validity
of this assumption is reflected by Fig. 4, which shows that
numerical simulations coincide very well with the theoreti-
cal prediction of elasticity for dilute dispersions of spherical
cavities (see Eq. 6).

The relatively moderate change in the regression coef-
ficient of our CPW

33 in comparison to previous parameter-
izations CG

33 and CPW
33 (see Fig. 3) reflects the fact that

anisotropy only has a subdominant influence on elasticity,
while density remains the main parameter. However, cap-
turing these subdominant influences may be very important
for advanced microstructure characterization by alternative
means, such as capturing macroscopic physical properties re-
motely (Leinss et al., 2016). Moreover, as shown in Sect. 4.4,
neglecting anisotropy is the main source of error when es-
timating the elastic properties of a sample whose density
has been measured with state-of-the-art techniques (Proksch
et al., 2015; Hagenmuller et al., 2016).

Our parameterization of the elastic modulus is a good
alternative to computationally expensive FEMs. Although
other theoretical approximations, such as the self-consistent
(SC) approximation, were previously employed by Wautier
et al. (2015) to predict the effective elastic properties and by
Calonne et al. (2019) to predict the effective thermal con-
ductivity for the entire range of densities, SC approxima-
tions are based on implicit equations that need to be solved
(Torquato, 2002a). Torquato (1998) showed that SC approx-
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Figure 5. (a) Structural anisotropy of the microstructures (α) is plotted as a function of volume fraction φ. Isotropy is represented by the
dashed line for α = 1. The three square boxes represent the three different geometrical anisotropic ratios α > 1 (prolate inclusions), α = 1
(isotropic), and α < 1 (oblate inclusions) present in our data, for which a slice view of the microstructure in the yz plane is presented.
(b) Contour plot showing CPW

33 (φ,α)−CPW
33 (φ,1)/CPW

33 (φ,1) as a function of anisotropy and volume fraction. The two black squares
represents the relative error at the maximum and minimum anisotropy ratios α = 1.87 and α = 0.45 which occur in the present data set
in (a). The color bar represents the percentage of relative error computed for different geometrical anisotropic microstructures considered.
Table 1 provides the description of the samples.

Figure 6. Comparison of the elastic modulus calculated from FEM simulations CFEM
33 to present-work parameterization CPW

33 for (a) Arc-
EGRIP samples as a function of depth and (b) one of the TGM time series (TS-TGM17). CPW

33 is computed for the following three cases:
case 1, accounting for anisotropy without uncertainty in density CPW

33 (φ,α 6= 1); case 2, accounting for anisotropy with 5% uncertainty in
φ CPW

33 (φ with 5% error, α 6= 1); and case 3, not accounting for anisotropy without uncertainty in density CPW
33 (φ,α = 1). Panels (c) and

(d) show the norm of the relative errors of the three cases compared to the finite-element results. The shaded area for case 2 represents the
spread resulting from a 5% uncertainty in density.

imations give inadequate approximation of effective moduli
of dispersions and overestimate the effective moduli in com-
parison to rigorous bounds. In contrast, the limiting behavior
of the Hashin–Shtrikman bounds can provide an explicit for-
mula for effective moduli.

It is notable that the range of the elastic modulus varies
for each tensor component (see Fig. 2b) plotted as a function
of the Hashin–Shtrikman bound. Hence, we parameterize the
elastic modulus for each component shown in Fig. 2 (column
3), as described in Sect. 2.6 using Eq. (12), and the two pa-
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Figure 7. Geometrical and crystallographic Thomsen parameters,
εgeom and εcryst, plotted as a function of volume fraction φ to show
the predominant influence of anisotropy (geometrical and crystal-
lographical) on elastic properties. The dashed red line illustrates
a schematic representation of the expected behavior of crystallo-
graphic anisotropy εcryst for φ < 1. Sample name descriptions are
given in Table 1.

rameters ξ and β for each component are given in Table 2.
We also observed that all five components collapse onto a
single curve when normalizing the simulated values by ice
moduli (CFEM

ij /Cice
ij ) and plotting them as a function of the

normalized HS upper bound (CU
ij/C

ice
ij ). This helped with the

prediction of all five components of the elastic modulus with
only two parameters in contrast to five parameters given by
the Zysset–Curnier parameterization used in Srivastava et al.
(2016) for an orthotropic elasticity tensor.

5.2 Choice of the geometrical fabric tensor

Srivastava et al. (2016) demonstrated that the choice of the
fabric tensor does not affect the prediction of anisotropy.
Hence, the MIL fabric tensor, employed by the Zysset–
Curnier parameterization in Srivastava et al. (2016), was re-
placed here by the symmetric depolarization tensor (orienta-
tion tensor)M∗. In this way, the current elasticity parameter-
ization involves exactly the same microstructure parameter
(φ,α) as previous permittivity or thermal conductivity pa-
rameterizations (Leinss et al., 2016; Löwe et al., 2013). Weng
(1992) evaluated bounds using a similar depolarization ten-
sor based on two-point correlation functions assuming ellip-
soidal symmetry. Their results were consistent with those of
the Hashin–Shtrikman bounds evaluated by Eshelby’s tensor.

We note that the choice of the fabric tensor has an im-
pact on the sign of the fit parameter (l) in the Zysset–Curnier
parameterization, yielding a negative value here in contrast
to Srivastava et al. (2016). This can be explained because
our depolarization tensor M∗ given by Eq. (15) yields a zero
eigenvalue in the vertical direction for a vertically oriented
microstructure. In contrast, the MIL fabric tensor is repre-
sented by 〈mi ⊗mj 〉, with a local director mi , and is di-
vided by its trace. If the orientation is in the mi direction,

then the corresponding eigenvalue in this direction is maxi-
mized. Therefore, the sign of the l parameter is reversed. A
limitation of the MIL fabric tensor is, however, that it is not
able to detect interfacial anisotropy; Odgaard (1997) evalu-
ated a two-dimensional “Swiss cheese” microstructure where
the MIL analysis predicted an isotropic geometry despite the
obvious, anisotropic arrangement of the spheres. The result
of the analysis was influenced by the isotropic interfaces
between the phases. Similar results were also observed by
Klatt et al. (2017): when the MIL analysis was performed
on a Boolean model with aligned Reuleaux triangles, it re-
sulted in circles. MIL determination based on standard line-
or intersection-counting techniques used to determine MIL is
time-consuming and sensitive to noise (Moreno et al., 2012).

5.3 Performance of the parameterization

Overall, the parameterization used in the present-work CPW
33 ,

given by Eqs. (11)–(12), had excellent agreement (R2
=

0.99) when fit to all components simultaneously with two
parameters in comparison to previous parameterizations
from Srivastava et al. (2016) (volume-fraction- and fabric-
dependent) and Gerling et al. (2017) (volume-fraction-
dependent), which yielded the coefficients of determina-
tion R2

= 0.76 and R2
= 0.952, respectively (see Table 2

and Fig. 3). Figure 3d shows that the Gerling et al. (2017)
density-based parameterization yields the best prediction for
the component C44 when derived by fitting all components.
This is because the C44 component values lie in between the
diagonal component values C11 and C33 (typically higher
values) and off-diagonal component valuesC12 andC13 (typ-
ically lower values). The highest improvement over density-
based parameterizations is achieved for the C33 component
for the TS-TGM2, TS-TGM17, and Arc-EGRIP samples,
which becomes apparent when plotted as a function of the
HS upper bound or volume fraction (see Fig. 2). All of these
samples have an ice matrix predominantly oriented in the z
direction (see Fig. 5a) with the anisotropy ratio α > 1. Such
vertically oriented structures are generated by strong temper-
ature gradient metamorphism (Calonne et al., 2012; Löwe
et al., 2013; Leinss et al., 2020) occurring in the snow, firn,
and ice. This is evident for temperature gradient time series
(TS-TGM2 and TS-TGM17) from Fig. 5a, where we see the
change from a horizontal orientation of ice matrix into a ver-
tical orientation. The improvement of the prediction of the
elastic modulus mainly in the z direction is consistent with
previously derived properties such as thermal conductivity
for snow (see Löwe et al., 2013). EastGRIP (Arc-EGRIP)
samples extracted from the firn in Greenland also display a
similar kind of geometrical anisotropy in the vertical direc-
tion (Montagnat et al., 2020).

To further test the performance of our parameterization,
we considered ice volume fraction and correlation function
data provided by Wautier et al. (2015). The data display val-
ues of α ranging from 0.65 to 1.26 and of φ ranging from
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0.10 to 0.59. We applied our parameterization on these data
using Eq. (12) and compared the obtained results to the elas-
tic stiffness tensor computed from FEM simulations of Wau-
tier et al. (2015) and Srivastava et al. (2016) and from the
present work. We also added the other parameterizations de-
rived from FEM simulations (namely Köchle and Schnee-
beli, 2014; Gerling et al., 2017), with φ ranging from 0.10 to
0.59. We found that PW parameterization applied to the data
of Wautier et al. (2015) differs from the simulation results
from Wautier et al. (2015). However, despite the scatter, both
our FEM simulations and PW parameterization lie within the
range of finite-element results from Srivastava et al. (2016),
Köchle and Schneebeli (2014), and Gerling et al. (2017).

Using the new parameterization, it is possible to assess the
maximum error in the prediction of elasticity if anisotropy
is not taken into account (see Fig. 5b). As the relative error
is not the same for microstructures with vertical and hori-
zontal orientations of the ice matrix (see Fig. 5a), the error
plot is nonsymmetric in α (see Fig. 5b). The relative error of
the elastic modulus for vertical ice matrix orientation (TS-
TGM2, TS-TGM17, and Arc-EGRIP) (α > 1) (see the top
half of Fig. 5b) is larger than 100 %. The relative error for
horizontal orientation of ice matrix (α < 1) seen for φ be-
tween snow to ice is up to −90%. From Fig. 5a and b, it
is clear that for intermediate volume fractions in the range
0.3< φ < 0.5, very different anisotropy values are possible
for a similar density. Using the extreme values from Fig. 5b,
the prediction of elastic modulus solely as a function of φ
could miss variations of up to 200 %. For φ→ 1, the rela-
tive error must approach zero, since for vanishing porosity
(polycrystalline) ice becomes geometrically isotropic.

5.4 Comparison of geometrical and crystallographical
anisotropy

In Figs. 5a and 7 we see the typical evolution of the geo-
metrical anisotropy in snow, firn, and ice, with a sharp in-
crease in geometrical anisotropy with density in low-density
snow and its survival up to high densities. Initially, at low
density, snow exhibits a horizontal orientation of the ice ma-
trix (Leinss et al., 2016). As the volume fraction increases
from snow to firn, we observe the transition of the orienta-
tion to the vertical direction. This change is a result of tem-
perature gradient metamorphism, which can be easily con-
firmed from the temperature gradient metamorphism exper-
iments (TS-TGM2 and TS-TGM17) and also from the Arc-
EGRIP data set (Leinss et al., 2020). The existence of ge-
ometrical anisotropy in polar snow is well known (Fujita
et al., 2014; Moser et al., 2020) and can be quantitatively
related to temperature gradient metamorphism (Montagnat
et al., 2020). When the volume fraction of ice increases fur-
ther from firn to bubbly ice, the microstructures relax to a
geometrically isotropic state. This is a consequence of the
gravitational settling and densification of snow (Leinss et al.,
2020). However, we infer from Fig. 5a that the vertical ge-

ometrical anisotropy generated near the surface survives be-
yond the bubble close-off transition around φ ≈ 0.92 that un-
derlies the Ant-Lock-In data, as discussed in Fourteau et al.
(2019). This raises the question of at which point exactly
the crystallographic anisotropy becomes the dominant type
of anisotropy.

To this end, we have quantified the geometrically elastic
anisotropy by deriving the corresponding Thomsen param-
eter εgeom for the entire range of ice volume fraction (see
Fig. 7). This clearly reveals that the geometrical anisotropy
dominates snow and firn for ice volume fraction φ < 0.7 in
our data. For bubbly ice, the situation is a bit more compli-
cated. The crystallographic Thomsen parameter of ice εcryst
shown in Fig. 7 is only valid for φ = 1, where the geometri-
cal Thomsen parameter εgeom must vanish. However, it can
be expected that in the range 0.7< φ < 1 the geometrical
and crystallographic anisotropies are of similar magnitude
since the crystallographic Thomsen parameter εcryst must de-
cay from its ice value when increasing the porosity. To un-
derstand this phenomenon, one can assume a volume-filling
monocrystal, with a Thomsen parameter εcryst that corre-
sponds to the maximum possible crystallographic anisotropy.
Now, if this volume is gradually filled with an isotropic
inclusion of air, the anisotropic behavior of the hollowed
monocrystal decays. This behavior is shown as a schematic
line on the inset of Fig. 7 and highlights the importance of
consideration of both kinds of anisotropies for very high den-
sity. Such an influence of very low porosity on the crystallo-
graphic fabric is also implied by the results of Hellmann et al.
(2021).

For microstructures in the volume fraction range 0.7<
φ < 1, it may thus be important in the future to consider
the concurrent effects of crystallographical and geometri-
cal anisotropy, as consideration is presently nonexistent. It
is important to know the dominant anisotropy (geometrical
or crystallographic) for a given volume fraction for the pre-
diction of elastic properties. Previous studies mostly con-
sider crystallographic anisotropy, which may, however, be-
come dominant only very close to φ = 1.

5.5 Applicability of the current parameterization

To ease the applicability of the present parameterization, we
provide the Python scripts with the data and the necessary
functions to compute the parameterized elasticity tensor as
a function of a sample’s density and anisotropy and of the
shear and bulk modulus of ice. Also, while the parameter-
ization of the elasticity tensor was derived using the elastic
properties of ice at−16 °C, one can directly transpose the pa-
rameterization to a different temperature. This is readily done
by taking into account the temperature dependence of the ice
elastic properties that appear in the parameterization. Finally,
as the purely elastic behavior of a porous material does not
depend on grain size explicitly but only on its microstructural
shape (as seen in Eshelby’s tensor described in Appendix B),
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the proposed parameterization is applicable regardless of the
grain size of the considered sample.

6 Conclusions

Using a transformation of the anisotropic Hashin–Shtrikman
bounds, we derived a new closed-form parameterization for
the effective elasticity tensor as a function of the volume frac-
tion and geometrical anisotropy applicable from fresh snow
to bubbly ice. Thereby, we extend the set of parameteriza-
tions of physical parameters with a similar focus on the full
range of volume fractions (Calonne et al., 2019; Picard et al.,
2022). We have demonstrated the advantages over previous
elasticity parameterizations in view of performance and the
correct asymptotic behavior for bubbly ice. Given the distri-
bution of naturally occurring geometrical anisotropy, the un-
certainty range of elastic moduli predictions is up to 200 %
for intermediate volume fractions of 0.3< φ < 0.5 if only
density is considered in the parameterization.

The new parameterization is a crucial tool with differ-
ent applications in cryospheric sciences. In particular, we
seek to trigger new microstructure retrievals through ad-
vanced anisotropic inversion methods of seismic data (Wu
et al., 2022). Along these lines, our results shed new light
on the relative importance of the two different types of elas-
tic anisotropy (crystallographic and geometrical) in snow and
firn that may influence the interpretation of seismic measure-
ments (Schlegel et al., 2019). The geometrical anisotropy
clearly dominates the crystallographic anisotropy for φ < 0.7
and must be taken into account when discussing anisotropy
in near-surface seismics (Chaput et al., 2022). While the ge-
ometrical anisotropy quickly decays with depth, remainders
still persist down to the close-off depth, and how concurrent
fabrics (geometrical and crystallographic) will elastically in-
teract in bubbly ice is yet to be investigated.

Appendix A: Isotropic elasticity tensor

The elasticity tensor in terms of bulk modulus K and shear
modulus G for an isotropic case is given as

C =


K + 4G/3 K − 2G/3 K − 2G/3 0 0 0
K − 2G/3 K + 4G/3 K − 2G/3 0 0 0
K − 2G/3 K − 2G/3 K + 4G/3 0 0 0

0 0 0 G 0 0
0 0 0 0 G 0
0 0 0 0 0 G

 , (A1)

with Young’s modulus as E = 9KG
3K+G and Poisson’s ratio as

ν = 3K−2G
2(3K+G) .

Appendix B: Eshelby’s tensor

Eshelby’s tensor S is defined in terms of elliptical integrals.
For the case of a spheroidal inclusion with the semiaxis given

in terms of correlations lengths `x = `y = a and `z = b, and
with the symmetry axis aligned in the z direction embedded
in a transverse isotropic comparison phase, this results in a
transverse isotropic Eshelby’s tensor, with the components of
Sijkl given in Torquato (2002a) and Parnell and Calvo-Jurado
(2015) as follows:

S1111 = S2222 =
3

8(1− v1)

α2

α2− 1
+

1
4(1− v1)[

1− 2v1−
9

4(α2− 1)

]
q,

S3333 =
1

2(1− v1)

{
1− 2v1+

3α2
− 1

α2− 1

−

[
1− 2v1+

3α2

α2− 1

]
q

}
,

S1122 = S2211 =
1

4(1− v1)

{
α2

2(α− 1)

−

[
1− 2v1+

3
4(α2− 1)

]
q

}
,

S1133 = S2233 =
1

2(1− v1)

{
−α2

α2− 1

+
1
2

[
3α2

α2− 1
− (1− 2v1)

]
q

}
,

S3311 = S3322 =
1

2(1− v1)

{
2v1− 1−

1
α2− 1

+

[
1− 2v1+

3
2(α2− 1)

]
q

}
,

S1212 =
1

4(1− v1)

{
α2

2α2− 1
+

[
1− 2v1

−
3

4(α2− 1)

]
q

}
,

S1313 = S2323 =
1

4(1− v1)

{
1− 2v1−

α2
+ 1

α2− 1

−
1
2

[
1− 2v1−

3(α2
+ 1)

α2− 1

]
q

}
, (B1)

where v1 is the Poisson ratio of the comparison material, α is
the aspect ratio of the spheroid given in terms of correlation
lengths (`z/`xy), and q is defined by

q =

{
α

(α2−1)3/2 [α(α
2
− 1)1/2− cosh−1α], α ≥ 1,

α

(1−α2)3/2
[cos−1α−α(1−α2)1/2], α ≤ 1.

(B2)

Several limits of Eshelby’s tensor for transverse isotropic ma-
terials can be derived. For ice matrix orientation with needle-
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shaped structures (α→∞,q = 1), Eshelby’s tensor reads

S1111 = S2222 =
5− 4v1

8(1− v1)
, S3333 = 0,

S1122 = S2211 =
4v1− 1

8(1− v1)
,

S1133 = S2233 =
v1

2(1− v1)
,

S3311 = S3322 = 0, S1212 =
3− 4v1

8(1− v1)
,

S1313 = S2323 =
1
4
. (B3)

For inclusion with disk-shaped structures (α = 0,q = 0), the
components of Eshelby’s tensor are then given by

S3333 = 1, S3311 = S3322 =
v1

1− v1
,

S1313 = S2323 =
1
2
. (B4)

Appendix C: Definition of function Q(α)

For the evaluation of the depolarization tensorM∗ in Eq. (15)
the definition of functionQ(α) is given as (Torquato, 2002a)

Q=


1
2

{
1+ 1

α2−1

[
1− 1

2χb(α)
ln
(

1+χb(α)
1−χb(α)

)]}
,α > 1,

1
2

{
1+ 1

α2−1

[
1− 1

χb(α)
atan(χa(α))

]}
,α < 1,

(C1)

with χa(α)2 =−χb(α)2 = 1/α2
−1. For this case, α = 1 and

Q= 1/3.
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