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Abstract. Measurements of radar backscatter are sensitive
to snow water equivalent (SWE) across a wide range of fre-
quencies, motivating proposals for satellite missions to mea-
sure global distributions of SWE. However, radar backscatter
measurements are also sensitive to snow stratigraphy, to mi-
crostructure, and to ground surface roughness, complicating
SWE retrieval. A number of recent advances have created
new tools and datasets with which to address the retrieval
problem, including a parameterized relationship between
SWE, microstructure, and radar backscatter, and methods to
characterize ground surface scattering. Although many algo-
rithms also introduce external (prior) information on SWE or
snow microstructure, the precision of the prior datasets used
must be high in some cases in order to achieve accurate SWE
retrieval.

We hypothesize that a time series of radar measurements
can be used to solve this problem and demonstrate that SWE
retrieval with acceptable error characteristics is achievable by
using previous retrievals as priors for subsequent retrievals.
We demonstrate the accuracy of three configurations of prior
information: using a global SWE model, using the previously
retrieved SWE, and using a weighted average of the model
and the previous retrieval. We assess the robustness of the
approach by quantifying the sensitivity of the SWE retrieval
accuracy to SWE biases artificially introduced in the prior.
We find that the retrieval with the weighted averaged prior
demonstrates SWE accuracy better than 20 % and an error
increase of only 3 % relative RMSE per 10 % change in prior

bias; the algorithm is thus both accurate and robust. This find-
ing strengthens the case for future radar-based satellite mis-
sions to map SWE globally.

1 Introduction

Snow water equivalent (SWE) is an important component
of the global cryosphere but is poorly measured globally
(Mortimer et al., 2020). Multiple spaceborne satellites have
been proposed by space agencies to observe global SWE, but
to date none have been selected or launched (Tsang et al.,
2022). One often-cited reason for non-selection has been a
stated need for high-accuracy a priori information that in
practice is challenging to obtain (Rott et al., 2012).

Radar backscatter measurements are sensitive to SWE but
are also impacted by other environmental parameters, such
as forest canopies (Lemmetyinen et al., 2022), snow mi-
crostructure (King et al., 2018; Rutter et al., 2019; Sandells
et al., 2021), and soil moisture and roughness (Zhu et al.,
2022). These nuisance parameters motivate the introduc-
tion of a priori information to help constrain SWE retrieval
(Tsang et al., 2022). Indeed, a priori information is pivotal for
the retrieval algorithms of many satellite missions. For exam-
ple, prior information is critical to the estimation of river dis-
charge from the recently launched Surface Water and Ocean
Topography satellite mission (Durand et al., 2023). However,
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it is vital that studies characterize the sensitivity of retrievals
to priors.

Recent advances have helped to clarify the relationship
between radar backscatter and snow properties. Microcom-
puted tomography provides a means to objectively charac-
terize snow microstructure and thus examine its effects on
microwave scattering (Sandells et al., 2021; Picard et al.,
2022). These fundamental advances enable new physically
based retrieval studies. For example, Pan et al. (2023) used a
two-layer physically based radiative transfer model coupled
with an iterative Markov chain Monte Carlo methodology
that was able to accurately estimate soil properties, SWE,
and snow microstructure using in situ measurements of radar
backscatter. The study further demonstrated that SWE could
be retrieved even in the presence of biases in prior informa-
tion. However, the algorithm was quite computationally ex-
pensive, making it less suitable for satellite applications.

A number of recent advances have created new tools and
methods with which to address the SWE retrieval problem.
Zhu et al. (2018) presented methods to separate snow vol-
ume scattering from ground surface scattering by differenc-
ing the radar backscatter on 2 different days, thus accounting
for the effect of the ground surface scattering on the radar
signal. In order to reduce the total number of unknowns in
the retrieval problem, Cui et al. (2016) and Zhu et al. (2021)
fit empirical relationships to radiative transfer model simu-
lations for complex snow media (Xu et al., 2012). Zhu et al.
(2021) present such a model in which snow volume backscat-
tering and attenuation of the ground surface scattering by
the snowpack are parameterized by the SWE and single-
scattering albedo ω at one frequency. By definition, ω is the
dimensionless ratio of the scattering coefficient to the total
extinction coefficient (Ulaby and Long, 2014). As used in
simple models of Cui et al. (2016) and Zhu et al. (2021),
ω is essentially a proxy for snow microstructure grain size
or autocorrelation length (Mätzler, 2002). As the snow mi-
crostructure length scale increases, snowpack scattering in-
creases, as does ω. Reducing the snowpack to these two in-
dependent variables has been shown to be effective in captur-
ing radar backscatter from snowpacks for both airborne and
tower-based measurements, while significantly reducing the
number of unknowns and thus simplifying the retrieval prob-
lem (Zhu et al., 2018, 2021). These two advances together
help to reduce the number of unknowns in the retrieval prob-
lem, thus making global SWE retrievals more feasible for
future satellite missions.

Additional advances have been published that investigate
the application of a priori information for SWE retrievals.
Some past studies have indicated that prior datasets must be
highly precise in order to achieve accurate SWE retrieval.
The CoReH2O satellite mission, for example, required a
high-precision prior estimate of snow grain size Rott et al.
(2012). Similarly, Rutter et al. (2019) found that grain size
would need to be known to within 10 % to enable accu-
rate SWE retrievals. Recently, Zhu et al. (2018) analyzed

this problem in terms of the single-scattering albedo ω and
found in airborne datasets that the associated ω values were
grouped into discrete sets of values. Thus, Zhu et al. (2018)
recast the need for a priori information on ω into a classifi-
cation problem. The best choice among the discrete possible
values of ω is determined using an a priori estimate of SWE
and the measured backscatter. This ω classification approach
was successfully used by Zhu et al. (2021) with in situ mea-
surements. This approach simplifies the problem into need-
ing only to know the classified ω value, which can be deter-
mined from prior information on SWE.

In this study, we deploy the parameterized model and re-
trieval algorithm of Zhu et al. (2021), including background
subtraction and ω classification, and assess its robustness to a
priori SWE accuracy. We hypothesize that using the radar ob-
servation time series significantly lessens the impact of prior
information and explore using the previous SWE retrieval as
the prior for the subsequent retrieval estimate. The goal is to
demonstrate accurate SWE retrievals from radar time series
measurements that are robust to the accuracy of a priori infor-
mation in order to strengthen the case for future radar-based
satellite SWE missions.

2 Datasets and study area

We use data from the Nordic Snow Radar Experiment (NoS-
REx) to explore this hypothesis (Lemmetyinen et al., 2016a).
We use data spanning the winters ending in 2010 and 2011
and refer to each winter by the year in which it ends. We
use tower-based and in situ data from the NoSREx Inten-
sive Observation Area (67.362◦ N, 26.633◦ E), located at
the Finnish Meteorological Institute Arctic Research Centre
at Sodankylä, Finland. The SnowScat multi-frequency scat-
terometer measured radar backscatter in a clearing of a typi-
cal boreal forest, with in situ snow measurements and mete-
orology measurements made in adjacent areas.

2.1 SnowScat scatterometer data

The SnowScat scatterometer instrument was installed on a
9.6 m height tower to observe undisturbed, natural snow-
pack at several incidence and azimuth angle combinations.
SnowScat measures hh-, vh-, hv-, and vv-polarized radar
backscatter in the frequency range from 9.2 to 17.9 GHz ev-
ery 3 or 4 h (depending on the year) at four incidence angles.
In this study, we average the data within each day and use vv-
polarized data at a 40◦ incidence angle at 10.2 and 16.7 GHz,
which we refer to as X- and Ku-bands, respectively. Mea-
surement uncertainty was assessed by repeat measurements
of a calibration sphere and was approximately 1.0 dB (Lem-
metyinen et al., 2016a).
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2.2 Snow pit measurements of SWE

Snow pit measurements were made approximately weekly.
SWE was assessed at each snow pit via measurement of snow
density at 5 cm vertical intervals using a 250 cm3 (Lemmetyi-
nen et al., 2016a) snow volume. A total of 17 and 13 snow pit
measurements are used for 2010 and 2011, respectively. The
snow-pit-derived measurements are the most reliable mea-
surement of SWE available at NoSREx.

2.3 Gamma SWE

Measurements of SWE were also made using an automated
experimental sensor, the Gamma Water Instrument (GWI).
The GWI estimates SWE by measuring the extinction of
gamma rays in the snowpack. GWI measurements were made
every 3 or 4 h, at the same temporal frequency as the SnowS-
cat radar measurements (Lemmetyinen et al., 2016a). These
measurements are less precise than the snow pit SWE mea-
surements.

2.4 Meteorology

Meteorology measurements at hourly intervals were made at
a tower several meters from the radar, snow pit, and GWI
sensors (Lemmetyinen et al., 2016a). In this study, we use
air temperature and precipitation measurements as described
in Sect. 4.2, with air temperatures averaged and precipitation
accumulated for each day.

2.5 ERA5 model data

Monthly estimates of SWE are obtained from the ERA5
European reanalysis, a component of the European Centre
for Medium-Range Weather Forecasts (ECMWF) numerical
weather prediction model (Hersbach et al., 2020). As de-
scribed in Hersbach et al. (2020), ERA5 includes land data
assimilation methodologies that assimilate snow station ob-
servations. It is possible that ERA5 is in fact dependent on
the NoSREx station data, making it more accurate in our
study area than in other areas. In order to address this, we
examine the sensitivity of the retrieval algorithm to bias by
looking at the sensitivity of the retrieval to a wide range
of bias artificially added to the ERA5 data, as described in
Sect. 4.5.

3 Retrieval algorithm formulation and application

The retrieval algorithm is a cost function minimization ap-
proach, a legacy algorithm with many years of heritage (Rott
et al., 2012). The minimization approach simply identifies
the choice of unknowns (i.e., SWE) to minimize a cost
function that includes the difference between observed and
model-predicted radar backscatter. This section describes the
basic formulation of the algorithm, with additional details of

Figure 1. The parameterized forward model Mvol(x) illustrating
the vv-polarized normalized radar cross section (NRCS) of snow
volume backscattering at 40◦ incidence in terms of SWE and ω
(values in legend) at 9.2 (a) and 17.9 GHz (b).

how the algorithm is applied for this study (e.g., estimation
of ground surface scattering) described in the subsequent sec-
tion. The algorithm embeds the parameterized forward model
presented by Zhu et al. (2021), in which snow volume scatter-
ing is parameterized as a function of the SWE and the single-
scattering albedo atX-band (ω). A set of empirical equations
are used to approximate the full response of radar backscat-
ter to snowpack characteristics derived by the more complex
bi-continuous Dense Media Radiative Transfer model of Xu
et al. (2012) and Ding et al. (2010). Figure 1 shows the model
radar predictions as a function of SWE and ω and shows the
rapid increase in backscatter that occurs as snow initially ac-
cumulates, as well as the influence of the snow microstruc-
ture parametrized by ω.

3.1 Formulation

The cost function minimization approach described here
builds from the approach of Zhu et al. (2021). The unknowns
SWE and ω are represented as a control vector x, and the
parameterized model described above is represented as an
operator σ0,mod. In this study, we minimize differences be-
tween observations and model predictions in units of decibels
[dB], and units of all σ0 quantities are in dB unless otherwise
noted. The optimal value of the parameters x̂ is computed by
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minimizing

x̂ = argmin
x

([
σ 0,obs− σ0,mod(x)

]
6−1

obs
[
σ 0,obs

−σ0,mod(x)
]T
+ [x− x]6−1

x [x− x]T
)
, (1)

where σ 0,obs is the vector of the volume scattering part of
the radar observations, 6obs is the error covariance matrix
of the observations, x is the vector of the prior estimates of
SWE and ω, and 6x is the error covariance of the prior es-
timates. The parameterized forward model is the sum of the
attenuated ground surface scattering and the parameterized
volume scattering, but these quantities are additive only in
linear units, not in dB; we use an asterisk (“∗”) superscript
to denote linear quantities. The forward model can be written
as

σ ∗0,mod(x)= f (x) σ
∗

0,surf+M
∗

vol(x), (2)

where σ ∗0,surf is the ground surface backscatter, f (x) rep-
resents the attenuation of the ground surface backscatter by
the snowpack (which depends on SWE and ω in the param-
eterized model), and M∗vol(x) is the parameterized snow vol-
ume scattering model expressed in linear units. σ ∗0,surf is the
backscatter that would be measured from the ground surface
in the absence of the snowpack, also referred to as the “back-
ground” backscatter.

Following Zhu et al. (2018), we assume that the prior es-
timate of the single-scattering albedo ω is either 0.4 or 0.6
in order to indicate whether snowpack is dominated by large
scatterers such as depth hoar. We choose ω using a two-step
approach. We first solve the optimization problem,

ω̂ = argmin
ω

([
σ 0,obs− σ0,mod(x0)

]
6−1

obs
[
σ 0,obs

−σ0,mod(x0)
]T )

, (3)

in which x0 fixes SWE at its prior estimate whileω is allowed
to vary. We then set ω to be either 0.4 or 0.6, depending on
which is closer to ω̂. Following Zhu et al. (2018), the prior
covariance matrix6x is then assumed diagonal with standard
deviation 0.1 for ω and 50 % of the ERA5-SWE value for
SWE.

3.2 Three configurations for estimating prior SWE and
ω

We explore three configurations for determining the prior
value for SWE (SWE) that are then used both in Eq. (1) and
in selecting ω̂. The first assumes the prior SWE to be equal
to the ERA5-Land SWE (SWEERA) at each time step; this is
referred to as the “ERA prior” hereafter. The second sets the
prior SWE estimate to be equal to the previous SWE retrieval
(labeled as ˆSWEt−1). For the first retrieval of each year, when
there is not yet a previous retrieval, the prior SWE is set equal
to the ERA5 SWE.

The third configuration uses the weighted average:

SWEt = gERASWEERA+ (1− gERA) ˆSWEt−1, (4)

where gERA is the weight given to the estimate of SWE from
ERA5. The optimal weight can be expressed in terms of the
variances of the respective terms:

gERA =
σ 2
ˆSWE

σ 2
ˆSWE
+ σ 2

ERA
, (5)

where the σ terms represent the uncertainty in ERA and the
previous SWE estimate, respectively. Assuming that σERA
is 50 % of SWEERA and that the uncertainty of ˆSWEt−1 is
35 % (accounting for the actual accuracy of the previous re-
trieval and allowing for the potential of SWE to change be-
tween successive retrieval days due to additional precipita-
tion events), then gERA = 0.33, which is the value used in
what follows. This approach is essentially an optimal weight-
ing between the ERA5 SWE and the previous retrieval; we
refer to it as the “weighted average” hereafter. For the first
retrieval, when there is not a previous retrieval yet, the prior
SWE is set equal to the ERA5 SWE.

For the third configuration, the prior for ω is similarly
computed as a weighted average between the ω from the pre-
vious retrieval and the ω computed based on the ERA5 SWE,
using the same weight as used for SWE, and then classified
into either a value of 0.4 or 0.6. In other words, we first com-
pute the prior for time t as described in the last paragraph of
Sect. 3.1, which we will refer to as ωERA. We then calculate
a weighted average of that value and the previously retrieved
ω:

ωt = gERAωERA+ (1− gERA)ω̂t−1, (6)

where we use the same weight gERA for ω as used for SWE.
Then this value of ωt is used to choose the prior for time t of
either 0.4 or 0.6.

4 Experiment design

4.1 Estimating ground surface scattering

We estimate ground surface scattering independently for
each of the 2 years in this study using the ERA5 SWE and
early-season backscatter measurements. The early-season
backscatter days have a non-zero SWE that is accounted for
by solving Eq. (2) for the surface backscatter, for each obser-
vation channel, i:

σ ∗0,surf,i =
σ ∗0,obs,b,i −M

∗

vol,i(xb)

fi(xb)
, (7)

where σ 0,obs,b is the observed backscatter on the day chosen
to use for background estimation and xb uses the ERA5 SWE
value and ω = 0.5 (results were similar for ω between 0.4
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Table 1. σ0,surf values determined for the 2 years analyzed in this
study. True SWE is estimated as described in Sect. 4.2.

Year Date True SWE X-band Ku-band
[mm] [dB] [dB]

2010 1 November 23 −20.2 −17.0
2011 20 November 46 −18.7 −13.3

and 0.6 due to the low SWE values these times). As shown in
Table 1, background NRCS values determined at X-band are
fairly consistent between the 2 years, while Ku-band values
show larger variations.

4.2 Estimating true SWE

As described in Sect. 2, two in situ SWE datasets are avail-
able. Snow pit data are fairly infrequent, covering 36 of the
total possible 316 nominal days of the study period (all days
from 1 December through 15 March). The automated GWI
data cover the entire period but have much higher SWE un-
certainty, as they were measured by an experimental sensor
(Lemmetyinen et al., 2016a). To obtain daily SWE estimates,
we use the simple data assimilation approach described in
Appendix A to merge the snow pit and GWI data with a
simple snow model driven by precipitation and temperature.
These daily SWE estimates agree with snow pit and GWI
data when available and also agree with the temperature and
precipitation data. The output of the data assimilation is re-
ferred to as the “true SWE” hereafter and is used as the basis
for evaluating SWE retrievals.

4.3 Flagging wet snow

A small amount of liquid water in the snowpack causes radar
backscatter to drop. Throughout the dataset, there are occa-
sional excursions related to the presence of liquid water. We
flag these events using the simple but effective wet snow flag-
ging algorithm described in Appendix B. The algorithm has
a single parameter: the amount that the data drops in the Ku
channel from one day to the next when snow is wet. We do
not show the backscatter or snow retrieval data when wet
snow is flagged in the main body of the paper (all data are
shown in Appendix B), and we do not include the flagged
data in assessing algorithm accuracy. See Appendix B for
further details on the wet snow flagging algorithm.

4.4 Estimating overall forward model uncertainty

The uncertainty of the observations, 6obs, must also be spec-
ified in Eq. (1). There are at least three components that con-
tribute to this uncertainty. The first source is the observations
themselves. According to Lemmetyinen et al. (2016a), mea-
surement uncertainty was approximately 1.0 dB, based on
repeat measurements of a radar calibration sphere. Exami-

nation of the backscatter data, however, clearly shows that
the radar measurements are far more precise than 1 dB: e.g.,
backscatter generally remains stable during the study period
between snowfall and melt events. The averaging of the mul-
tiple 3 or 4 h radar measurements on each date further re-
duces this uncertainty. The second source is the parameter-
ized model. Snowpack stratigraphy causes vertical variabil-
ity in snow scatterers, so that representing layered snowpack
backscattering using a single layer parameterized model rep-
resents a potential error source that has not been well char-
acterized. The third source of uncertainty lies in the com-
pensation of surface scattering in which σ 0,surf is assumed to
remain constant throughout the entire winter (Lemmetyinen
et al., 2016b). The observation uncertainty 6obs merges all
of these sources of uncertainty together.

An analysis was performed to estimate the combined error
level. The analysis used the true SWE (described in Sect. 4.2)
and the measured backscatter. We compute estimates of true
surface scattering following the approach of Sect. 4.1 but
using the true SWE to estimate the background scattering,
and we also compute optimal estimates of ω. We then evalu-
ate the forward model with the true SWE, true surface scat-
tering, and optimal ω and compare the model predictions
with the measured backscatter. This gives an overall estimate
of the total uncertainty of the modeling chain. The results
showed a combined observational uncertainty of approxi-
mately 0.75 dB (16.6 %) across both channels and both years.
These values are used in the analysis. We further present sen-
sitivity studies to the observation error in Appendix C.

4.5 Experiments and assessment

Retrievals are performed for each year from 1 December
through 15 March in order to exclude periods of predomi-
nantly wet snow in both early and late winter. We also arti-
ficially introduce additional biases in the ERA5 prior SWE
and examine the impact of the retrieved SWE values. Specif-
ically, we multiply the ERA5 prior SWE by a factor of
1+ fbias, where fbias ranges from −0.5 to 0.5. The retrieval
algorithm has no knowledge of the bias and retains the 50 %
assumption for the uncertainty in the prior ERA5 SWE as
described in Sect. 3.1. Retrieval accuracy is assessed by both
the SWE root mean squared error (RMSE) and the relative
RMSE (rRMSE), where the latter is computed by calculating
the root mean square of the relative error (i.e., the actual error
divided by true SWE) on each day.

5 Results

5.1 Results using ERA5 prior

Figure 2 shows the measured backscatter time series, SWE
retrieval, true SWE, and prior SWE, and the estimated ω for
2010 and 2011, for the ERA5 prior configuration. In Decem-
ber 2010, the backscatter measurements especially at Ku-
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Figure 2. For 2010 and 2011, respectively, the observed backscatter (a, d), true, retrieved and prior SWE (b, e), and retrieved ω (c, f) are
shown. The circles in panels (a) and (d) show the date selected for characterizing surface scattering for 2010 and 2011, respectively. The
results shown here for the prior do not include any artificially imposed bias.

band are somewhat erratic, leading to somewhat less accurate
retrievals, while in January 2010 the SWE measurements and
true SWE are both relatively constant. Snowfall events then
increase the SWE in February 2010, while backscatter re-
mains roughly constant, indicating a drop in ω. NRCS val-
ues then increase in late February and March, resulting in
retrieved SWE values that converge to the true SWE by the
end of the study period. The retrieved ω remains near 0.6
throughout the winter. Combining all retrievals across both
2010 and 2011, the ERA5 prior case has rRMSE of 13.7 %
and RMSE of 13.8 mm (Table 2).

While this is good performance, the results using this prior
configuration are quite sensitive to any bias in the prior. Fig-
ure 3 averages performance for 2010 and 2011 and for both
negative and positive bias, producing an average response of
the algorithm rRMSE to bias. From Fig. 3, the rRMSE for
ERA5 increases from 13. % to 46 % as the artificially im-
posed bias increases from 0 to 0.5. We compute the sensitiv-
ity of the rRMSE to the prior as (46 %–13.7 %)/0.5= 0.65.
Thus, for every 10 % increase in SWE bias, the rRMSE in-
creases by approximately 6.5 %. Thus, the results are quite
sensitive to bias in the prior when using the ERA5 data.

5.2 Results using the previous retrieval prior

Figure 4 shows the SWE and ω retrieval results for the
previous retrieval prior. In 2010, results are qualitatively
fairly similar to those for the ERA5 prior, although the er-
rors in December are larger, and the SWE retrievals remain

Figure 3. Sensitivity of the retrieval relative RMSE to artificially
imposed bias on the ERA5 data. These results were obtained by
artificially imposing both negative and positive bias and averaging
the resulting relative RMSE.

more constant in early February. In 2011, the ω retrievals
are consistently near 0.4 rather than oscillating between 0.4
and 0.6 in the ERA5 SWE prior. However, the previous re-
trieval results are more distinct from the ERA5 prior case in
February 2011 and show a significant overestimation peak-
ing around 20 February. As the radar backscatter decreases
beginning 1 March, the SWE estimates also move back to-
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Figure 4. As Fig. 2 but for the previous retrieval prior parameterization.

Figure 5. As Fig. 2 but for the weighted average prior parameterization.

Table 2. Average between 2010 and 2011 error statistics for the
case without any artificially imposed bias for the cost-minimization
algorithm for the ERA5 prior and optimal prior, as described above.

Prior configuration rRMSE [%] RMSE [mm]

ERA5 13.7 13.8
Previous retrieval 27.4 30.1
Weighted average 15.8 18.9

wards the true SWE, and estimates are fairly accurate in
March. This divergence in February highlights a weakness
of using the previous retrieval approach (and motivates using
a weighted average of the previous retrieval and the ERA5
prior SWE, which is presented next). From Table 2, the
rRMSE for both years combined is 27.4 %, approximately
double that of the ERA5 prior. From Fig. 3, however, we see
the great advantage of using the previous retrieval prior con-
figuration: the SWE estimates are nearly insensitive to bias
artificially imposed on the prior SWE estimates from ERA5.
The rRMSE increases in Fig. 3 from 0.27 to 0.34, a bias sen-
sitivity of 0.14: a 10 % increase in ERA5 prior bias leads to
an increase of only 1.4 % in the rRMSE. Thus, the ERA5

prior is relatively accurate but not robust to prior bias, while
the previous SWE retrieval is relatively inaccurate but quite
robust, further motivating a weighted combination of both.

5.3 Results using the weighted average prior

Figure 5 shows the SWE and ω retrieval results for the
weighted average prior. The results for 2010 are qualitatively
quite similar to those for the previous retrieval prior param-
eterization. However, the errors in December are noticeably
smaller. The results for 2011 are a significant improvement
over either the ERA5 prior or the previous retrieval prior. The
ω values do not oscillate as they do for the ERA5 prior. Re-
trievals also show improved performance in February of both
years. From Table 2, the rRMSE for both years combined is
15.8 % – far better than the previous retrieval configuration
and only marginally larger than the ERA5 prior. From Fig. 3,
the sensitivity of the weighted average SWE retrievals simi-
larly lies between the two other configurations. The relative
RMSE increases from 15.8 % to 31 %, an increase of just
15.2 % for the bias increasing 50 %, a sensitivity of 0.3. Thus,
the weighted average prior represents a compromise between
the two other configurations: it has high accuracy but is also
relatively insensitive to bias in the ERA5 SWE.
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Figure 6. Summary of study results: accuracy described by the rel-
ative RMSE (a) and sensitivity to the prior estimates of SWE (b)
for the three different prior configurations.

6 Discussion

Modern retrieval algorithms often leverage a priori informa-
tion. When they do so, retrieval algorithms must be shown
to be both accurate and relatively insensitive to the a priori
information. In this study, we analyze three different con-
figurations for a priori SWE. We show that using the ERA5
prior leads to high retrieval accuracy for this study area but
that retrieval results using the ERA5 prior are too sensitive to
prior SWE. Thus, using ERA5 or another model alone as a
prior is a risky strategy with the algorithm described above.
The second configuration uses the previous retrieval instead
of ERA5 as the prior. This leads to a very low sensitivity to
ERA5 accuracy but a much lower accuracy. This suggested a
hybrid approach: we use a weighted average of the ERA5 and
the previous SWE, which is a strategy that is both accurate
and robust, as shown in Fig. 6.

Critically, our results show that a highly accurate prior
SWE estimate is not necessary to retrieve an accurate SWE
retrieval. To further explore these issues, we present a visu-
alization of the retrievals for several of the scenarios where
we vary bias systematically. Figure 7a picks two of the many
bias scenarios explored in the paper and plots them as time
series. First, the figure clarifies the difference between the
original ERA5 prior and its 25 % biased time series. Sec-
ond, the SWE retrieval using only ERA5 (triangle markers)
is clearly shown to be highly sensitive to the prior bias. Third,
the SWE retrieval using the weighted average of the previous
retrieval and ERA5 (circle markers) is seen to be much less
sensitive to the prior bias.

Figure 7b shows the absolute value of the SWE error for
the prior and the retrieval results for the same scenarios. The
error values are the absolute value of the difference between
the SWE estimate and the true SWE at each time. Note that
in the retrieval using ERA5 prior (red markers), retrieval er-
rors with the biased prior (large markers) are much greater
than those with the unbiased prior (small markers). However,
in the retrieval using the weighted average (purple mark-

Figure 7. Results from the experiments where artificial bias was
systematically varied. (a) SWE time series for 2011 at Sodankylä,
showing the true SWE computed in the paper (black), the model
(ERA5) priors (blue), and the retrievals (circles). The model and re-
trievals are shown for two of the bias scenarios studied in the paper:
no bias and +25% bias artificially added to the ERA5 model es-
timates (thin and thick lines, respectively). The retrievals represent
three retrieval algorithm configurations (red, gold, and purple for
ERA5, previous, and weighted configurations, respectively) for the
unbiased scenario (small markers) and scenario with artificial bias
added (large markers). (b) Absolute value of the SWE error for the
same data and scenarios shown in panel (a); all markers defined the
same as in panel (a).

ers), retrieval errors with the biased prior are more similar
to those with the unbiased prior. Thus, the retrieval using the
weighted average prior is much less sensitive to prior bias.
We attribute this reduced sensitivity to the use of the pre-
vious retrieval in the weighted prior: information about the
retrieved SWE is thus transmitted from one time to the next,
lessening the importance of having an accurate prior input.

This study helps to show a way forward for satellite mis-
sion proposal algorithms. This study does not solve all issues
for spaceborne application, especially issues related to for-
est cover; instead, we focus on benchmarking a simple algo-
rithm that would function well away from the effects of trees.
Regarding measurement frequency, we hypothesize that as
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long as an observation is available since the most recent sig-
nificant snowfall event, our weighted average algorithm will
function with error statistics similar to what are shown here.
However, we focus on the daily backscatter measurements
here to isolate the issues of surface scattering and the issue
of a priori information on SWE and microstructure. Note that
the ω values in our study are a proxy for snow microstruc-
ture grain size or autocorrelation length (Mätzler, 2002).
CoReH2O required a high-precision estimate of snow mi-
crostructure grain size (Rott et al., 2012). Our weighted aver-
age algorithm avoids that issue by computing a prior estimate
of ω from the prior SWE. Prior estimates on SWE are widely
available and improving all the time, and our weighted aver-
age algorithm has a fairly low sensitivity to the accuracy of
the model prior of around 0.3. Thus, a 10 % bias in the mod-
eled SWE leads to only a 3 % increase in relative RMSE.
Other studies such as Zhu et al. (2021) and Lemmetyinen
et al. (2018) use passive microwave measurements to com-
pute either the rough surface scattering or the microstructure
grain size correlation length. However, for spaceborne appli-
cations, there would be approximately an order of magnitude
difference in the spatial resolution of passive microwave (on
the order of kilometers) and radar (on the order of hundreds
of meters) measurements, leading to complications. Our ap-
proach avoids these issues as well. Finally, the recent study of
Pan et al. (2023) shows simultaneous retrieval of SWE and
surface scattering using a much more computationally ex-
pensive algorithm: approximate differences in compute time
are several orders of magnitude. The Pan et al. (2023) ap-
proach is likely more accurate than the one shown here but at
the cost of being potentially too computationally expensive
for a global spaceborne application. Our approach solves the
most important issues of resolving sensitivity to prior infor-
mation and surface scattering while remaining computation-
ally very low cost. Important next steps for this algorithm
include testing on datasets from additional sites and work-
ing on a simple way to track variations in ω, as described in
Appendix D.

7 Conclusions

This study has applied a previously published algorithm (de-
scribed by Zhu et al., 2018, and Zhu et al., 2021, and only
minimally modified in its application) in order to explore the
sensitivity to a priori information using in situ radar measure-
ments. A global model (ERA5) was used to obtain prior es-
timates of SWE; artificial bias was added to the ERA5 SWE
estimates in sensitivity experiments. Surface scattering and
single-scatter albedo ω were treated in objective ways based
on published literature requiring no other external or a pri-
ori information. We explored three configurations for prior
information which uses the ERA5 alone, the previous re-
trieval, and a weighted average of the two, respectively. Us-
ing ERA5 alone confirms a problem identified in previous

studies: the ERA5 prior SWE must be relatively accurate in
order to achieve successful SWE retrievals. However, using
the weighted combination of ERA5 and the previous retrieval
greatly diminishes the dependence on prior information. This
configuration achieved an accuracy of 15.8 % relative RMSE
and increased only 3 % per 10 % increase in prior bias.

The algorithm presented meets reasonable accuracy re-
quirements, has been shown to be robust to bias in the in-
put prior measurements, and is feasible for implementation
in satellite measurements using existing prior datasets. Fu-
ture work should explore new algorithms employing simple
state-space models to track changes in ω and SWE while pre-
serving the overall simplicity of the approach. These results
are limited to shallow snow on flat terrain, with a homoge-
nous footprint, and no attenuation of the radar measurements
by forests. Nonetheless, this study greatly allays a major con-
cern in retrieval of SWE from radar backscatter: the need for
accurate prior information. These findings should build con-
fidence in the community that current proposals for future
satellite missions will be able to deliver accurate estimates of
SWE (Tsang et al., 2022).

Appendix A: Estimating true SWE

As described in Sect. 2.2 and 2.3, there is no perfect estimate
of daily SWE: the snow pit data are relatively infrequent, but
the gamma SWE measurements are relatively imprecise. We
apply a two-step process to obtain a daily combined SWE es-
timate. In the first step, we use both snow pit and gamma data
to calibrate a simple temperature index snow model forced by
precipitation and air temperature measurements described in
Sect. 2.4. In the second step, we derive a new estimate via
an optimization algorithm, informed by both the data them-
selves and the calibrated model. This true SWE has superior
agreement with all available snow pit and gamma data, is in-
formed by snowfall timing and air temperature, and is avail-
able daily.

In the first step, we calibrate the temperature index model
of Slater et al. (2013) using both snow pit and gamma SWE
observations. The snow model has a total of five parameters,
including a constant multiplicative gage undercatch parame-
ter, air temperature discriminating rainfall from snowfall, and
three parameters governing snowmelt. The model is com-
puted one “water year” at a time, beginning 1 October and
running through 30 September, at a daily time step. The cal-
ibration objective function measures the mismatch between
model predictions and in situ snow observations, weighted by
the respective uncertainty of each observation type. Here we
assume snow pit SWE to have 15 mm uncertainty and gamma
SWE to have 30 mm uncertainty. This model calibration also
results in a calibrated estimate of snowfall and snowmelt. The
result of the calibration step are SWE simulations that match
both pits and gamma SWE to reasonable precision but ne-
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Figure A1. Estimates of gamma SWE, snow pit SWE, the calibrated model, and true SWE for 2010 and 2011.

Table A1. Difference statistics between gamma SWE and true
SWE: mean and root mean square of the difference and relative dif-
ference between gamma and true SWE.

Year Mean RMSE Mean relative RMSE relative
SWE SWE SWE SWE
[mm] [mm] [–] [%]

2010 −3.5 10.9 −3.0 9.5
2011 0.1 10.0 1.0 13.6

glect any factors not in the model, such as sublimation or
storm-specific errors in precipitation measurement.

In the second step, we compute the true SWE formu-
lated as an optimization problem. We compute an estimate
of snowfall, melt, and SWE subject to the constraint of mass
balance at each step, with the objective function penalizing
differences from the model calibrated estimates of snowfall
and snowmelt, and also from the snow pit SWE. We add fur-
ther constraints disallowing snowfall (and thus increase in
SWE) when there is no measured precipitation and disallow-
ing snowmelt (and thus decrease in SWE) when there is no
model calibrated snowmelt.

Figure A1 shows the optimal true SWE estimates, along
with snow pit, gamma, and calibrated model SWE. The cali-
brated model sometimes tracks the SWE well and sometimes
does not, presumably due to time-varying errors in the pre-
cipitation undercatch. The gamma SWE sometimes differs
by tens of millimeters (mm) from the true SWE estimate, and
at other times it is significantly different from the snow pit
measurements, such as in February 2010 and February 2011.
Table A1 shows that the relative root mean square (rms) dif-
ferences between the gamma SWE and the true SWE esti-
mate are 9.5 % in 2010 and 13.6 in 2011; these errors are
of the same order of magnitude as the retrieval errors cited
throughout the study. The true SWE estimate integrates all

information into a single estimate and thus is used as the ref-
erence with which to compare SWE retrievals throughout the
study.

Appendix B: Wet snow flagging

The overall wet snow flag strategy in this paper is to attempt
to show results only for dry snow. Thus, our intent is not to
develop and verify an objective wet snow algorithm that can
be used in other contexts. From Fig. B1, some data points
contain sharp drops in backscatter. Most of these occur early
in the season, but in 2011, some of them occur in March. The
presence of wet snow and these sharp drops in backscatter
complicates attempts to identify the surface scattering as well
as to estimate SWE.

We analyzed these sharp drops for the Ku-band data and
found that they represent changes greater than 0.5 dB. We use
sharp changes in radar backscatter to compute a wet snow
flag. The wet snow flag is set to “true” if the algorithm iden-
tifies wet snow for day t .

For the case where the flag is set to “false” on day t−1, if
the decrease in backscatter from day t − 1 to day t is greater
than 0.5 dB, then we set the flag to “true” for day t .

For the case where the flag is set to “true” on day t − 1, if
the increase in backscatter from day t − 1 to day t is greater
than 0.5 dB, then we set the flag to “false” for day t .

In other words, the flag stays set as it was on the previ-
ous day, unless a sharp change in backscatter causes the flag
to change. This simple algorithm identified all of the obvi-
ously wet snow in the dataset, failing in only one period of
the dataset. In November 2011, the transition from wet snow
to dry snow was a gradual increase in backscatter rather than
a sharp rise. We thus added a condition that if the flag stays
set at “true” for 3 consecutive days, we change the flag status
to “false”.
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Figure B1. The radar data at X- and Ku-band are shown. Data points flagged as wet snow are shown as circles.

Further work on more objective and widely applicable al-
gorithms to flag wet snow should be developed. This ap-
proach allows us to remove apparently wet snow data from
the analysis and is thus well suited to this study.

Appendix C: Analysis of observation error

How accurately can the parameterized model explain the
measured backscatter data? This question can be addressed
(though not definitively answered) by analyzing the model
residuals using the true SWE, the true estimates of surface
scattering, and the optimal estimates of ω.

In both years, the residuals are dominated by bias for both
channels: in 2010, the Ku residual is always positive and the
X residual is always negative; the converse is true in 2011.
Nearly all of the overall rms error in both channels and both
years is composed of bias (Table C1). The average rms error
for both years and both channels is 0.8 dB.

From the point of view of SWE retrieval, the practical
question is what values of 6obs to use in the cost function
(Eq. 1). Table C2 shows that the rms errors that are mostly
analyzed in this study are relatively insensitive to the speci-
fied observation errors in 6obs.

Appendix D: Analyzing optimal ω estimates

Despite the weighted average algorithm successfully achiev-
ing a reasonably high accuracy and low sensitivity to bias,

Table C1. Model residual errors: mean (i.e., bias), standard devia-
tion (SD), and root mean square (rms) for X and Ku and for both
years.

Year X X X Ku Ku Ku
mean SD rms mean SD rms
[dB] [dB] [dB] [dB] [dB] [dB]

2010 −0.87 0.19 0.89 0.68 0.18 0.70
2011 0.88 0.39 0.96 −0.55 0.35 0.65

Table C2. Sensitivity of relative rms SWE errors [%] for the
weighted average prior configuration to the specified observation
uncertainty standard deviations used in the measurement error co-
variance matrix 6obs.

Observation error [dB] 2010 2011 Average

0.5 20.7 13.7 17.2
0.75 19.1 12.5 15.8
1.0 18.7 13.2 15.9
1.25 18.6 14.8 16.7

room for improvement remains. For example, Fig. 5 shows
that the retrieval does not capture the increase in SWE in
February 2010. To further investigate the performance of the
weighted average approach, we analyzed the optional ω esti-
mates, i.e., values of ω that minimize the difference between
the parameterized model evaluated at the true SWE. To do
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Figure C1. Model residuals using true SWE, true surface scattering, and optimal ω for 2010 and 2011.

this, we additionally calculate a true surface scattering esti-
mate, using the true SWE in Eq. (7). Using the true surface
scattering, true SWE, and observations, we calculate the op-
timal ω by minimizing the cost function, Eq. (3).

Figure D1 shows the estimates of optimal ω for both years.
In 2010, we see drops in ω near the end of December and
the end of January that correspond to increases in SWE, i.e.,
snowfall events. This dynamic has a simple physical expla-
nation. We assume that ω is a metric that can be related to
snow microstructure such as a characteristic length scale like
the autocorrelation length (L) (Mätzler, 2002). As snow ages,
L increases due to vapor flux transport as shown in Flanner
and Zender (2006). A snowfall event would typically com-
bine new snowfall with smaller L with snowpack with larger
L and thus would have the net effect of reducing the com-
bined L, as described by Durand and Margulis (2006) and Li
et al. (2015). This simple conceptual model explains the lack
of change in the measured radar backscatter, e.g., in early
February 2010: SWE increases, but a corresponding decrease
in ω cancels any change in measured backscatter. This con-
ceptual model explains 2011 data as well: snowfall events
throughout the month of January lead to a gradual increase
in SWE, corresponding with very little change in measured
backscatter and thus a gradual drop in ω. Similarly, snowfall
events in late February and early March 2011 are accompa-
nied by a drop in measured backscatter, leading to a drop
in estimated ω. Thus, the initially counterintuitive behavior
that measured backscatter does not correspond with snowfall
events is simply explained by drops in ω due to new snowfall.

Figure D1 also shows that increases in measured backscat-
ter occur during periods when SWE is relatively constant.
This is consistent with the fact that increases in L drive
changes in measured backscatter. In 2010, SWE is fairly
constant from mid-February to early March, a period where
ω increases gradually, along with the measured backscat-
ter. In 2011, SWE is constant in December but measured
backscatter increases, leading to a corresponding increase in
ω. Similarly, ω increases throughout February, as SWE stays
constant and measured backscatter increases throughout the
month. This is broadly similar to behavior noticed in simu-
lated brightness temperature over short spatial distances, in
terms of tradeoffs between SWE and microstructure correla-
tion length Rutter et al. (2014). Thus, the initially counterin-
tuitive behavior that measured backscatter increases in peri-
ods when SWE is constant is simply explained by increases
in ω due to increasing L due to well-understood microphysi-
cal processes.
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Figure D1. Optimal estimates of single-scattering albedo (ω), computed as described in the text (c, f) for 2010 and 2011, respectively, along
with radar backscatter observations and true SWE.
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