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Abstract. Leads and fractures in sea ice play a crucial role
in the heat and gas exchange between the ocean and at-
mosphere, impacting atmospheric, ecological, and oceanic
processes. We estimated lead fractions from high-resolution
divergence obtained from satellite synthetic aperture radar
(SAR) data and evaluated them against existing lead prod-
ucts. We derived two new lead fraction products from diver-
gence with a spatial resolution of 700 m calculated from daily
Sentinel-1 images. For the first lead product, we advected and
accumulated the lead fractions of individual time instances.
With those accumulated divergence-derived lead fractions,
we comprehensively described the presence of up to 10 d old
leads and analyzed their deformation history. For the second
lead product, we used only divergence pixels that were iden-
tified as part of linear kinematic features (LKFs). Both new
lead products accurately captured the formation of new leads
with widths of up to a few hundred meters. We presented a
Lagrangian time series of the divergence-based lead fractions
along the drift of the Multidisciplinary drifting Observatory
for the Study of Arctic Climate (MOSAiC) expedition in the
central Arctic Ocean during winter 2019–2020. Lead activity
was high in fall and spring, consistent with wind forcing and
ice pack consolidation. At larger scales of 50–150 km around
the MOSAiC expedition, lead activity on all scales was sim-
ilar, but differences emerged at smaller scales (10 km). We
compared our lead products with six others from satellite and
airborne sources, including classified SAR, thermal infrared,

microwave radiometer, and altimeter data. We found that the
mean lead fractions varied by 1 order of magnitude across
different lead products due to different physical lead and sea
ice properties observed by the sensors and methodological
factors such as spatial resolution. Thus, the choice of lead
product should align with the specific application.

1 Introduction

Divergent motion in sea ice leaves open water in the sea ice
cover, which we refer to as fractures or leads. These open-
ings play a crucial role in the polar climate system, alter-
ing atmospheric, ecological, and oceanic processes. In win-
ter, the exchange of gases and heat between the ocean and
atmosphere is strongly enhanced at the openings in the ice
in the otherwise well-separated components of the polar cli-
mate system (Maykut, 1978, 1982; Perovich, 2011). Turbu-
lent heat is transferred from the ocean to the atmosphere,
followed by rapid new ice formation and brine rejection to
the ocean during winter. The enhanced exchange has im-
portant implications. First, new ice formation in leads con-
tributes about 30 % to the Arctic sea ice mass balance and the
thin ice influences the sea ice dynamics (von Albedyll et al.,
2022; Kwok, 2006). Second, they enable ocean–atmosphere
gas exchange: for instance, water vapor, iodine, and methane
relevant in Arctic cloud formation (e.g., Leck et al., 2002;
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Kort et al., 2012; Dall’Osto et al., 2017; Saavedra Garfias
et al., 2023). Third, they may act as sources of atmospheric
sea salt from frost flowers growing on ice-covered leads (e.g.,
Perovich and Richter-Menge, 1994; Kaleschke et al., 2004;
Hara et al., 2017). Fourth, in summer, their low albedo in-
creases solar transmission to the ocean. Fifth, they act as im-
portant hunting grounds for marine mammals, and sixth, they
are important shipping routes (e.g., Massom, 1988; Stirling,
1997). In addition, leads are easily detectable signs of sea ice
deformation, and studying their occurrence, spacing, orien-
tation, intersection, and scale invariance is of great relevance
for sea ice mechanics (e.g., Weiss and Marsan, 2004; Hutter
et al., 2019; Hutter and Losch, 2020; Ringeisen et al., 2023).
Lastly, leads are important for remote sensing of sea ice
thickness by satellite altimetry as the method relies on lead
detections to measure the instantaneous sea surface height
for ice freeboard retrieval (e.g., Laxon et al., 2003).

The distribution of leads follows the overall dynamic
regimes of the Arctic Ocean. While the lead frequency, i.e.,
how often a lead is found at a certain position within a certain
time period, is a few percent for the central Arctic Ocean, it
can rise to over 40 % in the Barents and Kara seas and the
marginal ice zone (Willmes and Heinemann, 2016; Reiser
et al., 2020). Although leads cover only 1 %–3 % of the sea
ice area (Wadhams, 2000; Reiser et al., 2020), their impact on
the winter heat budget is significant (Maykut, 1978; Marcq
and Weiss, 2012): An increase of 1 % in lead fraction can in-
crease the near-surface temperatures in the Arctic by 3.5 K
under clear-sky conditions during polar night (Lüpkes et al.,
2008).

Due to their high relevance for the polar climate, accurate
knowledge of the location and areal fraction of leads (“lead
fraction”) is crucial for understanding and modeling pro-
cesses at the air–ocean interface, but also the global weather
and climate (Serreze et al., 2009). This is particularly inter-
esting considering that Arctic sea ice drift and deformation
rates are increasing (e.g., Rampal et al., 2009; Spreen et al.,
2011), with an unclear impact on the changes in lead frac-
tions. Consequently, the importance of leads for the sea ice
mass balance has gained increased attention in recent sea ice
modeling studies (e.g., Wilchinsky et al., 2015; Zhang et al.,
2021; Ólason et al., 2021; Boutin et al., 2023), as well as
using lead statistics to evaluate different rheological frame-
works for sea ice dynamics (Wang et al., 2016; Hutter and
Losch, 2020; Hutter et al., 2022). In contrast to the tran-
sient nature of leads, they can have a long deformation his-
tory as the ice breaks preferentially where it is thinner than
the surrounding ice (e.g., Wilchinsky and Feltham, 2011). In
other words, leads can undergo several cycles of opening,
closing, and ridging, interrupted by dormant phases rang-
ing from days to months. However, there is a general lack
of high-resolution reference datasets available for evaluating
the magnitude, temporal and spatial variability, and deforma-
tion history of leads.

Satellites have monitored the spatial distribution and tem-
poral evolution of Arctic lead fraction since the 1990s
(Key et al., 1993; Lindsay and Rothrock, 1995; Miles and
Barry, 1998). Lead detection based on thermal infrared (TIR,
Willmes and Heinemann, 2016; Hoffman et al., 2022; Wang
et al., 2022; Qiu et al., 2023) and visible images (e.g., Lewis
and Hutchings, 2019; Muchow et al., 2021) was comple-
mented by classification of synthetic aperture radar (SAR)
backscatter (e.g., Murashkin et al., 2018), radar altimeters
(e.g., CryoSat-2 Hendricks et al., 2021a), laser altimeters
(e.g., ICESat-2 Duncan and Farrell, 2022), and passive mi-
crowave (PMW) data (e.g., Röhrs et al., 2012). The transient
nature of leads and their narrow appearance set limits to the
detection of leads from satellites. Most retrieval methods suf-
fer either from a low spatial resolution (e.g., PMW), low spa-
tial coverage (e.g., altimeters), low temporal coverage due to
clouds or the absence of daylight (e.g., TIR and visible), or
ambiguous classification due to acquisition geometry (e.g.,
SAR). In addition, the definition of a lead is ambiguous as
it can be covered by open water or thin ice of up to 30 cm
thickness (new and young ice according to the World Mete-
orological Organization, 2014). However, the different lead
identification methods do not have a clear boundary when
the ice gets too thick to be classified as a lead. This results
in inconsistent estimates of the lead fraction between the re-
trieval methods that can vary by magnitudes. So far, there
have only been a few comparison studies between lead prod-
ucts, which concluded that the compared products often show
similar spatiotemporal patterns but vary substantially in mag-
nitude (Kwok, 2002; Lee et al., 2018).

In lead fraction retrievals, little focus has been placed on
deriving lead fractions from their driving mechanism, i.e.,
the divergent motion of the ice floes (Kwok, 2002). The
sea ice divergence of the sea ice velocity is directly linked
to lead fraction and can be calculated from high-resolution
sea ice drift. Kwok (2002) demonstrated the technique using
RADARSAT Geophysical Processor System (RGPS) data in
the Pacific sector of the Arctic with a 3 d temporal resolution.
So far, the low temporal resolution of SAR images has hin-
dered a more area-wide application, but this has changed in
recent years with the start of the Sentinel-1 constellation and
many other SAR missions. This growing availability of SAR
images in the polar region motivates us to explore the poten-
tial of divergence derived from SAR data for estimating lead
fraction. More precisely, here we present a novel lead frac-
tion dataset based on data from the Sentinel-1 constellation.

The interdisciplinary Multidisciplinary drifting Observa-
tory for the Study of Arctic Climate (MOSAiC) expedition
took place between October 2019 and September 2020 in
the transpolar drift on board the R/V Polarstern (Nicolaus
et al., 2022; Rabe et al., 2022; Shupe et al., 2022). We have
selected the MOSAiC expedition as our study case for sev-
eral reasons. First, the drift covered a wide range of different
dynamic regimes (Krumpen et al., 2021). Second, there are
important complementary atmospheric and ocean datasets
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and regional, high-resolution, airborne observations of leads
available. Third, leads were a cross-cutting theme for all MO-
SAiC disciplines, i.e., ice, ocean, atmosphere, ecology, and
biogeochemistry, and a sound estimate of regional lead frac-
tions is crucial for their research (Nicolaus et al., 2022; Rabe
et al., 2022; Shupe et al., 2022).

This study has two objectives. First, we present and evalu-
ate two novel lead products that are based on SAR-derived
sea ice divergence. To do so, we compare the novel lead
products with six already existing lead products. Second, we
present and analyze a time series of lead fractions along the
MOSAiC drift track based on the novel and existing datasets.
As most lead products are only available in wintertime, we
restrict our analysis to October 2019 to May 2020.

The structure of the study is as follows: in Sect. 2, we de-
scribe the physical properties of leads used to detect them
and introduce the novel lead products along with the existing
ones participating in the comparison. Section 3 presents the
properties of the lead products based on divergence includ-
ing basic statistics of the observed leads and a time series
on different spatial scales. Section 4 analyzes the temporal
and spatial differences between the novel and existing lead
products. The concluding sections, Sects. 5–6, discuss and
summarize the results and outline potential improvements.

2 Lead fractions from different retrieval methods

What is a lead? Each lead fraction retrieval method gives a
different answer to this question. Depending on the applica-
tion and the research question behind it, the underlying lead
definition of a lead product may have advantages or restric-
tions. Therefore, we start this section with a description of
the physical properties of a lead (Sect. 2.1) and explain how
the different retrieval methods make use of them (Sects. 2.2–
2.3).

2.1 Physical properties of a lead detected by remote
sensing

The World Meteorological Organization (WMO) defines a
lead as a “fracture or passage-way through sea ice which is
navigable by surface vessels” whereby fractures are defined
as “break[s] or rupture[s] through very close ice, compact
ice, consolidated ice [. . . ] resulting from deformation pro-
cesses. Fractures may contain brash ice and/or be covered
with nilas and/or young ice” (World Meteorological Organi-
zation, 2014). Following this definition, a lead can be covered
by up to 30 cm (young ice) thick ice (World Meteorological
Organization, 2014). In this study, and almost everywhere
else in the literature, fractures and leads are often summa-
rized under the term “leads”, and their minimum width and
maximum ice thickness depend on the sensitivity of the re-
trieval method. However, this sensitivity, especially with re-

spect to the maximum lead ice thickness, is often not pre-
cisely known.

Figure 1 provides an overview of the physical properties
that are exploited to detect leads from space. We outline the
properties and link them to the retrieval methods introduced
in Sect. 2.2–2.3.

2.1.1 Local change in ice velocity

Leads result from deformation processes and their creation
can be detected by a strong local gradient in the ice velocity.
External drivers, mainly winds and ocean currents, induce
stress on sea ice. Sea ice breaks when those stresses reach
the ice strength, resulting in deformation (for an overview
see Weiss, 2013). Breaking, followed by divergent ice mo-
tion, forms leads and the divergence magnitude is directly
proportional to the lead width. The two novel lead fraction
products based on divergence exploit this property to detect
leads (Sect. 2.2.1–2.2.2).

2.1.2 Elongated features

Leads typically have an elongated shape with a long extent
in one direction (length) and a very small extent in the other
direction (width). In the absence of coastlines, they can ap-
pear in systems of parallel faults of the order of several kilo-
meters to 1000 km (Goldstein et al., 2000). More generally
speaking, including ridges, shear zones, and leads, these nar-
row lines where deformation concentrates are called linear
kinematic features (LKFs). Several lead fraction products use
this property to create a shape-based noise filter (Sect. 2.2.2,
2.3.1, 2.3.2, 2.3.4).

2.1.3 Abrupt change in surface properties

Leads have very different surface properties than the sur-
rounding ice with respect to the roughness, salinity, surface
temperature, and surface height probability distribution func-
tion. The scattering and absorption of radar (microwave)
waves depend strongly on those parameters, and therefore
leads typically provide a strong contrast to the surrounding
sea ice surface. For example, leads with calm open water
or thin ice are specular scatter targets (low radar backscat-
ter) in contrast to sea ice surfaces with more diffuse scatter
(high backscatter). Leads with waves or frost flowers appear
very rough, especially when using radar with a wavelength in
the range of a few centimeters like Sentinel-1 (5.5 cm wave-
length), and thus have higher backscatter than the surround-
ing ice. Therefore, lead classifications of SAR data can detect
open water and leads covered with thin ice depending on the
backscatter statistics (lower or higher than the backscatter of
the surrounding sea ice, Sect. 2.3.1). The abrupt change in
the surface properties also modifies the shape of the altimeter
radar waveforms in a characteristic way which is used to de-
tect leads by, e.g., CryoSat-2 (e.g., Wernecke and Kaleschke,
2015; Paul et al., 2018, Sect. 2.3.5). In optical remote sens-
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Figure 1. Schematics of different physical properties of a lead detected by remote sensing instruments. Leads can be open water (blue) or
covered with thin ice (light blue and crosses). Numbers refer to the subsections of Sect. 2.1 discussing the properties. The abrupt change in
surface properties (roughness, salinity, surface temperature, and surface height probability distribution) in a lead affects the interaction of the
surface with microwaves, thus modulating the radar backscatter (yellow) and the altimeter waveform (pink, Sect. 2.1.3).

ing, leads appear darker due to specular reflection on the
smoother surface and light transmission through the thin ice
into the open water. However, visible images are not included
in this study because we focus on the wintertime and high
latitudes, where no sunlight is available.

2.1.4 Higher surface temperature

In winter, the ocean temperature in leads is at the freezing
point close to − 1.8 °C, while the surrounding ice and snow
surface approach much colder air temperatures, resulting in
temperature differences of −10 to −40 °C. This temperature
contrast is clearly seen in the TIR part of the EM spectrum
and recorded by helicopter-borne (Sect. 2.3.3) or spaceborne
instruments (MODIS, Sect. 2.3.2). When new ice starts to
form in the open water, the surface temperature anomaly in
leads gradually decreases.

2.1.5 Special microwave emissivity

Thin ice has a special emissivity in the microwave spectrum.
Comparing the emissivity at different frequencies and polar-
izations allows us to detect open water and thin ice. While
the polarization difference is highest for open water, leads
covered with thin ice exhibit a particularly high emissivity
at 89 GHz with vertical polarization (Eppler et al., 1992).
Lead fractions based on PMW data exploit this characteristic
(Sect. 2.3.4).

2.1.6 Local thickness and surface elevation minimum

Leads are characterized by open water or thin ice and thus
exhibit a local minimum in the ice thickness and surface ele-
vation. When the lead is not closed by convergent dynamics,
this difference to the surrounding ice can persist. However,
there is no agreed-upon maximum thickness for consider-
ing the thin ice to be a lead. Thresholds in different studies
range between open water and 1 m (Wadhams, 2000). In this
study, we only use the criterion of a local surface elevation

minimum to define leads in the complementary airborne ice
thickness observations (Sect. 2.3.6). However, some sensors
predominantly make use of the surface elevation minimum
to detect leads, e.g., the laser altimeter ICESat-2.

2.2 Novel lead products based on SAR-derived sea ice
divergence

In this section, we present two new lead products. Both are
based on divergence in the sea ice motion that is derived
from SAR data with a spatial resolution of 50 m. The diver-
gence indicates the exact location of the lead, is independent
of clouds, and, as noted by Kwok (2002), is independent of
sensor calibrations and physical understanding of the radar
backscatter signal of the ice.

While Kwok (2006) has previously used this general con-
cept, we present two products that have a much higher tem-
poral and spatial resolution, are regularly gridded, are ad-
vected and accumulated over several days, and are evaluated
extensively with other lead products and a complementary
airborne ice thickness dataset. The first lead product is based
solely on the divergence, while the second product first de-
rives LKFs from the total deformation before indicating the
presence of leads.

2.2.1 Accumulated divergence-derived lead fractions
(LFaccu. div)

Our first novel lead product is directly derived from the diver-
gence fields that are calculated following von Albedyll et al.
(2021a). The divergence-derived lead fractions (LFdiv) detect
the strong, local change in ice velocity (Sect. 2.1.1).

Calculating lead fractions from divergence consists of
three steps. First, we derive sea ice drift and deformation
fields. We use sequential SAR scenes in HH polarization
extra-wide swath mode obtained by the Sentinel-1 mission
(ESA) with a spatial resolution of 50 m (Torres et al., 2012).
The scenes were acquired along the drift track of the MO-
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SAiC expedition, are centered around R/V Polarstern, and
typically have a side length of 200–400 km. We aim for a
nominal time difference of 1 d between the scenes but ac-
cept everything between 0.9 and 3 d. The lower limit of 0.9 d
is chosen to guarantee a displacement larger than the un-
certainty of the tracking. Images are available for the en-
tire study period from October 2019 to May 2020, except for
the time between 14 January and 15 March 2020, when the
ship was north of the latitudinal limit of Sentinel-1. We use a
tracking algorithm based on Thomas et al. (2008, 2011) and
substantially extended by Hollands and Dierking (2011) to
derive sea ice drift. Next, we calculate the spatial derivatives
from the regularly spaced drift field following von Albedyll
et al. (2021a). Divergence and convergence are then derived
from the spatial derivatives of the velocity field (u,v).

div=
∂u

∂x
+
∂v

∂y
(1)

Divergence (div> 0) and convergence (div< 0) are defined
as positive and negative div, respectively. We filter the full
divergence dataset (div) with a directional filter that detects
the direction with the smallest variation at each pixel and
smooths along, but not across, this orientation, with a 1-D
kernel. The gradients in divergence along the 1-D kernel are
calculated in the form of the standard deviation for a neigh-
borhood of seven pixels. This way, noise is reduced while
preserving the strong gradients. The MOSAiC divergence
fields with a final resolution of 700 m were previously used
in Krumpen et al. (2021) with the difference that here we use
a directional filter instead of the 3× 3 median filter to reduce
noise (see also von Albedyll et al., 2021a; Ringeisen et al.,
2023). The divergence dataset is available from von Albedyll
and Hutter (2023).

Second, for the calculation of the lead fractions, we mul-
tiply all divergence grid cells (div, s−1) by the time differ-
ence (in seconds, in the range of 0.9–3 d), resulting in a unit-
free lead fraction. Since the divergence quantifies the rela-
tive area expansion and contraction per time, this multiplica-
tion results in the relative area expansion and contraction for
each grid cell and thus an estimate of the area that is covered
by open water. In the case of a positive value (divergence,
div> 0), we interpret the result as the average lead fraction
per grid cell. Negative values (convergence, div< 0) indicate
closing, rafting, and ridging. However, we still keep the con-
vergence information as we require it in the next step.

Up to this point, the lead fraction algorithm only detects
leads when they form or continue to open. To determine if a
lead is closed, opened further, or staying open, we use the di-
vergence and convergence fields of subsequent dates. In other
words, as the divergence-derived lead fractions describe the
change in lead fraction, accumulating them describes the dy-
namic evolution of a lead over several days. To account for
the movement of sea ice, we need to advect the lead fractions
from different dates to a common location using sea ice drift
data prior to accumulating them. Fortunately, sea ice drift is

inherently available as the divergence is calculated based on
it.

We perform three steps to calculate accumulated
divergence-derived lead fractions (LFaccu. div).

1. We standardize the drift and divergence fields to a com-
mon grid based on the polar stereographic projection for
the Northern Hemisphere (EPSG:3413) with a spatial
resolution of 700 m.

2. We advect each lead fraction grid cell to its new loca-
tion based on the respective displacement and re-grid
the field back to the original grid. We repeat this pro-
cedure for 10 time instances. For example, we advect
lead fractions based on two subsequent SAR images
from 14 March to 15 March to their respective loca-
tion on 15, 16, 17, 18, 19, 20 (gap in SAR images 21
and 22 March), 23, 24, 25, 26, and 27 March. Next,
we advect the lead fractions originally based on SAR
scenes from 15 and 16 March to their location on 16,
17, . . . , and 28 March. Figure 2 displays the lead frac-
tions between 20 and 27 March that were all advected
to 27 March 2020. We save all advected lead fractions
of a time instance in one NetCDF file. This means the
NetCDF file of 27 March contains datasets of advected
lead fractions originally from 14 and 15, 15 and 16, 16
and 17, 17 and 18, 18 and 19, 19 and 20, 20 and 23, 23
and 24, 24 and 25, 25 and 26, and 26 and 27 March.

3. We accumulate the advected lead fractions in each grid
cell considering opening, closing, and dormant phases.
The accumulation can start at any of the 10 time in-
stances. This gives the data user the flexibility to choose
for themselves up to which “age” (1–11 d) they would
like to include the leads of different ages in their anal-
ysis. When referring to accumulated lead fractions with
a specific number of accumulation steps (k), we denote
this as LFk accu. div in the subscript. The individual lead
fraction datasets still contain information on opening
(positive values) and closing (negative values). We cal-
culate the cumulative sum of the lead fraction time in-
stances starting with the earliest one. For each iteration
of the accumulation, we check whether the cumulative
sum becomes negative. This corresponds to the full clo-
sure of the lead. At this point, we reset the cumulative
sum to zero.

To extract the mean (accumulated) lead fraction of a cer-
tain region, e.g., 50 km around R/V Polarstern, we calculate
the average of all grid cells of the advected accumulated lead
fractions that are located completely or partly in a circle with
a 10–150 km radius around R/V Polarstern. All grid cells in-
dicating (accumulated) ridging are set to 0 prior to the aver-
aging.
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2.2.2 LKF-derived lead fractions (LFLKF)

As our second new dataset, we compute LKF-derived lead
fractions (LFLKF). They are based on the divergence and
shear dataset, and thus they also exploit the local change
in ice velocity to detect leads (Sect. 2.1.1). To derive them,
we applied the LKF detection algorithm developed by Hut-
ter et al. (2019, details are given below) to the total defor-
mation calculated from divergence and shear (

√
div2
+ shr2).

To reduce noise, the LKF detection algorithm makes use of
the localized nature of deformation and selects only those to-
tal deformation features that have a strong velocity contrast
and an elongated shape (Hutter et al., 2019, Sect. 2.1.2). The
output of unique LKFs and the input deformation datasets
are available from Hutter and von Albedyll (2023) and von
Albedyll and Hutter (2023), respectively.

The LKF detection algorithm (1) generates a binary mask
of pixels identified as LKFs by filtering pixels with total de-
formation rates that strongly exceed the local average defor-
mation rates, (2) morphologically thins the LKFs in the bi-
nary map to a width of one pixel and divides it into small lin-
ear segments, and (3) reconnects segments into LKFs based
on their similarity in position, orientation, and deformation
rates. In the second step, the algorithm uses the drift infor-
mation between the deformation fields to track LKFs over
time. The morphological thinning routine was modified to
align the LKF (morphological) skeletons in the binary maps
to the position of the highest deformation rates across the
LKF. For each LKF, the algorithm outputs the position, the
original divergence value at that location, and an ID of the
LKF that preceded the current one if available (Hutter et al.,
2019).

We compute two different quantities from the LKF dataset:
(1) LFLKF lead fractions and (2) LFLKF binary lead pixel
numbers. For the LFLKF lead fractions, we identify all in-
stances where positive divergence values appear within the
detected LKFs (leads). These divergence values are then mul-
tiplied by the time difference for the grid cell lead fraction.
To find the average lead fraction over a larger area, we calcu-
late the mean of all grid cells that are either fully or partially
situated within a circle with a radius of 10–150 km centered
on the position of R/V Polarstern. For the LFLKF binary lead
pixel numbers, a pixel is considered completely covered by
a lead when a positive divergence value is present in the de-
tected LKFs. This is identical to assuming a lead fraction of
1. However, in most cases, this method will result in over-
estimating the actual lead fraction. This counterbalances the
fact that the LKF detection algorithm simplifies all deforma-
tion zones into 1-D features, effectively removing divergence
information. We do not accumulate the LFLKF in time. They
only indicate the instantaneous presence of new leads from
the time of one SAR image to the next one.

2.3 Other existing lead products used for comparison

2.3.1 Classified SAR lead fractions (LFclassified_SAR)

To generate classified SAR lead fractions (LFclassified_SAR),
we apply an updated supervised learning classification al-
gorithm that was presented in Murashkin et al. (2018) and
Murashkin and Spreen (2019) to SAR images along the MO-
SAiC drift track. Depending on the SAR backscatter statis-
tics created by the abrupt changes in the surface roughness
and salinity in leads, this algorithm detects open water and
leads covered with thin ice (Sect. 2.1.3).

As input, the supervised learning classification algorithm
uses both the HH and the HV SAR channels of Sentinel-1
extra-wide swath scenes. The use of the cross-polarization
band allows the separation of rough surface leads and ridges,
both of which are characterized by strong backscatter in co-
polarization backscatter. The updated algorithm is based on
SAR image analysis with the UNET convolutional neural
network (Ronneberger et al., 2015) instead of the random
forest classifier used in Murashkin et al. (2018). The algo-
rithm produces binary maps with a lead classification with
the same spatial resolution of 40 m as the source Sentinel-1
scenes.

We apply the classification algorithm to the same Sentinel-
1 scenes that we use for the divergence calculations
(Sect. 2.2.1), even if there are more scenes available at sub-
daily resolution. This offers us the best conditions for a com-
parison between the three SAR-based datasets. We estimate
the mean lead fraction by calculating the relative fraction of
all pixels classified as leads within a circle with a radius of
50 km around R/V Polarstern.

The algorithm’s accuracy is 99.2 %, as determined using
pre-labeled data not involved in its training. However, con-
sidering the potential impact of limited training data under
varying sea ice conditions, we also offer a more cautious
estimate. If we assume a constant monthly average for the
pan-Arctic lead fraction, we attribute the variability of the
pan-Arctic average of 10.2 % (absolute: 2.44± 0.25 % lead
fraction) to the relative uncertainty.

2.3.2 MODIS lead fractions (LFMODIS)

We use lead fractions derived from the Moderate Resolution
Imaging Spectroradiometer (MODIS) ice surface tempera-
tures Collection 6 (Hall and Riggs, 2019). The algorithm to
derive MODIS lead fractions (LFMODIS) from the thermal
infrared data is based on the higher surface temperatures of
leads (Sect. 2.1.4) and is described by Willmes and Heine-
mann (2015) and Reiser et al. (2020). False lead detections
can arise due to unidentified clouds, fog, and sea smoke.
They are minimized using shape, persistence, and texture
metrics of potential leads in addition to surface temperature
(Sect. 2.1.2). A fuzzy filter is then applied using these stacked
metrics to assign individual retrieval uncertainties to each
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identified lead pixel. This results in daily binary lead maps
with cloud gaps at a spatial resolution of 1 km.

Each grid cell in the resulting daily lead maps can be clas-
sified as cloud, sea ice, lead, and artifact, with the latter com-
prising detected leads with an uncertainty exceeding 30 %.
Due to the gridding, i.e., the mapping of a lead into a regu-
lar grid with a grid size of 1 km, and the binary classification
scheme that only allows a grid cell to be fully covered by
a lead or not at all, the actual lead fractions may be clearly
overestimated. A time series of lead fractions for MOSAiC
based on this dataset was previously presented in Krumpen
et al. (2021).

We calculate lead fractions in the 50 km circle as the ra-
tio of leads over all valid, i.e., leads plus sea ice, pixels. We
exclude the mean lead fraction from our analysis when the
percentage of valid data in the 50 km circle falls below 50 %.

The uncertainty of the LFMODIS relates to the probabil-
ity of detecting surface temperature artifacts, which can be
caused by low and thin clouds. Pixels exceeding a probabil-
ity of false lead detection of 30 % are flagged as artifacts. For
all detected leads a pixel-based retrieval uncertainty is avail-
able and amounts to 10 %–15 % on average (compare Figs. 7
and 8 in Reiser et al., 2020).

2.3.3 Helicopter-borne TIR lead fractions (LFHeli_TIR)

We present lead fractions from nine regional helicopter sur-
vey flights that were conducted with a thermal infrared cam-
era (Thielke et al., 2022a, b, 2024). Deriving the helicopter-
borne TIR lead fractions (LFHeli_TIR) relies on the same
principle of higher surface temperatures as the LFMODIS
(Sect. 2.1.4). However, LFHeli_TIR has a much higher reso-
lution of up to 1 m and suffers less from interference with
atmospheric conditions due to a low flight altitude of around
300 m (Thielke et al., 2022a). Flights were performed only
during clear and calm weather conditions.

The nine regional helicopter survey flights used in this
study were conducted between October 2019 and May 2020
at positions along the drift track of MOSAiC (Thielke et al.,
2022a, 2024). We use the broadband measurements of the
mounted thermal infrared camera from 7.5 to 14 µm, which
is in a similar frequency range as MODIS. To classify leads
from the measured surface temperature, we apply an iterative
threshold selection method (Ridler and Calvard, 1978) to the
gridded surface temperature maps. The resulting products are
binary maps for lead occurrence covering the flight tracks up
to 30 km of distance to R/V Polarstern. Due to changing con-
ditions, e.g., air temperatures, throughout the season, we use
a dynamic threshold, i.e., a different threshold for each flight.
To calculate the final lead fraction in the 50 km circle, we di-
vide the number of pixels classified as a lead by the number
of all valid pixels along the flight track.

2.3.4 Passive microwave lead fractions (LFPMW)

In this study, we use PMW lead fractions (LFPMW) derived
from data collected by the Advanced Microwave Scanning
Radiometer 2 (AMSR-2) to which we apply an updated ver-
sion of the algorithm previously introduced by Röhrs et al.
(2012) for the preceding instrument AMSR-E.

Lead fractions derived from satellite PMW imagery make
use of the strong surface emissivity contrast to distinguish
between leads and thick ice (Sect. 2.1.5). To distinguish nar-
row leads from the large areas of polynyas also covered by
thin ice, a high-pass filter is applied to detect the lead edges
(Röhrs et al., 2012; Ivanova et al., 2016, Sect. 2.1.2). In con-
trast to the TIR imagery, lead detection from PMW works
largely unaffected by clouds but is affected by melting con-
ditions. From all products, LFPMW resolves the presence of
lead ice, but not necessarily only thin ice, the longest. From
the relatively long persistence of the lead features observable
with the AMSR2 sensor of up to several weeks, we can con-
clude that the method detects not only typical lead ice types
(new ice, nilas, young ice, gray and gray–white ice) but also
thicker ice, i.e., first-year ice (> 30 cm) formed in refrozen
leads. Therefore, lead fractions can be clearly higher than
from other products. The greatest advantage of satellite pas-
sive microwave data is their high temporal and spatial cov-
erage and the length of the data record that spans from the
1980s to now.

AMSR-2 is the follow-on instrument of AMSR-E with
similar frequencies and spatial resolution. Lead fractions
were previously derived from AMSR-E data by Röhrs et al.
(2012) using a vertically polarized brightness temperature ra-
tio between the 89 and 19 GHz channels that is distinctive for
thin ice. The AMSR-E lead detection algorithm provides the
estimation of thin ice fraction within an AMSR-E grid res-
olution and thus a mixture of leads with different sizes. The
lead fraction dataset was expanded to the AMSR-2 period by
applying the same algorithm. However, the parameters in the
algorithm had to be adjusted to the new instrument. To ho-
mogenize lead fractions from the two instruments, a cross-
comparison with MODIS-derived lead fractions was carried
out in a pre-study (Kassens et al., 2020). In the pre-study,
the new tie points of the brightness temperature ratios which
correspond to 0 % and 100 % lead fraction were estimated
in a 500 km× 500 km area in the Beaufort Sea where fre-
quent lead openings were observed. AMSR-2 swath bright-
ness temperatures were gridded into NSIDC polar stereo-
graphic projection with 3.125 km× 3.125 km grids, and lead
fractions were calculated in each grid cell over the entire Arc-
tic on a daily basis. For this study, we calculate mean lead
fractions as the average of all grid cells in the 50 km circle.
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2.3.5 CryoSat-2 lead fractions (LFCS2)

For the CryoSat-2 lead fractions (LFCS2), we use the
“Level-3 gridded sea-ice thickness and auxiliary parame-
ters” product (version 2.4) from the Alfred Wegener Institute,
Helmholtz Center for Polar and Marine Research (Hendricks
et al., 2021a), based on calibrated CryoSat-2 sensor data (Eu-
ropean Space Agency, 2019).

Satellite radar altimeters, like CryoSat-2, take advan-
tage of the abrupt change in surface properties of leads
(Sect. 2.1.3). They detect the contrasting radar backscatter
characteristics of leads whose flat surfaces result in a nar-
row radar waveform with a large amplitude compared to the
wider and weaker waveforms of rougher sea ice surfaces.
This dependency of radar waveform properties on surface
type, e.g., the pulse peakiness, is widely used to discrimi-
nate between sea surface and sea ice elevations and to esti-
mate both sea surface height and sea ice freeboard (Quartly
et al., 2019). In the context of sea ice altimetry, a lead can be
covered by open water but also certainly young ice such as
nilas and gray ice. The strict nadir pointing of altimeters re-
sults in significantly less ambiguity of the radar backscatter
signature over leads compared to other radar methods with
oblique incidence angles. Radar altimeter echoes can even
be used to discriminate between open water and thin sea ice
(< 25 cm) in leads and may allow direct estimation of thin
ice thickness (Müller et al., 2023). The specular reflection
of a lead surface in the nadir–zenith direction for open wa-
ter or young sheet ice also dominates the radar echo if it only
covers 1 % of the illuminated area (Drinkwater, 1991). Radar
echoes over sea ice surfaces are notably weaker and the re-
turn echoes are distributed over a larger time window due
to diffuse scattering, a wider surface height distribution per
footprint, and a partly backscattering snow layer. The spec-
ular versus diffuse backscatter mechanisms of leads and sea
ice also respectively result in a strong overrepresentation of
the lead area fraction within a radar altimeter footprint for
mixed surface types. Any binary lead–ice classification will
therefore result in a higher lead detection rate than the true
lead area fraction in the absence of misclassifications. Müller
et al. (2023), however, also show that surface type classifica-
tion algorithms may not correctly label radar echoes as leads
in the presence of thin ice, thus potentially reducing the lead
count. We keep these competing and non-quantifiable biases
in mind for the interpretation of the LFCS2.

Several waveform parameters have been proposed for sur-
face type classification, but the fundamental concept remains
unchanged from the earliest studies of sea surface height
(Peacock, 2004) and thickness (Laxon et al., 2003) in the
Arctic Ocean. In the “Level-3 gridded sea-ice thickness and
auxiliary parameters” product, the surface type classifica-
tion scheme based on Paul et al. (2018) attributes each radar
waveform to three categories: lead, sea ice, and ambiguous.
The thin ice class proposed in Müller et al. (2023) is not in-
cluded. The surface type, among other geophysical parame-

ters, is then gridded from the original along-track resolution
of approximately 300 m for weekly and monthly periods onto
an EASE2 grid with a spatial resolution of 25 km. To improve
the comparability with the other methods in this study, we
create a custom gridded product with a temporal resolution
of 1 d and a spatial resolution of 12.5 km, respectively. We
use the Python package pysiral (Hendricks et al., 2021b) for
the surface type classification and geophysical retrieval using
the CryoSat-2 sensor as well as for the custom gridding.

The gridded files contain the number of wave-
forms classified as either lead or sea ice (variable
“stat_n_valid_waveform”) and the fraction of lead detec-
tions (variable “stat_lead_fraction”), the LFCS2. Multiplying
the two parameters yields the absolute number of lead
detections (C2 absolute) per grid cell area and period. We
use C2 absolute as a secondary metric because the LFCS2
can have a strong sampling bias if only a few waveforms are
detected per grid cell.

2.3.6 Airborne sea ice thickness measurements

For a plausibility check of the magnitude of mean lead frac-
tions, we compared them with the mean open-water fraction
derived from airborne ice thickness observations during MO-
SAiC reported in von Albedyll et al. (2022). The open-water
fraction of the EM ice thickness measurements describes the
abundance of open water and up to 10 cm thick ice. The es-
timate of the uncertainty over level ice is ±10 cm, but since
the post-processing aligns open-water areas with zero thick-
ness, the uncertainty of the open-water fraction is most likely
smaller. The dataset is available from von Albedyll et al.
(2021b).

3 Evaluation of lead fractions based on divergence
during MOSAiC

Our aim is to present and evaluate our lead fractions
based on SAR-derived divergence along the MOSAiC drift
track. First, we analyze the properties of the accumulated
divergence-based lead fractions (LFaccu. div) on different spa-
tial scales (Sect. 3.1). Second, we present the LKF-derived
lead fractions LFLKF pixel and LFLKF fraction (Sect. 3.2).

3.1 Accumulated divergence-derived lead fractions

Figure 2 displays snapshots of lead openings from 20 to
27 March. Advected to and plotted on a SAR image from
27 March, the different colors accurately show where and
when leads opened in the past 7 d (Fig. 2e). Most of those
leads were not closed dynamically and can still be identified
by eye based on their lower radar backscatter on the SAR
image. The leads follow a preferred direction roughly per-
pendicular to the sea ice drift. Despite their spatial proxim-
ity, the deformation history of the leads differs considerably.
Some of them opened up and closed several times, while oth-
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ers opened up only once. Next, we give a detailed example
of the deformation history of a lead shown in Fig. 3.

3.1.1 Deformation history of a single lead

Figure 3 displays the temporal evolution of a lead between
14 and 27 March at near-daily resolution. Prior to 14 March,
the ice pack was closed, but bright lines in the SAR backscat-
ter hint at previous deformation events. The lead experienced
opening (16–18 March), closing (18–23 March), and reacti-
vation (25–26 March). Please note that the low temporal cov-
erage prevents us from analyzing any sub-daily deformation
due to, e.g., tides. We calculated the width of that lead from
the lead fractions assuming that all the divergence resulted
in opening in one direction. We evaluated the lead width es-
timates against visually detected changes in the backscatter
of the SAR image. Our estimates slightly underestimate the
manually measured widths of 1.8–2.0 and 1.2–1.5 km on 19
and 27 March, respectively. On those 2 days, the presence of
frost flowers on the lead ice turned the leads into a highly dif-
fuse scattering surface with a strong backscatter contrast to
the surrounding ice. We do not provide manual estimates for
the other days as wind-affected new ice formation and finger
rafting quickly transformed the smooth lead ice into a rough
surface whose SAR backscatter signal was indistinguishable
from the surrounding ice.

This example provides valuable insights into the life cycle
of leads and the capability of the accumulated lead fraction
product to resolve the different phases of opening, closing,
and reactivation. As expected from modeling studies (e.g.,
Wilchinsky and Feltham, 2011), divergence and convergence
on consecutive days were concentrated on the same ice that
was already weakened by previous deformation. We can re-
solve the thin ice present on March 27 only when accumulat-
ing lead fractions over several days, as demonstrated by this
example. Combined with a thermodynamic growth model,
one could calculate the thickness of the thin ice at any time
step (see, e.g., Kwok and Cunningham, 2002; Kwok, 2006).

3.1.2 Statistical analysis of lead lifetime, reactivation,
and lead width

The accumulated divergence-derived lead fractions provide
valuable information for conducting statistical analyses on
various properties of leads, including lead lifetime, reactiva-
tion percentage, and lead width. In total, we have analyzed
and summarized the properties of 183 562 lead pixels.

Lead lifetime characterizes the duration a certain lead was
open within the study period of 10 time instances. Figure 4
displays the time series and distribution of lead lifetimes. The
lifetime distribution (p(x)) can be fit by a negative exponen-
tial function of the form p(x)= Ce−ax with an exponent
a = 0.39 d−1 (Fig. 4b, left y axis). Analyzing the accumu-
lated relative frequency (Fig. 4b, right y axis), we observe
that the most common lifetime is 2 d, accounting for 43 % of

the leads. This coincides with the shortest lifetime we can re-
solve; i.e., the actual most frequent lifetime might be shorter.
The median lifetime is 3 d, indicating that 50 % of the leads
close within this time frame. After 5 d, 83 % of the leads have
closed, while only 0.9 % (corresponding to 1652 lead pixels)
remain open longer than 10 d. Phases of reduced lifetime of-
ten coincidence with strong convergence events (green shad-
ing in Fig. 4a), while there is no link for others (orange shad-
ing in Fig. 4a). The large standard deviation of each time
instance indicates additional spatial variability despite being
influenced by similar large-scale wind and ocean forcing.

Reactivation refers to the reopening of a previously closed
lead. Over the whole time series, on average 10.7± 7.6 % of
the leads were reactivated within the 10 time instances. The
reactivation percentage can reach up to 36 % at the end of
December, as shown in Fig. 4a.

Lead width, as defined in the previous section, is depicted
in Fig. 5. The smallest lead width which we can detect must
exceed the uncertainty of the lead fraction, i.e., 56–112 m
(see Sect. 3.1.3). We have chosen 56 m as the lower limit. As
expected, the lead width is a heavy-tailed distribution with
lead widths of up to 1300 m. Beyond 1200 m the power-law
relationship breaks down, which is why we define 1200 m
as the upper detection limit of our algorithm. Nevertheless,
leads wider than 1.2 km can still be resolved in our data prod-
uct by summing up several pixels along the opening direction
because their actual width is smeared out over several pixels.
Fitting a power-law of the form p(w)= Cw−b to the distri-
bution p(w) of the lead widthsw after excluding widthsw >
1200 m yields an exponent of b = 2.55.

In conclusion, the dataset presents a valuable resource for
studying the physical and mechanical properties of leads
larger than 56–112 m. Combined with ice pack properties,
forcing fields, and a thermodynamic growth model, a detailed
analysis of the dataset can reveal an in-depth process under-
standing of sea ice mechanics and their role in the sea ice
mass balance.

3.1.3 Uncertainties of the accumulated
divergence-derived lead fractions

We identify two main sources of uncertainty in the accumu-
lated divergence-derived lead fractions: (1) uncertainty re-
lated to the advection scheme and (2) uncertainty of the lead
fraction magnitude. In addition, there are lower limits for the
lead lifetime and lead width due to the temporal and spatial
sampling limitations of the dataset.

The uncertainty of the advection scheme originates from
errors in the drift calculations. Hollands and Dierking (2011)
state a tracking uncertainty of ±0.8–1.6 pixels, i.e., ±40–
80 m. Assuming a homogeneous drift field, the tracking un-
certainty accumulates to a maximum of 400–800 m, i.e., one
grid cell of the lead fraction product. For a strongly hetero-
geneous drift field, von Albedyll et al. (2021a) estimated an
accumulated tracking uncertainty of 1200 m for 10 time in-
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Figure 2. Example of accumulated divergence-derived lead fractions (LFaccu. div) from 20 to 27 March. The Sentinel-1 image from 27 March
is overlaid by advected lead fractions from different time instances. The colors indicate the timing and magnitude of the lead opening. The
black arrows show the sea ice velocity of the latest time instance. The black and green circles around the position of R/V Polarstern have
a radius of 150 and 50 km, respectively. The non-dashed area in panel (e) indicates where lead fractions from all 7 d are available. The
deformation history of the feature encircled by the thick black line within the green circle is shown in Fig. 3. Source of satellite images:
ESA/Copernicus.

Figure 3. Time series of lead opening, closing, and reactivation from 14–27 March. The aerial plots show opening (red) and closing (blue)
in a circle with a 50 km radius around R/V Polarstern. The values of the pixels within the dashed line were averaged and are shown by the
blue bars. The black line connecting the blue bars accumulates the opening and closing given by the blue bars. The lead width was calculated
from the lead fractions assuming that divergence took place only in one direction.

stances using the same drift algorithm (see their Fig. 1 in the
Supplement). Thus, the uncertainty of the advection scheme
is small and of the order of one to two pixels. In the spatial
plots, e.g., Fig. 3, we can confirm the high spatial accuracy.
The deformation zone stays concentrated in a narrow zone

without any signs of significant “smearing out” due to possi-
ble discrepancies in the advection scheme.

To quantify the uncertainty of the lead fraction magnitude,
we first simplify the calculation of the dimensionless lead
fractions by omitting the time difference information. The
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Figure 4. Time series (a) and distribution (b) of lead lifetime based on the complete dataset. Panel (a) displays the time series of the mean
(± standard deviation) lead lifetime of each day, reactivation percentage, and spatially summed-up convergence. Green shading highlights
convergence events with an impact on the lifetime, while orange shading highlights reductions in lifetime without corresponding strong
convergence events. Panel (b) shows the distribution of all lead lifetimes (gray, left y axis) and the exponential fit (orange, left y axis). The
right y axis shows the accumulated density distribution of the lifetimes.

Figure 5. Distribution of lead widths based on the complete dataset
in a log–log plot. Lead widths are shown as gray dots, and the
power-law fit to lead widths ≤ 1200 m is in orange.

lead fractions can also be expressed as the ratio of the differ-
ence in displacement (1Disp) and the grid cell length scale
(L= 700 m), thus LF= 1Disp

L
. Based on the simplified equa-

tion, we calculate the uncertainty of the lead fraction magni-
tude of a single time instance from the tracking uncertainty
using error propagation assuming no geolocation errors fol-
lowing Dierking et al. (2020). Adapting their Eq. (17), the
uncertainty of the lead fractions σLF is given by the ratio of
the tracking uncertainty σtr and the spatial scale given by L:

σLF =

√
2σtr

L
. (2)

With a tracking uncertainty of σtr = 40–80 m (Hollands and
Dierking, 2011) and a grid cell length of L= 700 m this re-
sults in an absolute error of σLF = 0.08–0.16 for one lead
fraction pixel. Translated into lead width in a single pixel,
this corresponds to 56–112 m when assuming that the lead
has opened only along one dimension. For the accumulated
lead fractions, we add the absolute errors of each time in-
stance assuming that they are independent. Averaging over
larger spatial scales assuming independent errors, we quan-
tify the standard error of the mean accumulated lead fractions
using

σLF k accu.div =

∑k
n=1σLF
√
n
=
k · σLF
√
n
, (3)

where k is the number of accumulations and n is the
number of pixels that fit into circles with radius 10, 50,
100, and 150 km. For LF5× accu. div, this calculation yields
uncertainties for the spatially averaged lead fractions of
σLF 5× accu. div = 0.019–0.038 (10 km), σLF 5× accu. div =

0.004–0.008 (50 km), σLF 5× accu. div = 0.002–0.004
(100 km), and σLF 5× accu. div = 0.001–0.003 (150 km).
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As uncertainties grow with more accumulation steps, we
explore the upper and lower limits of the number of ac-
cumulation steps. In winter, thermodynamic growth sets an
upper limit on the accumulation time instances. Rapid ice
growth can “thermodynamically close” a lead within a time
frame ranging from a few hours to days. This duration de-
pends on air temperatures and the maximum ice thickness
that still qualifies as a lead. We chose 10 time instances cor-
responding to at least 10 d as an upper limit. Under the typical
(winter) growth conditions during MOSAiC, lead ice thick-
ness reached on average more than 30 cm (min : 1cm, max :
50cm) after 10 d (Nicolaus et al., 2022) which is thicker than
what most studies consider to be lead ice. The dynamic life-
time of the leads sets the lower limit of the required accumu-
lation steps. We compared the time series with zero to 10 ac-
cumulation steps and found that five accumulation steps can
explain roughly three-quarters of the magnitude and variabil-
ity of the “full” LF10× accu. div time series. This fits well with
the observation that 72 % of the leads are closed after 5 d
(see Fig. 4b, Sect. 3.1.2). Hence, we suggest using at least
five time instances (LF5× accu. div) to describe the temporal
evolution of the leads.

3.1.4 Time series of accumulated divergence-derived
lead fractions during MOSAiC

The mean (accumulated) LFaccu. div ranges between 0.61 %
(LFdiv, no accumulation) and 3.2 % (LF10× accu. div, 10× ac-
cumulated) with a maximum of 3.3 % (LFdiv) and 10.3 %
(LF10× accu. div), respectively. Figure 6a displays the time se-
ries of (accumulated) LFdiv for different numbers of accumu-
lation steps, where LF5× accu. div is highlighted in black. In
the following, we will focus on the LF5× accu. div time series.

The LF5× accu. div time series is roughly split into three
phases: a stormy fall (October–November), a quiet win-
ter (December–January), and an active spring (March–May,
Fig. 6a). Those phases align with the general seasonality of
the dynamic regime during the MOSAiC drift (Angela Bliss
and Jennifer Hutchings, personal communication, 2022, see
also, e.g., Krumpen et al., 2021; von Albedyll et al., 2022,
for sea ice dynamics along the drift). Within the three main
phases, there are several peaks of lead activity lasting 1–
1.5 weeks (arrows in Fig. 6a). The highest lead activity, char-
acterized by multiple events of a duration of 1–2 d with high
lead fractions, was reached in March 2020, when R/V Po-
larstern was in the western Nansen Basin, a region that is
generally characterized by high lead fractions (Fig. 15 in
Krumpen et al., 2021). Interestingly, the frequency of lead
events stayed roughly constant during the seasons, but their
larger magnitude and persistence in fall and spring created
the offset in the accumulated lead fractions. When interpret-
ing this time series, one needs to keep in mind that thermo-
dynamic growth quickly covers leads with new ice.

The three phases correspond well to the atmospheric forc-
ing and the consolidation state of the ice pack. In the fall

when R/V Polarstern was located in the Siberian Arctic, the
sea ice was still freezing up and was hit by an elevated num-
ber of cyclones in November (Rinke et al., 2021; Nicolaus
et al., 2022; von Albedyll et al., 2022). In the quiet win-
ter phase in the central Arctic (here only documented until
the middle of January), the ice pack consolidated completely
with only one cyclone passing through in December. In the
active spring, cyclone activity increased again and a sequence
of storms first broke and then easily deformed the ice pack
(Rinke et al., 2021; Nicolaus et al., 2022). This increase in
lead activity corresponds well to R/V Polarstern approaching
the western Nansen Basin, a region that is generally charac-
terized by higher lead fractions (Fig. 15 in Krumpen et al.,
2021).

3.1.5 Accumulated divergence-derived lead fractions
on different spatial scales during MOSAiC

Figure 6b compares LFaccu. div of different spatial scales, de-
scribed by circles with radii from 10 to 150 km centered
around R/V Polarstern. Lead fractions of the different scales
are generally similar in magnitude and temporal evolution.
They differ less than the different accumulation time in-
stances. This means that the deformation was more consis-
tent on spatial scales up to 150 km than persistent on tem-
poral scales > 5 d. However, on the smallest spatial scale
of 10 km, we note some clear deviations from the overall
pattern. On the smaller scale, the localized and intermittent
nature of deformation (e.g., Marsan et al., 2004; Hutchings
et al., 2011) starts to become apparent with localized lead
events hitting (or missing) the smaller area. Due to the lower
data coverage, the time series of 100 and 150 km are in-
complete as we only consider points with coverage > 50 %.
We conclude that the 50 km time series is representative of
the larger surroundings of the MOSAiC central observatory
based on a high correlation of> 0.9 with the 100 and 150 km
time series.

3.2 LKF-derived lead fractions

Figure 6c presents the LKF-derived lead fractions. The bi-
nary lead pixel number LFLKF pixel is displayed together with
the native product LFdiv on the left y axis, and the LKF
lead fractions LFLKF fraction are shown on the right y axis
(different scale). LFLKF pixel has a similar magnitude as the
LFdiv with a mean of 0.65 % and a maximum of 3.46 % (on
15 March 2020). In contrast and as expected from the pro-
cessing, the average of the LFLKF fraction is 2 orders of mag-
nitude smaller than LFdiv with a mean of 0.05 % and a maxi-
mum of 0.51 % (on 28 March 2020). Both time series exhibit
a very similar temporal variability, which is why we summa-
rize them together as LFLKF. Because LFdiv and the LFLKF
are based on the same divergence fields, the observed very
similar temporal variability (Pearson R = 0.78) is expected.
In contrast to the LFdiv time series, lead events in the LFLKF
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Figure 6. LFaccu. div and LFLKF time series. Panel (a) shows accumulated LFaccu. div on the 50 km scale with a varying number of accumu-
lation time instances. The time series with LF5× accu. div is highlighted in black. The three main phases and several periods of higher lead
activity are marked with colored shading and arrows, respectively. Panel (b) compares LF5× accu. div of different spatial scales. Panel (c)
shows on a 50 km spatial scale the binary lead pixel number LFLKF pixel and LFdiv on the left y axis and LFLKF fraction lead fractions on the
right y axis (mind the different scales).

time series are more prominent, clear signals in the time se-
ries with otherwise mostly zero values.

The observed differences align well with the differences
in the retrieval techniques. The LKF detection algorithm of
the LFLKF functions as a strict filter on LFdiv by reduc-
ing unwanted noise and highlighting strong events. How-
ever, it also removes most likely real divergence events that
are either not strong enough or do not result in elongated
shapes. The agreement between the magnitudes obtained
from LFLKF pixel and LFdiv results in several conclusions. By
assigning a lead fraction of 1 to every LKF pixel, we end up
overestimating the lead fraction. This happens because only
0.4 % of all lead pixels contain leads wider than 700 m (as de-
picted in Fig. 5). Yet, this overestimation is counteracted by
the morphological thinning of leads into 1-D features. Both
effects seem to compensate for each other on average. There-
fore, we conclude that LFLKF pixel is a first guess to concen-
trate the spread-out lead signal in the divergence data into

a single pixel. It is important to note that, unlike LFaccu. div,
LFLKF only considers newly formed leads.

4 Comparison of different lead products

This section compares the results of our two new lead prod-
ucts with results from the six existing lead products described
in Sect. 2.3. We compare the time series with respect to their
mean values (Sect. 4.1), their temporal variability (Sect. 4.2),
their temporal and spatial coverage (Sect. 4.3), and their abil-
ity to resolve leads spatially (Sect. 4.4).

We restricted our analysis to the time period from 5 Octo-
ber 2019 to 15 May 2020. During the subsequent melt sea-
son, most of the retrieval methods suffer from large uncer-
tainties and are thus not available. For the temporal com-
parison, we compared mean lead fractions in a circle with
a 50 km radius around the position of R/V Polarstern at the
acquisition time of the SAR images. We chose this scale
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because it is representative of the wider surroundings (see
Sect. 3.1.5), captures the LKF structures, comprises the ex-
tended network of measurements conducted during MO-
SAiC, and is a compromise between the different resolu-
tions and coverage of the various lead products. For the
timescale of the accumulated lead fractions, we have chosen
LF5× accu. div (see Sect. 3.1.3).

4.1 Mean and variability of different lead products

Table 1 provides a summary of the average lead fractions
from various time series along with their respective variabil-
ity measures, represented by the standard deviation and the
coefficient of variability. The coefficient of variability is cal-
culated as the ratio of the standard deviation to the mean
value, serving as an indicator of the relative variability for
each set of data.

The mean lead fractions among the lead products vary by 2
orders of magnitude between 0.05 (LFLKF fraction) and 9.22 %
(LFCS2), while their variability is very similar with coeffi-
cients of variability between 0.71 and 2.04. For a plausibil-
ity check of the magnitude of the lead fractions, we compare
the mean lead fractions to mean open-water fractions derived
from airborne ice thickness observations during MOSAiC
reported in von Albedyll et al. (2022), which describes the
abundance of open water and 1–10 cm thick ice. Thus, this
dataset approximates the fraction of leads that opened up on
that particular day or slightly before in the freezing season.
Taking the average of all nine surveys between October 2019
and April 2020 gives an open-water fraction between 0.02 %
and 0.81 % with a mean of 0.35 %. This number most likely
underestimates the true open-water fraction due to the foot-
print averaging of the EM airborne ice thickness measure-
ments. Nevertheless, it provides a rough estimate in the same
order as the mean LFdiv, LFclassified_SAR, and LFHeli_TIR.

The observed differences in magnitude provide clear ev-
idence for the major differences in the “lead definition”
(Sect. 2.1) of each retrieval method, but also in their spa-
tial and temporal coverage and resolution. Since the vari-
ability is similar, we suggest that all retrieval methods re-
act similarly sensitively to changes in the real lead fractions,
but with different magnitudes. LF5× accu. div, LFMODIS, and
LFPMW overestimate the open-water fractions compared to
the EM thickness observations. This fits well with the as-
sumption that their lead fractions also include thin ice. How-
ever, the LFHeli_TIR is based on the same measurement princi-
ple as LFMODIS but has substantially smaller values. There-
fore, other factors such as spatial resolution, spatial cover-
age, and atmospheric conditions also play a role. LFdiv and
LFclassified_SAR primarily detect open-water leads, which is
supported by their reasonably good fit to the observed EM
open-water fractions.

4.2 Temporal variability of different lead products

The seasonal variability of the LFclassified_SAR time series
is similar to the one of the LFdiv and the LFLKF with
more active phases in fall and spring (Fig. 7, note the dif-
ferent y axes). The time series of LFclassified_SAR has sev-
eral active phases or individual events in common with the
divergence-based products, which are marked in red in Fig. 7
and labeled a1–a6. For the first very active phase in Octo-
ber (a1) there is no one-to-one correspondence between the
individual lead events, but all available datasets, including
the LFCS2, indicate the presence of several leads. Between
November and March (a2–a6), the LFclassified_SAR agrees
with the most pronounced lead opening events in LFdiv and
LFLKF that also correspond in most cases to maxima in the
accumulated LF5× accu. div. Smaller events that appear ex-
clusively in LFdiv and LFLKF were not consistently identi-
fied by LFclassified_SAR. This suggests that the divergence-
based products are more adept at capturing lead events than
LFclassified_SAR, although they may also contain some noise.

There are also pronounced differences between
LFclassified_SAR and the divergence-based lead fractions.
For example on 15–16 April 2020, the strongest lead
event of LFdiv (blue shading, c) lacks a counterpart in the
LFclassified_SAR. In fact, this peak corresponds to a large shear
zone in the study area, creating open water and ice rubble.

It is interesting to note that the duration of the individual
events in the LFclassified_SAR times series is typically 1–2 d,
similar to LFdiv and LFLKF, while the lower-frequency vari-
ability of LFaccu. div indicates that some of the leads stayed
open longer than a day. We thus conclude that LFclassified_SAR
predominantly detects open water and only to a minor degree
leads covered by thin ice.

Frequent data gaps in the LFMODIS time series due to
clouds complicate a comprehensive comparison. The sea-
sonal evolution agrees with the ones of the other time se-
ries with high lead fractions in March 2020. One major
event in December 2019 (yellow shading, b1) is shared with
LFdiv, LFLKF, and LFCS2 but has a much larger amplitude in
LFMODIS.

The LFHeli_TIR time series consists only of nine temporal
snapshots, which prevents an in-depth interpretation of the
variability. In addition, the helicopter-borne dataset is very
limited in space. Overall, the trend, suggested by the few data
points, towards higher fractions in spring, aligns well with
the other lead fraction time series.

The LFPMW time series shows a gradual decline in lead
fraction from fall to spring, a trend not observed in the other
time series. Notably, for the first time, zero lead fractions are
recorded around mid-March, coinciding with a shift in the
general pattern, leading to the emergence of more distinct
events. Among these events, three coincide with events ob-
served in other products (a5–a6). It is important to mention
that during the strong shearing event on 15–16 April 2020,
the ice concentration (shown as the open-water fraction,
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Table 1. Average properties of different lead products in a 50 km circle around R/V Polarstern. The mean lead fraction and its standard
deviation are given with the coefficients of variation defined as the ratio of the two former quantities. Where available, the mean is given
with its uncertainty. C2 absolute is given in absolute numbers, not percentages. The length of the time series varied due to the lack of satellite
coverage or data gaps, e.g., due to clouds.

Dataset Mean fraction Standard Coefficient of Length of time
(%) deviation variation series (days)

LFdiv 0.61 0.62 1.0 147
LF5× accu. div 2.23 1.57 0.71 143
LFLKF fraction 0.05 0.09 1.64 147
LFLKF pixel 0.65 0.74 1.12 147
LFclassified_SAR 0.60 1.23 2.04 149
LFMODIS 5.77 6.52 1.13 117
LFHeli_TIR 1.16 1.07 0.93 9
LFPMW 5.08 3.61 0.71 224
LFCS2 9.22 10.30 1.12 185
C2 absolute 2.38 2.25 0.94 185

1− ice concentration, on the right y axis in Fig. 7) decreased,
while the lead fraction remained small. Based on our ob-
servations, we propose that the gradual decrease in LFPMW
primarily reflects the thermodynamic thickening of thin ice
rather than a change in the presence of leads. However, start-
ing from mid-March, LFPMW appears to predominantly cap-
ture thin ice formed in refrozen leads while being less sen-
sitive to open water, as evidenced by the 15–16 April event.
Please note that the strong decrease in concentration after
16 April is related to the effect of glazing on the retrieval
algorithms due to a warm-air intrusion (Rückert et al., 2023).

The seasonality of the LFCS2 time series is slightly differ-
ent from the divergence-based lead products, with the highest
lead activity in fall and only a few events recorded in spring.
With this, it corresponds better to LFclassified_SAR. Potential
causes of this deviation could arise from the abundant thin
ice in the fall that could have been classified as leads by the
retrieval algorithm. Similar to LFLKF, the LFCS2 time series
consists of events that normally last 1–3 d and can be easily
separated from each other. There is good agreement between
the LFCS2 and several other products for several events (a1,
a2, a5). In addition, they agree with LFdiv and LFLKF on ad-
ditional events in December 2019 (yellow shading, b1–b2).
The LFCS2 suffers from a low spatial coverage that likely
causes a sampling bias in the lead indication. For example,
the ice affected by the major lead event in the middle of April
(blue shading, c) was not covered by the swath of the satel-
lite.

Overall, for periods shorter than the seasonal cycle, there
is only anecdotal agreement between the different lead prod-
uct time series. This lack of general similarity strongly com-
plicates establishing some kind of “common ground” for the
evaluation of lead products.

4.3 Temporal and spatial coverage of different lead
products

Lastly, we compare the temporal resolution and coverage of
the different lead fraction products along the MOSAiC drift.
Table 1 shows that LFPMW is the most complete time series,
while LFMODIS has the fewest valid days. The divergence-
based time series perform in the midfield; however, they suf-
fer from a very irregular distribution of the gaps caused by
the lack of satellite coverage north of approximately 87° N.
Especially in those regions, lead fractions from sensors other
than Sentinel-1 and most other SAR satellites are crucial.
While those results are specific for the MOSAiC drift track,
they still demonstrate the limiting factors of the different time
series that are either sensor-specific (no coverage beyond a
certain latitude) or due to the retrieval technique (clouds).

4.4 Spatial comparison of different lead products

The previous sections were concerned with comparing mean
values and temporal variability. Next, we analyze how well
LFdiv, LF5× accu. div, and LFLKF reproduce the location and
size of the same leads compared to a visual reference. To
do so, we focus on two case studies in November 2019 and
March 2020 with different dynamic regimes.

4.4.1 Single deformation event – 1–2 November 2019

Between 1 and 2 November 2019, two leads opened in
the previously closed ice pack (Fig. 8b). An approximately
70 km long and 350 m wide lead opened 25 km south of R/V
Polarstern (manually measured on the SAR image with 50 m
resolution). A smaller lead with 33 km length and a maxi-
mum width of 250 m opened 11 km to the west of the ship
(manually measured on the SAR image with 50 m resolu-
tion). Both leads were closed again on 3 November 2019. Ex-
trapolating from the ice thickness observations from 14 Octo-
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Figure 7. Time series of lead fractions from different products. Colored and labeled (a–c) bars indicate common events. Red shading (a1–a6)
highlights lead events in the divergence-based products and most other sensors. The yellow shading (b1–b2) shows events visible in the
LFCS2, LFdiv, and LFLKF time series. The blue shading (c) highlights the strongest lead event in the LFdiv and LFaccu. div. The scale of
the different y axes varies substantially. LFLKF fraction is plotted on the right y axis together with LFLKF pixel (second panel). Open-water
fraction, calculated as 1− ice concentration, is plotted on the right y axis together with LFPMW (seventh panel).

ber to 1 November 2019, the modal ice thickness of the sur-
rounding ice was likely around 0.5 m±0.1 m (von Albedyll
et al., 2022).

We manually estimated a lead fraction of 0.25 % from the
SAR image (Fig. 8a). The LFdiv captured the larger lead very
well. As the only lead product, the LFdiv partly also indicated
the formation of the smaller lead. We tested whether the ob-
served width of the lead and the integrated divergence values
along the opening direction of the lead match. We found that
the LFdiv results in a lead width of 300–350 m, which agrees

well with the observed 350 m. However, the LFdiv also indi-
cates divergences at several other spots where we could not
find any visual signs of open water. This results in a slight
overestimation of the lead fraction (0.7 %). Those spurious
detections are removed in the LFLKF fraction but at the expense
of also removing any sign of the smaller lead. Since the larger
lead is concentrated into a quasi-one-dimensional structure
that is only one pixel wide, the estimate of the lead width is
reduced to about 200–240 m. Altogether, this results in only
a small lead fraction of 0.06 %. The accumulated lead frac-
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Figure 8. Comparison of different lead products on 2 November 2019. Panel (a) displays a SAR image of the ice pack on 2 November 2019,
with two leads identified manually. Panel (b) displays the advected LFdiv. Panel (c) shows the advected LFLKF fraction. Panel (d) shows the
advected 5× accumulated LF5× accu. div. All other lead products are shown in the second row. The LFMODIS values in panel (f) are strongly
affected by clouds (black). The few lead pixels (red) are located close to the center of the circle. The numbers at the bottom left of each panel
indicate the lead fraction. All circles have a radius of 50 km and are centered on the position of R/V Polarstern. Source of satellite images:
ESA/Copernicus.

tions LF5× accu. div show a similar distribution to LFdiv, as
anticipated due to the closed ice pack on 1 November 2019.
The accumulation of false detections results in a higher lead
fraction of 1.8 %.

The LFdiv, LFLKF fraction, and LF5× accu. div perform sim-
ilarly well as the LFclassified_SAR in detecting the location of
leads. The LFclassified_SAR benefits from a high spatial resolu-
tion that is 1 order of magnitude larger than the one of LFdiv
and LFLKF and captures the large lead precisely. However,
the lead classification algorithm used reliably detects only
leads with a minimum width of about 200 m, corresponding
to five pixels of the original Sentinel-1 SAR scenes. More
narrow leads and parts of a larger lead are not always clas-
sified as open water. The LFclassified_SAR detects additional
features that are not visually identified as leads, similar to
LFdiv. This leads to an overestimation of the lead fraction
by 0.78 % compared to the visual estimate. While LFMODIS
suffers from heavy cloud coverage (lead fraction: 0.06 %),
the LFPMW (7.8 %) shows some features that are most likely
associated with thin ice rather than leads. CryoSat-2 passed
over the small lead and parts of the larger lead and captured
higher lead fractions. The higher LFCS2 of 10 % confirmed
the overall divergent drift regime that has probably opened a

few additional smaller leads that are not visible on the SAR
image.

4.4.2 Dynamic phase with several leads opening –
26–27 March 2020

The period of 26–28 March 2020 was very dynamic with
lead openings and closings. Several leads up to 1 km wide
opened within 50 km distance to R/V Polarstern. Due to the
low temperatures around −30 °C, the open water quickly re-
froze (Nicolaus et al., 2022; Shupe et al., 2022). The modal
and mean ice thickness was around 1.7 and 2.3 m, respec-
tively (von Albedyll et al., 2022).

We manually estimated a lead fraction of 3 % concentrat-
ing on the large lead systems (Fig. 9a). Leaving out a few
smaller leads, this value probably still underestimates the
true lead fraction. The LFdiv reproduces the opening of the
leads in the upper left part of the 50 km circle (Fig. 9b). The
respective divergence fields show that there was weak con-
vergence along most of the other lead locations. The fraction
of 0.5 % only reflects the newly formed leads. LF5× accu. div
shows that most of the leads in the lower part of the circle had
formed during the previous time instances (see also Fig. 2)
and suggests a higher lead fraction of 5.3 %. The visual esti-
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Figure 9. Comparison of lead products on 27 March 2020. Panel (a) displays a SAR image of the ice pack on 27 March 2020, with the
largest leads identified manually. Panel (b) displays the advected LFdiv. Panel (c) shows the advected LFLKF fraction. Panel (d) shows the
advected 5× accumulated LF5× accu. div. All other lead products are shown in the second row. The numbers at the bottom left of each panel
indicate the lead fraction. All circles have a radius of 50 km and are centered on the position of R/V Polarstern. Source of satellite images:
ESA/Copernicus.

mate of 3 % falls between the two products. This makes sense
when considering the rapid formation of new ice in the leads
that are several days old with the associated change in radar
backscatter. For this case, the LF2× accu. div with 3.3 % comes
closest to the visual estimate.

Like LFdiv, the LFLKF fraction only indicates the active de-
formation zone in the upper left part of the study region
and a lead fraction of 0.053 %. Analog to the LFdiv, the
LFLKF fraction showed a high fraction of 0.15 % the day be-
fore on 26 March 2020. The LFLKF fraction further filtered out
the weak convergence signals visible in the divergence lead
fractions.

The LFclassified_SAR comes closest to the manual estimate
in magnitude (3.6 %) and in location thanks to its high spa-
tial resolution. In contrast to LF5× accu. div, LFclassified_SAR
does not identify some of the older leads, which is in line
with the general assumption that LFclassified_SAR best resolves
leads with open water and smooth, thin ice. With a fraction of
2.4 %, the LFPMW is still close to the visual estimate, but the
analysis of the spatial distribution showed that the LFPMW
product only resolves parts of the leads (Fig. 9h). Never-
theless, in contrast to the November case, the LFPMW sig-
nificantly improved in predicting the location of leads for
the March case, as the few resolved structures were clearly

aligned with leads seen on the SAR image (Fig. 9h). When
not cloud-covered, LFMODIS detected individual leads, but
not reliably. Interestingly, the LFMODIS of 7.4 % is still dou-
ble the visual estimate. We speculate that there are two main
reasons for this large estimate. First, where leads are cor-
rectly identified, the fraction is overestimated due to the com-
bination of gridding and the binary classification scheme (see
Sect. 2.3.2). Second, MODIS is detecting leads in some ar-
eas where leads were not observed visually, especially be-
tween detected leads. This could hint at the presence of thin-
ner leads that are not seen on the SAR image, warmer air
around a lead that “smears out” the lead signal, or old leads
with thicker ice that is not seen by the other retrievals. The
LFCS2 indicates a lead fraction of 8.4 %, which is lower
than for 2 November 2019, despite more leads being present.
Even though the swaths indicate some coverage of the leads,
the valid waveforms for the lead pixels are rather low. We
speculate that the very small leads might have been missed
since the corresponding waveforms are also influenced by
surrounding sea ice and are subsequently classified as mixed
surface type and intentionally removed from the process-
ing. The sufficient lead area fraction within the radar foot-
print needed for a lead waveform classification is not known
and likely depends on the actual geometry and specific lead
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radar backscatter characteristics. Lead waveform classifica-
tion, however, is possible in the presence of sea ice; thus, it is
reasonable to assume that the rate of lead detections of radar
altimeter data still overestimates the true lead area fraction.

We conclude that a spatial analysis of lead products, e.g.,
a visual comparison with higher-resolution optical or SAR
data and a plausibility check of the shape and stability of
detected leads, provides relevant information about the abil-
ity of products to indicate leads at the chosen temporal
and spatial resolution. The SAR-based lead fractions (LFdiv,
LFLKF fraction, LF5× accu. div, LFclassified_SAR) perform best in
locating the leads, while the other sensors suffer from low
coverage due to clouds or no overpasses, low spatial resolu-
tion, the presence of thin surrounding ice, or leads that are
too small.

5 Discussion

The objective of this study was to analyze lead products
based on divergence. We have calculated two lead products
from the divergence: divergence-derived (accumulated) lead
fractions (LFdiv) and LKF-derived lead fractions (LFLKF). In
the subsequent sections, we will first examine the uncertain-
ties (Sect. 5.1), as well as the advantages and disadvantages,
of the LFdiv and LFLKF methods in comparison to other lead
datasets (see Sect. 5.2). Following this, we will compare our
lead statistics with those reported in other studies (Sect. 5.3).
Finally, we will discuss potential applications of lead frac-
tions based on divergence (Sect. 5.4).

5.1 Uncertainties of the lead fraction products

In Sect. 3.1.3, we assessed the standard error for the
spatial mean (50 km) of LF5× accu. div, ranging from
σLF 5× accu. div = 0.004 to 0.008. For the whole time series
(Table 1), this results in an absolute error between 0.33 %
and 0.66 % in lead fractions and, relative to the average lead
fraction of 2.23 %, in a relative error of 15 % to 30 %.

Here, we address other uncertainties not yet accounted
for. Firstly, the accuracy of divergence-derived lead fractions
most likely varies with the deformation rates. On the one
hand, given a constant tracking error, the signal-to-noise ratio
is larger for larger deformation rates; i.e., larger lead fractions
are more certain (Bouchat and Tremblay, 2020). On the other
hand, new deformation zones can locally increase the track-
ing error due to changes in backscatter patterns, complicating
the ice displacement retrieval (Griebel and Dierking, 2017).
In addition, averaging sea ice velocity over larger scales to
remove outliers can reduce the error over areas with homoge-
nous ice drift but obscure deformation lines. Furthermore, the
grid’s orientation relative to deformation zones also affects
the accuracy of deformation estimates (Bouillon and Ram-
pal, 2015; Griebel and Dierking, 2018). Secondly, our meth-
ods miss many small, short-lived leads (< 56 m and < 2 d,

Thielke et al., 2024). Also, we do not capture the life span
and width of leads that remain open for over 10 d. Including
all leads would alter the mean properties over time. We con-
clude that divergence-based lead fractions accurately capture
when and where a lead opens and closes, but measuring the
actual width of leads is less certain.

Comparing the uncertainties of different lead products is
complex. The probability of false lead detections in the bi-
nary lead products LFMODIS and LFclassified_SAR ranges be-
tween 10 %–15 % and 0.8 %–10 %, respectively (Sect. 2.3.2
and 2.3.1). No uncertainty estimates are available for LFCS2
and LFPMW. In addition, the pixel-based uncertainty assess-
ments do not account for biases in temporal–spatial averages
in sparsely sampled areas due to limited coverage, swatch
width, or clouds. Our comparison forms a basis for improv-
ing and reassessing the uncertainty estimates of all products,
after accounting for the different lead definitions detailed
in Sect. 2. A comprehensive, high-resolution “ground truth”
dataset, possibly based on high-resolution thermal infrared
data (Qiu et al., 2023) or extensive ICESat-2 lead retrievals
(Duncan and Farrell, 2022; Farrell et al., 2020), could further
enhance our understanding of these uncertainties.

5.2 Advantages and disadvantages of lead fractions
based on divergence

5.2.1 Advantages of lead fractions based on divergence

The first and most important advantage of the LFaccu. div is
that combined with the drift information, it resolves the tem-
poral evolution of individual leads. Knowledge of the defor-
mation history of a lead enriches our understanding of the
large-scale ice strength and preferred means of sea ice re-
distribution. When combined with a thermodynamic growth
model, it also allows reconstructing the thin ice part of the ice
thickness distribution (e.g., Kwok and Cunningham, 2002).
Statistics about lead lifetime, reactivation, and total lead
width highlight the temporal and spatial variability of the de-
formation history of leads. Exploring this variability allows
us to study changes in the mechanical properties related to
ice pack properties across different regions and times and to
compare them with sea ice models (e.g., Hutter et al., 2022;
Ringeisen et al., 2023).

The second advantage of LFaccu. div is the ability to detect
small leads and those that have SAR backscatter coefficients
similar to ridges, e.g., caused by ice rubble or frost flower,
while maintaining a large spatial coverage. Even though
LFclassified_SAR indicates the location of leads with a 10 times
higher spatial resolution, LFdiv was most reliable in resolv-
ing small leads (< 250 m) for the case study from 2 Novem-
ber 2019 (Sect. 4.4). Especially during predominantly shear-
ing motion, when loose ice rubble is created, which still al-
lows for ocean–atmosphere exchange, the LFaccu. div has a
clear advantage over the LFclassified_SAR. While LFCS2 most
likely includes even smaller leads, LFdiv has the advantage
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of a higher spatial resolution and larger spatial coverage than
the gridded LFCS2.

Third, LFdiv is easy to interpret as the magnitude is directly
linked to the formation process of leads. The average magni-
tude of the LFdiv seems to be a realistic estimate of the open-
water fraction compared to complementary high-resolution
airborne EM observations. The mean LFaccu. div is larger be-
cause is also includes leads covered by thin ice in addition to
open water. Combining the deformation history of LFaccu. div
with a thermodynamic growth model would enable full con-
trol over the maximum allowed thickness in leads. In con-
trast, the larger LFMODIS and LFPMW classify thin ice up to a
certain unknown ice thickness as leads.

Last, all of the time series based on SAR data (LFdiv,
LFLKF, LFclassified_SAR) have a high spatial resolution at mod-
erate temporal coverage. The LFLKF indicates the location of
the leads with similar precision as the LFclassified_SAR. While
LFPMW and LFCS2 provide better temporal coverage than the
SAR-based products (Table 1), LFPMW falls short in spatial
resolution, and LFCS2 does not match the SAR images in
coverage. Surprisingly, in our study, LFMODIS falls behind
the SAR time series concerning the temporal coverage due
to high cloud coverage. However, LFMODIS has the advan-
tage of covering the whole cloud-free Arctic sub-daily with-
out any gaps north of approximately 87° N. Thus, LFMODIS
is better suited for long-term (months to years), pan-Arctic
studies of lead fraction trends.

5.2.2 Disadvantages of lead fractions based on
divergence

First, the ability of LFdiv to detect small leads comes at the
expense of a higher noise level. Therefore, most of the other
products use a shape criterion to remove noise. How this
could be successfully done on LFdiv is essentially shown in
the LFLKF that does not contain any noise but also misses
smaller leads. This trade-off between the size of leads and
the confidence in them could be adjusted depending on the
research question by revisiting the filter of the LKF detection
algorithm.

Second, leveraging the full potential of the LFLKF as a
noise-free, feature-based lead product requires a more so-
phisticated approach to derive areal lead fractions. Among
the two current methods, LFLKF pixel estimates aligned more
accurately with reference data from LFHeli_TIR and EM ice
thickness observations. However, a future approach for the
extraction of divergence should allow LKFs to have a width
of several pixels.

Third, the temporal and spatial coverage of LFdiv and
LFLKF is limited. Potentially, this could be overcome by
adapting the presented methods to data from other SAR satel-
lites, e.g., the RADARSAT Constellation Mission (Howell
et al., 2022), to yield more complete coverage of the Arc-
tic. However, so far, LFPMW and LFMODIS have provided
more suitable alternatives for climatological studies reaching

back several decades or studies on Arctic-wide scales and
(sub-)daily timescales.

5.2.3 Summary

Taken together, based on our means of comparison, we con-
clude that LFdiv and LFLKF combine advantages of several
other lead products and are thus a valuable addition to the
existing lead products. This corroborates earlier results from
Kwok (2002), Kwok and Cunningham (2002), and Kwok
(2006), who used RGPS-derived deformation to estimate
openings in the ice pack and divergence-induced new ice for-
mation.

The comparison of lead fraction products presented here
allows us to explore ways to mitigate their drawbacks by
combining them. A promising approach could be to merge
the two SAR-based methods, LFaccu. div and LFclassified_SAR,
within a single algorithm, as they are both based on the
same data source. Leveraging the higher resolution of
LFclassified_SAR (40 m compared to 700 m), we could use
LFclassified_SAR to precisely pinpoint the location of leads
when LFaccu. div indicates their presence. Simultaneously,
LFaccu. div and LFclassified_SAR can be used as pre-filters for
each other, replacing or relaxing the existing, potentially
stricter filters. This combined approach has the potential to
reduce the number of misclassifications and suppress noise
but may also bring the disadvantages of both methods to-
gether, so a merged approach requires careful evaluation of
the present results and could be the subject of further studies.

5.3 Comparison with previous estimates of lead
fraction, lifetime, and width

Our study also emphasizes the need to distinguish be-
tween underlying lead definition and retrieval method when
describing lead fractions in the Arctic. Based on LFdiv,
LFLKF pixel, and LFclassified_SAR we provided further evidence
for a mean open-water fraction in Arctic sea ice of the order
of 0.1 %–1 %. This estimate agrees well with previous results
from Kwok (2002), who found a mean open-water fraction of
0.3 % based on divergence for the perennial ice cover in the
Pacific sector of the Arctic.

In addition, based on the accumulated LFaccu. div and
LFHeli, TIR, we could also provide supporting arguments for
Arctic lead fractions including thin ice of the order of 1 %–
3 %. Those estimates agree much better with previously re-
ported fractions of the order of a few percent by Wadhams
(2000) and Reiser et al. (2020).

Furthermore, differences in lead fraction products may
also arise from the scale and resolution of the different mea-
surements as small (potentially unresolved) leads dominate
(Marsan et al., 2004; Thielke et al., 2024).

The observed differences in lead fractions between the
lead products of more than 5 % are very large compared with
the actual physical effects that small increases by, e.g., 1 %
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lead fraction could have on the Arctic climate system (Lüp-
kes et al., 2008). Therefore, the lead products require care-
ful interpretation with good knowledge of the underlying re-
trieval methods. Only when considering the specific physical
and technical properties of the lead fraction time series is a
confident application possible.

We briefly showed that lead lifetime and width calculated
from LFaccu. div fulfill the expected scaling behavior. Our ex-
ponential fit with an exponent of 0.39 d−1 to the lead lifetime
(2 to > 10 d) is similar to Hutter et al. (2019, 0.34 d−1 for
lifetimes > 3 d), who analyzed the RADARSAT Geophys-
ical Processor System (RGPS) dataset. They demonstrated
that over 99 % of the LKFs have lifetimes of less than 12 d,
which further corroborates our findings that most leads are
short-lived. Thus, the error due to our choice of a maximum
of 10 accumulation time instances is diminishing. For the
lead width scaling, we determined a power-law exponent of
2.55 across a range of 50 to 1200 m by calculating a linear fit
in a log–log plot. This exponent is at the higher end of the 1.4
to 2.6 range reported in the literature, as detailed in Muchow
et al. (2021, their Table 3).

5.4 Potential applications of divergence-based lead
fractions

Derived from SAR data and focusing on the formation of
leads, the LFdiv and LFLKF are well suited to estimate the
open-water fraction with high reliability, high spatial reso-
lution and coverage, and moderate temporal coverage. Their
ability to identify open water makes the products particularly
valuable for applications that deal with all processes happen-
ing in leads at the ocean–air interface. Accumulating them
to derive LFaccu. div opens up an even wider range of appli-
cations that also include leads covered with thin ice. For ex-
ample, divergence-based lead fractions can be used to study
the role of leads in snow loss (Clemens-Sewall et al., 2023)
and the effect of leads on winter cloud microphysical prop-
erties (Saavedra Garfias et al., 2023) or to estimate new ice
formation with associated brine release.

The direct and easy way to calculate lead width from
LF10× accu. div and its ability to resolve rather small leads
make LF10× accu. div a valuable source of information for
the analysis of heat transport through leads. This is because
lead width plays an important role in heat exchange with
more efficient heat transfer in rather small leads compared to
larger leads (e.g., Andreas and Cash, 1999; Marcq and Weiss,
2012).

The divergence-based lead products can also serve as high-
resolution observational reference data for modeling studies
that focus on leads and their contribution to the sea ice mass
balance (e.g., Ólason et al., 2021; Boutin et al., 2023). Us-
ing lead fractions based on divergence could establish a still
missing direct link between changes in drift speeds, defor-
mation rates, and new ice production.

6 Conclusions

Only a small fraction of the Arctic perennial sea ice zone
is covered by leads, thin ice, or open water that was created
by divergent ice motion. However, those leads are hotspots
for many atmospheric, ecological, and oceanic processes in
the polar climate system. Precise retrieval techniques are re-
quired to observe the small fraction of leads in the sea ice.
The aim of this study was to evaluate SAR-retrieved diver-
gence for estimating lead fractions. Divergence is the driving
mechanism of lead formation, and we calculated it from se-
quential SAR images obtained from the Sentinel-1 mission.

We derived two lead products from the divergence. The
first product, LFdiv, is based on divergence only and identi-
fies leads that formed on the last time instance. We accumu-
lated LFdiv for up to 10 time instances after advecting them to
also detect old leads that formed in previous time instances.
The second product, LKF-derived lead fractions (LFLKF), is
based on LKFs that were identified in the total deformation
data using an algorithm by Hutter et al. (2019). This pro-
cedure efficiently removes noise and accurately displays the
location of newly formed leads. Evaluating LFdiv and LFLKF
against six other existing lead products, we came to the fol-
lowing conclusions.

1. Lead fractions based on SAR-derived divergence are
valuable additions to the existing lead products as they
accurately capture where and when leads form. Inde-
pendent of cloud cover but limited to satellite coverage
south of 87°N, they identify open water at high spatial
resolution (700 m) and coverage (> 200× 200 km), as
well as moderate temporal resolution (1 d).

2. When accumulated over up to 10 time instances,
LFaccu. div resolves when individual leads formed, were
dormant, closed, or reopened. Combined with a thermo-
dynamic growth model, this allows reconstructing the
lead ice thickness at any time. This makes LFaccu. div a
valuable tool for estimating the dynamic contribution to
the sea ice mass balance.

3. LFdiv and LFaccu. div have plausible mean magnitudes
and temporal variability for the open-water fraction and
lead fractions including thin ice, respectively. The abil-
ity to resolve also small leads with widths as small as
250 m comes at the expense of a higher noise level. In
LFLKF, noise is efficiently removed, but the area actu-
ally covered by leads is reduced, too.

4. LFdiv and LFLKF reproduce the temporal variability ex-
pected from the large-scale wind forcing, the season,
and the consolidation state of the ice pack along the
transpolar drift. Lead activity is high in the fall and
spring, and the temporal variability seems to be consis-
tent on scales of 50–150 km around the MOSAiC tra-
jectory, with pronounced differences at smaller scales
(10 km).
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5. There are large differences in the lead fractions derived
from different products. Any application of them must
be undertaken with care and knowledge of the under-
lying retrieval methods. In addition, other algorithms
could be improved based on the comparison with our
results.
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