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Abstract. An accurate representation of the annual evolu-
tion of surface albedo of the Arctic Ocean, especially dur-
ing the melting period, is crucial to obtain reliable climate
model predictions in the Arctic. Therefore, the output of the
surface albedo scheme of a coupled regional climate model
(HIRHAM–NAOSIM) was evaluated against airborne and
ground-based measurements. The observations were con-
ducted during five aircraft campaigns in the European Arc-
tic at different times of the year between 2017 and 2022;
one of them was part of the Multidisciplinary drifting Ob-
servatory for the Study of Arctic Climate (MOSAiC) expedi-
tion in 2020. We applied two approaches for the evaluation:
(a) relying on measured input parameters of surface type
fraction and surface skin temperature (offline) and (b) using
HIRHAM–NAOSIM simulations independently of observa-
tional data (online). From the offline method we found a sea-
sonally dependent bias between measured and modeled sur-
face albedo. In spring, the cloud effect on surface broadband
albedo was overestimated by the surface albedo parametriza-
tion (mean albedo bias of 0.06), while the surface albedo
scheme for cloudless cases reproduced the measured surface
albedo distributions for all seasons. The online evaluation re-
vealed an overestimation of the modeled surface albedo re-
sulting from an overestimation of the modeled cloud cover.
Furthermore, it was shown that the surface type parametriza-
tion contributes significantly to the bias in albedo, especially
in summer (after the drainage of melt ponds) and autumn (on-
set of refreezing). The lack of an adequate model represen-

tation of the surface scattering layer, which usually forms on
bare ice in summer, contributed to the underestimation of sur-
face albedo during that period. The difference between mod-
eled and measured net irradiances for selected flights during
the five airborne campaigns was derived to estimate the im-
pact of the model bias for the solar radiative energy budget
at the surface. We revealed a negative bias between modeled
and measured net irradiances (median: −6.4 W m−2) for op-
tically thin clouds, while the median value of only 0.1 W m−2

was determined for optically thicker clouds.

1 Introduction

The decline in sea ice and snow cover of the Arctic Ocean
due to a warming climate leads to a decrease in the sur-
face reflection (albedo) and therefore causes an increase in
absorption of solar radiation incident at the ocean surface,
which enhances surface temperature and sea ice cover de-
cline even further. This positive surface albedo feedback is
one of the major drivers of Arctic amplification (Screen and
Simmonds, 2012; Pithan and Mauritsen, 2014; Goosse et al.,
2018), which comprises a warming of the Arctic near-surface
air temperature that is higher than globally averaged (Serreze
et al., 2009). Although the surface albedo feedback is gener-
ally understood, its impact on Arctic amplification is hard to
quantify (Qu and Hall, 2014; Block et al., 2020; Taylor et al.,
2022). This feedback has direct implications in the sunlit sea-
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son, whereas it contributes indirectly to Arctic amplification
in autumn and winter (Dai, 2021; Wendisch et al., 2019). Fur-
thermore, as a consequence of thermodynamic forcing of and
changes in ice dynamics, a general shift from older, thicker
sea ice to younger, thinner ice is observed (Kwok, 2018; Li
et al., 2022), affecting the heat storage of the Arctic Ocean
mixed layer (Arndt and Nicolaus, 2014; Stroeve et al., 2014;
Perovich et al., 2020) and the winter energy balance.

The exchange of radiative energy fluxes at the
atmosphere–ocean interface in summer particularly de-
pends on the timing of the melt onset and the progress of
melting. This period is poorly projected in climate models
(Mortin et al., 2014). Also the consequences of the melting
onset influences evolution of surface albedo, which appears
to be crucial to obtain reliable estimates from climate
models (Liu et al., 2007; Wyser et al., 2008; Toyoda et al.,
2020). In models, various sea ice albedo parametrizations
with different complexity are applied (Pirazzini, 2009;
Thackeray et al., 2018). As the spatial scale of the surface
type variation is smaller than common grid sizes of climate
models, the surface albedo schemes commonly include a
parametrization of the fractions of different surface types
(melt ponds, bare ice, snow). The parametrization of the
albedo of the respective sea ice surface types is usually
based on a temperature-dependent function describing the
transition between dry and wet surface conditions. More
complex parametrizations account for snow aging as a
function of time since the last snowfall (Wyser et al., 2008).
Liu et al. (2007) have shown that other surface albedo
parametrizations using additional parameters, such as snow
depth and spectral band dependence, can yield more realistic
regional variations in ice distributions. Moreover, Pedersen
and Winther (2005) identified the driving meteorological
parameters (temperature, snow depth, days with temperature
above 0 °C) for modeling the snow albedo by applying
a multi-linear regression based on field measurements.
Furthermore, observations in combination with radiative
transfer simulations have proven a relevant effect of spectral
cloud absorption on the snow broadband albedo (e.g.,
Grenfell et al., 1994; Gardner and Sharp, 2010; Pirazzini
et al., 2015; Jäkel et al., 2019). This dependence is included
in only few surface albedo schemes (Jäkel et al., 2019;
Boucher et al., 2020; van Dalum et al., 2020).

Evaluations and adjustments of surface albedo
parametrizations are usually based on field observa-
tions (Curry et al., 2001; Køltzow, 2007; Liu et al., 2007;
Jäkel et al., 2019; Toyoda et al., 2020; Light et al., 2022),
preferably covering the annual course of surface properties,
as provided, for example, by the Surface Heat Budget of
the Arctic Ocean (SHEBA; Persson et al., 2002) project or
the Multidisciplinary drifting Observatory for the Study of
Arctic Climate (MOSAiC) expedition (Light et al., 2022;
Nicolaus et al., 2022). However, evaluating models based
on local-scale observations is difficult because single-point
measurements may not be representative of the large grids

used in climate models, especially during the melt season.
On the other hand, validations against satellite observations
(e.g., Qu and Hall, 2014; Thackeray et al., 2018) are
restricted to cloudless situations, which limits the temporal
resolution of satellite-based surface albedo measurements.
As a compromise, airborne observations provide data
covering different atmospheric conditions on a larger spatial
scale, partly resolving the sub-grid variability in a model
grid cell. However, these observations are limited in time to
a few weeks per year.

Nevertheless, we have compiled observational data of sea
ice albedo from five airborne campaigns, covering spring
(March, April), summer (May, June), and autumn (Septem-
ber) conditions. We use this data set to evaluate the sur-
face albedo scheme of the coupled regional climate model
HIRHAM–NAOSIM (Dorn et al., 2019). This scheme was
recently updated with a cloud-cover-dependent snow albedo
parametrization and an adjustment of temperature thresholds
based on airborne surface broadband albedo measurements
performed in the north of Svalbard in early summer 2017
(Jäkel et al., 2019). A comparison of the modeled surface
albedo between the revised model and the earlier version
was presented by Foth et al. (2023). They evaluated both
model versions using measurements from two flux stations
that were deployed during MOSAiC. They found that the
revised snow surface albedo parametrization led to a more
realistic simulation of surface albedo variability during the
snowmelt period in late May and June.

In this study, the accuracy of the revised surface albedo
scheme for different seasons and regions is quantified. First,
the parametrizations were run offline by using input param-
eters from our airborne measurements (offline evaluation).
Second, the HIRHAM–NAOSIM model was operated in-
dependently (online evaluation) for different time periods,
and the output was directly compared with observations.
For this purpose, Sect. 2 presents the measured data set and
parametrization scheme of HIRHAM–NAOSIM along with
the model–measurement comparison methodology. The spa-
tiotemporal variability in the measured surface types and sur-
face albedo is discussed in Sect. 3. The evaluation results for
different applications are presented, and seasonal differences
in the accuracy of the model results are examined. Section 4
quantifies the impact of a possible bias in surface albedo on
the solar radiative energy budget in terms of differences in
net irradiance.

2 Materials and methods

2.1 Study area and campaigns

Five flight campaigns were conducted within the collabora-
tive research project “Arctic Amplification: Climate Relevant
Atmospheric and Surface Processes, and Feedback Mech-
anisms” (AC)3 between 2017 and 2022 (Wendisch et al.,
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2023). The airborne activities were carried out with the re-
search aircraft Polar 5 (P5) and Polar 6 (P6) (Wesche et al.,
2016) and focused on observations of Arctic clouds and of
the Arctic atmospheric boundary layer as well as surface
properties in the European Arctic in different seasons be-
tween 2017 and 2022. Table 1 gives an overview of the
campaigns considered in this study. Apart from the “Polar
Airborne Measurements and Arctic Regional Climate Model
Simulation Project” (PAMARCMiP) campaign, which was
based at the Danish Villum research station (Station Nord),
Greenland (81°36′ N, 16°40′W), all campaigns were based
in Longyearbyen (78°13′ N, 15°38′ E), Svalbard. The “Arc-
tic CLoud Observations Using airborne measurements dur-
ing polar Day” (ACLOUD) took place in early summer 2017
and used both P5 and P6. Spring Arctic conditions were ob-
served with P5 only during PAMARCMiP and during the
“Airborne measurements of radiative and turbulent FLUXes
of energy and momentum in the Arctic boundary layer”
(AFLUX) campaign. Within the most recent spring obser-
vations in 2022, HALO-(AC)3, both aircraft, P5 and P6,
were used with a similar instrumental setup to that during
ACLOUD. The set of airborne observations during polar day
was completed by the “MOSAiC Airborne observations in
the Central Arctic” (MOSAiC-ACA) campaign, which took
place in autumn 2020, as an airborne component of the MO-
SAiC expedition.

For this study, only low-level (flight altitude below 300 m)
flight sections were considered, which were performed above
sea ice and open water without clouds between the air-
craft and surface. This selection was made to minimize
atmospheric masking effects in the albedo observations
(Wendisch et al., 2004). Further, the data were filtered with
respect to aircraft pitch and roll angles within a range of
±4° to reduce the uncertainties of radiation measurements
due to horizontal misalignment (Wendisch et al., 2001). Fig-
ure 1 shows the coverage of all selected flight sections for
the five aircraft campaigns, together with the sea ice edge as
defined from the satellite observation of the sea ice concen-
tration (SIC) derived from the Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) instrument using the method
from Spreen et al. (2008). Here, the ice edge is based on
80 % SIC. The strong variations in the sea ice edge position
are linked to not only the period of observations but also in-
terannual changes. While the northernmost retreat of sea ice
was observed during MOSAiC-ACA in autumn, the southern
sea ice edge in the measurement area during ACLOUD in
early summer and during the two spring campaigns HALO-
(AC)3 and AFLUX does not differ so much. A relatively
far northern location of the ice edge for spring conditions
was observed during PAMARCMiP in 2018. However, due
to the more northern starting point of the aircraft at Station
Nord, Greenland, mostly surfaces with more than 80 % of
SIC could be overflown. For MOSAiC-ACA, a significant
fraction of measurements were carried out in the marginal sea
ice zone (MIZ), while for the other campaigns mainly flight

sections with SIC larger than 80 % remained after application
of the selection criteria. The total numbers of data points and
flight days are listed in Table 1. Most flights over sea ice were
performed during ACLOUD. However, the largest number of
selected measurements was determined for MOSAiC-ACA,
where the instrumental setup of the P6 differed from the con-
figuration of the P5, resulting in different time resolutions of
the data products.

2.2 Instrumentation and products

2.2.1 Radiation measurements

Broadband irradiance measurements (200–3600 nm wave-
length, referred to as solar in the following text) were per-
formed by a pair of pyranometers (CMP22 by Kipp&Zonen,
Delft, the Netherlands) installed on the top and bottom of the
aircraft fuselage on both Alfred Wegener Institute (AWI) air-
craft. The manufacturer gives an irradiance measurement un-
certainty of about 2 %. This value increases for a higher solar
zenith angle (SZA) due to the increase in the cosine response
error (maximum±3 % deviation from ideal at 80° SZA). The
irradiance data were corrected for aircraft pitch and roll atti-
tude angles following the method described by Bannehr and
Schwiesow (1993). A deconvolution technique was applied
to the pyranometer measurements to enhance the temporal
resolution (20 Hz) of the slow-response sensors, as proposed
by Ehrlich and Wendisch (2015). The areal surface broad-
band albedo along the selected flight sections was derived
from the ratio of upward and downward solar irradiances.

The spectral surface albedo was derived from the spectral
modular airborne radiation measurement system (SMART)
installed on board the P5 during all campaigns apart from
AFLUX (Wendisch et al., 2001). The optical inlets mounted
on the top and bottom of the aircraft fuselage were actively
stabilized to correct for aircraft movement. A set of four
spectrometers (two for each hemisphere) covered a spectral
range from 300 to 2200 nm wavelength with a resolution of
3 nm (below 900 nm wavelength) and 9–15 nm (from 900 nm
wavelength) (Bierwirth et al., 2009; Jäkel et al., 2013). The
measurement uncertainty in the downward and upward spec-
tral irradiances was estimated to be 5.7 % and 4.0 %, respec-
tively (Jäkel et al., 2021).

During the MOSAiC expedition, autonomous radiometers
were installed on the sea ice. Each radiation station consisted
of three RAMSES-ACC-VIS radiometers manufactured by
TriOS 105 GmbH (Rastede, Germany), measuring upward
and downward spectral irradiances from 320 to 950 nm with
a spectral resolution of 3.3 nm (Nicolaus et al., 2010). The
third sensor is used to derive the transmitted spectral ir-
radiance through the sea ice. Nicolaus et al. (2010) esti-
mated an uncertainty of less than 5 % for all wavelengths
and zenith angles. Potential sensor tilt effects were moni-
tored by comparing radiative transfer simulations, assuming
cloudless conditions, with the diurnal pattern of the mea-
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Table 1. List of campaigns and time frame of observations. Number of used data points is given in total for Polar 5 (P5) and Polar 6 (P6)
flights. SZA stands for solar zenith angle.

Campaign Season SZA Number of Number of Campaign reference
(°) data points research flights

ACLOUD May, June 2017 56–69 4061 21 (P5+P6) Wendisch et al. (2019); Ehrlich et al. (2019)
PAMARCMiP March, April 2018 75–84 5545 7 (P5) Jäkel et al. (2021)
AFLUX March, April 2019 73–82 527 6 (P5) Mech et al. (2022)
MOSAiC-ACA September 2020 71–78 11079 5 (P5+P6) Mech et al. (2022)
HALO-(AC)3 March, April 2022 73–83 802 4 (P5) Wendisch et al. (2021)

Figure 1. Flight sections of surface albedo measurements for all campaigns listed in Table 1. The sea ice edge (based on 80 % SIC) repre-
sentative of each campaign is plotted with the same color code as the flight track but with dashed lines.

sured downward spectral irradiance. Under overcast condi-
tions, misalignment effects were considered to be of minor
importance. Further, all data measured for a SZA higher than
85° were excluded.

Since the RAMSES-ACC-VIS radiometers do not cover
the entire solar spectral range, an empirical correction func-
tion was applied to convert the measured surface spectral
albedo to the surface broadband albedo covering the entire
solar spectral range. This correction was derived from collo-
cated broadband albedo measurements taken by pyranome-
ters and measurements of the upward and downward spec-
tral irradiances (F↑λ , F↓λ ) from the SMART instrument dur-
ing ACLOUD. The SMART irradiances were spectrally inte-
grated between λ1 = 320 nm and λ2 = 950 nm, correspond-
ing to the range of the RAMSES-ACC-VIS radiometers.

Then the derived integrated surface albedo was separately
correlated with the broadband pyranometer data for cloud-
less and cloudy conditions, yielding two correction functions
that account for the missing spectral range:

αbb = 0.779 ·

∫ λ2
λ1
F
↑

λ dλ∫ λ2
λ1
F
↓

λ dλ
+ 0.074 (cloudless) and (1)

αbb = 0.872 ·

∫ λ2
λ1
F
↑

λ dλ∫ λ2
λ1
F
↓

λ dλ
+ 0.034 (cloudy). (2)

A nadir-pointing infrared sensor KT19.85 (Ehrlich et al.,
2019) with a field of view (FOV) of 2° was installed on both
aircraft. The sensor measures the brightness temperature of
the surface along the flight track. The instrumental sensitiv-
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ity covers parts of the atmospheric window between 9.6 and
11.5 µm wavelengths. The surface skin temperature can be
related to the brightness temperature of the KT19.85 with
uncertainties below ±0.2 K (Stapf et al., 2019).

2.2.2 Camera observations

The classification of surface types is based on images taken
by different camera systems. Images were partitioned by
manually selected thresholds of the three spectral channels
in red, green, and blue (RGB) (Perovich et al., 2002; Jäkel
et al., 2019). Depending on the illumination conditions, these
thresholds were set using color intensity histograms of train-
ing samples.

Digital cameras (Canon EOS 1D Mark III and Nikon D5)
with fisheye lenses were used by default during most of the
flight experiments on both aircraft. Due to the 180° FOV,
such cameras that can be directly related to upward irradi-
ance measurements cover the entire lower hemisphere (Jäkel
et al., 2019). The angular resolution is less than 0.1°. Geo-
metric, spectral, and radiometric calibration was applied to
characterize the cameras (Ehrlich et al., 2012; Carlsen et al.,
2017; Jäkel et al., 2019). For flight tracks which were not ob-
served by a fisheye camera due to instrumental failures, im-
ages were extracted from video camera data (miniature cam-
era AXIS P1214-E) with about 1 Hz resolution.

A special version of the scientific Modular Aerial Camera
System (MACS) was installed on P6 during MOSAiC-ACA.
MACS is equipped with various matrix array cameras that
look in the nadir direction and provide images in the visible
and near-infrared spectral range. The maximum continuous
image acquisition rate is four frames per second, enabling an
overlap of images to produce orthomosaics along the flight
path. A summary of the relevant airborne instrumentation is
given in Table 2.

2.2.3 Satellite observations

Satellite-based surface albedo data were derived from
the Land Colour Instrument (OLCI) on board Sentinel-3
(Kokhanovsky et al., 2019). OLCI covers the spectral range
between 400 and 1020 nm distributed over 21 spectral bands.
The retrieved surface broadband albedo with a spatial resolu-
tion of 6.25 km is a product of the melt pond detector (MPD)
algorithm, which has been established for the Medium Res-
olution Imaging Spectrometer (MERIS) data on board En-
visat (Istomina et al., 2015a) and now has been adapted to
OLCI (Istomina et al., 2023). Cloud screening is based on
a synergy of OLCI and the Sea and Land Surface Tempera-
ture Radiometer (SLSTR). A revised spectral-to-broadband
conversion (STBC) approach was developed by Pohl et al.
(2020) and is applied here. It calculates the surface broad-
band albedo αbb over the wavelength range of 300–3000 nm
from the spectral surface albedo retrieved at wavelengths

λj = 400, 500, 600, 700, 800, and 900 nm:

αbb =

6∑
j=1

kj ·αλj j = 1,2,3,4,5,6. (3)

The coefficients kj were derived empirically from spectral
and surface broadband albedo measurements over landfast
ice, being 0.9337, −2.0856, 2.9125, −1.6231, 0.675, and
0.0892.

2.3 Surface albedo parametrization in
HIRHAM–NAOSIM

The surface albedo scheme of the coupled regional climate
model HIRHAM–NAOSIM was recently revised based on
surface broadband albedo measurements performed during
the ACLOUD campaign (Jäkel et al., 2019). The original
parametrization of the snow albedo, as described in Dorn
et al. (2009), was adapted with respect to illumination de-
pendence and snow property changes in terms of threshold
temperatures describing the transition between dry and melt-
ing snow.

In general, the surface broadband albedo in an inhomoge-
neous model grid cell is composed of the sum of the surface
subtype albedo values weighted by the areal fractions (c) of
the respective surface subtypes of open water (subscript ow)
and sea ice (subscript i), where sea ice is further divided into
snow-covered ice (subscript s), bare ice (subscript bi), and
melt ponds (subscript mp):

α = cow ·αow+ ci ·αi

αi = cs ·αs+ cmp ·αmp+ cbi ·αbi .
(4)

Note that the surface type “white ice”, which is a highly re-
flective scattering layer on top of melting bare ice (Macfar-
lane et al., 2023), is not explicitly considered in HIRHAM–
NAOSIM. Due to its higher albedo compared to bare ice,
white ice is added to the class of snow-covered ice in this
work and classified accordingly based on camera observa-
tions during the measurement flights. The open-water frac-
tion is not parameterized within this surface albedo scheme
and is calculated with a separate prognostic equation. The
surface albedo of open water is set to a fixed value of 0.1,
while the individual subtype albedo of the ice types is as-
sumed to be variable within a given range of the surface
skin temperatures (Tsurf) in units of degrees Celsius (Kølt-
zow, 2007; Dorn et al., 2009; Jäkel et al., 2019). A tem-
perature range with temperature thresholds Td was defined
within which the surface albedo varies linearly from max-
imum (dry ice or snow) to minimum values (melting ice
or melting snow). The parameterized surface albedo of the
snow-covered ice, for example, is then determined by

αs = αmin+ (αmax−αmin) · f (Tsurf) , (5)
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Table 2. Overview of the instrumentation and products of Polar 5 and Polar 6 as used in this study.

Instrument A
C

L
O

U
D

PA
M

R
A

C
M

iP

A
FL

U
X

M
O

SA
iC

-A
C

A

H
A

L
O

-(
A
C)

3

Measured quantity and measurement frequency Product

CMP-22 pyranometer P5, P6 P5, P6 P5 P5, P6 P5, P6 Upward, downward irradiance (20 Hz) Surface albedo
SMART P5 P5 P5 P5 Upward, downward irradiance (20 Hz) Surface albedo
KT19.85 P5, P6 P5 P5, P6 P5, P6 P5, P6 Upward brightness temperature (20 Hz) Skin temperature
Fisheye digital cameras P5, P6 P5 P5 P5 P5, P6 RGB image (4–6 s) Surface type
MACS P6 RGB orthomosaics (4 Hz) Surface type

with f (Tsurf) representing the surface-skin-temperature-
dependent function:

f (Tsurf)=min(1,max(0,Tsurf/Td)) . (6)

The same holds for the two other surface types bare ice and
melt ponds. Table 3 summarizes the surface albedo ranges of
the individual subtypes and threshold temperatures.

The areal fractions of the sea ice subtypes used in Eq. (4)
are estimated by the snow thickness (hs). For snow-covered
sea ice, the fraction is calculated as

cs = cs,max · tanh
(
hs

h0.75

)
, (7)

where cs,max is the maximum snow cover fraction of 1.00,
and h0.75 = 0.03 m giving, the snow thickness at which ap-
proximately 75 % of the sea ice is covered by snow (Dorn
et al., 2009). The melt pond fraction is subject to the restric-
tion that it is not allowed to exceed the fraction of the sea ice
surface not covered with snow (1−cs). It is parameterized by

cmp =min(1− cs,cmp,max · (1− f (Tsurf))), (8)

with cmp,max being the maximum melt pond fraction of 0.22
as derived from observational data during SHEBA (Køltzow,
2007; Perovich et al., 2002), which agrees with observations
made during MOSAiC (Webster et al., 2022). Locally, how-
ever, higher melt pond percentages may occur, e.g., on level
first-year ice (Istomina et al., 2015b). Finally, the bare-ice
fraction is calculated as the residual (cbi = 1−cs−cmp). Note
that if the actual ice thickness is lower than 0.25 m, then a lin-
ear transition between water and bare-ice albedo is applied to
account for the transparent behavior of thin ice (Dorn et al.,
2009).

The model output was given with spatial resolution of
about 27 km distributed over 200× 218 grid points on a
circum-Arctic domain. For the prognostic variables of the at-
mospherical model component HIRHAM, a 1 % nudging to
reanalysis data of the ERA5 data set (Hersbach et al., 2020)
was applied. The HIRHAM–NAOSIM model was run for
2018, covering the time frame of the PAMARCMiP cam-
paign (temporal resolution of 1 h) and for the entire MO-
SAiC period (temporal resolution of 3 h), including the time

frame of the ground-based measurements from spring to au-
tumn 2020 and the period of the aircraft observations during
MOSAiC-ACA.

2.4 Methodology for comparison

The outline of the comparison of measured and modeled sur-
face albedo is illustrated in Fig. 2. In the first step the albedo
scheme was run offline (i.e., without HIRHAM–NAOSIM),
decoupling the two parametrizations of the subtype surface
albedo and subtype surface fraction. Because the subtype
surface fraction is parameterized as a function of the snow
depth, which was not a measured parameter, we used only
the parametrization of the subtype surface albedo along with
measured values of the prognostic variable Tsurf and the mea-
sured surface type fractions. The offline evaluation was ap-
plied to perform a seasonal comparison between observed
and parameterized surface albedo considering data of all air-
craft campaigns. In the second step, for an online evaluation,
the HIRHAM–NAOSIM output was compared to airborne
and ground-based observations. The satellite-based surface
albedo derived from Sentinel-3 OLCI was used to charac-
terize the spatial variation on an intermediate grid size scale
between local ground-based or aircraft observations and the
model output. To match the satellite and model data, all data
points of the satellite product that fall into one single grid
point of the model were area-averaged accordingly. However,
since the satellite product can only be derived for cloudless
conditions, the comparison is limited to a few cases.

3 Results

3.1 Spatiotemporal variability in surface types and
surface albedo

An overview of the proportions of classified subtypes along
the flight tracks of the five campaigns is shown in Fig. 3
as a stacked area plot. The temporal evolution of the sur-
face broadband albedo and surface skin temperature is given
in the corresponding lower panels. Flight sections in spring
(Fig. 3a–f) were mostly carried out over snow or white ice
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Table 3. Minimum and maximum values of the surface albedo for each ice type (snow-covered ice, bare ice, melt ponds) used in the albedo
scheme of HIRHAM–NAOSIM.

Ice subtype Minimum albedo Maximum albedo Threshold temperature
αmin αmax Td (°C)

Snow-covered ice (cloudy) 0.80 0.88 −3.0
Snow-covered ice (cloudless) 0.66 0.79 −2.5
Bare ice 0.51 0.57 −0.01
Melt ponds 0.16 0.36 −2.0

Figure 2. Schematics showing the approach for the model-to-measurement comparison. HN stands for HIRHAM–NAOSIM; CC indicates
the dependence of the subtype albedo on the cloud coverage.

(ice with a highly scattering layer on top) with surface skin
temperatures below −15 °C. As expected, the variability in
the surface albedo depends on the variability in the surface
types within the FOV of the downward-looking pyranometer.
However, flight sections over snow or white ice also revealed
a spatial albedo variability in the range of up to ±0.1 as an
effect of surface roughness and variations in snow grain size.
In particular for high SZAs, surface roughness tends to re-
duce the surface albedo compared to a flat surface depending
on the feature orientation with respect to the sun (Larue et al.,
2020). Note that longer distances were overflown during PA-
MARCMiP compared to the other two spring campaigns,
which explains the strong variation in Tsurf (Fig. 3b). The
occurrence of open water, caused by either sea ice dynamics
or flight sections close to the sea ice edge, leads to a sig-
nificant increase in surface albedo variability and a decrease
in the surface albedo itself down to 0.2. A small percentage
of melt ponds was found only in areas with a high fraction
of open water (flight on 4 April 2019 during AFLUX) when
Tsurf is close to 0 °C. The onset of melt pond development on
sea ice usually starts in summer, as observed at the end of the
ACLOUD campaign (26 June) with melt pond fractions of up
to 8 % (Fig. 3g). In general, the surface albedo decreases over
time as a consequence of an increase in surface grain size and
melt pond fraction, which are both related to the increase in
skin temperature during ACLOUD (Fig. 3h). In September
the overflown surface showed the most variable conditions
(Fig. 3i, j). Surface sections during the first flight were dom-
inated by open water, with surface skin temperatures being
in a similar range to that for sea ice (most southern flight
track in Fig. 1). Camera images showed that most of the melt
ponds were already refrozen and therefore classified as bare
ice.

Typically, an increase in sea ice fraction is correlated with
an increase in the surface albedo. This relation is influenced
by the spectral and directional distribution of the incident
solar radiation. Compared to cloudless conditions, clouds
may cause an increase in surface broadband albedo due to
a spectral shift in the incident radiation. The shift is caused
by absorption of solar radiation in the near-infrared spectral
range. Figure 3k shows the relationship of the sea ice frac-
tion (white ice plus bare ice) and the surface albedo for all
campaigns separated into cloudless and cloudy cases. The
surface albedo was averaged within each bin of sea ice frac-
tion (bin size of 10 %). In general, we observed a higher
albedo for the same amount of sea ice under cloudy condi-
tions than under cloudless conditions. This effect was more
pronounced when a high proportion of sea ice was present.
For sea ice fractions around 100 % mean surface albedo, val-
ues of 0.76± 0.08 (cloudless cases) and 0.81± 0.08 (cloudy
cases) were calculated. The variability in the surface albedo
at 100 % sea ice cover was further examined with respect to
a potential dependence on the SZA. For cloudless conditions
the correlation coefficient of R = 0.37 indicates a low cor-
relation between both quantities. In a cloudy atmosphere the
incoming radiation is dominated by the diffuse component,
which is independent of the SZA as confirmed by a R value
of −0.02. Since the majority of measurements were carried
out for surface skin temperatures below−15 °C, melting pro-
cesses can be ruled out as the cause of the surface albedo
variability. Only during the summer campaign (ACLOUD)
was a temperature effect on the magnitude of snow albedo
observed (Jäkel et al., 2019).
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Figure 3. (a–j) Temporal changes in surface types, surface albedo (blue lines, left y axis), and surface skin temperature (gray lines, right y
axis) for all five flight campaigns. The proportions of surface types are presented as a stacked area plot to identify the predominant subtypes.
Vertical green lines separate the individual flight days. Dates given in the panels are explicitly mentioned in the text. (k) Averaged surface
albedo as a function of sea ice fraction (bin size of 10 %), separately for cloudless and cloudy conditions. The standard deviation of the
averages is represented by thin vertical bars.

3.2 Application of surface albedo scheme (offline
evaluation)

The surface albedo scheme of the coupled HIRHAM–
NAOSIM model was applied to the measurement data of the
different aircraft campaigns to evaluate the performance of
the surface albedo parametrization for spring, summer, and
autumn conditions. Taking the measured subtype fractions
into account, the surface albedo α was parameterized follow-
ing Eq. (4) using surface-type-specific albedo values defined
by Eq. (5). The results separated into cloudy and cloudless
cases for spring, summer, and autumn are presented in Fig. 4.
The plots show the distributions of the measured and pa-
rameterized surface albedo, together with the median value.

The parametrization was initially optimized based on the
ACLOUD summer campaign data set, leading to reasonable
agreement between measurements and parametrization with
a root mean square error (RMSE) of 0.05 (Jäkel et al., 2019).

For cloudless conditions, the median values of the mea-
sured surface albedo are well represented by the parametriza-
tion. A different picture is revealed for cases where clouds
are present. While in summer the modeled median surface
albedo deviates from the measured value by only 0.01, we
observe an overestimation of the modeled median surface
albedo of 0.06 in spring. The increase in the surface albedo
caused by clouds in summer is much less pronounced in
the spring measurements. As this cloud effect depends on
the cloud absorption of the downward irradiance in the NIR
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Figure 4. Distributions of measured and modeled surface albedo
separated into cloudy (red distribution) and cloudless (blue distri-
bution) cases for the seasons spring, summer, and autumn. The me-
dian value (also indicated by the white line) is given together with
the first and third quartiles (dashed black lines).

spectral range, it is assumed that the generally optically thin-
ner clouds in spring do not alter the spectral surface albedo
to the same extent as the optically thicker clouds in sum-
mer. Therefore, we argue that the cloud parameter in the sur-
face albedo scheme that was defined for summer conditions
leads to the overestimation of modeled surface albedo in
spring. The distributions shown for autumn (MOSAiC-ACA)
are primarily affected by the surface sampled. While mea-
surements under cloudless conditions mostly coincided with
flight sections over areas with a high fraction of open water,
most of the cloudy cases were sampled over compact ice (see
Fig. 3i), which justifies the large difference between the two
median values of the cloudless and cloudy distributions. The
modes representing the measurements over sea ice indicate a
higher parameterized surface albedo than that derived from
the measurements. That is possibly caused by the presence
of refrozen melt ponds, which were classified as bare ice.
Compared to bare ice of considerable thickness that occurs
after snowmelt, refrozen melt ponds have little ice thickness
on top, resulting in a dark appearance and a lower surface
albedo. The model parameters of bare ice may not properly
represent such thin ice layers, leading to an overestimation of
parameterized surface albedo. In general, however, the distri-
butions were reproduced by the parametrizations for all sea-
sons using the measured sea ice fractions.

3.3 Application of the HIRHAM–NAOSIM model
(online evaluation)

3.3.1 Spring case – PAMARCMiP

For spring conditions, HIRHAM–NAOSIM was applied for
the time frame of the PAMARCMiP campaign. As an exam-

ple, the spatial distribution of the modeled surface albedo for
the PAMARCMiP area is shown in Fig. 5a. The position of
the ice edge can be clearly identified by the sharp gradient
of the surface albedo in the lower right corner of this panel.
Aircraft-based photos of the surface showed a few refrozen
leads along the flight path, but most of the flight sections
were carried out over dense drift ice, far away from the MIZ.
Despite most of the ocean being completely covered by sea
ice, greater variability is observed than in the model results,
as shown by the color-coded dots depicting aircraft measure-
ments for each flight day. Small-scale variations arising from
surface structure of deformed sea ice, as observed by an air-
borne laser scanner (Jäkel et al., 2021), cannot be resolved by
the model. In contrast, the satellite-based product accounts
for variations due to surface roughness (Fig. 5b). A more ho-
mogeneous surface albedo was derived for the area north of
82° N latitude. Since surface observations by OLCI are re-
stricted to cloudless scenes, the MPD satellite surface albedo
product does not cover the entire area. Therefore, the com-
parison between satellite-based and modeled surface albedo
is limited to the area of data points that is shown in Fig. 5b.

Figure 5c illustrates the distributions of the different sur-
face albedo products. On the left side, the areal comparison
of the MPD and HIRHAM–NAOSIM product is shown. As
shown in Fig. 5b, we observe greater variability in the higher-
resolution satellite data. However, the median values are sim-
ilar (0.85, 0.86). The smaller second modeled mode (0.77)
can be attributed to grid points with a low modeled cloud
coverage; hence the snow-covered ice parameter represent-
ing cloudless conditions was applied. As the modeled sur-
face albedo depends on cloud cover, the representation of the
clouds in the model must be taken into account to evaluate
the modeled surface albedo. While the aircraft and satellite
observations showed mostly cloudless conditions, the model
calculated a cloud cover of about 100 % in most areas. Based
on these results, it can be assumed that the match between
satellite- and model-derived surface albedo medians results
from the compensation of two opposite model biases: the
overestimation of modeled cloud coverage, which caused a
positive bias in modeled surface albedo, was compensated
by a negative bias in modeled cloudless surface albedo. The
two distributions of the airborne and the spaceborne surface
albedo are shown on the right side of the panel in Fig. 5c.
For that, the aircraft measurements were area-averaged with
respect to the grid size of the satellite product. The deviation
of 0.1 in the median value indicates an overestimation of the
satellite product. We applied the spectral-to-broadband con-
version of the MPD algorithm (Eq. 3) to the spectral surface
albedo measurements of the SMART instrument to rule out
larger uncertainties in this conversion, as they might occur
under these low-sun conditions during PAMARCMiP. Using
the spectral surface albedo of SMART at the six wavelengths
together with the spectral weighting coefficients we calcu-
lated only a small bias in the broadband measurements with
a RMSE of 0.02 and similar mean values of 0.74. There-
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fore, the spectral-to-broadband conversion can be excluded
as a reason for the positive bias of the satellite-based surface
albedo.

The temporal variation in the modeled surface albedo is il-
lustrated in Fig. 5d. Each individual line represents the time
series of the area-averaged surface albedo for one of the
seven overflown areas. In addition, the mean measured sur-
face albedo (including standard deviation) on the correspond-
ing day is shown. Apart from the most southern region over-
flown on 3 April 2018, no significant change in the surface
albedo within the time frame of the campaign was simulated.
Short-term variations can be attributed to changes in mod-
eled cloud cover, while larger temporal variations are corre-
lated to the modeled sea ice coverage. The albedo time series
of the area overflown on 3 April 2018 shows a pronounced
albedo minimum in late March. This is related to a modeled
minimum sea ice cover of 86 % for the period shown, which
is probably due to ice dynamics. In general, the measured
surface albedo shows much greater spatial variability but
smaller averaged values than the model. This positive bias
of modeled surface albedo cannot be explained by a lower
sea ice coverage modeled with HIRHAM–NAOSIM. In fact,
the observed sea ice cover averages 99 %, while modeled sea
ice cover ranges from 94 % to 99 %. Rather, the biases in
the modeled cloud fraction may explain some of the discrep-
ancy between modeled and measured surface albedo. In par-
ticular, the first three flights were conducted under cloudless
conditions, which would lower the surface albedo from more
than 0.85 to 0.76 assuming 95 % sea ice coverage and a snow
albedo of 0.79 (Table 3). At least on the following measure-
ment days, the modeled surface albedo is within the standard
deviation of the measured surface albedo. However, the area-
averaged surface albedo deviates by up to 0.1.

3.3.2 Autumn case – MOSAiC-ACA

HIRHAM–NAOSIM was further applied for the period of
the MOSAiC campaign in 2020. The accompanying aircraft
observations in autumn during MOSAiC-ACA revealed 4 d
with measurements of the surface albedo, as depicted in
Fig. 6a. Other than during PAMARCMiP, the flights were
performed over a strongly heterogeneous surface in the MIZ.
Again, the modeled sea ice edge can be estimated from the
spatial distribution of surface albedo, as the transition to the
blue colored areas coincides with the sea ice edge zone. How-
ever, AMSR observations of the SIC show a more eastward
shift in the sea ice edge compared to the model, as illustrated
by the 15 % isoline of SIC in Fig. 6a. This could partly ex-
plain the difference between the modeled and measured sur-
face albedo. The modeled albedo map shows a negative bias
compared to the measurements along the flight path (over-
laying brighter points in Fig. 6a), especially for the flights
on 8 and 13 September. The corresponding time series of
the area-averaged modeled surface albedo for the four flight
regions are shown in Fig. 6b. Compared to the spring data

set, a greater spatiotemporal variation is observed which is
mainly driven by the variation in surface type distribution.
Since HIRHAM–NAOSIM mostly simulated a cloud cover-
age of 100 %, the variability in the surface albedo cannot be
attributed to the use of different parametrizations for cloudy
and cloudless conditions.

The measured area-averaged surface albedo shows the best
agreement for the region overflown on 2 September, although
the surface albedo along the northernmost section of this
flight path was partly overestimated by the model. During
the flight carried out on 7 September 2020, the area-averaged
surface albedo is slightly underestimated by the model but is
still within the range of standard deviation of the measure-
ments. This differs from the results of the two last flights,
which show a significant negative bias of the modeled sur-
face albedo. Both measurements and the model revealed
a similar cloud coverage. This suggests that especially the
parametrization of the surface types affects the representa-
tion of the modeled surface albedo.

Since the model assumes a sea ice edge closer to the areas
observed by the aircraft, the modeled fraction of open water
is significantly higher than the measurements show. To ex-
clude the open-water fractions, we only considered the three
sea ice subtypes and scaled them such that they sum up to
a fraction of one. This makes them more comparable to the
modeled sea ice fractions cmp, cs, and cbi (Eq. 6). We further
reduced the data sets, where cow exceeds 0.8. Table 4 sum-
marizes the area-averaged surface type fractions as derived
from the model and the aircraft observations. Melt ponds af-
fect neither the modeled nor measured fractions. The rela-
tionship between snow depth and cs (Eq. 7) leads to an un-
derrepresentation of snow-covered ice for all days because
of either insufficient modeled snow depth or the relationship
itself. Unfortunately, snow depth observations are not avail-
able to look into the cause of the differences. However, the
spread of the modeled fractions is significantly larger than
those derived from camera observations due to the more het-
erogeneous surface conditions at the modeled sea ice edge.

3.3.3 Polar-day time series – MOSAiC

During MOSAiC, the seasonal evolution of the surface
albedo was measured by autonomous radiometers. In this
study, data from one of the RAMSES stations (2020R12, fol-
lowing the notation of Tao et al., 2024) were used; 2020R12
was deployed on second-year ice at site L3 of the MOSAiC
distributed network (Nicolaus et al., 2022). This data set pro-
vides almost-continuous time series of irradiance measure-
ments between 24 April and 7 August 2020, which allow
the transition from dry to wet snow to be observed. We ap-
plied the two corrections according to Eqs. (1) and (2) to
the ground-based observation of the autonomous radiome-
ters. The time series of original and corrected measured sur-
face albedo (April to August) are shown in Fig. 7a. As the
radiometer data were not filtered with respect to the atmo-
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Figure 5. (a) Map of the surface albedo as modeled by HIRHAM–NAOSIM for 25 March 2018 (PAMARCMiP). Aircraft observations are
plotted as color-coded dots indicating the measured surface albedo for the individual flight days. The dashed white line indicates a SIC of
15 % derived from AMSR observations. (b) Surface albedo under cloudless conditions derived from the OLCI measurements by the MPD
retrieval for 25 March 2018 (same color code as in a). (c) Distributions of satellite, model, and aircraft albedo data separately for two
regions: the area covered by the satellite data, as shown in (b), and the region along the flight path only. (d) Time series of modeled mean
surface albedo for the PAMARCMiP period for the areas covered by the individual flights. The aircraft-measured mean surface albedo (single
squares) and standard deviation (vertical bars) are given together.

Table 4. Area-averaged surface type fractions of snow-covered ice (cs), bare ice (cbi), melt ponds (cmp), and open water (cow) derived from
the camera classification and modeled by HIRHAM–NAOSIM. The standard deviation demonstrates the spatial variation.

Day cs (measured) cs (modeled) cbi (measured) cbi (modeled) cmp (measured) cmp (modeled)

2 September 0.85± 0.06 0.61± 0.40 0.14± 0.06 0.37± 0.37 0.00± 0.00 0.03± 0.04
7 September 0.75± 0.02 0.19± 0.14 0.25± 0.03 0.81± 0.14 0.00± 0.00 0.00± 0.00
8 September 0.70± 0.04 0.51± 0.21 0.30± 0.04 0.45± 0.15 0.00± 0.00 0.04± 0.06
13 September 0.77± 0.01 0.70± 0.12 0.21± 0.01 0.30± 0.12 0.01± 0.00 0.00± 0.00

spheric conditions, we assume that the two time series, rep-
resenting either cloudless or cloudy conditions, indicate the
range of the surface broadband albedo. The plot shows sev-
eral characteristics of the melting season, as discussed in Tao
et al. (2024). Prior to 26 May, the surface was covered with
dry snow, resulting in the highest surface albedo. With the
onset of melting, an initial melt pond formed directly under
the radiation sensor so that a first minimum of surface albedo

was observed on 29 May. The snowfall caused the surface
albedo to increase thereafter, but not to the earlier level, as
wet-snow conditions prevailed instead. A second major melt
pond event was observed with a minimum surface albedo on
25 June. The later increase in surface albedo is related to melt
pond drainage. After that, the surface was dominated by the
surface scattering layer (SSL).

https://doi.org/10.5194/tc-18-1185-2024 The Cryosphere, 18, 1185–1205, 2024



1196 E. Jäkel et al.: Observations and modeling of areal surface albedo

Figure 6. (a) Map of the surface albedo as modeled by HIRHAM–NAOSIM for 8 September 2020 (MOSAiC-ACA). Aircraft observations
are plotted as color-coded dots indicating the measured surface albedo for the individual flight days. The dashed white line indicates a SIC
of 15 % derived from AMSR observations. (b) Time series of modeled mean daily surface albedo for the MOSAiC-ACA period for the areas
covered by the individual flights. The standard deviation of the area average is represented by thin vertical bars. The measured mean surface
albedo and standard deviation are shown, similar to in Fig. 5d.

Satellite-based surface albedo data were available for 5
cloudless days during the period of ground-based observa-
tions. The data were averaged over the area corresponding
to the extent of the HIRHAM–NAOSIM grid pixel cover-
ing the radiometer site. For 5 and 6 June, when the melt
pond was covered by new snow, the satellite-based surface
albedo exceeds the ground-based values (Fig. 7a). On 21 and
22 June, satellite- and ground-based measurements showed a
similar mean surface albedo of 0.69. For the observed cloud-
less conditions, Eq. (1) can be applied to correct the radiome-
ter measurements. The largest differences were found after
the drainage of the observed melt pond on 30 June. Here,
the radiometer measurement exceeds the satellite-based sur-
face albedo product by more than 0.1. One can assume that
the local observation was not representative of the larger area
observed by the satellite, which captured a higher fraction of
melt ponds with a lower surface albedo.

The time series of the modeled surface albedo by
HIRHAM–NAOSIM has three major phases. The first ends
with the onset of melting similar to the ground-based mea-
surements, on 26 May. While the radiometer measurements
showed a decrease in surface albedo due to a first melt pond
event, the modeled albedo only decreased due to the transi-
tion to wet snow. Melt ponds were not modeled at this stage,
as can be seen in Fig. 7b. In fact, snow-covered ice was the
dominant surface type fraction. A significant change in sur-
face type fractions was also modeled for 28 June 2020 3 d
after the observed formation of the second melt pond. Within
2 d pond formation started simultaneously with the transfor-
mation of snow-covered ice to bare ice due to snowmelt. The
timing of the second melt pond formation was well simu-
lated by the model. After the formation of melt ponds, how-
ever, the modeled surface albedo was significantly underes-
timated compared to the observations by the satellite and the

ground-based RAMSES station. The modeled surface albedo
remains at a low level (α ≈ 0.4) after 28 June, while the mea-
sured surface albedo (α > 0.6) increases again due to surface
drainage. The MPD OLCI satellite retrieval also determines
the melt pond fraction, which was about 25 % on 30 June
(Niehaus et al., 2023) and thus higher than the modeled melt
pond fraction (20 %). We also assume that the predominantly
modeled bare-ice fraction, with its low surface albedo, con-
tributes to the albedo model bias. In the field, however, the
surface albedo of the melting ice remained relatively high
due to the presence of a brighter SSL, which is not taken into
account in HIRHAM–NAOSIM.

4 Effect of surface albedo bias on net irradiance

4.1 HIRHAM–NAOSIM model results

The net solar irradiance at the surface is defined as the differ-
ence between downward and upward irradiance:

Fnet = F
↓
−F↑ . (9)

The difference between the modeled and measured net irra-
diances is calculated to estimate the impact of the model bias
for the solar radiative energy budget:

1Fnet = Fnet,model−Fnet,meas . (10)

Based on the model results introduced in Sect. 3.3, we com-
pared the measured and modeled net irradiance for all model
grid points that covered the selected flight tracks during
the PAMARCMiP and MOSAiC-ACA campaign. Figure 8
shows the scatterplot of both net irradiances. The correspond-
ing standard deviation illustrates the variability in Fnet with
a maximum of about 60 W m−2. The correlation R between
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Figure 7. (a) Time series of surface broadband albedo (original and
corrected) derived from radiometer measurements and HIRHAM–
NAOSIM modeling during MOSAiC 2020. Short-term variations in
modeled surface albedo are attributed mainly to changes in cloud
cover. Area-averaged satellite-based OLCI MPD retrieval results
covering the area of the model grid cell are shown for 5 cloudless
days (red symbols). (b) Temporal evolution of surface type fractions
calculated by HIRHAM–NAOSIM.

the measured and modeled net irradiances is 0.80, and the
RMSE of the model is 30.2 W m−2, with deviations increas-
ing accordingly for larger differences between measured and
modeled surface albedo.

Not only do the Fnet differences between measurements
and the model depend on 1α, but we must also take into ac-
count the difference in the downward irradiance (1F↓). A
negative 1F↓ (smaller symbols in Fig. 8) may occur when
the modeled extinction of F↓ caused by modeled clouds is
higher than an observation would show. This is especially the
case when cloudless situations were observed but not mod-
eled. It would lead to an underestimation of the modeled net
irradiance, assuming the same surface albedo. In fact, a mean
negative bias of the modeled F↓ (mean1F↓ =−31 W m−2)
was found, which can be related to an overestimation of the
modeled cloud cover. However, the downward irradiance it-
self also depends on the surface albedo. In particular, F↓ un-
der cloudy conditions is enhanced for brighter surfaces due
to multiple-scattering between the surface and cloud base.
A positive surface albedo bias would lead to a positive bias
in F↓, assuming a similar cloud representation. On average
1α was 0, indicating a small effect of surface albedo on the
modeled F↓.

Overall, both cloud properties and surface albedo must be
well represented for modeling net irradiance correctly. To es-
timate whether the representation of clouds or the surface
albedo potentially contributes more to the uncertainty in Fnet,
we calculated the standardized regression coefficients. Such
standardization is useful as the parameters are expressed in

Figure 8. Scatterplot of net irradiance based on measured and mod-
eled surface albedo covering the flights performed during PAMAR-
CMiP and MOSAiC-ACA. The horizontal bars indicate the stan-
dard deviation of the averaged measured Fnet. Color code gives the
surface albedo difference (1α = αmodel−αmeas) and the symbol
size the difference between the modeled and measured downward
irradiance.

different units. HIRHAM–NAOSIM provides the total cloud
water path (CWP) as a measure of the cloud microphysics.
To account for the available incident radiation we also con-
sider the SZA as a third parameter. The standardized regres-
sion coefficients βj with j being either α, CWP, or SZA are
calculated directly from the unstandardized regression coef-
ficient bj between Fnet and the variables and the standard
deviations (σ ) of the variables:

βj = bj ·
σj

σFnet

. (11)

This means that a change of 1 standard deviation in one of
the parameters is associated with a change of β standard
deviations in Fnet so that the more important variable will
have the maximum absolute value of βj . For the analyzed
cases during MOSAiC-ACA and PAMARCMiP we found
the strongest impact of the surface albedo (βα =−0.80) and
less impact of the CWP (βCWP =−0.38) and SZA (βSZA =

−0.23). This highlights the importance of a reliable sur-
face albedo parametrization for modeling a realistic sur-
face energy balance. However, we expect a seasonal depen-
dence of the standardized regression coefficients. According
to Eq. (11), a stronger variability in the individual parame-
ters contributes to a higher magnitude of βj . In summer, for
example, clouds tend to have a higher cloud water path with
greater variability, while the surface albedo reaches its min-
imum. Therefore, it is assumed that the contribution of the
surface albedo bias to the Fnet uncertainty is reduced, while
the model representation of cloud properties becomes more
important compared to the two periods shown in this study.
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4.2 Offline evaluation results

In contrast to the study of the HIRHAM–NAOSIM results,
the application of the offline evaluation allows dependencies
of the Fnet bias to be considered for the comparison of the
parametrization with the airborne measurements. The mea-
sured subtype fractions were used to identify only the influ-
ence of the bias of the parameterized surface albedo on Fnet
without having to consider the uncertainties in the subtype
fraction parametrization. The net irradiance was determined
along the flight path for 7 selected days during all five flight
campaigns, covering cloudy and cloudless conditions. Radia-
tive transfer simulations (Appendix A) were performed for
these cases using the measured and parameterized surface
albedo. In this way, the sensitivity of net irradiance to sur-
face albedo was quantified under the same predefined atmo-
spheric conditions. These conditions matched the measure-
ments made during the selected flights (see Appendix A). For
cloudless conditions broadband upward and downward irra-
diances were simulated so that the direct impact of surface
albedo can be derived from the difference in the resulting net
irradiance, according to Eq. (10). For cloudy conditions the
setup of the radiative transfer model required information of
the cloud microphysical properties. We estimated these pro-
files along the flight path as follows: where appropriate, we
used profile in situ measurements of the liquid or ice water
content and particle size to define a standard cloud profile.
In a second step this standard profile was adjusted by scaling
the water content of the profile so that the measured and the
simulated downward irradiances matched at each measure-
ment point along the flight track. This provides an estimate
of the cloud optical depth (COD). Radiative transfer simu-
lations were then performed using this scaled cloud profile
and the parameterized surface albedo to derive Fnet,model. A
table summarizing the corresponding microphysical profiles
can be found in Appendix A.

Figure 9a shows a scatterplot of the net irradiances that
were derived from the measured and parameterized surface
albedo. A significantly smaller spread between measured and
parameterized Fnet with R = 0.97 and RMSE= 13.5 W m−2

is obtained. We identify two clusters. The first one represents
all spring and autumn cases and data derived for cloudy con-
ditions in summer (Fnet < 100 W m−2). As an effect of a low
downward irradiance and a high surface albedo, the lowest
Fnet values were derived for spring cases under cloudy con-
ditions that are dominated by a high fraction of dry snow sur-
faces. The second cluster (Fnet: 150–350 W m−2) indicates
the cloudless cases in summer that are obtained at a lower
SZA (56–66°) and low surface albedo due to wet snow. Fig-
ure 9b illustrates the dependence of 1Fnet on 1α and SZA.
The linear relationship between 1Fnet and 1α for similar
atmospheric conditions results directly from the correlation
of surface albedo and upward irradiance. A positive bias of
the parameterized surface albedo leads to a higher upward ir-
radiance and consequently results in a lower Fnet compared

to the measurements. The maximum impact of the albedo
bias on 1Fnet is derived for cloudless summer conditions
(1Fnet =±80 W m−2). For the same range of 1α in spring,
1Fnet is found to be less than half of its magnitude in sum-
mer (1Fnet =±35 W m−2). This means that the bias of mod-
eled surface albedo can have greater effects on the simulated
net solar irradiance at the surface in summer compared to
spring. In spring, however, we observed from the flight mea-
surements an increased albedo bias with a wider distribution
(1α = 0.02±0.07) than in summer (1α = 0.00±0.04). The
deviation from the linear relationship between1Fnet and1α
at a similar SZA can be attributed to different cloud condi-
tions. We used the estimated cloud optical depth to illustrate
the cloud impact on 1Fnet. Figure 9c shows the frequency
distribution of 1Fnet of all analyzed cases separated into
three cloud classes. Accordingly, the cloudless cases com-
prise the largest range of values with a low mean positive
bias (median: 2.5 W m−2). The Fnet bias for cases with opti-
cally thicker clouds (COD> 5) is distributed around its me-
dian value of 0.1 W m−2, showing the narrowest distribution
(interquartile range: 10.4 W m−2). A clear negative Fnet bias
(median: −6.4 W m−2) is observed for optically thin clouds
(COD< 5), which results from the systematic overestima-
tion of the cloud enhancement effect for αmodel in the case
of optically thin clouds. A better description of the surface
albedo dependence on the cloud property is required to over-
come this systematic effect.

5 Summary and conclusions

In this study, an extensive data set of aircraft measurements
of the surface albedo was used for evaluating the param-
eterized surface albedo from the coupled regional climate
model HIRHAM–NAOSIM applied in the Arctic. The mea-
surements were collected during five field campaigns in the
European Arctic in different seasons between 2017 and 2022.
Different approaches were applied to compare the measured
and parameterized surface albedo. In an offline evaluation
measured surface type fractions were used to identify defi-
ciencies of the surface albedo parametrization itself, whereas
the direct application of the HIRHAM–NAOSIM model (on-
line evaluation) allowed an evaluation of the two components
of the surface albedo scheme (subtype albedo and subtype
fraction parametrization).

A regression analysis of the relationship between mea-
sured sea ice fraction and measured surface albedo confirmed
the increase in the surface broadband albedo in the pres-
ence of clouds. We found that the dry snow albedo assumed
in HIRHAM–NAOSIM for cloudless cases (0.79) was well
in agreement with the airborne measurements (0.76± 0.08),
while for cloudy conditions the assumed albedo for dry
snow in the model was slightly overestimated (0.88 vs.
0.81± 0.08). However, the measured surface albedo of dry
snow is at the lower limit compared to literature data, where
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Figure 9. (a) Scatterplot of net irradiance based on measured and parameterized surface albedo covering flights performed in spring, sum-
mer, and autumn. The color code gives the surface albedo difference (1α = αmodel−αmeas). (b) Difference between net irradiance with
parameterized surface albedo and net irradiance with measured surface albedo as a function of surface albedo difference. Colors indicate
the solar zenith angle. (c) Frequency distribution of 1Fnet separated into three cloud classes: cloudless, thin clouds with cloud optical depth
(COD) lower than 5, and clouds with COD larger than 5.

surface albedo ranges between 0.8 and 0.9 (Perovich et al.,
2002; Light et al., 2022).

For the offline evaluation, the parametrization reproduced
the measured surface albedo distributions for all seasons,
in particular for cloudless conditions. In contrast to the
parametrization, however, the measured increase in the sur-
face broadband albedo under cloudy conditions is much less
pronounced in spring than in summer, which is attributed to
differences in cloud optical thickness. In the absence of a
waveband-dependent albedo parametrization, the considera-
tion of a simple cloud dependence in the broadband albedo
parametrization is able to mimic the cloud effect on surface
albedo reasonably. The cloud effect might be further im-
proved by a more sophisticated functional dependence on
cloud cover or cloud water content rather than a pure dis-
tinction between cloudy and cloudless conditions. Such an
approach was proposed by Gardner and Sharp (2010), who
developed a snow albedo parametrization as a function of
cloud optical depth. The application of this parametrization
(Eq. 11 in Gardner and Sharp, 2010) has shown some im-
provements in the offline evaluation for cases with optically
thin clouds. However, a comprehensive online evaluation is
difficult because this approach uses COD, a variable which
is usually available in neither HIRHAM–NAOSIM nor most
other climate models.

The comparison of the HIRHAM–NAOSIM simulations
with the PAMARCMiP data showed that the modeled surface
albedo was affected by biases in the modeled cloud cover
(cloudy instead of cloudless). For days with correctly mod-
eled cloud cover, the modeled surface albedo was within the
standard deviation of the measured values. This demonstrates
that reliable cloud cover modeling is needed to properly ac-
count for the dependence of surface albedo on clouds. For
the autumn MOSAiC-ACA campaign, which was character-
ized by much larger variation in surface types, the error in
modeled surface albedo can primarily be attributed to uncer-
tainties in the surface type parametrization.

The comparison with ground-based observations from one
of the drifting radiation stations during MOSAiC showed that
the onset of the melt season and the drop in surface albedo
due to the transition from dry snow to wet snow were well re-
produced. Larger surface albedo differences (more than 0.1)
were obtained after the drainage of the observed melt ponds
at the end of June. From this time on, the largest discrepan-
cies between observations, including satellite-based surface
albedo measurements, and model results were found. This
phase of the melt season was not well reproduced by the
model. In particular, the surface albedo after disappearance
of the snow cover is underestimated. This is due to the fact
that the model assumes bare ice instead of a surface scat-
tering layer (SSL), which emerges at the top of the melt-
ing sea ice after the snow has melted. The SSL is a porous,
granular, and highly fragile pillared structure on top of the
ice, which effectively backscatters solar radiation and keeps
the surface albedo of melting ice relatively high (Macfarlane
et al., 2023). Due to the small-scale characteristics of the
SSL, it is difficult to relate the surface albedo of the SSL to
the available variables of a climate model with spatial scales
on the order of several kilometers. Consequently, the surface
albedo of the SSL is a critical issue in the albedo parametriza-
tion. Since the albedo of bare ice is generally lower than the
albedo of the SSL, the surplus of radiation energy at the ice
surface may lead to an amplified melting of sea ice in the
model.

Simulations and ground-based measurements of the sea-
sonal evolution of surface albedo during MOSAiC were pre-
viously presented by Light et al. (2022). The authors used
an Earth system model (1° spatial resolution) for compari-
son with surface albedo measurements manually made along
three survey lines. These measurements could not be per-
formed with the same high temporal frequency during the
complete campaign for logistical reasons. Therefore, the
transition from dry to wet snow during the onset of melt-
ing was not as well captured as in our study, which relied on
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autonomous measurements from a radiation station. Similar
to our results, Light et al. (2022) showed that in particular
the representation of melt pond albedo in the model needs
to be improved, while the general surface albedo values and
properties of the different ice types were captured well.

We investigated how the surface albedo model bias af-
fects the balance between incoming and outgoing irradiance
at the surface by calculating the net solar irradiance. The di-
rect comparison of model results and aircraft observations
yielded a RMSE of 30.2 W m−2. This error can be primar-
ily attributed to differences in surface albedo. However, the
ranking of the standardized regression coefficient suggests
that uncertainties in the modeled cloud cover also contribute
to the model bias in net irradiance. The direct effect of the
surface albedo bias on net irradiance was derived from of-
fline evaluation against different airborne measurement data.
We found a smaller spread between modeled and parame-
terized net irradiance (RMSE= 13.5 W m−2) compared to
the HIRHAM–NAOSIM run. This improvement is partly
due to the fact that the cloud cover, which influences the
parametrization of the surface albedo, was derived from the
measurements and not from the model as the model pro-
duces too many cloudy cases (see above). The impact of
the surface albedo bias on the net irradiance as a function
of the cloud optical depth revealed a significant negative
bias (median:−6.4 W m−2) for optically thin clouds (equiva-
lent COD< 5), while for optically thicker clouds (equivalent
COD> 5) a median bias value of only 0.1 W m−2 was deter-
mined.

From this analysis, it appears that a change in the surface
albedo scheme based on temporally limited measurements
requires an assessment for other time periods and regions
with different atmospheric and sea ice conditions. Weak-
nesses in the surface albedo scheme have seasonally varying
effects, as exemplified for HIRHAM–NAOSIM. Uncertain-
ties in the surface albedo dependence on clouds especially
affect the surface albedo in spring, whereas in the melting
season mainly the surface type parametrization determines
the accuracy of the surface albedo scheme. We invite the
modeling community to use this airborne data set to evalu-
ate other surface albedo schemes, as it provides decoupling
of surface type fraction and surface albedo parametrization
for larger spatial scales than covered by ground-based ob-
servations. This is advantageous because an incorrect type
fraction can be compensated by an incorrect specific albedo
of the surface type, which then leads to an apparently con-
sistent total surface albedo (Light et al., 2022). However, in
order to further improve the existing parametrizations, the
local ground-based observations, especially from MOSAiC,
will be crucial in describing the surface-type-specific depen-
dencies, as most of the potential parameters influencing the
surface albedo were directly measured during MOSAiC.

Appendix A: Radiative transfer simulations

To calculate the solar broadband upward and downward irra-
diance the radiative transfer package libRadtran (Mayer and
Kylling, 2005; Emde et al., 2016) was applied. The Discrete
Ordinate Radiative Transfer (DISORT; Stamnes et al., 2000)
solver was used with pseudo-spherical geometry to account
for the low-sun conditions in the Arctic. The absorption
parametrization after Gasteiger et al. (2014) and the extrater-
restrial spectrum taken from Gueymard (2004) were chosen.
The atmospheric standard profiles of trace gases, tempera-
ture, pressure, and humidity for Arctic summer and winter,
respectively, were adjusted to measurement conditions using
radio sounding data from Ny-Ålesund (Maturilli, 2020).

In libRadtran clouds can be defined by water content and
effective radius at each model layer. For each flight day under
cloudy conditions a standard profile was created, as listed in
Table A1.
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Table A1. Model setup of clouds for libRadtran. NA: not available.

Day and campaign Conditions Cloud base and cloud top Reference

25 March 2018 (PAMARCMiP) Cloudless
29 March 2022 (HALO-(AC)3) Cloudless
23 March 2019 (AFLUX) Cloudy (mixed phase) 90–540 m Moser and Voigt (2022a)
3 April 2018 (PAMARCMiP) Cloudy 400–600 m NA
4 June 2017 (ACLOUD) Cloudy 100–350 m Chechin (2019)
25 June 2017 (ACLOUD) Cloudless
13 September 2020 (MOSAiC-ACA) Cloudy 340–460 m Moser et al. (2022b)

Data availability. Pyranometer and KT-19 data are published
on PANGAEA (https://doi.org/10.1594/PANGAEA.900442,
Stapf et al., 2019; https://doi.org/10.1594/PANGAEA.932020,
Stapf et al., 2021; https://doi.org/10.1594/PANGAEA.936232,
Becker et al., 2021). A joint surface albedo and surface
type fraction data set can be downloaded from PANGAEA
(https://doi.org/10.1594/PANGAEA.963001, Jäkel et al., 2023a;
https://doi.org/10.1594/PANGAEA.963064, Jäkel et al., 2023b;
https://doi.org/10.1594/PANGAEA.963078, Jäkel et al., 2023c;
https://doi.org/10.1594/PANGAEA.963106, Jäkel et al., 2023d;
https://doi.org/10.1594/PANGAEA.962996, Jäkel et al., 2023e).
The MOSAiC radiation station data are available on Pangaea
(https://doi.org/10.1594/PANGAEA.948712, Nicolaus et al.,
2024). The processed MPD albedo product is available from
https://data.seaice.uni-bremen.de/databrowser/#p=MERIS_OLCI_
albedo (last access: 4 March 2024). HIRHAM–NAOSIM data are
available from Zenodo (https://doi.org/10.5281/zenodo.10781301,
Dorn and Jäkel, 2024). AMSR sea ice concentration data
were obtained from the National Snow and Ice Data Center
(https://doi.org/10.5067/RA1MIJOYPK3P, Meier et al., 2018).
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