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Abstract. The viscous–plastic (VP) rheology with an ellip-
tical yield curve and normal flow rule is implemented in a
Lagrangian modelling framework using the smoothed parti-
cle hydrodynamics (SPH) meshfree method. Results show,
from a perturbation analysis of SPH sea-ice dynamic equa-
tions, that the classical SPH particle density formulation ex-
pressed as a function of sea-ice concentration and mean ice
thickness leads to incorrect plastic wave speed. We propose a
new formulation for particle density that gives a plastic wave
speed in line with theory. In all cases, the plastic wave in the
SPH framework is dispersive and depends on the smoothing
length (i.e., the spatial resolution) and on the SPH kernel em-
ployed in contrast to its finite-difference method (FDM) im-
plementation counterpart. The steady-state solution for the
simple 1D ridging experiment is in agreement with the an-
alytical solution within an error of 1 %. SPH is also able
to simulate a stable upstream ice arch in an idealized do-
main representing the Nares Strait in a low-wind regime
(5.3 ms−1) with an ellipse aspect ratio of 2, an average thick-
ness of 1 m and free-slip boundary conditions in opposi-
tion to the FDM implementation that requires higher shear
strength to simulate it. In higher-wind regimes (7.5 ms−1)
no stable ice arches are simulated – unless the thickness is in-
creased – and the ice arch formation showed no dependence
on the size of particles, in contrast to what is observed in the
discrete-element framework. Finally, the SPH framework is
explicit, can take full advantage of parallel processing capa-

bilities and shows potential for pan-Arctic climate simula-
tions.

1 Introduction

Sea ice is an important component of the Earth’s system to
consider for accurate climate projection. Generally, numeri-
cal models used for geophysical sea-ice simulations and pro-
jections are based on a system of differential equations as-
suming a continuum. The equations that predict the sea-ice
dynamics are a combination of the momentum equations,
which describe the drift of sea ice under external and inter-
nal forces, and the continuity equations which ensure mass
conservation. The external forces (per unit area) generally
include surface air stress, water drag, sea surface tilt and
the Coriolis effect, and the internal forces are related to the
ice stress term. This internal stress term is based on var-
ious constitutive relations which can differ between mod-
els. The more commonly used constitutive laws are the stan-
dard viscous–plastic model (Hibler, 1979) or modifications
thereof (e.g., elastic–viscous–plastic or EVP and elastic–
plastic–anisotropic or EPA; Hunke and Dukowicz, 1997;
Tsamados et al., 2013). They are typically discretized on
an Eulerian mesh using the finite-difference method (FDM).
FDM is the simplest method to discretize and solve partial
differential equations numerically. However, it is based on a
local Taylor series expansion to approximate the continuum
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equations and construct a topologically rectangular network
of relations between nodes (e.g., Arakawa grids).

Even though the VP (and EVP) rheologies are commonly
used to describe sea-ice dynamics and are able to capture
important large-scale deformation features (Bouchat et al.,
2022; Hutter et al., 2022), they still have difficulties rep-
resenting smaller-scale properties (Schulson, 2004; Weiss
et al., 2007; Coon et al., 2007) such as linear kinematic fea-
tures (LKFs) unless run at very high resolution (≈ 2 km;
Ringeisen et al., 2019; Hutter et al., 2022). To improve the
simulation of small-scale ice features and to alleviate the
problem of FDM with complex geometries (Peiró and Sher-
win, 2005), the community also considered new sea-ice rhe-
ologies (Schreyer et al., 2006; Girard et al., 2011; Dansereau
et al., 2016; Ringeisen et al., 2019) and explored differ-
ent space discretization frameworks like the finite-element
method (FEM) (Rampal et al., 2016; Mehlmann et al., 2021),
the finite-volume method (FVM) (Hutchings et al., 2004;
Losch et al., 2010; Adcroft et al., 2019) or the discrete-
element method (DEM) (Hopkins and Thorndike, 2006; Her-
man, 2016; Damsgaard et al., 2018).

In recent decades, the spatial resolution of sea-ice models
has become comparable to the characteristic length of the ice
floes. This makes the continuum assumption of current FDM,
FVM and FEM models questionable. Also, Eulerian models
are known to have difficulties determining the precise loca-
tions of inhomogeneity, free surfaces, deformable boundaries
and moving interfaces (Liu and Liu, 2010). These shortcom-
ings have led to an increased interest in the DEM approach.
Another advantage of using DEMs is that the granularity of
the material (Overland et al., 1998) is directly represented us-
ing discrete rigid bodies from which the physical interactions
are calculated explicitly in the hope that large-scale proper-
ties naturally emerge. In practice, the emergent properties of
a granular medium still depend on the assumed floe size and
the nature of collisions in contrast to the continuous numer-
ical methods which can indirectly account for floe interac-
tions through the formulation of a constitutive law. Never-
theless, DEMs easily capture the formation of cracks, leads
and large deformations, making them a consistent framework
for the numerical simulation of granular material like sea ice
(Fleissner et al., 2007).

Despite the shortcomings of the continuum approaches,
FDM, FVM and FEM are still the most commonly used
frameworks in the community because they have been de-
veloped and tested for a longer period and are well under-
stood, computationally more efficient and easily coupled for
large-scale simulations. In an attempt to take advantage of
both continuum and discrete formulations, blends between
the two approaches have been proposed – e.g., the finite- and
discrete-element methods (Lilja et al., 2021) or the material-
point method (Sulsky et al., 2007). Those framework, how-
ever, still use a mesh to solve the dynamic equations in addi-
tion to considering sea ice as discrete elements, making them
even more computationally expensive. Finally, a fairly new

approach in the context of sea-ice modelling – also taking
from both continuum and discrete frameworks – uses a La-
grangian meshfree continuous method called smoothed par-
ticle hydrodynamics (SPH) developed by Lucy (1977) and
Gingold and Monaghan (1977). This meshfree method is
known to facilitates the numerical treatment and description
of free surfaces (Liu and Liu, 2010) which are common in
sea-ice dynamics with polynyas, LKFs, free-drifting ice floes
and unbounded ice extent. As in DEM, the physical quanti-
ties are carried out by particles in space (an analogy for ice
floes in the real world) but evolve according to the same dy-
namic equations used in the continuum approach. Further-
more, the method has the advantage of treating the system of
equations in a Lagrangian framework discretized explicitly,
making it well-suited for parallelization.

SPH has been applied successfully for modelling other
granular materials such as sand, gravels and soils (Sale-
hizadeh and Shafiei, 2019; Yang et al., 2020; Sheikh et al.,
2020). In the context of mesoscale and larger sea-ice mod-
elling, Gutfraind and Savage (1997) initiated the SPH study
of sea-ice dynamics using a VP rheology based on a Mohr–
Coulomb failure criterion. The ice concentration and thick-
ness were fixed at 100 % and 1 m with a continuity equa-
tion expressed in terms of a particle density. The internal ice
strength between particles was derived diagnostically from
ice density assuming ice was a nearly incompressible mate-
rial. Later, Wang et al. (1998) developed a sea-ice model of
the Bohai Sea (east coast of China) using an SPH viscous–
plastic rheology (Hibler, 1979) with continuity equations for
ice concentration and mean thickness, as well as ice strength
calculated from static ice jam theory (Shen et al., 1990). Fol-
lowing Wang et al. (1998), Ji et al. (2005) implemented a new
viscoelastic–plastic rheology that was in better agreement
with observations from the Bohai Sea. Recently, Staroszczyk
(2017) proposed a sea-ice model considering ice behaving
as a compressible non-linear viscous material with a (dimen-
sionless) contact-length-dependent parameterization for floe
collisions and rafting (Gray and Morland, 1994; Morland and
Staroszczyk, 1998). In all of the above, except for Gutfraind
and Savage (1997), the same ice particle density definition is
used.

In this work, we use the standard VP sea-ice model with an
elliptical yield curve and normal flow rule (Hibler, 1979) as
a proof of concept. Further development of the SPH model
should consider a broader range of rheologies. We propose
a reformulation of the ice particle density that is internally
consistent with the model physics. One goal of the study is
to investigate differences coming from the numerical frame-
work. To this end, we theoretically investigate the plastic
wave propagation, a fundamental property of a sea-ice phys-
ical model, using a 1D perturbation analysis and we test the
model in a ridging and ice arch experiment following earlier
works by Lipscomb et al. (2007), Dumont et al. (2009), Ra-
batel et al. (2015), Dansereau et al. (2017), Williams et al.
(2017), Damsgaard et al. (2018), Ranta et al. (2018), Plante
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et al. (2020), and West et al. (2022). We chose to investigate
the SPH method performance on a ridging experiment since
it has an analytical steady-state solution that can be used to
establish the model accuracy and it is possible to evaluate
whether the coupling with the mass equations is coherent.
We also test SPH performance on ice arch simulations since
this classic problem is an example of large-scale features re-
sulting from small-scale interactions involving fractures of
the material. The two experiments allow a direct comparison
with previous work and identify advantages and disadvan-
tages with the continuum and discrete sea-ice dynamics. The
long-term goal is to lay the foundation for an SPH sea-ice
formulation that can be used in large-scale models.

The paper is organized as follows. In Sect. 2, a description
of the sea-ice VP rheology, momentum and continuity equa-
tion implementations in the SPH framework is presented. Re-
sults of a plastic wave propagation analysis, ridging experi-
ments and ice-arching simulations are presented in Sect. 3.
Finally, Sect. 4 discusses the SPH advantages and limitations
of the SPH framework, future model development, and the
main conclusions from the work.

2 Model

2.1 Momentum and continuity equations

Following Plante et al. (2020), we consider sea ice to behave
as a 2D granular material described by the 2D momentum
equation (neglecting the Coriolis and sea surface tilt terms):

ρih
Du
Dt
=∇ · σ + τ , (1)

where ρi is the ice density, h is the mean ice thickness (ice
volume over an area), u= ux̂+vŷ is the ice velocity vector,
σ is the vertically integrated internal stress tensor acting in
the ŷ direction on a face with a unit-outward-normal pointing
in the x̂ direction, τ is the sum of water stress and surface air
stress, and D

Dt =
∂
∂t
+u·∇ is the Lagrangian derivative opera-

tor. The Coriolis and sea surface tilt terms are neglected from
the momentum equation to ease the comparison with the an-
alytical solution and simple 1D problem. Note that using the
Lagrangian derivative operator naturally incorporates the ad-
vection of momentum in the ice dynamics – a term that is
typically neglected for most continuum-based Eulerian sea-
ice models. The surface air stress and the water stress can be
written using the bulk formulation as (McPhee, 1979)

τ = ρaCa|ua−u|(ua−u)+ ρwCw|uw−u|(uw−u), (2)
≈ ρaCa|ua|(ua)+ ρwCw|uw−u|(uw−u), (3)

where ρa and ρw are air and water densities, ua and uw are
air and water velocity vectors, Ca and Cw are the air and
water drag coefficients, and u is neglected in the formulation
of the wind stress since u� ua. The continuity equations for

the mean ice thickness h and the ice concentration A can be
written as
Dh
Dt
+h∇ ·u= 0, (4)

DA
Dt
+A∇ ·u= 0, (5)

where the thermodynamic source terms are omitted. Note
that the thickness and concentration are independent prog-
nostic variables in a two-category model (Hibler, 1979), re-
sulting in a singularity when thickness reaches zero. To avoid
this singularity and for a more mathematically correct treat-
ment of the mass equation, Gray and Morland (1994) intro-
duced a continuous solution where the concentration asymp-
totes to zero and one. In the following, we ignore melting and
consider cases where only convergent motion is present and
the use of a two-category model does not have an impact on
the simulated results.

2.2 Constitutive laws

The constitutive relations for the viscous–plastic ice model
with an elliptical yield curve, a normal flow rule and tensile
strength can be written as (Beatty and Holland, 2010)

σij = 2ηε̇ij +
[
(ζ − η)ε̇kk −

Pr(1− kt)

2

]
δij , (6)

ε̇ij =
1
2

(
∂uj

∂xi
+
∂ui

∂xj

)
=

1
2

(
∇u+∇uᵀ

)
, (7)

where ε̇ij is the symmetric part of the strain-rate tensor, ζ
and η are the non-linear bulk and shear viscosities, Pr is the
replacement pressure, kt is the tensile strength factor, and
δij is the Kronecker delta. Following Bouchat and Tremblay
(2017) we write

ζ =
P(1+ kt)

21∗
, (8)

η =
ζ

e2 = ζ

(
2S

P (1+ kt)

)2

, (9)

1∗ =max(1,1min), (10)

1=

[
(ε̇2

11+ ε̇
2
22)(1+ e

−2)+ 4e−2ε̇2
12

+ 2ε̇11ε̇22(1− e−2)

]1/2

, (11)

where P = P ∗h exp(−C(1−A)) is the ice strength (Hi-
bler, 1979), P ∗ and C are respectively the ice compressive
strength and ice concentration parameters, S is the ice shear
strength, and e is the ellipse aspect ratio. In the limit where
1 goes to zero, ζ and η tend to infinity. To avoid this situ-
ation, the deformation 1 is capped to 1min = 2× 10−9 s−1.
Using the 1∗ formulation, the replacement pressure Pr can
be written as

Pr = P
1

1∗
, (12)
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which ensures that the stresses are zero when the strain rates
are zero.

2.3 Governing differential equations: SPH framework

To solve the system of equations in the SPH framework,
equations involving spatial derivatives (Eqs. 1, 4, 5 and 7) are
reformulated (see Appendix A for more details on the SPH
theory) using Eqs. (A5–A6–A7) with the particle subscripts
p and q (see Fig. A1), and a temporal evolution for the ice
particle position is defined:

Dxp

Dt
= up, momentum (13)

ρihp
Dup

Dt
= ρp

N∑
q=1

mq

(
σ q

ρ2
q
+
σ p

ρ2
p

)
· ∇pWpq+ τ p, momentum (14)

Dhp

Dt
+
hp

ρp

N∑
q=1

mq(uq−up) · ∇pWpq = 0, continuity (15)

DAp

Dt
+
Ap

ρp

N∑
q=1

mq(uq−up) · ∇pWpq = 0, continuity (16)

ε̇p =
1
2

[( N∑
q=1

mq

ρq
(uq−up)⊗∇pWpq

)

+

( N∑
q=1

mq

ρq
(uq−up)⊗∇pWpq

)ᵀ]
. constitutive (17)

It is important to make the distinction between the intrin-
sic ice density ρi and the particle densities ρp. For consis-
tency reasons with the standard VP rheology, we consider
the following definition of density independent of ice con-
centration in contrast to previous work (Wang et al., 1998;
Ji et al., 2005; Staroszczyk, 2017) (see Results section for
discussion):

ρp = ρihp. (18)

By formulating density as in Eq. (18), the continuity Eq. (15)
has the same form as the more commonly used continuity
density equation (Monaghan, 2012):

Dρp

Dt
=−ρp∇ ·up =

N∑
q=1

mq(up−uq) · ∇pWpq, (19)

except for the fact that the divergence of the velocity field is
scaled by the ice material density ρi

(
Dρp
Dt = ρi

Dhp
Dt

)
. Over-

all, a particle can be seen as an unresolved collection of floes
scattered within the support domain A that can converge,
ridge over one another, break and drift apart. Note that since
the particle density ρp definition is independent of Ap, the
concentration can be interpreted as a quantity that measures
the compactness of the sea ice at the particle location. It de-
scribes the probability of ice floes carried by a particle, which

is a point in space, to come in “contact” with ice floes of an-
other particle and get repulsed according to the ice strength.

2.4 Numerical approach

Following Hosseini et al. (2019), we use a second-order
predictor–corrector scheme to evolve in time the SPH ice
system of equations (see Algorithm 1 below). This integra-
tion scheme takes a given function f (here f can be x, u, A
and h) and uses a predictor step to calculate its value f n+1/2

at time t = (n+ 1
2 )1t (where 1t is the time step) followed

by a correction step to calculate the solution f n+1 at time
t = (n+ 1)1t from f n+1/2:

f
n+1/2
p = f np +

1t

2

Df np
Dt
+O(1t2), (20)

f
n+1/2
p corrected = f

n
p +

1t

2
Df n+1/2

p

Dt
, (21)

f n+1
p = 2f n+1/2

p corrected− f
n
p +O(1t

3). (22)

In the above equations, O(1t2) and O(1t3) represent
higher-order terms, which are ignored in the proposed
scheme. Following Lemieux and Tremblay (2009), a simple
1D model taking into account only the viscous term – the
most restrictive condition – leads to the following stability
criterion:

1t ≤
ρihl

2
min

ηmax
=
e2ρil

2
min1min

P ∗(1+ kt)
, (23)

where lmin is the minimum smoothing length across all the
particles. The stability criterion imposes a strict limitation on
the time step (∼ 10−4 to 10−2 s for particles with a radius
of 1 to 10 km); this cannot be avoided using a pseudo-time
step because particles in an SPH framework are irregularly
placed and move within the domain at each time step. This
makes the parallelization of the particle interactions algo-
rithm mandatory for any practical applications. On the pos-
itive side, the explicit time stepping also eliminates possible
convergence issues of the numerical solver. A pseudo-code
for the proposed algorithm is shown below (Algorithm 1).

2.5 Particle interactions

Following Rhoades (1992), we use the bucket search al-
gorithm parallelized using shared memory multiprocessing
(OpenMP) to find all the neighbours of each particle in favour
of the tested tree algorithm (Cavelan et al., 2019), which in-
volve pointers and complex memory structure that are not
easy to manipulate in OpenMP. The proposed OpenMP par-
allelization is rudimentary, and one time step in a domain
with 40 000 particles takes≈ 0.1 s. For this reason, the model
requires more computational resources for the effective res-
olution when compared with a continuum approach. This
could be greatly improved by taking advantage of CPU clus-
ters (Yang et al., 2020) or GPUs (Xia and Liang, 2016).
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Algorithm 1 Sea-ice SPH.

Require: Domain shape and boundaries, Spatial resolution, Total
integration time
initialize particle and boundary according to input
for i = 0 to IntegrationT ime do
nInteraction← nearestNeighbourParticleSearch

for j = 0 to nInteraction do
kernel← smoothingFunctionCalculation

internalForce← kernel

end for
for all particles do
externalForce

physicalQuantities←

(externalForce,internalForce)
density← iceT hickness

smoothingLength← density

end for
t imeStep← smoothingLength

monitor particle interaction statistics
output

end for

After the neighbour search, the interactions between pairs
of particles are computed using the Wendland C6 kernel –
Wendland kernels have the best stability properties for wave-
lengths smaller than the smoothing kernel (Dehnen and Aly,
2012) – which is written as

W(|rp− rq|, lp)=WC6(R)

= αd

{
(1−R)8(32R3

+ 25R2
+ 8R+ 1), 0≤ R < 1,

0, R ≥ 1,
(24)

∂W(|rp− rq|, lp)

∂|rq− rp|
=
∂WC6(R)

∂|rq− rp|

= αd

{
−22R(16R2

+ 7R+ 1)(1−R)7 κ
lp
, 0≤ R < 1,

0, R ≥ 1,
(25)

where αd is a normalization factor depending on the dimen-
sion of the problem. Note that R (= κ|rp−rq|/lp) is the nor-
malized distance between particles in the referential rp− rq.
Consequently, we always integrate from 0 to lp (the smooth-
ing length) independently of the kernel instead of 0 to κlp
as shown by Liu and Liu (2010). The constant αd becomes
78κ2

7πl2 in 2D, with a factor of κ2 difference from the usual
definition. Note that the scaling factor κ has a value of 1
for the Wendland C6 kernel. The choice of kernel was val-
idated using stability tests with six different kernels includ-
ing the original Gaussian kernel (Gingold and Monaghan,
1977); a quartic-spline Gaussian approximation (Liu and
Liu, 2010); a quintic-spline Gaussian approximation (Morris
et al., 1997); a quadratic kernel (Johnson and Beissel, 1996);
and the Wendland C2, C4 and C6 kernels (Wendland, 1995).

2.6 Smoothing length

The smoothing or correlation length is a key element of SPH
and has a direct influence on the accuracy of the solution
and the efficiency of the computation. For instance, if lp is
too small, there may not be enough particles in the sup-
port domain violating the kernel moment requirements. If
the smoothing length lp is too large, all the local properties
of particles would be smoothed out over a large number of
neighbours and the computation time would increase with
the number of interactions. In 2D, the optimal number of
neighbours interacting with any particle p should be about
20 to balance the precision and the computational cost (Liu
and Liu, 2003). We therefore implement a variable smooth-
ing length that evolves in time and space to maintain this
approximate number of neighbours. To this end, we keep the
mass of particles constant in time and evaluate the smooth-
ing length from the particle density. Note that keeping the
mass of a particle constant has the advantage of ensuring
mass conservation. This assumption is justified in our case
since we are only interested in sea-ice dynamics, and ridg-
ing changes the area covered by ice floes but not their mass.
However, fixing the ice mass is only valid when neglecting
the thermodynamics and needs to be modified for synoptic-
scale simulations.

The initial mass of a particle is defined from the ice area
it represents within its support domain (1Ap in Fig. 1). To
avoid creating porosity in the medium, we divide the space
in equal square area (= L2

p) that covers the whole domain.
Since we want approximately 20 neighbours for every par-
ticle, we introduce α (= 3 in all simulations), a parameter
that stands for the approximate number of particles desired
in any direction within the support domain. The parameter
α can also be interpreted as the proportionality constant be-
tween the particle spacing Lp and the smoothing length lp.
Note that to increase the accuracy of the particle approxima-
tion, α can be increased by any desired factor (see Fig. 1).
The mass carried by a particle is therefore written as

mp =1Apρih0p = L
2
pρih0p, (26)

where h0p is the initial mean thickness of the particle. The
smoothing length is then updated at each time step diagnos-
tically from

lp = αLp = α

√
mp

ρp
. (27)

The smoothing length lp is capped to 10 times its initial
value when the particle density tends to zero. This capping
prevents conservation of mass for a density lower than 1 % of
its initial value (see Eq. 26). We justify this capping because
such small densities do not affect the ice dynamics.
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Figure 1. Graphical representation of the initial position of the par-
ticles and the relevant parameter for the smoothing length evolu-
tion: the ice area carried by the particle 1Ap (solid orange square),
the parameter α (= 2 in this schematic for visibility), the support
domain A (dashed orange line), the smoothing length lp (red ar-
row) and the initial distance between particles Lp. Black circles are
neighbouring particles q, and the orange circle is the current parti-
cle p. Note that, as for Fig. A1, the particle sizes in this schematic
are also arbitrary.

2.7 Boundary treatment

We implemented the boundary treatment of Monaghan and
Kajtar (2009) because of its simplicity, versatility and low
computational cost. The boundaries are set up by placing sta-
tionary particles with fixed smoothing length lb and a mass
mb equal to the average ice particle mass mp. The bound-
ary smoothing length lb is chosen in a way that only one
layer of ice particles initially interact with the boundary (this
makes lb resolution-dependent). The boundary particles are
(equally) spaced apart by a factor of 1/4 of their smoothing
length (lb/4). In this manner, all ice particles p within a sup-
port domain lb will interact with approximately four bound-
ary particles (denoted by the subscript b) at a time, resulting
in a net normal repulsive force FN p,

FN p =

Nb∑
b=1

µ
(rp− rb)

|rp− rb|2
Wpb

2mb

mp+mb
, (28)

which is added to their momentum equation. In Eq. (28), µ
is a constant with units of kgm4 s−2 used to adjust the re-
pulsion strength and is also simulation-dependent because it
needs to counterbalance the particle acceleration and prevent
them from escaping the domain. This free parameter is not
suited for complex pan-arctic simulations but is sufficient in
our idealized experiments. For all the simulations, a free-slip
boundary condition, i.e., no tangential friction force between
boundary particle and ice particle, is applied.

Table 1. Physical parameters used in ridging and arch simulations.

Parameter Symbol Value Unit

Ice concentration parameter C 20 –
Ice compressive strength P ∗ 27.5 kNm−2

Air density ρa 1.3 kgm−3

Water density ρw 1026 kgm−3

Ice density ρi 900 kgm−3

Wind stress coefficient Ca 1.2× 10−3 –
Water stress coefficient Cw 5.5× 10−3 –
Minimal total deformation 1min 2× 10−9 s−1

Values of the parameters used for the simulations are the same as the ones presented in
Williams et al. (2017) to facilitate comparison in the Results section.

3 Results

3.1 Plastic wave propagation

We first compare the plastic wave speed for the VP dynamic
equations with and without the SPH approximations. To this
end, we do a perturbation analysis for a 1D case with a fixed
sea-ice concentration (A= 1). In this case, the 1D SPH sea-
ice dynamic equations (Eqs. 13–16) form a system of three
equations and three unknowns (x, u and h):

Dxp

Dt
= up, (29)

Dup

Dt
= 0

N∑
q=1

mq

ρ2
i

(
1
hq
+

1
hp

)
xpq

|xpq|

∂W

∂xpq
+ τp, (30)

Dhp

Dt
=−

1
ρi

N∑
q=1

mq(uq− up)
xpq

|xpq|

∂W

∂xpq
, (31)

where xpq is a short form for xp− xq and

0 =
P ∗

2

[
± (e−2

+ 1)1/2− 1
]
. (32)

In the above, we made use of the following 1D normal stress
for convergent plastic motion (see Gray, 1999; Williams
et al., 2017, for 1D normal stress derivation):

σ = σxx =
P ∗

2

[
± (e−2

+ 1)1/2− 1
]
h= 0h. (33)

Linearizing around a mean state (u= 0 and h= h0), consid-
ering small perturbations (δx, δu and δh) and ignoring the
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second-order term, we obtain

Dδxp

Dt
= δup, (34)

Dδup

Dt
=
0

ρi

N∑
q=1

1Aq
xpq

|xpq|

(
−1
h0
(δhq+ δhp)

∂W

∂xpq

+ 2(δxp− δxq)
∂2W

∂x2
pq

)
, (35)

Dδhp

Dt
=−h0

N∑
q=1

1Aq
xpq

|xpq|
(δuq− δup)

∂W

∂xpq
, (36)

where 1Aq =
mq
ρih0
=

mq
ρq

(Eq. A4) and where we have used

the binomial expansion 1
h
=

1
h0+δh

≈
1
h0
(1− δh

h0
). Following

Williams et al. (2017), we do a perturbation analysis on the
system of Eqs. (34)–(36) and assume a wave solution of the
form δf = f̂ exp(i(kx−ωt)), where i is the imaginary num-
ber; k is the wavenumber; ω is the angular velocity; and f is
a dummy variable standing for u, x and h. Substituting δf in
Eqs. (34)–(36), the resulting set of equations in the reference
frame following the ice motion reduces to

x̂ =
i

ω
û, (37)

û=
i0

ωρi

N∑
q=1

Aq
xpq

|xpq|

([
−
ĥ

h0
(1+ exp(−ikxpq))

]
∂W

∂xpq

+ 2x̂(1− exp(−ikxpq))
∂2Wpq

∂x2
pq

)
, (38)

ĥ=−
ih0û

ω

N∑
q=1

Aq
xpq

|xpq|
( exp(−ikxpq)− 1). (39)

Note that since the ice is initially at rest, the Lagrangian and
the Eulerian frameworks are equivalent. For a large enough
wavelength (so that the perturbation can be resolved across
multiple particles with high accuracy, i.e., λ≥ lp and N→
∞), the summations can be approximated by integrals over
the space; i.e.,

∑N
q=1Aq

xpq
|xpq|

becomes
∫
∞

−∞
dxpq. Taking ad-

vantage of the kernel properties – i.e., all moments higher
than 0 vanish – we can write Eqs. (38)–(39) as

û=
−i0

ωρi

∞∫
−∞

(
ĥ

h0

∂W

∂xpq
+ 2x̂

∂2Wpq

∂x2
pq

)
exp(−ikxpq)dxpq

=
0

ωρi

(
ĥ

h0
k+ i2k2x̂

)
W̃, (40)

ĥ=−
ih0û

ω

∞∫
−∞

exp(−ikxpq)
∂W

∂xpq
dxpq =

h0ûk

ω
W̃, (41)

where the integrals have been converted to Fourier transform
using F( ∂W

∂xpq
)=

∫
∞

−∞

(
∂W
∂xpq

)
exp(−ikxpq)dxpq = ikF(W)=

ikW̃ . Finally, Eqs. (37), (40) and (41) represent a system of
three equations for three unknowns (x̂, û, ĥ) that we solve by
substitution. This leads to the following form for the phase
speed of the plastic wave (ω

k
):

cSPH =
ω

k
=±W̃

√
−
0

ρi

(
2

W̃
− 1

)
. (42)

For wavelengths much larger than the smoothing length
(λ∝ 1

k
� lp), the Fourier transform of the kernel tends to 1

(W̃ ≈ 1) and the SPH formulation reduces to the viscous–
plastic theory without SPH approximations (see for instance
Williams et al., 2017), i.e.,

cVP =±

√
−
0

ρi
, (43)

with a plastic wave propagation speed cVP ≈ 5.7 ms−1 for
typical sea-ice parameters (see Table 1). Consequently, a
major difference of SPH with the FDM framework is that
the plastic wave speed is dispersive with a phase velocity
cSPH that is dependent on the wavelength and the smooth-
ing length. In general, only the plastic waves with a wave-
length between approximately 1 and 11 times the smoothing
length will have their travelling speed modified by more than
1 %. More specifically, in the limit where the wavelength λ
approaches the smoothing length lp, the plastic wave speed
increases in the SPH framework to a maximum value of
≈ 6.7 ms−1 (see Fig. 2a). Note that for wavelengths smaller
than the smoothing length, the summations in Eqs. (40)–(41)
cannot be written as integrals, but the particles still respond
partially to the perturbations. This sometimes leads to the
tensile and the zero-energy mode instabilities (Swegle et al.,
1995). As mentioned above, Dehnen and Aly (2012) showed
that Wendland kernels can diminish the tensile instability
and the pairing of particles. A deeper analysis of unresolved
waves (λ < lp) in the context of sea-ice SPH dynamic equa-
tions is beyond the scope of the current study.

For the more general case when the base state allows for
a variable concentration (linearized around a mean state A=
A0) and considering the classical – denoted by a superscript
C – particle density definition (ρC

p = ρihpAp) used by Wang
et al. (1998), Ji et al. (2005), and Staroszczyk (2017), the
plastic wave speed becomes

cC
A,SPH =±W̃

√
−
0∗

ρi

(
CA0− 3+

2

W̃

)
, (44)

where 0∗ = 0 exp(−C(1−A0)). We argue that the plastic
wave speed cC

A,SPH obtained with the classical density defi-
nition does not converge (see Fig. 2b) to the viscous–plastic
theory, cA,VP, derived from FDM (see Williams et al., 2017,
for a derivation),

cA,VP =±

√
−
0∗

ρi

(
CA0+ 1

)
, (45)
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because the ice concentration is taken into account in both
the definition of ρC

p and implicitly in the definition of the
average thickness hp. When we consider the new formulation
of particle density independent of concentration as proposed
above (Eq. 18), the wave speed equation becomes

cA,SPH =±W̃

√
−
0∗

ρi

(
CA0− 1+

2

W̃

)
, (46)

which reduces to the FDM VP theory (Eq. 45) when the
wavelength is large compared to the smoothing length (see
Fig. 2c). Note that the perturbation analysis presented above
is not valid for the classical density definition proposed by
Wang et al. (1998), Ji et al. (2005), and Staroszczyk (2017)
since they use a different set of momentum, continuity and
constitutive equations to describe sea ice. In a similar manner
to the plastic wave speed with a fixed concentration (Eq. 42),
the wave speed cA,SPH (Eq. 46) is dispersive and the wave-
lengths between 1 and 11 times the smoothing length are
those that are mostly affected (more than 1 %). However, in
this case, the plastic wave speed is damped for wavelengths
close to the smoothing length for a mean concentration state
higher than 0.1. Note that while the plastic wave speed is
defined for all A, it does not have a physical meaning for
A< 0.85 since there are negligible ice–ice interactions.

3.2 Ridging experiments

We validate our implementation of the SPH model (with the
new definition of particle density ρp) in a 1D ridging exper-
iment for which we can validate against the simulated field
from a viscous–plastic sea-ice model based on the FDM – the
1D version of McGill-SIM model used in the SIREx studies
(Bouchat et al., 2022; Hutter et al., 2022) – and against the
analytical solution (see Williams and Tremblay, 2018, for a
derivation):

−
dσ
dx
= ρaCa|ua|ua⇒

dh
dx
=

2ρaCa|ua|ua
P ∗(
√
e−2+ 1+ 1)

, (47)

i.e., a linear profile in thickness with a slope proportional to
the square of the wind velocity and inversely proportional to
the ice strength. We consider a rectangular domain of 1000
by 2000 km including the boundary (the ice field is 1900 km
to ensure that no particles escape on the open side) with
37 240 particles; an initial homogeneous smoothing length
lp of 21.429 km (spacing lp/α = 7.14 km); and a smaller – to
limit boundary effect – boundary particle smoothing length
lb of 4 km (spacing lb/4= 1.0 km) to represent the wall (see
Fig. 3). Particles are initialized with an average thickness
h= 1 m and a concentration A= 1. They are forced against
the wall by a constant unidirectional wind of 5 ms−1. Note
that the water stress is removed in the simulation for a faster
convergence to the steady state, which enables higher reso-
lution – a water current of 0 ms−1 would slow down the ice
and the ridge formation since it is driven by the advection

Figure 2. SPH plastic wave speed as a function of the normalized
wavelength (λ/lp) for the Wendland C6 kernel. Panel (a) shows the
classical VP rheology with fixed concentration (Eq. 42) normalized
by the FDM plastic wave speed with fixed concentration (Eq. 43),
(b) shows the classical VP rheology with a variable concentration
and the density definition ρC

p = ρihpAp (Eq. 44) normalized by the
FDM plastic wave speed with a variable concentration (Eq. 45),
and (c) shows the classical VP rheology with a variable concen-
tration and the density definition ρp = ρihp (Eq. 46) normalized by
the FDM plastic wave speed with a variable concentration (Eq. 45).
Different homogeneous base states of concentration A0 are shown
varying from 0 to 1.

Figure 3. Idealized domain of the ridging experiment. The blue cir-
cles represent the ice particles, and the black ones are the boundary
particles. The grey arrow shows the wind forcing. More particles
than shown in this schematic were used during the simulation.

speed. The Coriolis force should normally also have to be
considered with this domain size at classical polar latitude –
the Rossby number is O(10−2) – but is neglected in this ide-
alized experiment to conserve the symmetry of the solution
and compare it to the theoretical 1D equation (Eq. 47). In re-
sults presented below (Figs. 4–5), the particle properties are
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Figure 4. Temporal evolution of simulated sea-ice thickness along the central horizontal line of the domain for (a) the ridge experiment
initialized with a concentration A= 1 and average thickness h= 1 m and (b) the ridge experiment initialized with a concentration A= 0.5
and average thickness h= 0.5 m. The wall is located at x = 0, and the wind speed is −5x̂ms−1. The theory follows Eq. (47).

averaged over a grid of approximately 10 by 5 km cells for
plotting purposes.

Results show that the simulated thickness field converges
to the analytical solution (within an error of ≈ 1%) af-
ter ≈ 5 d with a slope of 1.33× 10−3 mkm−1, compared to
1.34× 10−3 mkm−1 for the theory – lower-resolution sim-
ulations were run for a longer time and also converged to
this stable state (results not shown). This is comparable to
the precision obtained by the 1D McGill-SIM FDM model
which reaches a slope of 1.35× 10−3 mkm−1. Artifacts are
observed close to the boundary where the repulsive force pre-
vents the particles from reaching the “wall”. Additionally,
when a particle comes into contact with the boundary with
a certain inertia (due to the 1/r dependence of the bound-
ary force), we observe oscillations in the motion of parti-
cles which can propagate far in the domain (e.g., Fig. 4a,
at x ≈ [50,300] km and t = [30,45] h). The oscillations are
damped, and the energy is dissipated by the rheology term
with time until an equilibrium is reached. Note that rein-
troducing the water drag diminishes the oscillation coming
from the boundary but does not remove them completely. A
more physical boundary treatment is beyond the scope of this
study.

We also repeated the ridge experiment with the same forc-
ing and total sea-ice volume but letting the sea-ice concentra-
tion evolve with time. Specifically, the initial average thick-
ness and concentration were set to h= 0.5 m and A= 0.5.
This ensures that both h and A covary in time such that h

A
re-

mains constant – note that A and h follow the same continu-
ity Eqs. (15) and (16) or (4) and (5) when omitting the SPH
approximations, and therefore they should vary identically
in time until A reaches 1 – in the marginal ice zone (MIZ),
which we define as the area where the sea-ice concentration
ranges between 0.15 and 0.85 and where low ridging by ice
collision occurs (see Fig. 4b). To accomplish this, the domain
was extended to 4000 km (3800 km, excluding the bound-
aries) and the initial particles spacing changed from 7.14 km
to 10.0 km for a corresponding initial smoothing length lp
of 30.0 km and total number of particles of 38 000. In this
configuration, the model converges to a steady-state solu-
tion in ≈ 10 d with a slope of 1.36× 10−3 mkm−1, in agree-
ment with theory within an error of ≈ 1% (see Fig. 4b). Re-
sults at x = 300 km, away from boundary effects, show that
(as desired) thickness and concentration evolve coherently –
d(h/A)

dt ≈ 0 – before ice concentration reaches ≈ 85% (see
Fig. 5a). At that point (t ≈ 22 h), ice–ice interactions emerge
and the ridging process starts

(
d(h/A)

dt > 0
)

. One key differ-
ence with the simulation initialized at A= 1 is a thickness
build-up (above 1 m) at the edge of the ridge in the MIZ. At
this location, the continuity equation for sea-ice concentra-
tion is capped, while that of the mean ice thickness remains
continuous. This results in a local increase in ice thickness
to ≈ 1.1 m. This process is akin to the wave radiation drag in
the MIZ (Sutherland and Dumont, 2018). A detailed analysis
of simulations in simple convergent ice flow in the MIZ with
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Figure 5. Evolution in time of (a) the thickness normalized by concentration rate of change in time d(h/A)
dt , (b) the average thickness h and

(c) the concentration A at x = 300 km. The rate of change in time is computed from df
dt (x, t)=

f (x,t+1t)−f (x,t−1t)
21t .

ice concentration close to 100 % will be considered in future
work.

In the ridge building phase, the speed of advance of
the ridge front increases until a maximum concentration is
reached after ≈ 70 h (see Fig. 5c). Subsequently, the ice drift
speed reduces, and the rate of advance of the ridge slows
down. When the ice thickness gradient is in balance with the
surface wind stress (after ≈ 200 h), d(h/A)

dt reaches a steady
state. Overall, we can observe three stages in the ridge forma-
tion (see Fig. 5): first, a rapid compaction stage when ice par-
ticles are drifting close to their free-drift speed since the ice
strength is weak; second, a transition stage betweenA≈ 0.85
and 1.00 when ridging occurs in the MIZ analogous to the
wave radiation drag mentioned above; and third, a ridging
stage with changes in ice thickness that are about 1 order of
magnitude higher than during the transition stage. Note that
the amplitude of oscillations between particles within the do-
main or at the boundaries in ridging experiments diminishes
when incorporating the water drag (a damping term). The
water drag also increases the time needed to reach steady
state because the ice drift speed is slower.

3.3 Arch experiments

We next compare the SPH approach with the FDM and DEM
sea-ice models in a second well-studied idealized experi-
ment: the ice arch formation. To this end, we run the SPH
model in an idealized domain representing the Nares Strait
(see Fig. 6) with an upstream reservoir 5 times the length of

the channel (L) to minimize the boundary confinement effect
without sacrificing the spatial resolution.

The set of simulations uses a domain with L= 60 km. The
initial conditions for ice thickness, concentration and veloc-
ity are h= 1 m, A= 1 and u= 0 ms−1. The ice is forced
with a constant unidirectional wind of−7.5 ms−1 in the ŷ di-
rection, and ocean current is fixed to uw = 0 ms−1. The cor-
responding surface stress is ≈ 0.04 kNm−2, and the total in-
tegrated stress at the entry of the channel is slightly smaller
than P ∗ (

∫ 5L
0 τadx = 26.325 kNm−1). We use a weaker wind

than commonly used in Nares Strait ice arch simulations
(≈ 10 ms−1) to limit the ridging phase prior to the forma-
tion of the ice arch. In this experiment, we limit ourselves to
ice with no tensile strength (kt = 0) and a shear strength of
6.875 kNm−2, i.e., an ellipse aspect ratio of 2.

We suspect that the SPH and DEM frameworks have
a similar behaviour in certain circumstances even though
they have different (implicit) rheologies because of their La-
grangian nature. Indeed, the interpretation of the numerical
representation of a particle in SPH as a collection of ice floes
is also present in the DEM (Li et al., 2014), and the two nu-
merical frameworks compute their quantities with one-to-one
interactions. Consequently, we first test whether the SPH ap-
proach has the same sensitivity to the relative size of parti-
cles with respect to the channel width as in the DEM (Dams-
gaard et al., 2018). Results showed that no stable arch can
be formed with the specified forcing for all particle diam-
eter sizes tested (7.5, 5, 3.75 km) (see ice velocity field in
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Fig. 7). Instead, a “continuous” slow flow of ice is present
in the channel. The discontinuity at the entry of the channel
is visible in the concentration, thickness and velocity fields
(Fig. 7) and can be interpreted as an intermittent (unstable)
ice arch formation. Also, we noted that larger particles are
not more prone to ice jam than smaller ones. This is contrary
to what is known from granular material theory and to results
from Damsgaard et al. (2018) that show a transition from sta-
ble to no ice arch formation for floe sizes ranging from ap-
proximately 1/4 to 1/16 of the strait’s width. We explain this
difference between SPH and DEM from the continuum de-
scription of the ice dynamics equation. In the present model,
the constitutive laws prescribe the repulsion of the parti-
cles from one another according to the ice strength, which
is a function dependent on the ice concentration and mean
thickness, not on the particle size. We conclude that to en-
force granularity within the SPH framework, the constitutive
laws would need to be adapted to account for contact force
and particle size which could then reproduce a similar be-
haviour to that observed in the DEM. However, even though
the increase in resolution – or particle size – has no effect
on the arch stability, it enables smaller fracture resolutions
that are visible at the entrance of the channel (see εI and εII
in Fig. 8). In our SPH model, the stress invariants σI and
σII shows oscillation patterns in regions where the ice is in
the viscous regime (see the tree-like structure in the normal
and shear stress fields in Fig. 8). From our experiments, the
“tree-like” peak stresses appear during the transient phase
and at steady state. However, the particles never stop mov-
ing even in a steady state because viscous deformations are
always present. We hypothesized that stress patterns are asso-
ciated with over-damped elastic waves associated with small
movements (but large internal stresses) of the particle in the
viscous regime. Those structures are not symmetric, despite
symmetrical initial conditions, because of the domino effect
between interacting viscous waves. Note that they are absent
from the strain-rate fields since viscous deformations are ex-
tremely small. They are also absent in sea-ice model based
on a continuum approach (Dumont et al., 2009; Dansereau
et al., 2017; Plante et al., 2020), but these tree-like structures
are qualitatively similar to the stress structure between floes
observed in the DEM (e.g., Damsgaard et al., 2018, Fig. 5c).
Despite the fact that the model solves the same continuum
equations as other FDM models, we believe that stress net-
works can be observed with the SPH method because par-
ticles interact in a pairwise fashion according to their rela-
tive distance. This can create less-dense ice areas within the
medium which can lead to oscillations in the stress field. It is
known that SPH can have spurious behaviour in some cases
when the stress is solved at the same location as the particle
centre (as done here). This can be avoided using stress parti-
cles (see Chalk et al., 2020, for details). More investigations
are required to test whether this behaviour is physical. This
is left for future work.

Figure 6. Idealized domain of the ice arch experiments. The blue
circles represent the ice particles, and the black ones are the bound-
ary particles. The grey arrow shows the wind forcing.

Second, we explored the ability of the model to produce
stable ice arches. To this end, we reduce the total integrated
surface stress at the entry of the channel to 13.146 kNm−1

(or wind speed of 5.3 ms−1) to a value below the ice com-
pressive strength (P ∗) to avoid completely ridging the north
of the channel and jump immediately to the arch-forming
stage. In this case, the results show a clear stable arch (see
Fig. 9) with a shape that is qualitatively similar to the one
presented by Dansereau et al. (2017), Plante et al. (2020),
and West et al. (2022). The formation of a stable arch in
an SPH model is possible with the standard shear strength
(e = 2), in contrast to continuum models that require an in-
crease in shear strength (e.g., Dumont et al., 2009; Dansereau
et al., 2017; Plante et al., 2020) – it is important to keep in
mind that the domain configurations were different in each
of those studies. This suggests that SPH has a different sen-
sitivity of ice arching to the ellipse aspect ratio e and ice
thickness h. With a no-slip boundary condition and the same
default yield curve (same P ∗ and ellipse aspect ratio e), pre-
liminary results suggest that no arches form – the pack is
undeformed – and instead a higher surface wind stress is re-
quired to form an arch. Note that in the SPH simulations,
only one arch forms close to the outlet. Presumably, the num-
ber of arches would increase and location would change if the
model was run at higher resolution, with different boundary
conditions or in a non-idealized domain geometry. Overall,
this shows that SPH is able to capture large-scale features
coming from small-scale interactions. The simulation of a
stable ice arch (Fig. 9) also shows how SPH can fracture and
create discontinuities in the ice field as seen in DEM models.
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Figure 7. Ice concentration, thickness and total velocity (h, A, |ui |) at time t = 24 h for an initial particle spacing of (a) 7.5, (b) 5 and
(c) 3.75 km (8, 12 and 16 particles can fit in the strait respectively), and the initial total integrated surface stress at the entry of the channel is
26.325 kNm−1.

This behaviour is similar to that of the elastic-decohesive sea-
ice constitutive model of Schreyer et al. (2006) or the FEM
model of Rampal et al. (2016). Finally, in the SPH frame-
work, a lead or polynya can be defined by an absence of par-
ticles for leads larger than particle size – akin to DEM – or
by particles with reduced concentration for sub-particle size
leads – akin to FDM.

4 Discussion and conclusion

In this paper, we have presented a first implementation of the
viscous–plastic rheology with an elliptical yield curve and
normal flow rule in the framework of SPH with the long-
term goal of simulating synoptic-scale sea-ice dynamics. We
have described the basics of the SPH approach and how the
sea-ice dynamic equations can be formulated in this frame-
work along with the implementation of key components of
the numerical method such as the smoothing length, the ker-
nel, the boundaries and the time integration technique. We
proposed a different definition of the particle density and

showed that the more commonly used density definition in-
volving the ice concentration (Wang et al., 1998; Ji et al.,
2005; Staroszczyk, 2017) when used together with the aver-
age ice thickness leads to erroneous plastic wave speed prop-
agation. A particle density definition independent of the ice
concentration corrects this and leads to results that are in line
with the VP theory. The SPH model thus developed is in ex-
cellent agreement (error of≈ 1%) with an analytical solution
of the VP ice dynamics for a simple 1D ridging experiment.
The approximations used at the core of the SPH framework
result in a dispersive plastic wave speed in the medium – in
contrast to its FDM counterpart – which is dependent on the
smoothing length (or resolution) and the choice of the kernel.
The plastic wave speed is mostly affected for wavelengths 11
times the smoothing length and lower.

From the simple ridging experiment with fixed sea-ice
concentration (A= 1), we observe nonphysical damped os-
cillations that propagate in the domain associated with our
choice of boundary conditions. The conclusions drawn from
our simulations are robust to the choice of boundary con-
ditions. Nevertheless, this behaviour needs to be removed

The Cryosphere, 18, 1013–1032, 2024 https://doi.org/10.5194/tc-18-1013-2024



O. Marquis et al.: SPH VP model and validation in idealized experiments 1025

Figure 8. Strain rate and stress invariants (ε̇I , ε̇II , σI , σII ) at time t = 24 h for an initial particle spacing of (a) 7.5, (b) 5 and (c) 3.75 km (8,
12 and 16 particles can fit in the strait respectively), and the initial total integrated surface stress at the entry of the channel is 26.325 kNm−1.

Figure 9. Thickness field at time t = 0, 48 and 168 h for an initial particle spacing of 7.5 km and a total integrated stress at the entry of the
channel of 13.146 kNm−1.
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for a proper simulation of sea ice near coastlines. The ridg-
ing experiment with an initial ice concentration below 100 %
showed that continuity equations for concentration and thick-
ness evolve coherently until a concentration of 85 %. At that
point, SPH particles start to ridge locally in the MIZ in ad-
dition to the wall where the maximum stress is located. This
effect is not observed in the continuum approach and is pre-
sumably related to particle collisions in converging motion.

When compared to other numerical frameworks, the SPH
model is able to reproduce stable ice arches in an idealized
domain of a strait with an ellipse aspect ratio of 2 and a
wind forcing of 5.3 ms−1, in contrast to other continuum ap-
proaches that require higher material shear strength. How-
ever, when using a stronger wind field of 7.5 ms−1, no sta-
ble arches are formed when increasing the particles size in
the strait (stable arches are only achieved when increasing
particle average thickness). We concluded that the number
of particles in the strait does not influence the formation of
ice arches, in contrast to the DEM, and is analogous to an in-
crease in resolution in a continuum framework: a larger num-
ber of particles influence the number of fractures that can
form and the resolution of fine-scale structures. The stress
fields produced by the SPH model in the channel experiment
show a tree-like pattern upstream of the channel where there
are low total deformations. This is not observed in FDM ex-
periments, but it is qualitatively similar to the tensile stress
network exhibited in DEM simulations (Damsgaard et al.,
2018) that comes from individual contact force between the
ice floes and is hypothesized to be associated with damped
viscous sound waves.

Even though we successfully implemented the standard
sea-ice viscous–plastic rheology with an elliptical yield
curve and a normal flow rule in an SPH framework, the cur-
rent model does not outperform a classical FDM model. In
fact, there are inherent difficulties and instabilities in SPH
that do not exist in FDM. It is known that the SPH frame-
work trades consistency – i.e., the ability to correctly repre-
sent a differential equation in the limit of an infinite number
of points with a null spacing between them – for stability,
which gives the SPH a distinct feature of working well for
many complicated problems with good efficiency but less
accuracy. However, the classical formulation of SPH used
and described in the present work does not usually respect
zeroth-order consistency because of the unstructured particle
position in space (see Belytschko et al., 1998, Sect. 3 for a
derivation). Nevertheless, consistency can be improved at the
expense of computational cost (Chen and Beraun, 2000; Liu
et al., 2003) by reformulating the SPH core approximation
(Eq. A1). Also, the boundary description has been identified
as a weak point of the SPH framework. Prescribing Dirichlet,
Neumann or Robin boundary conditions is not as straight-
forward as in continuum approaches. Moreover, preventing
particle penetration through a boundary is still a challenging
task (Liu and Liu, 2010), and the SPH consistency is usually
at its worst at the boundary because the support domain is

truncated. In the present study, a proper physical represen-
tation of the boundary was not adopted, and the boundary
treatment was chosen for its numerical simplicity and should
be modified in future work. Other major issues with SPH are
the zero-energy modes and the tensile instability previously
mentioned. The zero-energy modes can be found in FDM and
FEM, and they correspond to modes at which the strain en-
ergy calculated is erroneously zero (Swegle et al., 1995). The
tensile instability results in particle clumping or nonphysical
fractures in the material. In the present work, we adopted
a different kernel from the usual Gaussian spline to avoid
those instabilities, but other methods such as the independent
stress point (Dyka and Ingel, 1995; Chalk et al., 2020), arti-
ficial short-length repulsive force (Monaghan, 2000), parti-
cle repositioning (Sun et al., 2018) or adaptive kernel (Lahiri
et al., 2020) can be used if more stabilization is needed. For
example, at a smaller scale, SPH simulation of ice in uniaxial
compression was improved by a simplified finite-difference
interpolation scheme (Zhang et al., 2017). More specifically
for sea-ice models, the pressure closure of Kreyscher et al.
(2000) is not well-suited for long simulation. Indeed, par-
ticles can still move when they are in the viscous state but
have low internal ice pressure because of the replacement
pressure scheme. Consequently, particles could pass through
each other resulting in erroneous locations of the parameters
carried out. Finally, using SPH for sea-ice modules in grid-
based continuum global climate models (GCMs) complicates
the coupling with ocean and atmosphere components since
particle quantities need to be converted on a grid and vice
versa.

In its current state, the model reproduces very similar be-
haviour to other FDM continuum models and does not con-
stitute a large improvement. Nevertheless, we believe that
SPH enables the possibility to describe sea ice as a contin-
uum at large scale using what is already known from con-
tinuum models and to explore some new avenues at small
scales, where the continuity approximation is questionable.
Indeed, SPH also has interesting properties that could be ex-
ploited. For example, SPH can be used with little change for
problems involving several fluids, whether liquid, gas or dust
fluids (Monaghan, 2012). This feature could be exploited in
the creation of a general approach for all components of a
GCM (atmosphere, ocean and sea ice). The method devel-
oped is also a proper option for nowcasting sea-ice prediction
because only the ice dynamics need to be considered in now-
casting applications and the model has a good ability to carry
the ice property in space. SPH can fracture and transition
from the continuum to fragments seamlessly since it is not
restricted on a grid, which also has the advantage of enabling
ice edge shapes independent of it. The ability of SPH to move
around particles has the interesting property of concentrating
them in converging motion, effectively increasing the spatial
resolution of the model in regions under high-stress activity
and dispersing particles when the flow is divergent, which
decreases the resolution in low-ice-concentration areas. This
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property should result in higher accuracy than that in typical
continuum models. The elastic behaviour assumed for sea
ice with a certain rheology can be associated with the weak
compressibility inherent in the classical formulation of SPH.
Finally, the SPH discretization of the continuum into parti-
cles enables the implementation of several new features. For
example, angular momentum to individual floes (or pack of
floes) can be added to take into account rotation along LKFs.
A direct measure of the concentration from the number of
particles within a support domain (this takes advantage of the
already-computed number of neighbours and helps to ensure
the desired number of neighbours in converging flow) can be
computed. A subscale parametrization of floe–floe contact
force (this short-length repulsive force could also help with
the tensile instability) can be implemented. A varying floe
size distribution could be incorporated by varying the mass
carried by a particle for a given particle density.

For future work and before exploring new features enabled
by the SPH numerical framework, a more physical treatment
of the boundary conditions should be investigated to properly
simulate the grounding of sea ice near the coast enabling the
no-slip conditions. Subsequently, the model could be tested
against other benchmark problems in an idealized domain to
further understand and compare the effect of the SPH method
(Flato, 1993; Hunke, 2001; Hibler et al., 2006; Danilov et al.,
2015; Mehlmann et al., 2021). Also, in order to use the model
for pan-Arctic simulations, the Coriolis and sea surface tilt
force along with the treatment of the thermodynamics source
and sink terms should be implemented in the SPH framework
(see preliminary work by Staroszczyk, 2018). In addition, the
parallelization of the code should be improved in order to
bring the computational time down to a value comparable to
that of an FDM model. Finally, while there still is a signifi-
cant amount of work to be completed before SPH can be used
in large-scale climate simulations, the method shows promise
and deserves further investigations and development.

Appendix A: Smoothed particle hydrodynamics basics

The SPH method is at the interface between the finite-
element and discrete-element methods. In this framework
any function f (r) at a point r is approximated from neigh-
bouring values in the parameter space f (r ′) using an integral
interpolant (see Fig. A1):

f (r)=

∫
V

f (r ′)W(|r − r ′
|, l)dr ′, (A1)

where W(|r − r ′
|, l) is the interpolating kernel and V is the

entire space volume. In 2D, the space volume is an area A,
and the kernel has units of per square meter (m−2). This in-
tegral interpolant approximation is based on the singular in-
tegral mathematical framework of Natanson (1961) and im-

Figure A1. Graphical representation of the SPH kernel W(|rp−
rq|, lp) (solid orange line), the smoothing length lp (red arrow),
the particle p, the neighbouring particles q, the support domain A
(dashed orange line), and the distance between any neighbour par-
ticle q and the particle p within the support domain rp− rq (black
arrow). Note that particles are points in space and that their size in
this schematic is arbitrary.

poses the following restrictions on the kernel:∫
A

W(|r − r ′
|, l)dr ′

= 1 (A2)

and

lim
l→0

W(|r − r ′
|, l)= δ(r − r ′), (A3)

where l is the smoothing length of the kernel and δ is
the Dirac delta function. Using the particle approximation,
Eq. (A1) can be written as a weighted summation over all
neighbouring points within the area A:

f (rp)≈

N∑
q=1

f (rq)W(|rp− rq|, lp)1Aq

≈

N∑
q=1

f (rq)W(|rp− rq|, lp)
mq

ρq
, (A4)

whereN is the number of points in space referred to as neigh-
bour particles, 1Aq (=m/ρ) is the area associated with the
particle q, m represent the mass (kg) and ρ is the 2D density
(kgm−2).

From the above approximations, we reformulate differ-
ential operators relevant to our study in their discrete SPH
forms. We write the divergence of a vector field (V ), the di-
vergence of a tensor (T ) and the gradient of a vector field (V )
(Monaghan, 2005) as (see Appendix B for complete deriva-
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tion)

(∇ ·V )p =
1
ρp

N∑
q=1

mq(V (rq)−V (rp)) · ∇pWpq, (A5)

(∇ ·T )p = ρp

N∑
q=1

mq

(
T (rq)

ρ2
q
+
T (rp)

ρ2
p

)
· ∇pWpq, (A6)

(∇V )p =

N∑
q=1

mq

ρq
(V (rq)−V (rp))⊗∇pWpq. (A7)

In Eq. (A7), ⊗ denotes the outer product. ∇pWpq is the gra-
dient of the kernel at the coordinate rp− rq in the reference
frame of particle p and is written as

∇pWpq =
rp− rq

|rp− rq|

∂W(|rp− rq|, lp)

∂|rp− rq|
. (A8)

Note that Wpq is a scalar function and consequently ∇pWpq
is a vector, the inner product in Eq. (A5) is a scalar, the inner
product in Eq. (A6) is a 2D vector and the outer product in
Eq. (A7) is a 2D tensor of rank 2. In addition to Eqs. (A2)–
(A3), the smoothing kernel must have the following set of
properties to avoid nonphysical behaviour and costly com-
putation (Liu and Liu, 2003):

compact support : W(|rp− rq|, lp)= 0,

for |rp− rq|> lp, (A9)
positive definite : W(|rp− rq|, lp)≥ 0, (A10)

monotonically decreasing :
∂W(|rp− rq|, lp)

∂(|rp− rq|)
≤ 0, (A11)

symmetric : W(|rp− rq|, lp)

=W(−|rp− rq|, lp), (A12)

differentiable :
∂nW(|rp− rq|, lp)

∂(|rp− rq|)n
∃, (A13)

where ∃ stands for exist. In the above, “differentiable” means
that the kernel derivatives exist up to the highest order present
in the equations. Finally, to ensure the consistency of the dis-
cretization of partial differential equations (PDEs; as defined
in Belytschko et al., 1998) of the SPH method approxima-
tions to the nth order, all kernel moments of order 1 to n
need to vanish. In practice, the consistency conditions are
satisfied when the number of neighbouring particles is suf-
ficiently large to be evenly distributed in the domain of in-
fluence (Fraga Filho, 2019). Note that, at the boundaries, the
domain of influence of the particle is truncated, making it
impossible to satisfy the kernel moment equations. This phe-
nomenon is referred to as the particle inconsistency and leads
to poorer approximations of physical properties. No clear so-
lutions to this problem have been proposed in the literature
yet.

Appendix B: Vector operators in SPH

Vector operators take different forms in the SPH framework
because they only operate on the smoothing kernel W and
they need to ensure symmetric interactions between particles.
The following subsections show the demonstrations to obtain
the relevant one to our study.

B1 Divergence of a vector

First, the divergence of vector needs to be changed into a
form that can be symmetrized. To do so, we use the iden-
tity of the divergence of a scalar function times a vector and
chose the scalar function to be the density as follow:

∇ ·V =
1
ρ

(
∇ · (ρV )−V · ∇ρ

)
. (B1)

Now applying the integral interpolant approximation (A1) to
the divergence term (∇ · (ρV )) and to the density (ρ) gives

∇ · (ρV )=

∫
V

∇
′
· (ρ′V ′)W dr ′

=

∫
V

∇
′
· (ρ′V ′W)dr ′

−

∫
V

ρ′V ′
· ∇
′Wdr ′, (B2)

ρ =

∫
V

ρ′Wdr ′. (B3)

In the above equations, the prime quantities represent the sur-
rounding values. Note that the kernel is the only function that
depends on both primed and non-primed positions as defined
in Eq. (A1). Using the divergence theorem, the first term in
Eq. (B2) can be cancelled:∫
V

∇
′
· (ρ′V ′W)dr ′

=

∫
S

(ρ′V ′W) · ds′ = 0, (B4)

since the integration surface S encompassing the volume V
is arbitrary and the kernel W has the compact support prop-
erty (Eq. A9). Applying the particle approximation (A4) to
Eqs. (B2)–(B3), we obtain

(∇ · (ρV ))p =−
∑

q
mqV q · ∇qWpq

=

∑
q
mqV q · ∇pWpq, (B5)

ρp =
∑

q
mqWpq, (B6)

where we used the identity ∇p =−∇q and p and q represent
the current particle and neighbour. Finally, substituting the
last two Eqs. (B5)–(B6) into Eq. (B1) gives the desired form
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of the operator:

(∇ ·V )p =
1
ρp

(∑
q
mqV q · ∇pWpq−V p

· ∇p
∑

q
mqWpq

)
(B7)

=
1
ρp

(∑
q
mq(V q−V p) · ∇Wpq

)
. (B8)

B2 Divergence of a 2D tensor field

Note that in the following demonstration, the Einstein sum-
mation convention is used to simplify the calculation and the
tensor representation. We start with the divergence of a 2D
tensor divided by the density:

∂

∂xi

(
Tij

ρ

)
=

1
ρ

∂Tij

∂xi
−
Tij

ρ2
∂ρ

∂xi
. (B9)

Reorganizing the terms gives

∂Tij

∂xi
= ρ

[
∂

∂xi

(
Tij

ρ

)
+
Tij

ρ2
∂ρ

∂xi

]
. (B10)

Now applying the interpolant approximation (A1) to the first
term in the bracket leads to

∂

∂xi

(
Tij

ρ

)
=

∫
V

∂

∂x′i

(
T ′ij

ρ′

)
W dr ′ (B11)

=

∫
V

∂

∂x′i

(
T ′ij

ρ′
W

)
dr ′
−

∫
V

(
T ′ij

ρ′

)
∂W

∂x′i
dr ′. (B12)

As for the divergence of a vector demonstration (Sect. B1),
the first integral above vanishes by using the divergence the-
orem, and applying the particle approximation gives(
∂

∂xi

(
Tij

ρ

))
p
=−

∑
q

(
mq
(Tij )q

ρ2
q

)
∂Wpq

∂(xi)q

=

∑
q

(
mq
(Tij )q

ρ2
q

)
∂Wpq

∂(xi)p
. (B13)

Substituting this into Eq. (B10) and using the equality
Eq. (B6) we get the following expression:(
∂Tij

∂xi

)
p
= ρp

[∑
q

(
mq
(Tij )q

ρ2
q

)
∂Wpq

∂(xi)p

+
(Tij )p

ρ2
p

∂

∂(xi)p

(∑
q
mqWpq

)]
(B14)

= ρp

[∑
q
mq

(
(Tij )q

ρ2
q
+
(Tij )p

ρ2
p

)
∂Wpq

∂(xi)p

]
(B15)

= ρp
∑

q
mq

(
T q

ρ2
q
+
T p

ρ2
p

)
· ∇pWpq, (B16)

which is the form presented in Eq. (A6).

B3 Gradient of a vector field

To demonstrate Eq. (A7) we first write

∇(aV )= a∇V +V · ∇a. (B17)

Choosing a = 1 and recalling that the zeroth-order moment
of the kernel also equals 1, we can substitute it in the last
term of the expression (B17) and obtain

∇(V )=∇V +V · ∇M0 (B18)

=∇V +V · ∇

∫
V

W(r − r ′, lp)dr ′. (B19)

Finally using the particle approximation (A4) we get

(∇V )p =
∂

∂(xi)p

∑
q

mq

ρq
(Vj )qWpq− (Vj )p

∂

∂(xi)p∑
q

mq

ρq
Wpq (B20)

=

∑
q

mq

ρq
((Vj )q− (Vj )p)

∂

∂(xi)p
Wpq (B21)

=

∑
q

mq

ρq
(V q−V p)⊗∇pWpq, (B22)

which is Eq. (A7) and where Einstein summation convention
was once again used to simplify the derivation.
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McGill-sea-ice/SIMP (last access: 28 February 2024) and
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