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Abstract. The surface morphology of lake ice remarkably
changes under the combined influence of thermal and me-
chanical forces. However, research on the surface morphol-
ogy of lake ice and its interaction with climate is scarce. A
large-scale linear structure has repeatedly appeared on satel-
lite images of Chagan Lake in recent years. The Geostation-
ary Ocean Color Imager (GOCI), with a 1 h revisit, and Land-
sat 8 Operational Land Imager (OLI), with a spatial resolu-
tion of 30 m, provide the possibility for the study of hourly
changes in the large-scale linear structure. We merged the
Landsat and GOCI images, using an Enhanced Spatial and
Temporal Adaptive Reflectance Fusion Model (ESTARFM),
and extracted the lengths and angles of the linear structure.
We monitored the hourly changes in the surface morphol-
ogy during the cold season from 2018 to 2019. The average
length of the linear structure in the completely frozen period
was 21141.57 ± 68.36 m. The average azimuth angle was
335.48 ± 0.23◦, nearly perpendicular to the domain wind in
winter. Through two field investigations during the two re-
cent cold seasons, we verified the linear structure as being ice
fractures and ridges. The evolution of surface morphology is
closely associated with air temperature, wind, and shoreline
geometry.

1 Introduction

Lake ice is one of the essential climate variables in the
cryosphere (Bojinski et al., 2014) and is closely associated
with lake environments, ecological regulation, public trans-
portation, and the safety of human activities (Hampton et al.,
2017; Magnuson et al., 2000; Leppäranta, 2015; Brown and
Duguay, 2010; Arp et al., 2020). The shortening of the ice
cover duration and the thinning of ice thickness have been
common trends throughout the world (IPCC, 2021; SROCC,
2019; Murfitt and Duguay, 2021). Recent work using re-
mote sensing mainly focused on lake ice phenology (Weber
et al., 2016; Zhang et al., 2021; Xie et al., 2020; Murfitt and
Duguay, 2020; Du et al., 2017), lake ice classification (Hoek-
stra et al., 2020), ice thickness (Murfitt et al., 2018b; Kang et
al., 2014; Gogineni and Yan, 2015), and ice albedo (Li et
al., 2018; Lang et al., 2018). However, previous work on the
surface morphology of lake ice is scarce. The surface mor-
phology, i.e., ice ridges and fractures, is controlled by the dy-
namic processes of lake ice, which have attracted widespread
concern in academia and the society. In this study, we mon-
itored the surface morphology of Chagan Lake in Northeast
China by combining high spatiotemporal remote sensing data
and the results of field investigations and explored the poten-
tial influences of climate factors.

Satellite remote sensing is macroscopic, multi-source, and
wide-ranging and has been successfully applied in the global
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remote sensing monitoring of lake ice (Murfitt and Duguay,
2021; Doernhoefer and Oppelt, 2016; Du et al., 2019). Vis-
ible light and multispectral data were first used to monitor
lake ice based on the spectral difference between ice and wa-
ter; however, the best period to monitor lake ice changes is
prone to be missed due to the influences of clouds, fog, and
light (Howell et al., 2009; Cai et al., 2019; Yang et al., 2019;
Qi et al., 2020). Active microwave data are used to iden-
tify ice through the differences in the backscatter of water
and ice, while passive microwave data are used to identify
ice through the differences in brightness temperature (Cai et
al., 2017). Microwave remote sensing can penetrate the dry
snow on the surface of lake ice and observe the internal struc-
ture and stratification of lake ice (Jones et al., 2013) from the
early stage of the qualitative differentiation between ground
ice and floating ice to the quantitative inversion of the phe-
nology and thickness of lake ice (Ke et al., 2013; Jeffries et
al., 2013; Howell et al., 2009; Kang et al., 2014). Although
the temporal resolution of active microwave remote sensing
data has been improved from 30 d (ERS – European Remote
Sensing) to daily return visits (Radarsat-2), the optimized
technique is too costly and more suitable for case studies of
small or medium lakes (Murfitt et al., 2018a; Geldsetzer et
al., 2010). With a high temporal resolution and temporal cov-
erage, passive remote sensing data can detect ice cover under
all weather conditions and are limited by their low spatial
resolution and significant mixed image effects. Thus, passive
remote sensing is more suitable for monitoring large-scale
lake ice (Du et al., 2017; Qiu et al., 2018). Although multi-
source remote sensing is available to monitor lake ice pro-
cesses, single-sensor remote sensing data cannot simultane-
ously achieve both accurate remote sensing monitoring and a
high frequency.

The growth and decay processes of lake ice change very
fast, requiring high temporal resolution to capture surface
morphology. Satellite sensors with moderate spatial reso-
lution, such as Visible Infrared Imaging Radiometer (VI-
IRS) and Moderate Resolution Imaging Spectroradiometer
(MODIS), can monitor the temporal changes in lake ice
daily but fail to reflect the spatial details of surface morphol-
ogy. Satellite sensors with medium spatial resolution, such
as Landsat and Sentinel, can provide fine-texture images but
do not have frequent images to capture fast changes. Fu-
sion methods include the unmixing method, weight function
method, and dictionary–pair learning method (Sisheber et
al., 2022; Zhu et al., 2016). The most common weight func-
tion method includes the Spatial and Temporal Adaptive Re-
flectance Fusion Model (STARFM; Feng et al., 2006), Spa-
tial and Temporal Adaptive Algorithm (STAARCH; Hilker
et al., 2009), Enhanced Spatial And Temporal Adaptive Re-
flectance Fusion Model (ESTARFM; Zhu et al., 2010), and
Flexible Spatiotemporal Data Fusion (FSDAF; Zhu et al.,
2016). Previous studies have proven that these spatiotempo-
ral fusion methods can improve the monitoring abilities of
remote sensing for specific applications, but that they fail to

monitor the abrupt changes in landscapes and spectral differ-
ences. All these models are derived by pairs of coarse and
fine resolution, e.g., one pair for the STARFM and two pairs
for the ESTARFM. The ESTARFM method performs better
than the STARFM in heterogeneous landscapes (Zhu et al.,
2010; Knauer et al., 2016; Y. Wang et al., 2021; Jarihani et
al., 2014). When monitoring spatial changes, the STAARCH
method strictly requires two pairs of bases, including one be-
fore and one after the changes, which limits its wide applica-
tion. The FSDAF is more robust than the other three meth-
ods but has limitations in detecting tiny changes (Zhu et al.,
2016), making it difficult to monitor the changes in surface
morphology. Therefore, we generated fusion images with a
high spatiotemporal resolution based on the ESTARFM for
further exploration.

The evolution of a lake ice season is mainly a thermody-
namic process influenced by thermal and mechanical forces.
Thermal forces enable the surface to melt and freeze at the
turn of the day and night, and the mechanical strength of
winds and currents makes the ice bulk move and collide,
causing water courses, ice ridges, and ice fractures to appear,
develop, and disappear. Therefore, the surface morphology
of lake ice exhibits a periodical spatiotemporal difference,
which differs significantly from the flat and smooth surface
of lake ice. The horizontal and linear structures of lake ice
are monitored by optical satellites for large lakes in Europe
and have been explained by ice displacement (Leppäranta,
2015). High-resolution satellite–airborne synthetic-aperture
radar (SAR) images have been used to monitor the surface
deformation of sea ice, such as ice ridges (Dierking, 2010).
Moreover, airborne aerial platforms, such as unmanned aerial
vehicles (UAVs; Li et al., 2020), airborne radar (Jeffries et al.,
2013), and ground-penetrating radar (Gusmeroli and Grosse,
2012), have effectively complemented remote sensing data
sources to monitor the changes in the morphology of lake ice.
The spatial distribution of the surface morphology of lake ice
is complex, variable, and discontinuous, which is character-
ized by highlighting linear features on remote sensing im-
ages. Currently, there are few studies on the changes in the
surface morphology of lake ice and the influence factors. It is
meaningful to develop a quantitative method to describe the
surface morphology and explore the potential influences.

This study proved the capability of high spatiotemporal
remote sensing images for monitoring the surface morphol-
ogy of lake ice in Chagan Lake, Northeast China. Our work
aimed to (1) generate high spatiotemporal satellite images
using Landsat and the Geostationary Ocean Color Imager
(GOCI), (2) monitor the hourly spatial changes in the sur-
face morphology, including the length and angle, of Chagan
Lake, and (3) discuss the beneficial climate conditions during
the formation of the surface morphology of lake ice.
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Figure 1. The spatial distribution of Chagan Lake and field photographs. Panel (a) is provided by the Landsat 8 Operational Land Imager
(OLI) on 10 February 2019, with the band composite of R(5)+G(4)+B(3). Panels (b)–(h) display the field photographs captured in field
investigations.

2 Materials

2.1 Study area

As one of the 10 largest lakes in China, Chagan Lake
(124◦03′–124◦34′ E, 45◦09′–45◦30′ N; Fig. 1) plays an es-
sential role in fisheries, agricultural irrigation, and winter
recreation in the surrounding areas (Wen et al., 2020). The
average and maximum water depths are 2.5 and 4.5 m, re-
spectively (Duan et al., 2007; Song et al., 2011). The lake
has a water area of 329.72 km2 and a perimeter of 201.03 km,
according to the Landsat 8 Operational Land Imager (OLI),
on 10 January 2019. The salinity of lake water ranges from
0.31 ‰ to 0.78 ‰ (Liu et al., 2020). The catchment of Cha-
gan Lake is characterized by semi-arid and sub-humid con-
tinental monsoons, with air temperature, precipitation, and
evaporation of 5.5 ◦C, 430 mm, and 1496 mm, respectively
(Song et al., 2011). The recharge sources mainly comprise
precipitation, groundwater, and adjacent irrigation discharge
(Liu et al., 2019). Salinized soil farmland and grassland pas-
tures are widely distributed in the catchment area. Chagan
Lake is a typical lake with seasonal ice cover, and the ice
cover exists from November to April each cold season, with
the maximum ice thickness ranging from 0.8 to 1.1 m (Liu et
al., 2020; Hao et al., 2021). We conducted two field investi-

Table 1. The comparison of band range between GOCI and Landsat.
The selected bands for merging Landsat and GOCI are marked in
bold.

Band GOCI Landsat 8 OLI

Band center Bandwidth Band center Bandwidth
(nm) (nm) (nm) (nm)

Band 1 402–422 20 443–453 20
Band 2 433–453 20 450–515 65
Band 3 480–500 20 525–600 75
Band 4 545–565 20 630–680 50
Band 5 650–670 20 845–885 40
Band 6 675–685 10 1560–1660 100
Band 7 735–755 20 2100–2300 200
Band 8 845–885 40 500–680 180

gations on 30–31 December 2020 and 2–4 January 2022 to
verify the results from remote sensing. We measured the ice
thicknesses using an electronic digital calliper with a reso-
lution of 0.01 mm. Moreover, we measured the water depths
using a handheld sonar detector (Speedtech SM-5) with a res-
olution of 0.1 m and compared the depths in fall (17 Septem-
ber 2021) and winter (2–4 January 2022).
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Table 2. The usage of GOCI images from November 2018 to
March 2019.

Date Image Date Image
no. no.

22 Nov 2018 8 16 Mar 2019 0
23 Nov 2018 7 17 Mar 2019 8
24 Nov 2018 0 18 Mar 2019 8
25 Nov 2018 8 19 Mar 2019 0
26 Nov 2018 0 20 Mar 2019 0
27 Nov 2018 7 21 Mar 2019 0
28 Nov 2018 8 22 Mar 2019 4
29 Nov 2018 8 23 Mar 2019 8
30 Nov 2018 7 24 Mar 2019 7

15 Mar 2019 8 Total 96

2.2 Materials

2.2.1 GOCI

The GOCI is the first satellite for detecting ocean color
from a geostationary orbit and has been widely applied in
deriving optical, biological, and biogeochemical properties
(Ryu et al., 2012; Ryu and Ishizaka, 2012). The GOCI
data have been available since April 2004, covering about
2500 km× 2500 km around the Korean Peninsula. It has six
visible bands and two near-infrared bands, and Table 1 pro-
vides the details of the band information. The GOCI pro-
vides observations every hour from 08:30 to 15:30 local time
(LT), with a spatial resolution of 500 m. The GOCI has the
most significant advantage of a high temporal resolution,
with eight images daily, which can offer the details of the
freeze-up and break-up processes. A total of 96 GOCI im-
ages during the cold season from 2018 to 2019 were used
in this study (Table 2). The atmospheric correction was per-
formed by GOCI data processing software (GDPS).

2.2.2 Landsat

The Landsat 8 satellite was launched on 11 February 2013.
It carries the Operational Land Imager (OLI) and the Ther-
mal Infrared Sensor (TIRS), which have been widely used
to monitor lake and river ice (X. Wang et al., 2021; Yang
et al., 2020). The OLI has nine bands, with a spatial res-
olution of 30 m for bands 1–7 and band 9 and a spatial
resolution of 15 m for band 8. It has a temporal resolu-
tion of 16 d. Six Landsat images taken during the cold
season from 2018 to 2019 were prepared for data fusion
with the GOCI. The capture dates were 6 November 2018,
22 November 2018, 8 December 2018, 26 February 2019,
14 March 2019, and 15 April 2019. The path and row
are 119 and 29, respectively. We downloaded the Landsat-
calibrated surface reflectance Tier 1 collection for Landsat 8
OLI (LANDSAT/LC08/C01/T1_SR) from the Google Earth

Engine (GEE) for further work. Table 1 compares the band
information on Landsat and GOCI. From Table 1, we found
that the band range of band 3 from GOCI (480–500 nm)
overlapped with that of band 2 from Landsat 8 OLI (450–
515 nm). The waterbody had relatively strong reflectance
in the blue band (400–480 nm), and the blue band images
clearly displayed the linear structure. Therefore, we merged
band 3 of the GOCI and band 2 of the Landsat 8 OLI and
generated the 96 fusion images for further work.

2.2.3 Auxiliary data

The lake ice phenology of the cold season from 2018 to 2019
was extracted from the combined time series of the surface
temperature of lake water provided by the MOD11A1 and
MYD11A1 products (Song et al., 2016; Hao et al., 2021).
The freeze-up date is defined as the first day on which the
surface temperature of lake water is below 0 ◦C in winter;
the break-up date is defined as the first day on which the sur-
face temperature of lake water is above 0 ◦C in spring. We
utilized the daily air temperatures, precipitation, wind direc-
tions, and wind speeds of the Qian’an station (ID 50948) to
explain the influence of climate on lake ice from 2010 to
2021. Qian’an has a longitude and latitude of 124.011◦ E
and 44.998◦ N, respectively, with an elevation of 146.3 m.
In total, 16 directions with an interval of 22.5◦ were used
to describe the wind directions, including north (N), north–
northeast (NNE), northeast (NE), east–northeast (ENE), east
(E), east–southeast (ESE), southeast (SE), south–southeast
(SSE), south (S), south–southwest (SSW), southwest (SW),
west–southwest (WSW), west (W), west–northwest (WNW),
northwest (NW), and north–northwest (NNW). The climate
records were used to explain the relationship between lake
ice and climate.

3 Methods

3.1 The framework of methodology

Figure 2 presents the flowchart of our work. We preprocessed
the Landsat 8 OLI and GOCI and prepared the reflectance
images of band 2 of Landsat 8 OLI and band 3 of GOCI.
Then, we merged GOCI and Landsat 8 OLI using the ES-
TARFM and generated new fusion data with a spatial and
temporal resolution of 30 m and 1 h, respectively. After that,
the geographic location of the linear structure on the surface
of the lake ice was identified, and the morphological param-
eters were extracted, including lengths and angles.

3.2 The ESTARFM fusion

The ESTARFM, in which two pairs of Landsat and GOCI im-
ages were used to generate spatiotemporal fusion data, was
proposed by Zhu et al. (2010) and based on the STARFM.
First, the coarse GOCI data were projected and resampled
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Figure 2. The workflow of this study.

to a fine Landsat image at two known times tm and tn. Sec-
ond, similar neighborhood pixels were searched with a mov-
ing window by setting spectral differences. Third, we calcu-
lated the normalized weight of each similar pixel by consid-
ering the spatial, spectral, and temporal differences. Then,
the coarse GOCI values were transferred to fine Landsat data
using the pixel-based conversion coefficients in the linear re-
gression. Finally, the coarse GOCI data at the same time were
used to calculate the fine fusion data at the predicted time
(tp), which is expressed as follows (Liu et al., 2021; Bai et
al., 2017; Zhu et al., 2010):

Lb
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)
, (1)

where Lb(xw/2,yw/2, tp) is the final predicted fine-resolution
reflectance at the prediction time tp. w represents the size
of the moving window, and the corresponding center is

(xw/2,yw/2). Lbk(xw/2,yw/2, tp) is the fine-resolution re-
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tween tm and tn and the prediction moment tp.
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where C(xj , yi , tk) and C(xj ,yi, tk) denote the image el-
ement values of similar image elements (xi,yj ) within the
moving window of the coarse spatial-resolution image at the
reference moment tk and prediction moment tp, respectively.

3.3 The quantitative analysis of linear structures

In the beginning, the Landsat-GOCI fusion images were
transformed into binary images. We extracted the original
linear network with the Canny (1986) edge detection algo-
rithm and then conducted edge detection to remove the outer
boundaries. The morphological processing, including open-
ing, filling, and eroding sequentially, was implemented for
the inner part of the linear network. Then, the linear struc-
ture was derived from the largest connected domain of the
linear network without boundaries, and the length is calcu-
lated by the shortest path of the largest connected domain.
We connected the northernmost and southernmost ends into
a straight line. The angle followed the definition of the wind
direction above. We compared the auto-extraction and visual
interpretation in our previous work (Hao et al., 2021). The
R2 values of the length and angle of 0.96 and 0.98 proved
the good performance of the auto-extraction algorithm.

4 Results

4.1 The performance of ESTARFM

We predicted the fine images from two pairs of fine Land-
sat and coarse GOCI data to fill the data gap caused by the
low revisit frequency of Landsat. The two known pairs of
data in the freeze-up process were captured on 6 November
and 8 December 2018, and 53 fine ESTARFM fusion im-
ages were predicted from the coarse GOCI images. The two
known pairs of data of the break-up process were captured
on 26 February and 15 April 2019, and 43 fine ESTARFM
fusion images were predicted. Figure 3 compares the spatial
distribution of the original images and predicted images on
22 November 2018. In the predicted images, the texture of
the ground objects was maintained, and the magnified ver-
sions of the figures in Fig. 3c and d clearly display the dis-
tribution of the linear structure. The predicted images were
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Figure 3. The actual image observed on 22 November 2018 (a) and its prediction images by the ESTARFM (b). Panels (c) and (d) display
the magnified version of the red rectangle in panels (a) and (b), respectively.

Figure 4. Scatterplot of the real and the predicted reflectance by
the ESTARFM for the blue band. The capture date was 22 Novem-
ber 2018.

consistent with the original images and indicated the good fu-
sion effect of ESTARFM. Figure 4 illustrates the scatterplots
of the actual and predicted reflectance values along the 1 : 1
line. The R2 value is 0.935, indicating that the predicted im-
age was highly correlated with the actual image. The ranges

of predicated and actual images were consistent; their mean
reflectance values were both 0.10± 0.03. The performance
of the ESTARFM results was limited by (1) the limited im-
age pairs available during the cold season from 2018 to 2019,
(2) the time lag between the predicted and actual images, and
(3) the inconsistency of the capture time between the pre-
dicted images and two pairs of input images (Lu et al., 2019;
M. Liu et al., 2018). Therefore, the ESTARFM fusion images
had a good performance and can provide reliable materials
for further exploration.

4.2 The changes in surface morphology

We extracted the surface morphology of Chagan Lake from
96 fusion images during the cold season from 2018 to 2019.
Figure 5 displays the spatial changes in the linear structure
of the Landsat images in the freeze-up and break-up pro-
cesses. Figures A1 and A2 present the original images of
the GOCI, with a resolution of 500 m, the fusion images of
Landsat and GOCI, with a spatial resolution of 30 m, and
the network structure and the linear structure in the freeze-up
and break-up processes, thus providing more details of the
extraction process. The linear structure appeared on images
from southeast to northwest, lasting from 22 to 30 Novem-
ber 2018. The linear structure disappeared from northwest
to southeast, lasting from 15 to 24 March 2019. Figure 6
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Figure 5. The spatiotemporal changes in the linear structure for the fusion images of Lake Chagan during the cold season of 2018–2019.

shows the average daily lengths of the ice ridges, based on
the Landsat and GOCI remote sensing data. We monitored
the growth and recession process of the linear structure via
96 Landsat-GOCI fusion images and monitored the stable
process via four Landsat images. The growth stage lasted
for 9 d, from 22 to 30 November 2018. The ice ridges had
a length range of 5211.17–18 042.15 m and an average value
of 12680.32±4472.37 m, extending from southeast to north-
west. The azimuth angles of the ice ridges in the growth
stage ranged from 331.54 to 338.17◦, with an average value
of 334.38◦± 2.08◦. The lengths in the stable process ranged
from 21 052.78 to 21 227.53 m, with an average value of

21141.57± 68.26 m, and the angles changed from 335.15
to 335.77◦, with an average value of 335.48± 0.20◦. The
recession stage lasted for 10 d, from 15 to 24 March 2019.
The ice ridges had a length range of 19 178.18–5924.03 m
and an average value of 13288.59±4907.89 m, disappearing
from northwest to southeast. The azimuth angles of the ice
ridges in the recession stage ranged from 329.84 to 336.16◦,
with an average value of 332.90◦± 2.54◦. The changing
rates in the growth and recession stages were 1425.66 and
1325.42 m per day, respectively, indicating that growth was
slightly faster than recession. The large-scale structure ex-
tending from northwest to southeast has repeatedly appeared
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Figure 6. The changes in the ice ridges during the cold season of 2018–2019. (a) Length changes during the growth process from 22
to 30 November 2018, as measured from 53 ESTARFM fusion images. (b) Length changes during the recession process from 15 to
24 March 2019, as measured from 43 ESTARFM fusion images. (c) The daily average length. (d) The angles of ice ridges in different
stages.

on Landsat images since 1986, which has been reported in
our previous work (Hao et al., 2021).

4.3 The field investigation

Considering the safety of traveling on ice, we conducted two
field investigations during the two recent cold seasons, from
30 to 31 December 2020 and 2 to 4 January 2022, respec-
tively. We divided the lake area into three regions accord-
ing to the surface morphology of lake ice. Region 1 was
distributed along the linear structures. The surface of lake
ice is uneven, and ice fractures and ice ridges were widely
distributed. Region 2 was distributed along the northeastern
coast, where the Ice and Snow Fishing and Hunting Cultural

Tourism Festival of Chagan Lake has been held at the end of
December each year since 2001. Region 3 covered the south-
ern part of Chagan Lake. The lake ice in Regions 2 and 3
was flat and smooth, and snow cover was sporadically dis-
tributed. The color of the lake ice along the linear structure
was distinguished from lake ice in the neighborhood. We in-
fer that the frozen time of the linear structure was later than
the lake ice in the neighborhood. The difference between ice
fractures and ice ridges was the vertical height. Ice ridges
were elevated sections formed on the upper and lower sur-
faces of lake ice, consisting mainly of ridge sails and keels.
We located 10 sampling points along the linear structure on
the satellite images and collected field photos of ice ridges
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and fractures (Fig. 1). We further verified that the large-scale
fractures on the images were made up of ice fractures and
ridges.

We also measured the ice thicknesses and water depths of
16 sampling points (Fig. 7). The ice thicknesses in the winter
of 2021 ranged from 437.55 to 668.25 mm, with an average
value of 582.24± 58.14 mm. The average ice thicknesses of
Regions 1, 2, and 3 were 551.58, 547.75, and 645.74 mm, re-
spectively. The average water depths of Regions 1, 2, and 3
were 3.48, 2.99, and 3.00 m, respectively. Among the three
regions, Region 2 had the smallest average values of ice
thickness and water depth. The differences in water depth
between the fall of 2021 and the winner of 2021 had an av-
erage value of 0.12±0.05 m and a maximum value of 0.2 m.
The water depth in winter was lower than that in fall, and the
decreasing water level also was a cause of lake ice fracturing
in winter (Leppäranta, 2015). The ice features first formed in
the nearshore area of the southeastern coast, where the wa-
ter depth was relatively smaller than that in other regions in
Fig. 7. The ice thicknesses and water depths showed spatial
coherence with the surface morphology.

4.4 The climate condition

Lake ice processes are governed by the complex interaction
of hydraulics, thermodynamics, and mechanics. The heat loss
due to the decreasing air temperature exceeds the heat gained
from surface water in late fall and early winter. When the
water temperature falls below the freezing point, the cooled
water provides a beneficial condition for ice crystals. Then,
the volume of the lake ice expands, and the amount in-
creases, which is followed by the formation of ice. We ana-
lyzed the wind roses of the daily average and maximum wind
speeds from 1 November 2018 to 15 April 2019 (Fig. 8).
The freeze-up and break-up dates of Chagan Lake in the
cold season of 2019 derived from MODIS daily land sur-
face temperature (LST) products were 14 November 2018
and 24 March 2019, respectively. The ice ridges appeared
on 22 November 2018, 5 d after the freeze-up date; they dis-
appeared on 24 March 2019 and were consistent with the
break-up date.

The domain wind in the growth process was NW, WNW,
W, and WSW, the domain wind in the stable process was
WNW, WSW, and NNE, and the domain wind in the re-
cession process was NW, WNW, and WSW. The WNW
and WSW direction was the domain wind direction for all
three stages. The frequency in the WSW direction in the
growth, stability, and recession stages was 22.22 %, 30 %,
and 14.23 %, respectively. The angles between the WSW di-
rection and ice ridges were 87.98, 86.88, and 85.40◦ for the
three stages. The nearly perpendicular relationship was con-
sistent with our previous study (Hao et al., 2021). Our pre-
vious used the yearly average values of wind from 2013 and
2020, and the work herein just exploited the wind in the cold
season from 2018 to 2019. Besides, the wind speed also con-

tributed to the formation of ice cracks and ridges. The daily
average wind speed in the growth process and recession pro-
cess was 3.88 and 3.63 m s−1, and the average values for
the whole cold season were 2.97 m s−1. The daily maximum
wind speeds for both the growth process and recession pro-
cess were 3.88, 3.63, 7.05, and 6.86 m s−1, and the average
value for the whole cold season was 5.65 m s−1. Not only the
daily average value but also the maximum value was higher
than the average level and revealed that the changing pro-
cesses of ice fractures and ridges require the relatively strong
action of wind. Therefore, wind speeds and directions played
crucial roles in the development of ice ridges.

5 Discussion

Lake ice experiences different stages during the freezing and
thawing cycle, including the phases of ice crystals, frazil ice,
nails, pancake ice, and ice layers (Leppäranta, 2015). Lake
ice expands and contracts as the air temperature rises and
drops during cold seasons. The temperature difference be-
tween night and day results in the thermal expansion and
contract of lake ice, which differ significantly within a given
lake. Furthermore, long and narrow cracks are generated and
likely to evolve into ice ridges under pressure when lake ice
bulks, collides, and piles up. The definitions of lake ice are
limited by the view ranges of field measurements, and satel-
lite remote sensing provides a new perspective for surface
morphology in a larger-scale observation. The large-scale
linear structure has been found on remote sensing images
during the cold season from 2018 to 2019. Similar phenom-
ena have also been found in lakes and reservoirs in Northeast
China (X. Liu et al., 2018). In our previous work, we used
four Landsat 8 OLI images to monitor the monthly changes
due to the limitation of temporal resolution (Hao et al., 2021).
In this study, we took advantage of the hourly revisit of the
GOCI and generated 53 and 43 ESTARFM fusion images
in the freeze-up and break-up processes, respectively. This
makes it possible to explore the linear structure in detail. The
recurrent large-scale linear structure was further verified as
being ice fractures and ice ridges in the fieldwork. Determin-
ing the spatial scales of ice fractures and ice ridges is chal-
lenging work, when considering the data source. A UAV is
suitable to monitor the lake ice fractures at small scales (0–
100 m), and the satellite sensors are suitable to monitor the
ice ridges at large scales (10–100 km); both are suitable to
monitor the horizon changes in the lake ice surface.

Besides the thermal forces, the lake ice fractures and
ridges are also a dynamic process under the control of me-
chanical forces. The wind above the ice covers and water
currents beneath the ice covers force the shift in ice bulk (Tan
et al., 2012). Wang et al. (2006) compared the mechanical
changes in the leads and ice covers, based on modeling re-
sults and satellite monitoring (Wang et al., 2006; Leppäranta,
2010), and revealed the influence of winds on the drift of ice.
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Figure 7. The ice thickness (mm) and water depth (m) of Chagan Lake was measured during the periods from 2 to 4 January 2022.

In the freeze-up process, the winds and water currents can
push the ice toward the shore, preventing ice covers from
freezing; in the break-up process, the wind can break ice
covers and accelerate melting. The lake ice fractures were
mainly controlled by thermal forces, and the ice ridges were
mainly controlled by mechanical forces. The ice ridges un-
derwent three stages during the cold season of 2018–2019, in
which the wind directions and speeds exhibited remarkable
differences. The ice ridges grew from southeast to northwest,
with an average direction of 334.38◦ and decayed from north-
west to southeast with an average direction of 332.90◦. The
WSW direction frequently happened in all three stages, re-
vealing the crucial role of winds in the development of ice
ridges. The direction of the ice ridges was nearly perpendic-
ular to the WSW direction (247.5◦), which followed the prin-
cipal laws of mechanics. The air temperature created a cold
environment for the ice cover to freeze, the wind provided
a mechanical force for the ice bulk to shift, and ice ridges
and ice fractures formed. In addition, the direction of the ice
ridges had a similar shape to the southwestern shoreline, and
the stable shoreline geometry could explain the recurrent ice
ridges with a specific direction, which has been reported in
previous studies (Leppäranta, 2015).

Linear structures are common natural phenomena on the
surfaces of sea ice and lake ice and profoundly influence
light transfer and ice ecology. Lake ice ridges alter surface
roughness and light transfer and then contribute to the thick-
ness and volume of ice. People in cold regions have skillfully
taken advantage of frozen ice covers for fishing, food stor-
age, and commercial transportation. The capacity and sta-

bility of floating ice can be evaluated by the ice thickness
and the spatial distribution of ice fractures and ridges (Tan
et al., 2012). Generally, 30 cm is the thickness suggested for
safe human activities on the ice (Leppäranta, 2015). Ice frac-
tures and ice ridges potentially threaten human activities. In
field investigations, we measured the ice thicknesses along
the linear structure when the ice covers were steady. The ice
thicknesses along the ice ridges were supposed to be thin-
ner than in other areas (Leppäranta, 2015), but no significant
difference in ice thickness had been found in our field mea-
surements. Thus, the surface morphology of lake ice would
be a reliable sign of travel on the ice being dangerous. Be-
sides, we monitored the horizon changes in lake ice ridges
using optical satellite images but ignored the vertical heights
of ice ridges, which we need to consider in future work.

6 Conclusion

We generated high spatiotemporal remote sensing data of
Landsat and GOCI, using ESTARFM to fill the gap in the
fine monitoring of lake ice dynamics in Lake Chagan. We
compared the reflectance of the fusion images and the orig-
inal images on 22 November 2018. The R2 value between
the actual images and predicted images is up to 0.935, indi-
cating that the predicted images were highly correlated with
the actual images. Moreover, the consistency of the texture
of the ground objects was maintained between the predicted
images and the original images. Therefore, the ESTARFM
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Figure 8. The wind field of Chagan Lake during the cold season of 2018. (a) Growth process from 22 to 30 November 2018. (b) Stable pro-
cess. (c) Recession process from 15 to 24 March 2019. (d) Daily average and maximum wind speed from 1 November 2018 to 15 April 2019.

fusion images provided reliable materials for further explo-
ration.

We calculated the lengths and the angles of the linear
structure on the fusion images in the freeze-up and break-
up processes during the cold season from 2018 to 2019.
Based on the satellite images, the linear structure experi-
enced growth, stability, and recession stages. The growth
stage lasted for 9 d, ranging from 22 to 30 November 2018.
The recession stage lasted for 10 d, ranging from 15 to
22 March 2019. From southeast to northwest, the linear

structure was 5211.17 to 18 042.15 m long during growth
and from northwest to southwest, it disappeared. The aver-
age length of the ice ridges in the completely frozen period
was 21141.57± 68.36 m. The average azimuth angle was
335.48◦± 0.23◦.

We performed field investigations and verified the linear
structure as ice fractures and ridges. The direction of the
linear structure was nearly perpendicular to the southwest-
erly wind direction, which is the dominant wind direction
in winter. The deformation of the surface morphology was
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related to the meteorological conditions before the freeze-
up process, including winds and air temperatures. This work
demonstrated the capability of monitoring large-scale surface
morphology using multi-source remote sensing and has pro-
found implications for traveling safety on ice and ice engi-
neering. We also plan to extend our findings to other large
lakes in China and fill the knowledge gap of the surface mor-
phology of lake ice.
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Appendix A

Figure A1. The changes in ice ridges during the freeze-up process from 22 to 30 November 2019. (a–f) The original images from GOCI.
(g–l) The fusion images from Landsat and GOCI. (m–r) The network structure of surface morphology. (s–x) The surface morphology.
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Figure A2. The changes in ice ridges during the break-up process from 15 to 24 March 2019. (a–e) The original images from GOCI. (f–j) The
fusion images from Landsat and GOCI. (k–o) The network structure of surface morphology. (p–t) The surface morphology.
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