

Supplement of

Using ice core measurements from Taylor Glacier, Antarctica, to calibrate in situ cosmogenic $^{14}{\rm C}$ production rates by muons

Michael N. Dyonisius et al.

Correspondence to: Michael N. Dyonisius (michael.dyonisius@nbi.ku.dk)

The copyright of individual parts of the supplement might differ from the article licence.

SUPPLEMENTARY MATERIALS

S1. Detailed data reduction and corrections for ¹⁴CO₂ sublimation samples

S1.1. Empirical correction for ANSTO processing

To correct for the effects of graphitization and other processing at ANSTO, we first used a linear empirical correction from commensurately-sized ¹⁴C standards (Table S7, Fig. S1). The empirically corrected ¹⁴CO₂ values for the BFI and ice samples are shown in Tables S8-S10.

S1.2. Extraneous carbon added from the sublimation procedure

At the end of each sublimation, we calculated the C mass (M_g , mass before graphitization) of the sample by expanding the cryogenically-trapped CO₂ into a calibrated manometer volume. Assuming the [CO₂] measurement in the subsample from OSU (Table S9) is representative of the larger sublimation sample, the expected C mass (M_s , "true" mass of the sample) can be calculated from the amount of air trapped in the molecular sieve. Based on the elevation of the measured C mass (M_g) over the expected C mass (M_s), we calculated that the extraneous C (M_{ext}) introduced by the sublimation system is non-negligible (0.37 ± 0.38 µgC, 2 σ , n = 23, Table S9).

We used the laboratory-produced BFI samples to calculate the ¹⁴C activity ($^{14}C_{ext}$) of this extraneous C (with mass M_{ext}) added from sample preparation, handling, and sublimation using the following mass balance equations:

$$M_{g} \cdot {}^{14}C_{g} = M_{s} \cdot {}^{14}C_{s} + M_{ext} \cdot {}^{14}C_{ext}$$
 Eq.S1

$$M_{g} = M_{s} + M_{ext} \qquad \qquad Eq.S2$$

where ${}^{14}C_g$ is the measured ${}^{14}C$ activity after the empirical correction for ANSTO processing (Table S8) and ${}^{14}C_s$ is the true ${}^{14}C$ activity of the CO₂ in the ice sample (corrected for the extraneous C addition from the sublimation system). All ${}^{14}C$ terms in Eq. S1 and Eq. S2 are in percent modern carbon (pMC) units, which have been shown to be mass-additive (Petrenko et al., 2008).

For the BFI samples, the "true" ¹⁴C activity (¹⁴C_s) is the ¹⁴CO₂ activity of the standard gas. The expected C mass (M_s) for the BFI samples was calculated from the amount of air trapped in the molecular sieve and the [CO₂] of the standard gas. Using Eq. S1 and Eq. S2, we can solve for ¹⁴C_{ext} for each laboratory-produced BFI sample. All relevant mass balance variables (M_g, M_s, M_{ext}, ¹⁴C_g, ¹⁴C_s, and ¹⁴C_{ext}) from the laboratory-produced BFI samples are shown in Table S8.

The error-propagated uncertainty of the extraneous carbon ${}^{14}C$ activity (${}^{14}C_{ext}$) inferred from individual BFI measurements was large, especially in samples that used the modern standard gas because the measured ${}^{14}C$ activities of the BFI samples (${}^{14}C_g$) were indistinguishable from the "true" ${}^{14}C$ activity of the standard gas (${}^{14}C_s$). In comparison, for BFI samples that used the ${}^{14}C$ -dead standard gas, the measured ${}^{14}C$ activities of the blanks were elevated by ~3 pMC compared to the "true" ${}^{14}C$ activity of the standard gas (Table S8). This strongly suggests that the main source of the extraneous carbon to the sublimation device is likely CO₂ from ambient air, which has a "modern" ${}^{14}C$ signature.

On average, we calculated that ${}^{14}C_{ext} = 125.9$ pMC; the standard deviation of ${}^{14}C_{ext}$ is ± 47.1 pMC (1 σ), and the standard error of the mean of ${}^{14}C_{ext}$ is ± 15.7 pMC. We used twice the standard error of the mean (± 31.4 pMC) from all 9 laboratory BFI samples as the 2σ uncertainty for ${}^{14}C_{ext}$ and solved for ${}^{14}C_s$ in each sample using Eq. S1 (Table S9), assuming the amount of extraneous carbon and its ${}^{14}C$ activity from the BFI measurements were representative of the extraneous carbon that was introduced to the samples. This correction represents the biggest source of uncertainty for the ${}^{14}CO_2$ measurements. Finally, we used TAC from OSU subsamples (Table S9) to convert between ${}^{14}CO_2$ molecules per cc STP and ${}^{14}CO_2$ molecules per g ice (Petrenko et al., 2016 Electronic Annex S1).

S1.3. Corrections for post-coring in situ ^{14}C

After correcting for the extraneous C added from the sublimation process, the sample ¹⁴C values were further corrected for post-coring *in situ* ¹⁴CO₂ production (i.e., ¹⁴CO₂ produced by cosmic rays during storage and transport after the ice samples were brought up to the surface). The post-coring production was constrained by comparing the ¹⁴CO₂ content in field-produced BFI against laboratory-produced BFI (which did not contain the

additional post-coring ¹⁴CO₂, Table S10). We used the ratio of air from the standard gas collected at the end of the sublimation to the mass of BFI that was sublimated as our BFI "air content." We then used this "air content" of the BFI samples and the [CO₂] measured from the manometers to convert the ¹⁴CO₂ measured in the BFI samples into ¹⁴CO₂ molecules per gram of bubble free ice (Table S10). From 4 laboratory-produced BFI samples that used ¹⁴C-dead standard gas and 5 field produced BFI samples that used the same standard gas, we calculated that the post-coring ¹⁴C production added 8.2± 5.9 ¹⁴CO₂ molecules g⁻¹ ice (1 σ) to the samples (Table S10). The sample ¹⁴CO₂ content after all corrections and the associated propagated uncertainties is shown in Table S9.

S1.4. ¹⁴CO₂ analytical uncertainty and acceptance criteria for Monte Carlo method to estimate model parameter uncertainties

The uncertainty of the ¹⁴CO₂ measurements is critical to the interpretation of the data, as it is the largest source of uncertainty for total ¹⁴C. The uncertainties of our ¹⁴CO₂ measurements from step-by-step error propagation (Table S8, on average ± 31.6 ¹⁴CO₂ molecules/g ice, 95% CI) are comparable to the uncertainty reported in prior studies that used a dry extraction method (van De Wal et al., 2007; van Der Kemp et al., 2002, ~21 ¹⁴CO₂ molecules/g ice). The agreement between replicate samples is, however, much better than what would be expected from the error-propagated uncertainties in individual measurements (Table 1, Table S8). We calculated the pooled standard deviation of replicate pair measurements (s_p) for the ¹⁴CO₂ samples following McNaught and Wilkinson (1997)

$$s_p = \sqrt{\frac{\sum (x_{i1} - x_{i2})^2}{2k}}$$
 Eq.S3

where x_{i1} and x_{i2} refer to measurement #1 and measurement #2 from depth interval *i* and *k* refers to the number of replicate pairs. The uncertainty derived from pooled standard deviation of replicate pair measurements (±12.4 ¹⁴CO₂ molecules/g ice, 2 σ) is notably lower than the error-propagated uncertainties (±31.6 ¹⁴CO₂ molecules/g ice on average, 95% CI). The pooled standard deviation is even lower (±7.8 ¹⁴CO₂ molecules/g ice, 2 σ) if

we exclude the replicate pair from 2.25 m depth. The shallow (< 6m) ice in Taylor Glacier has been shown to contain ambient air contamination from near-surface thermal contraction cracks (Baggenstos et al., 2017; Petrenko et al., 2016). These thermal cracks are not homogenous, can heal, and become invisible to the naked eye. Despite being collected from the same depth, the two 2.25 m samples might contain different amounts of ambient air.

Both methods of determining analytical uncertainties (error-propagation vs. pooled standard deviation from replicates) are in principle valid. For the ¹⁴CH₄ and ¹⁴CO measurements, we used the error propagation method because we do not have replicates. When replicate measurements are available, it is common practice in ice core analysis to use the pooled standard deviation (e.g., Mitchell et al., 2013). Based on the observation that the ratios of ¹⁴CO₂ to other ¹⁴C species (Fig. S4B, Section 4.2) are relatively constant, it is likely that the error propagation method overestimates the uncertainty of our ¹⁴CO₂ measurements.

However, when we use the smaller uncertainty from the pooled standard deviation, the ice flow/¹⁴C production model was not able to produce a total ¹⁴C profile that can fit all measurements within their 95% CI uncertainties (Fig. 6b). The best-fit ¹⁴C profile from the model fell outside the 95% CI uncertainties of total ¹⁴C from two depth ranges (10 m and 72 m samples). The samples from these two depth ranges show excellent agreement among their replicates (Table 1, Fig. 6b); there were also no analytical issues that would call these values into question. If the analytical uncertainty of the ¹⁴CO₂ data is truly ± 31.6 ¹⁴CO₂ molecules/g ice (95% CI), it is very unlikely that the combined data (¹⁴CO, ¹⁴CO₂, and ¹⁴CH₄) can produce the observed ¹⁴CO₂/total ¹⁴C ratio of 0.66 \pm 0.12 (95% CI, Table 1, Fig. S4B).

One possible explanation for the model-data mismatch at 10 m and 72 m depth ranges is that because of their smaller sample size, the ¹⁴CO₂ samples might be more susceptible to small-scale variations in ice flow that are not captured by the 2D ice-flow model. For example, heterogeneity in ice rheology may play a role. Our samples (from 0 to 72m depth) span a large range of ages (50-92 kyr BP), over several Dansgaard-Oeschger events and Marine Isotope Stages. As such, they have significantly different impurity content and ice with higher chemical impurities deforms more easily (Stoll et al., 2021). Marine Isotope Stage 4 (MIS4) ice (~55-72 kyr BP), which is characterized by high dust content (Menking et al., 2019) was missing entirely in the cores we drilled (Section 3 of Supplementary Materials). MIS4 ice was also missing from the Taylor Glacier across-flow transect (Baggenstos et al., 2017) but it does outcrop several hundred meters downglacier (Menking et al., 2019; Shackleton et al., 2021). This shows that there is preferential deformation of dusty ice in Taylor Glacier (which might account for why ¹⁴CO₂ values from certain depth ranges show excellent agreement among replicates but are off from the model-predicted ¹⁴C) that is not accounted for by the 2D flow model.

Alternatively, it is also possible that the real analytical uncertainty of the ${}^{14}CO_2$ measurements might be somewhere between the uncertainties estimated via the errorpropagation and pooled standard deviation methods. There can be additional sources of uncertainties that are not captured by pooled standard deviation among replicates. For example, processes such as gas loss (especially for the deeper samples) can affect both replicate samples equally and bias the signal. Furthermore, as we are working with a relatively small dataset, the pooled standard deviation among the 9 pairs of replicate measurements might underestimate the analytical uncertainty of the system. More measurements of ice with known exposure history, age, and more sample replicates are needed to better constrain the overall analytical uncertainty of the sublimation system for ¹⁴CO₂ measurements. However, there are also sources of uncertainties in the sublimation system that do not contribute to the overall variability (and thus precision) the analytical measurements. For example, the determination of air content and [CO₂] of the sublimation samples are based on pressure readings with volume-calibrated manometers. Both the pressure gauge readings and the manometer volumes have uncertainties that are propagated through the overall uncertainties with the step-by-step error propagation method. However, the manometer volumes do not change from sample to sample, and thus this kind of uncertainties do not contribute to measurement variability and not accounted by the pooled standard deviation of replicates (which is ultimately a measure of analytical precision).

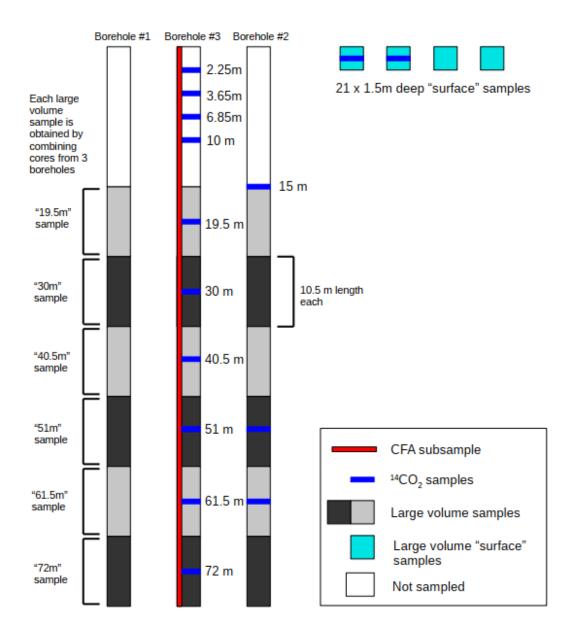
We argue that the uncertainty derived from pooled standard deviation method is more appropriate to use for our case. We used the pooled standard deviation (\pm 7.8 ¹⁴CO₂ molecules/g ice, 2 σ) as the uncertainty for all ¹⁴CO₂ measurements except the 2.25m sample pair, which are affected by modern air contamination from surface cracks (where we used the error-propagated uncertainties instead, Table 1). However, considering that the model was not able to fit all the data at 95% CI uncertainty even with the best-estimate model parameters (σ_0 , f_{tot}, and flow trajectories), it is not surprising that the Monte Carlo simulations also struggle to find a pair of σ_0 and f_{tot} that can fit all measurements within their 95% CI. An alternative acceptance criteria to estimate the uncertainties of the ¹⁴C production model parameters is needed. In the Monte Carlo method, we accept all model parameters (σ_0 and f_{tot}) that produce model-calculated, total ¹⁴C within the 95% CI and 68% CI measurement uncertainties of the total ¹⁴C from the best-fit parameter values (Fig. 6, Fig, 7). This approach essentially cancels out the representation error from the ice flow/¹⁴C production model and provides uncertainty estimates for σ_0 and f_{tot} that are based solely on the prescribed analytical uncertainties.

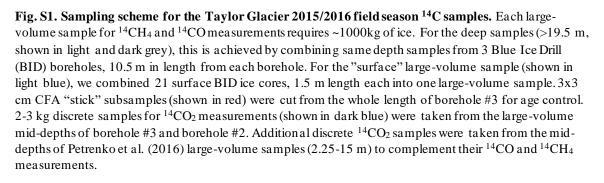
S2. Subsample [CH₄] measurements and sample integrity of the large volume samples

The [CH₄] measurements from continuous flow analysis (CFA) on TG-Deep3 core (borehole #3) and the [CH₄] from the large volume samples (which combine ice from all three boreholes) are shown in Fig. S11. The continuous [CH₄] measurements show high variability near the ice surface. The near-surface elevation in [CH₄] is likely because of contamination from modern air due to thermal cracks (Baggenstos et al., 2017; Petrenko et al., 2016) and the depletion is likely due to consumption of CH₄ by methanotrophic microbes. The δ^{13} CH₄ value of Taylor Glacier surface sample is ~10‰ higher relative to typical atmospheric δ^{13} CH₄ values of -47‰ (Table S1), indicating likely biological fractionation during methane consumption. Alterations of trace gases in the shallowest ice at margin sites are common and not unique to Taylor Glacier (Petrenko et al., 2006; Turney et al., 2013). The ¹⁴CO and ¹⁴CH₄ measurements from the "surface" sample are thus also rejected. Another stand-out feature in the CFA data is the low [CH₄] values between ~24-27 m depth (Fig. S11). Discrete [CH₄] measurements from the gas chromatography (GC) system (Mitchell et al., 2011) were conducted to rule out the possibility of instrument error from the CFA system. The discrete measurements confirmed the validity of the CFA measurements and furthermore showed unusual reduction in total air content (TAC) of the ice in this low-[CH₄] section. The [CH₄] values observed in this section (200-300 nmol/mol) are lower than the lowest observed atmospheric [CH₄] over the past 800 kyr (Loulergue et al., 2008), and thus the possibility that the low CH₄ section represents an ice section from another time period can be ruled out. In this core section we do not have strong evidence for microbial consumption; unlike the surface samples, the δ^{13} CH₄ values in the large volume samples adjacent to this section (19.5m and 30m) are within the range of glacial-interglacial variability (Table S1). Additional measurements of δ^{13} CO₂ and δ^{13} CH₄ would be useful to investigate the microbial consumption hypothesis. The ¹⁴CO and ¹⁴CH₄ in the 19.5m large volume sample from 2015/16 were rejected because the samples partially contained ice from this section.

The [CH₄] from the "30m" large volume sample is also strongly elevated relative to the CFA measurements. This sample also contains unusually elevated CO (Table S5) and highly chlorinated compounds measured by the SIO GC-MS system (not shown). However, this contamination is likely unrelated to the anomalous [CH₄] depletion observed by the CFA measurements around this region. Instead, during the on-field processing of this sample at Taylor Glacier, we encountered a problem with the electric bandsaw that was usually used to cut the CFA "stick" subsamples (Fig. S1). The CFA "sticks" for the 30m sample were instead cut with an electric chainsaw (which was significantly dirtier than the electric bandsaw). Thus, the anomalous elevation of [CH₄] on the 30m sample was likely due to contamination from the electric chainsaw. Because of this contamination, the 30m sample results are rejected.

The 40.5m, 51m, and 61.5m large-volume samples also show slightly elevated [CH₄] relative to the CFA measurements, although not to the extent of the 30m sample (Fig. S11). Unlike the 30m sample, the 40.5m, 51m, and 61.5m sample do not contain anomalously


high CO or chlorinated compounds. For these samples, the discrepancy between the [CH₄] measurement from the bulk large volume sample and CFA subsamples is likely be due to slight age offsets between the boreholes (only borehole #3 was subsampled and measured with CFA system).


S3. Sample age determination and integrity of ¹⁴CO₂ samples

The age-scale for the samples used in this study was established via matching the measured CFA [CH₄] from the continuous subsample sticks onto other ice core records with well-established chronologies. The continuous [CH₄] from TG-Deep3 was matched to the continuous [CH₄] from the NEEM (North Greenland EEMian Ice Drilling) ice core (Chappellaz et al., 2013) using manually picked tie points. From the CH₄ synchronization, it is clear that the samples used in this study are all older than 55 ka (Fig. S12). Thus, we do not expect any ¹⁴C inheritance from the accumulation site.

We also compared the measured [CO₂] in our samples to [CO₂] from other Antarctic ice cores (Bereiter et al., 2015) to confirm the integrity of the ¹⁴CO₂ samples. However, for a direct comparison with existing CO₂ records, we have to transfer the TG-Deep3 / NEEM gas age scale onto the AICC12 (Antarctic Ice Core Chronology) age scale (Veres et al., 2013). Currently the NEEM gas age is not included in AICC12. However, in the GICC05 (Greenland Ice Core Chronology) framework (Rasmussen et al., 2006; Rasmussen et al., 2013) the NEEM ice age is synchronized with NGRIP ice age (North Greenland Ice Core Project). NGRIP ice and gas age were included in AICC12 (Veres et al., 2013). This allows us to transfer our TG-Deep3/NEEM gas age onto AICC12 gas age by first interpolating the TG-Deep3(NEEM) gas age onto NEEM & NGRIP ice age and then onto NGRIP/AICC12 gas age.

The $[CO_2]$ measurements from our samples agree well with $[CO_2]$ from EDML ice core, except for the "30m" sample (~72 ka) which has a significantly lower $[CO_2]$ than the Antarctic ice core composite (Fig. S12). As discussed above, at this depth the $[CH_4]$ is also anomalously depleted (Fig. S11), and the [CO] in the large volume sample is anomalously elevated (Table S5). This depth range is also associated with a large age discontinuity (Fig. S11). The "30m" ¹⁴CO₂ sample was thus rejected.

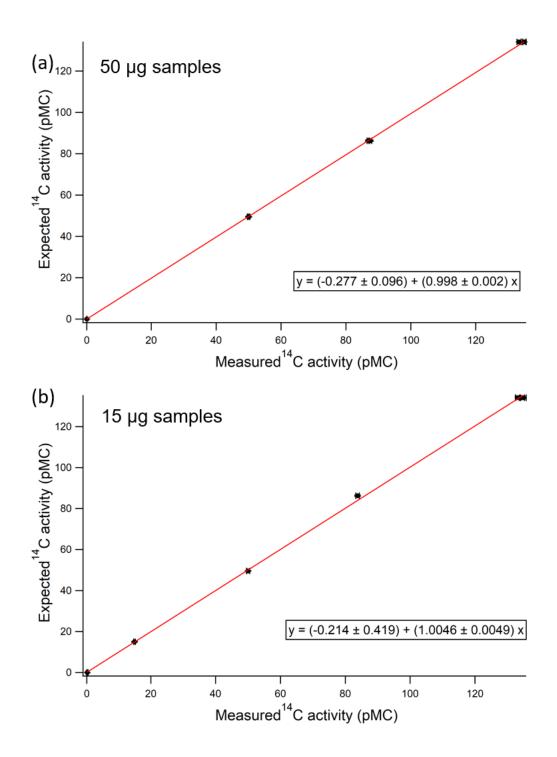


Fig. S2. Linear empirical correction from commensurately-sized ¹⁴C standards for the (a) ¹⁴CO samples and (b) ¹⁴CO₂ samples. The errors on the coefficients represent 68% CI (1 σ). The measured and expected ¹⁴C activities of these standards are shown in Table S7.

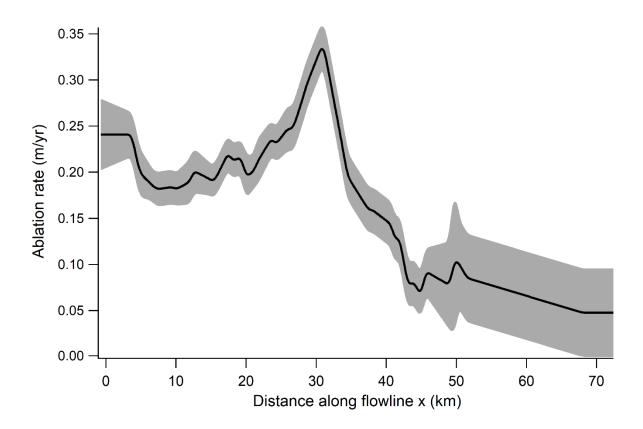


Fig. S3. Ablation rates along the glacier inferred from survey pole data. The shaded region represents 2σ uncertainties.

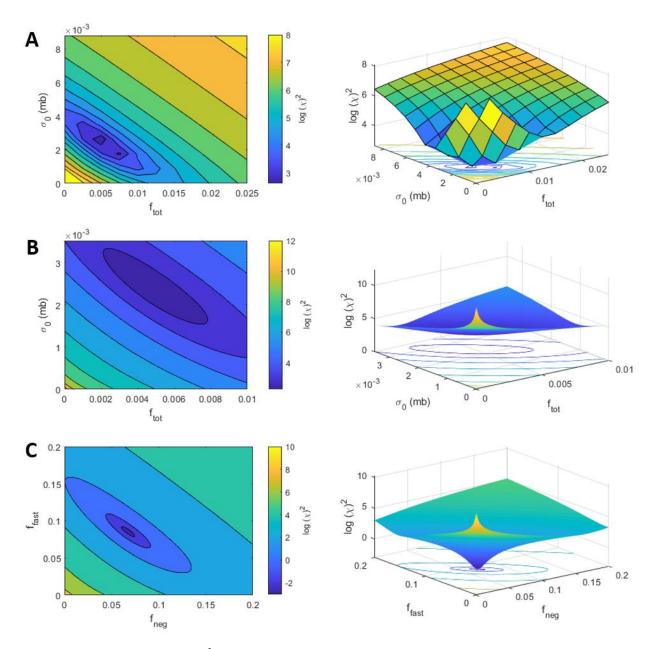


Fig. S4. (A). Goodness of the fit (χ^2) for the coarse grid-search under best-estimate ablation rate scenario to find best-estimate f_{tot} and σ_0 . (B). Goodness of the fit (χ^2) for the high-resolution grid-search under best-estimate ablation rate scenario to find best-estimate f_{tot} and σ_0 . (C). Goodness of the fit (χ^2) under best-estimate ablation rate scenario to find best-estimate f_{neg} and f_{fast} for ¹⁴CO-specific muogenic production rates

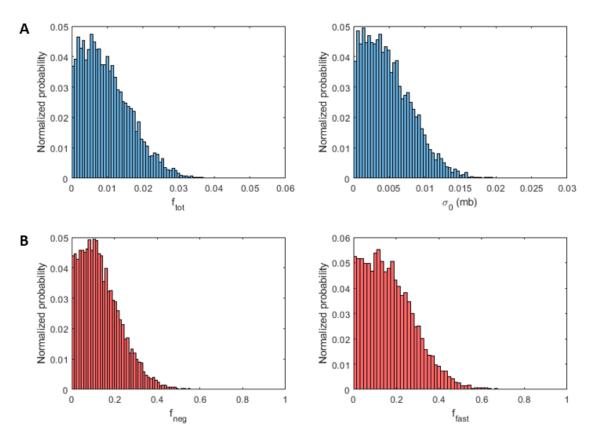
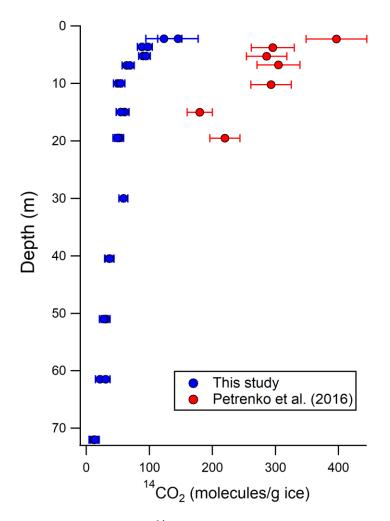



Fig. S5. (A). Prior distribution of model parameters f_{tot} and σ_0 for total ¹⁴C production used in the Monte-Carlo simulations to estimate total muogenic ¹⁴C production rates. (B). Prior distribution of model parameters f_{neg} and f_{fast} used in the Monte-Carlo simulations to estimate ¹⁴CO-specific muogenic production rates.

Fig. S6. Comparison between sublimation-based ¹⁴CO₂ measurements (this study) and melt-extraction based ¹⁴CO₂ measurements from Petrenko et al. (2016). Both dataset are obtained from the same site (Taylor Glacier, Antarctica).

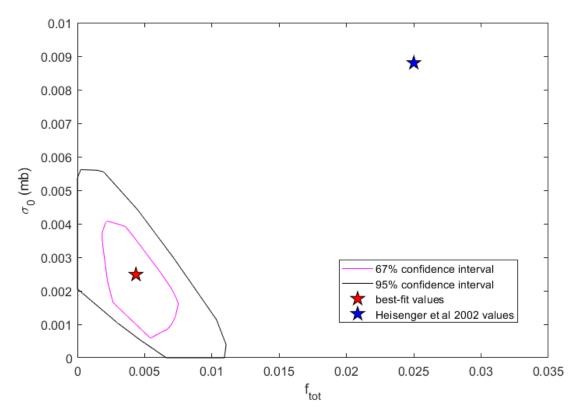


Fig.S7. 68% and 95% CI contours of accepted σ_0 and f_{tot} values for total ¹⁴C when the ±31.6 ¹⁴CO₂ molecules/g ice, 95% CI uncertainty from step-by-step error propagation method was used for the ¹⁴CO₂ data as the Monte Carlo acceptance criteria. Even when using the larger and likely overestimated ¹⁴CO₂ uncertainty, our data still clearly show what the Heisinger et al. (2002a, 2002b) values are overestimated.

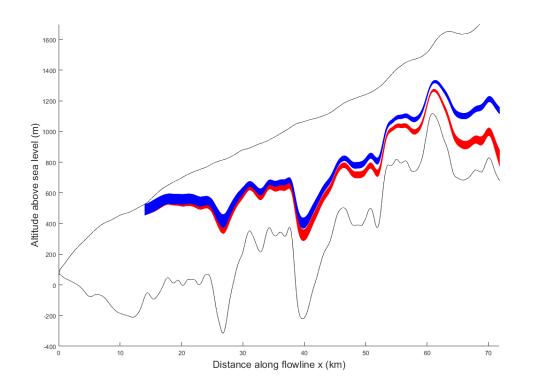


Fig. S8. Ice parcel trajectories under best-estimate ablation rate (blue) and $+2.4\sigma$ high ablation rate (red) used in sensitivity analysis

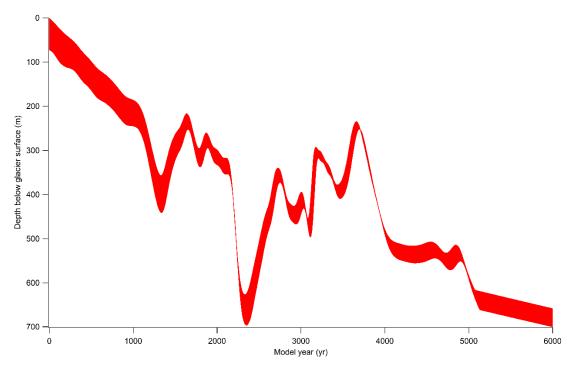


Fig. S9. Trajectories of our ice samples as function of model year.

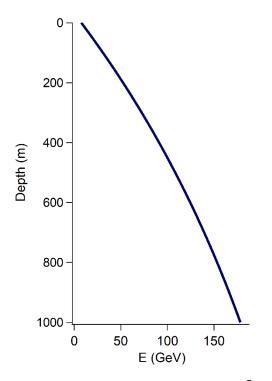


Fig. S10. Calculated mean muon energy (\bar{E}) versus depth at Taylor Glacier from Balco et al. (2008) cosmogenic nuclide production model.

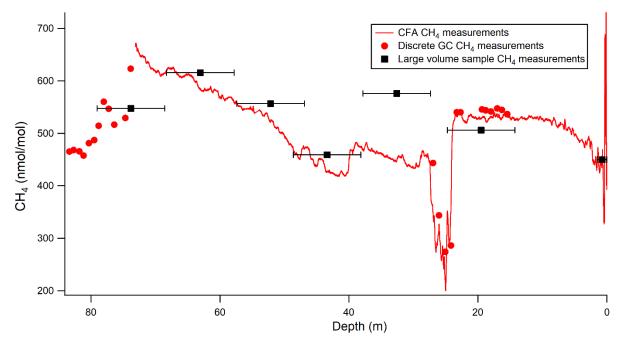


Fig. S11. Depth profile of "TG-Deep3" [CH4] measurements from CFA, discrete measurements using a GC-FID system, and [CH4] measurements from large volume samples. The large volume samples combine ice from all three 2015/16 deep boreholes. The horizontal error bars illustrate the depth span of the large volume samples.

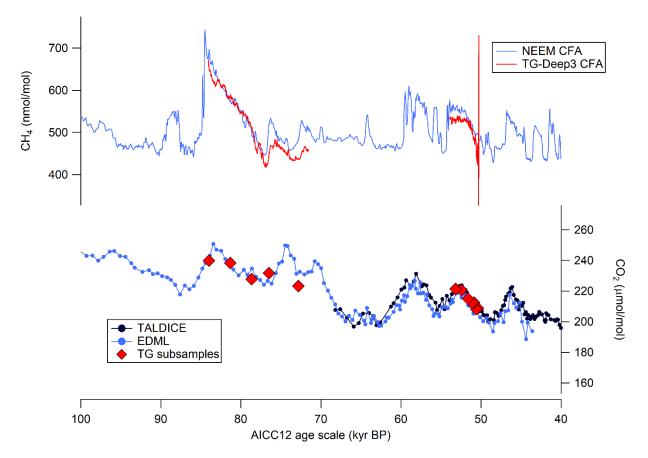


Fig. S12. Continuous flow analysis (CFA) [CH₄] from "TG-Deep3" core (this study), CFA [CH₄] mole fraction from NEEM (Chappellaz et al., 2013), [CO₂] from ¹⁴CO₂ samples used in this study, and composite Antarctic ice core [CO₂] (Bereiter et al., 2015). All data are plotted onto the synchronized AICC12 gas age (Veres et al., 2013).

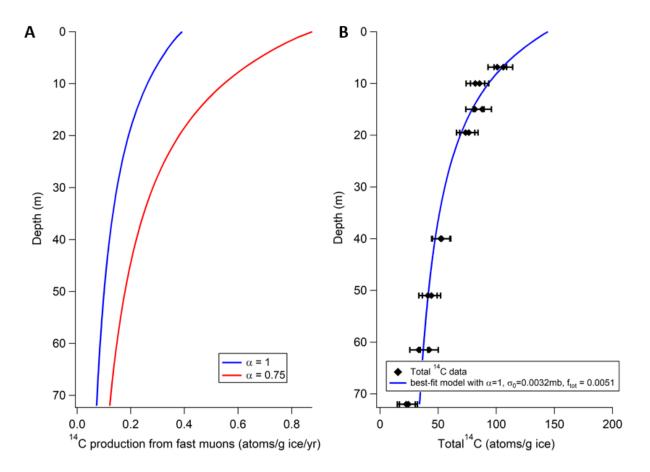


Fig. S12. (A).¹⁴C production rate from fast muons with default $\alpha = 0.75$ (blue) and $\alpha = 1$ (red). (B). Total ¹⁴C data and best-fit model with $\alpha = 1$.

Sample name	δ ¹³ CH₄ (‰)
Sfcsample	-34.7 ± 0.2
19.5m	-45.1 ± 0.2
30m	-46.8 ± 0.2
40.5m	-47.9 ± 0.2
51m	-48.1 ± 0.2
61.5m	-47.9 ± 0.2
72m	-47.2 ± 0.2

Table S1. δ^{13} C measurements on the large volume samples. All errors presented indicate the 95% confidence interval.

Table S2. Measured CH₄ mole fraction in the large volume samples, field procedural blanks, and associated corrections. All errors presented indicate the 95% confidence interval.

Sample name	CH₄ measured (nmol/mol)	CH₄ solubility correction factor	CH₄ solubility corrected (nmol/mol)	Fraction ultrapure air remaining	Final CH₄* (nmol/mol)
SFC	433.7 ±0.6	1.034 ±0.007	448.4 ± 3.0		442.3 ± 3.9
19.5m	495.6 ± 0.4	1.030 ±0.006	510.2 ± 2.9		504.2 ± 3.9
30m	564.5 ±0.3	1.028 ±0.005	580.2 ± 3.1		574.2 ± 4.0
40.5m	450.6 ± 0.6	1.029 ±0.006	463.5 ± 2.6		457.5 ± 3.7
51m	544.1 ±0.3	1.030 ±0.006	560.5 ± 3.3		554.5 ± 4.2
61.5m	600.5 ± 0.5	1.031 ±0.006	619.1 ± 3.7		613.1 ± 4.5
72m	532.3 ±0.7	1.035 ± 0.007	551.0 ± 3.8		545.0 ± 4.7
¹⁴ C dead blank 1	461.9 ± 0.4	1.036 ± 0.007	478.6 ± 3.3	0.0306 ± 0.0253	493.8 ± 13.4
¹⁴ C dead blank 2	463.4 ± 0.3	1.035 ±0.007	479.6 ± 3.2	0.0307 ± 0.0256	494.9 ± 13.5
¹⁴ C modern blank 1	462.3 ± 0.3	1.034 ±0.007	478.1 ± 3.1	0.0201 ± 0.0018	487.9 ± 3.3
¹⁴ C modern blank 2	452.8 ± 0.4	1.030 ± 0.006	466.5 ±2.7	0.0415 ± 0.0139	486.7 ±7.6
¹⁴ C dead std gas	498.3 ± 4.6				
¹⁴ C modern std gas	492.8 ± 3.5				

*the CH₄ mole fraction in the ice samples was further corrected for the 6.0 ± 1.3 nmol/mol melting blank. The numbers shown here include the melting blank correction

Table S3. Pressure measurements and total air content (TAC) for the large volume samples. All errors presented indicate the 95% confidence interval. For the "30m" sample (marked with an asterisk*), the water level (and thus water volume) was not recorded for 1 (out of 3) melt-extractions. We thus assumed that the water volume for this extraction was equal to the average of all the other extractions for the field season and doubled the uncertainty. We used the SIO pressure measurements for TAC calculation, except for the "51m" sample (marked with two asterisks **) where UR pressure measurement is higher than the SIO pressure measurement, indicating a problem with the recorded SIO measurement. From the average pressure measurement differences within tanks, we assumed that the GC-MS and noble gas measurements at SIO consumed 221 ± 14 torr (95% CI), and used the UR pressure measurement, corrected for sample consumption at SIO, to calculate the TAC. All pressure measurements were taken at room temperature. On average (n=7), the SIO room temperature was 22.0 ± 0.1°C and the UR room temperature was 21.7 ± 0.2°C.

Sample name	SIO pressure corrected for vapor pressure (torr)	UR pressure corrected for vapor pressure (torr)	Pressure difference (SIO- UR) (torr)	Pressure used for air content calculation (torr)	Volume of air extracted (L STP)	Fraction of air in the headspace	Volume of ice extracted (water equivalent, L)	Total air content (cc STP / g ice)
SFC	2533 ± 20	2306 ± 18	227 ± 27	2533 ± 20	117.4 ± 3.9	0.956 ± 0.008	1188 ± 45	0.0989 ± 0.0050
19.5m	2156 ± 17	1927 ± 15	229 ± 23	2156 ± 17	99.7 ± 3.2	0.960 ± 0.007	1168 ± 45	0.0855 ± 0.0043
30m	2325 ± 19	2109 ± 17	216 ± 25	2325 ± 19	107.1 ±3.5	0.962 ± 0.007	1154 ± 69*	0.0930 ± 0.0064
40.5m	2316 ± 19	2107 ± 17	209 ± 25	2316 ± 19	106.9 ± 3.5	0.961 ± 0.007	1160 ± 44	0.0922 ± 0.0046
51m	2146 ± 17	2227 ± 18	-81 ± 25**	2448 ± 35**	109.3 ± 4.6	0.960 ± 0.007	1163 ± 45	0.0941 ± 0.0054
61.5m	2391 ± 19	2171 ± 17	219 ± 26	2391 ± 19	110.5 ± 3.6	0.959 ± 0.008	1170 ± 45	0.0946 ± 0.0047
72m	2513 ± 20	2289 ± 18	224 ± 27	2513 ± 20	116.6 ± 3.9	0.954 ± 0.008	1193 ± 46	0.0979 ± 0.0050
		Average (n = 6)	221					

14

2x standard deviations

Table S4. Measurement of noble gases ($\delta Xe/N_2$, $\delta Kr/N_2$, and $\delta Xe/Kr$) from the field procedural blanks. The large-volume samples are affected by anomalously increased gas solubility relative to the actual measured headspace pressure (P_{head}) due to rising gas bubbles during ice melting and the air recirculation step (which effectively increases the pressure of gas, P_{exchange}; see Petrenko et al., 2016). To constrain gas solubility, the ¹⁴C-modern standard used in the field procedural blanks was spiked with artificially high Xe and Kr (Dyonisius et al., 2020). We measured the two field procedural blank samples (which undergo a similar air recirculation step as the samples) derived from this standards gas for $\delta Xe/N_2$, $\delta Kr/N_2$, and $\delta Xe/Kr$ relative to the standard gas and estimated the parameter alpha (α), which effectively accounts for the ratio of P_{exchange}/P_{head}. Alpha (α) is chosen to minimize the discrepancy between expected $\delta Xe/Kr$ vs. measured $\delta Xe/Kr$ for both modern ¹⁴C field procedural blank samples.

Sample name	Field ¹⁴ C modern test 1	Field ¹⁴ C modern test 2		
Tank#	SIO15	SIO18		
$\delta(Xe/N_2), \text{\ensuremath{\&}\xspace} vs. CB10270 (\text{modern}{}^{14}\text{C}\text{std})$	-202.1	-210.3		
$\delta(\text{Kr/N}_2),$ ‰ vs. CB10270 (modern $^{14}\text{C}\text{std})$	-95.0	-131.5		
$\delta(Xe/Kr),$ ‰ vs. CB10270 (modern ^{14}C std)	-95.0	-90.7		
Constants and physical measurements for	gas solubility calcula	tion		
Water T during recirculation, K	282.3	279.6		
Kr solubility constant (K _h) @ water T, M/atm	0.003573991	0.003820178		
Xe solubility constant (K_h) @ water T, M/atm	0.006504131	0.007025663		
Headspace volume, L	400	371		
Headspace T, K	270	299		
Mole fraction under Henry's Law				
Mole fraction of Xe in water	0.182	0.167		
Mole fraction of Xe in headspace	0.818	0.833		
Mole fraction of Kr in water	0.109	0.098		
Mole fraction of Kr in headspace	0.891	0.902		
$\delta(Xe/Kr)$ predicted under full eq, ‰	-82.0	-76.0		
Mole fraction under increased gas solubilit	y due to recirculation	step		
α , tuneable parameter for $P_{exchange}/P_{head}$	1.221	1.221		
Mole fraction of Xe in water, with α	0.214	0.196		
Mole fraction of Xe in headspace, with $\boldsymbol{\alpha}$	0.786	0.804		
Mole fraction of Kr in water, with $\boldsymbol{\alpha}$	0.130	0.117		
Mole fraction of Kr in headspace, with α	0.870	0.883		
d (Xe/Kr) tuned with α , ‰	-96.2	-89.5		
$\delta(\mbox{Xe/Kr})$ final offset with tuned α vs. measured, $\%$	1.224	-1.230		

Sample name	CO measured (nmol/mol)	¹⁴ CO measured		for dilution with 10 ¹⁴ C-depleted gas	CO corrected to	rCosmogenic ¹⁴ CO s after corrections
	(IIII0I/III0I)	(pMC)	(pMC)	(molec/cc STP)	(molec/cc STP)	(molec/per g ice)**
SFC	166.3 ± 5.9	88.1 ± 2.0	7541 ± 383	394.5 ± 14.2	371.3 ± 14.7	36.7 ± 2.3
19.5m	166.7 ± 5.8	67.0 ± 0.8	5732 ± 266	300.5 ± 9.2	277.3 ± 9.7	23.7 ± 1.4
30m	2149.1 ±5.9	60.9 ± 0.9	415 ± 12	280.6 ± 8.3	257.4 ± 8.8	23.9 ± 1.8
40.5m	179.8 ± 5.8	35.0 ± 0.5	3419 ± 156	193.4 ± 6.2	170.2 ± 6.9	15.7 ± 1.0
51m	208.0 ± 5.9	98.8 ± 1.0	2485 ± 96	162.6 ± 4.5	139.4 ± 5.5	13.1 ± 0.9
61.5m	117.8 ±5.9	88.5 ± 1.0	3835 ± 216	142.0 ± 4.0	118.9 ± 5.1	11.2 ± 0.7
72m	110.0 ± 5.8	82.7 ± 0.9	3845 ± 227	133.0 ± 3.8	109.8 ± 5.0	10.7 ± 0.7
¹⁴ C dead blank 1	40.1 ± 6.0	19.0 ± 0.5	1919 ± 294	24.1 ± 0.9		
¹⁴ C dead blank 2	41.7 ± 5.8	16.3 ± 0.3	1562 ± 226	20.4 ± 0.7		
¹⁴ C modern blank 1	40.1 ± 5.9	19.0 ± 0.4	1774 ± 272	22.2 ± 0.8		
¹⁴ C modern blank 2	42.0 ± 5.9	8.9 ± 0.2	1758 ± 261	23.1 ± 1.1		
¹⁴ C dead dilution gas	10020 ± 130	0.17 ± 0.6				

Table S5. CO mole fraction, ¹⁴CO measurements, and estimates of in-situ cosmogenic ¹⁴CO content in the large volume samples and field procedural blanks. All errors presented indicate the 95% confidence interval

*this sample yielded an anomalously high CO mole fraction, indicating some form of contamination **includes the solubility correction for CO mole fraction because CO is slightly more soluble than air

Sample name	Measured ¹⁴ CH ₄	¹⁴ CH ₄ corrected for	or processing blanks	¹⁴ CH₄ amount per gram ice		
	(pMC)	(pMC)	(molec/cc STP)	(molec/g ice)		
Sfc sample	61.1 ± 2.2	62.7 ± 2.5	8.555 ± 0.357	0.840 ± 0.054		
19.5m	15.4 ± 0.6	15.4 ± 0.7	2.270 ± 0.144	0.193 ± 0.016		
30m	13.9 ± 0.6	13.9 ± 0.7	2.322 ± 0.152	0.214 ± 0.020		
40.5m	10.1 ± 0.4	9.9 ± 0.5	1.284 ±0.122	0.118 ± 0.013		
51m	7.0 ± 0.5	6.7 ± 0.5	1.031 ±0.133	0.096 ± 0.013		
61.5m	5.4 ± 0.4	5.0 ± 0.5	0.831 ±0.127	0.078 ± 0.013		
72m	5.9 ± 0.4	5.5 ± 0.5	0.817 ±0.124	0.079 ± 0.013		
¹⁴ C dead blank 1	0.8 ± 0.1					
¹⁴ C dead blank 2	1.0 ± 0.1					
¹⁴ C modern blank 1	132.9 ± 1.6					
¹⁴ C modern blank 2	132.5 ± 1.6					
¹⁴ C dead "true"	0.31 ± 0.03					
¹⁴ C modern "true"	137.2 ± 1.4					

Table S6. ¹⁴CH₄ corrections for the large volume samples. All errors presented indicate the 95% confidence interval.

Table S7. Measured ¹⁴C activities of commensurately-sized ¹⁴C standards and their expected ¹⁴C activities. The 50µg and standard 15µg set are used to empirically correct the ¹⁴CO and ¹⁴CO₂ sample pMC values, respectively (Fig. S1a and S1b). The measured ¹⁴C activities are corrected for δ^{13} C and the errors represent 68% (1 σ) confidence interval. The expected ¹⁴C activities of the OxII standard is based on consensus value reported by Wacker et al. (2019). The expected ¹⁴C activities of the IAEA-C7 and C8 standard are based on values reported by Le Clercq et al. (1997). Finally, the expected ¹⁴C activities of ANSTO internal "dead CO₂" and L733 standard are based on large (1mg) samples graphitized with the ANSTO conventional furnaces (Hua et al., 2004).

Sample name	Measured ¹⁴ C activity (pMC)	Error (pMC)	Expected ¹⁴ C activity (pMC)	Error (pMC)
50 µg set (¹⁴ C0	O sample set)			
Dead CO2	0.20	0.03		
Dead CO2	0.15	0.03	0.03	0.02
Dead CO2	0.17	0.03		
STD OxII	134.90	0.48		
STD OxII	133.31	0.61	134.06	0.08
STD OxII	134.93	0.60		
IAEA-C7	49.89	0.29	40.50	0.04
IAEA-C7	50.09	0.33	49.53	0.24
STD L733	86.83	0.36	00.07	0.50
STD L733	87.51	0.43	86.27	0.53
15 μg set (¹⁴ CO	2 sample set)			
Dead CO2	0.41	0.05		
Dead CO2	0.45	0.20	0.03	0.02
Dead CO2	0.36	0.11	0.05	0.02
Dead CO2	0.40	0.06		
STD OxII	134.96	0.85		
STD OxII	134.54	0.82	134.06	0.08
STD OxII	133.23	0.80	134.00	0.00
STD OxII	133.33	0.72		
IAEA-C7	49.99	0.47	49.53	0.24
IAEA-C8	14.99	0.27	15.03	0.34
STD L733	83.81	0.55	86.27	0.53

Table S8. ¹⁴CO₂ measurements on laboratory-made bubble-free ice (BFI) samples, including measured ¹⁴C, ¹⁴C corrected for ANSTO processing, measured carbon mass (M_g), expected carbon mass (M_s), extraneous carbon mass (M_{ext}), and calculated ¹⁴C activity of extraneous carbon. The "true" ¹⁴CO₂ activities for the standard gases are 102.48 \pm 0.42 and 0.38 \pm 0.06 pMC for the "modern" and "dead" standards respectively. All errors presented indicate the 95% confidence interval.

Standard gas used	Measured ¹⁴ CO ₂	¹⁴ CO₂ corrected for ANSTO processing (¹⁴ C ₉)	Mg	Ms	M _{ext}	¹⁴ C activity of extraneous C (¹⁴ C _{ext})
	(pMC)	(pMC)	(µg)	(µg)	(µg)	(pMC)
Modern	102.5 ± 1.6	102.7 ±2.2	12.3 ± 0.2	11.8 ± 0.2	0.5 ± 0.3	108.5 ± 141.2
Modern	103.0 ± 1.4	103.2 ± 2.0	12.0 ± 0.2	11.7 ± 0.2	0.3 ± 0.3	130.8 ± 222.5
Modern	104.7 ± 1.4	104.9 ± 2.0	11.9 ± 0.2	11.6 ± 0.2	0.3 ± 0.3	198.3 ± 268.4
Dead	3.9 ± 0.4	3.7 ± 1.0	11.7 ± 0.2	11.4 ± 0.2	0.3 ± 0.3	111.9 ± 105.7
Dead	3.8 ± 0.4	3.6 ± 1.0	13.3 ± 0.2	13.0 ± 0.3	0.4 ± 0.3	122.9 ± 127.0
Dead	3.2 ± 0.4	3.0 ± 1.0	13.5 ± 0.2	13.2 ± 0.3	0.3 ± 0.3	116.4 ± 140.3
Dead	3.2 ± 0.3	3.0 ± 1.0	13.1 ± 0.2	12.7 ± 0.3	0.3 ± 0.3	104.7 ± 114.9
Modern	100.7 ± 1.3	101.0 ± 1.9	14.2 ± 0.2	13.9 ± 0.2	0.4 ± 0.3	44.2 ± 163.2
Modern	103.6 ± 1.5	103.9 ± 2.1	12.0 ± 0.2	11.8 ± 0.2	0.2 ± 0.3	195.0 ± 461.3
				Average (n	=9)	125.9
				Standard d	eviation	94.2
				Standard e	rror	31.4

Depth	Measured ¹⁴ C	CO2 mole fraction	¹⁴ C corrected for ANSTO processing (¹⁴ Cg)	Measured mass (Mg)	Expected mass (M _s)	Extraneous mass M _{ext}	¹⁴ C corrected for extraneous C (¹⁴ C _s)		Total air content	¹⁴ C corrected for postcoring ¹⁴ C production
(<i>m</i>)	(<i>pMC</i>)	(nmol/mol)	(pMC)	(µg)	(µg)	(µg)	(pMC)	(molec/g ice)	cc STP/g ice	(molec/g ice)
2.25	31.0 ± 0.8	200 (0 - 1 01	30.9 ± 1.2	13.1 ± 0.2	12.6 ± 0.4	0.5 ± 0.5	27.1 ± 5.1	153.7 ± 29.0	0.0820 - 0.0005	145.5 ± 32.0
2.25	27.6 ± 1.2	208.69 ± 1.81	27.5 ± 1.5	12.6 ± 0.2	12.0 ± 0.3	0.5 ± 0.4	$23.2\pm\!4.4$	131.4 ± 24.9	0.0839 ± 0.0005	123.3 ± 28.5
3.65	19.4 ± 0.7	200.10.101	19.3 ± 1.1	13.6 ± 0.2	13.0 ± 0.3	0.6 ± 0.4	14.3 ± 4.3	96.7 ± 28.8		88.5 ± 31.9
3.65	18.9 ± 0.9	208.19 ± 1.81	18.7 ± 1.2	13.3 ± 0.2	13.0 ± 0.3	$0.4\pm\!0.4$	$15.7\pm\!4.1$	106.2 ± 27.9	0.1001 ± 0.0007	98.0 ± 31.1
5.25	17.8 ± 0.7	212.56 ± 1.91	17.7 ± 1.1	13.3 ± 0.2	$12.9\pm\!0.3$	0.4 ± 0.4	$14.0\pm\!4.1$	98.8 ± 28.6	0.1022 ± 0.0007	90.6 ± 31.8
5.25	$18.4\pm\!0.6$	212.56 ± 1.81	18.3 ± 1.0	13.8 ± 0.2	$13.3\pm\!0.3$	0.5 ± 0.4	$14.6\pm\!4.1$	103.0 ± 28.8	0.1022±0.0007	94.8 ± 31.9
6.85	14.2 ± 0.7	212.31 ± 1.81	14.1 ± 1.1	12.7 ± 0.2	$12.3\pm\!0.3$	0.4 ± 0.4	10.4 ± 4.1	72.4 ± 28.3	0.1015 ± 0.0004	64.2 ± 31.6
6.85	$14.4\pm\!0.6$	212.31±1.81	14.2 ± 1.0	12.8 ± 0.2	12.5 ± 0.3	0.3 ± 0.4	11.1 ± 4.0	77.6 ± 28.1		69.4 ± 31.3
10	$13.4\pm\!0.6$	014.00 - 1.01	13.3 ± 1.0	12.8 ± 0.2	$12.4\pm\!0.3$	0.5 ± 0.4	8.9 ± 4.1	58.8 ± 26.9	0.0946 ± 0.0004	50.6 ± 30.3
10	$13.2\pm\!0.7$	214.98 ± 1.81	13.1 ± 1.1	13.0 ± 0.2	12.6 ± 0.3	0.4 ± 0.4	9.5 ± 4.1	62.5 ± 26.7		54.3 ± 30.0
15*	$13.7\pm\!0.8$	220.65 ± 1.81	13.6 ± 1.2	11.6 ± 0.2	11.2 ± 0.3	0.3 ± 0.3	$10.2\pm\!4.0$	69.1 ± 27.4	0.0052 + 0.0007	60.9 ± 30.7
15*	$12.2\pm\!0.6$	220.03±1.81	12.0 ± 1.0	10.3 ± 0.2	$10.1\pm\!0.2$	0.2 ± 0.3	9.2 ± 3.9	62.8 ± 26.7	0.0952 ± 0.0007	54.6 ± 30.2
19.5	12.0 ± 0.5	221 27 1 21	11.9 ± 1.0	10.7 ± 0.2	10.6 ± 0.2	0.1 ± 0.3	10.3 ± 3.9	60.5 ± 22.9	0.0821 + 0.0004	52.4 ± 26.6
19.5	11.8 ± 0.7	221.37 ± 1.81	11.6 ± 1.1	11.9 ± 0.2	11.7 ± 0.3	0.2 ± 0.3	9.8 ± 3.9	57.8 ± 22.9	0.0821 ± 0.0004	49.6 ± 26.7
30**	13.1 ± 0.6	223.22 ± 1.81	12.9 ± 1.0	13.9 ± 0.2	13.6 ± 0.5	0.3 ± 0.6	10.2 ± 5.8	67.4 ± 38.3	$0.0918 \!\pm\! 0.0007$	59.2 ± 40.8
40.5	9.0 ± 0.5	221 71 + 1 91	8.8 ± 1.0	11.8 ± 0.2	11.6 ± 0.3	0.2 ± 0.3	$6.7\pm\!4.0$	44.6 ± 26.5	0.0887 . 0.0007	36.4 ± 29.9
40.5	10.4 ± 0.5	231.71 ± 1.81	10.3 ± 1.0	12.3 ± 0.2	11.9 ± 0.3	0.4 ± 0.3	6.8 ± 3.9	45.4 ± 26.0	0.0887 ± 0.0007	37.2 ± 29.5
51	8.7 ± 0.5	227.75 ± 1.81	8.5 ± 1.0	13.2 ± 0.2	$12.9\pm\!0.3$	0.3 ± 0.4	5.5 ± 3.9	39.3 ± 27.7	0.0965 ± 0.0002	31.1 ± 30.9
51*	8.5 ± 0.7	229.17 ± 1.81	8.3 ± 1.1	14.5 ± 0.2	$14.1\pm\!0.3$	0.4 ± 0.4	5.2 ± 3.9	36.2 ± 27.4	0.0940 ± 0.0004	28.0 ± 30.6
61.5	8.2 ± 0.4	239.82 ± 1.81	8.1 ± 0.9	14.3 ± 0.2	$14.0\pm\!0.3$	$0.3\pm\!0.4$	5.2 ± 3.8	39.2 ± 28.5	0.0961 ± 0.0005	31.0 ± 31.8
61.5*	7.4 ± 0.4	238.35 ± 1.81	7.3 ± 0.9	14.2 ± 0.2	$13.8\pm\!0.3$	$0.3\pm\!0.4$	4.3 ± 3.8	30.3 ± 27.0	$0.0918 \!\pm\! 0.0002$	22.1 ± 30.3
72	7.2 ± 0.4	000.00.1.01	7.0 ± 0.9	12.4 ± 0.2	12.0 ± 0.3	0.4 ± 0.3	2.7 ± 3.9	20.0 ± 29.2	0.00.00.00000	11.8 ± 32.4
72	7.0 ± 0.4	239.92 ± 1.81	6.8 ± 0.9	13.4 ± 0.2	13.0 ± 0.3	0.4 ± 0.4	2.9 ± 3.9	21.7 ± 29.0	0.0960 ± 0.0003	13.6 ± 32.1

Table S9. ¹⁴CO₂ measurements, CO₂ mole fraction measurements, total air content (TAC), corrections, and error-propagated uncertainties. Most samples, with the exception of the ones with *next to their depths were collected from 2015/16 deep borehole #2. All errors presented indicate the 95% confidence interval.

*these samples were collected from borehole #3

**replicate sample was lost

Table S10. ¹⁴CO₂ measurements corrected for ANSTO processing, CO₂ mole fraction, and "total air content" of the laboratory-produced and field-produced BFI samples that were run with the ¹⁴C-dead standard. The CO₂ mole fraction in the BFI samples was determined from the ratio of the amount of CO₂ and air collected, measured in the manometers. The "air content" of the BFI samples was determined from the ratio of the amount of air collected in the manometer and the amount of bubble-free-ice sublimated. All errors presented indicate the 95% confidence interval.

	¹⁴ C corrected for	CO ₂ mole fraction	"Air content"	¹⁴ CO ₂ content
Sample Name	ANSTO processing (pMC)	(µmol/mol)	(ccSTP/g ice)	(molecule/gice)
Field#1	3.8 ± 0.5	308.3 ± 4.0	0.096 ± 0.007	34.5 ± 11.6
Field#5	2.5 ± 0.5	$306.7\pm\!4.0$	0.100 ± 0.007	23.4 ± 10.6
Field#4	$4.3\pm\!0.6$	$308.9\pm\!4.0$	0.074 ± 0.007	30.5 ± 10.0
Field#2	4.2 ± 0.5	313.0 ± 4.1	0.074 ± 0.007	30.1 ± 9.4
Lab#5	3.7 ± 0.5	310.8 ± 4.1	0.071 ± 0.007	24.8 ± 8.7
Lab#6	3.6 ± 0.5	309.8 ± 4.0	0.070 ± 0.007	24.1 ± 8.4
Lab#8	3.0 ± 0.5	308.6 ± 4.0	0.070 ± 0.007	19.9 ± 7.9
Lab#9	3.0 ± 0.5	$309.4\pm\!4.0$	0.059 ± 0.007	16.9 ± 6.5
		Average fiel	d ± stdev	$\textbf{29.7} \pm \textbf{4.6}$
		Average lal	o ± stdev	21.4 ± 3.7
		Average postco	ring ± stdev	8.2 ± 5.9

REFERENCES

Baggenstos, D., Bauska, T. K., Severinghaus, J. P., Lee, J. E., Schaefer, H., Buizert, C., Brook, E. J., Shackleton, S., and Petrenko, V. V.: Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle, 13, 943, 2017.

Balco, G., Stone, J. O., Lifton, N. A., and Dunai, T. J.: A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, 3, 174–195, 2008.

Bereiter, B., Eggleston, S., Schmitt, J., Nehrbass-Ahles, C., Stocker, T. F., Fischer, H., Kipfstuhl, S., and Chappellaz, J.: Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present, Geophys. Res. Lett., 42, 2014GL061957, https://doi.org/10.1002/2014GL061957, 2015.

Chappellaz, J., Stowasser, C., Blunier, T., Baslev-Clausen, D., Brook, E. J., Dallmayr, R., Faïn, X., Lee, J. E., Mitchell, L. E., and Pascual, O.: High-resolution glacial and deglacial record of atmospheric methane by continuous-flow and laser spectrometer analysis along the NEEM ice core, 9, 2579–2593, 2013.

Clercq, M. L., Plicht, J. V. D., and Gröning, M.: New 14C Reference Materials with Activities of 15 and 50 pMC, 40, 295–297, https://doi.org/10.1017/S0033822200018178, 1997.

Hua, Q., Zoppi, U., Williams, A. A., and Smith, A. M.: Small-mass AMS radiocarbon analysis at ANTARES, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223–224, 284–292, https://doi.org/10.1016/j.nimb.2004.04.057, 2004.

Loulergue, L., Schilt, A., Spahni, R., Masson-Delmotte, V., Blunier, T., Lemieux, B., Barnola, J.-M., Raynaud, D., Stocker, T. F., and Chappellaz, J.: Orbital and millennial-scale features of atmospheric CH 4 over the past 800,000 years, 453, 383, 2008.

McNaught, A. D. and Wilkinson, A.: Compendium of chemical terminology, Blackwell Science Oxford, 1997.

Mitchell, L., Brook, E., Lee, J. E., Buizert, C., and Sowers, T.: Constraints on the Late Holocene Anthropogenic Contribution to the Atmospheric Methane Budget, *Science*, **342**, 964–966, 2013.

Menking, J. A., Brook, E. J., Shackleton, S. A., Severinghaus, J. P., Dyonisius, M. N., Petrenko, V., McConnell, J. R., Rhodes, R. H., Bauska, T. K., and Baggenstos, D.: Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: stratigraphic constraints from Taylor Glacier, *Clim. Past.*, **15**, 1537–1556, 2019.

Mitchell, L. E., Brook Edward J., Sowers Todd, McConnell J. R., and Taylor Kendrick: Multidecadal variability of atmospheric methane, 1000–1800 C.E., Journal of Geophysical Research: Biogeosciences, 116, https://doi.org/10.1029/2010JG001441, 2011.

Petrenko, V. V., Severinghaus, J. P., Brook, E. J., Reeh, N., and Schaefer, H.: Gas records from the West Greenland ice margin covering the Last Glacial Termination: a horizontal ice core,

Quaternary Science Reviews, 25, 865–875, https://doi.org/10.1016/j.quascirev.2005.09.005, 2006.

Petrenko, V. V., Smith, A. M., Brailsford, G., Riedel, K., Hua, Q., Lowe, D., Severinghaus, J. P., Levchenko, V., Bromley, T., Moss, R., Mühle, J., and Brook, E. J.: A New Method for Analyzing 14C of Methane in Ancient Air Extracted from Glacial Ice, 50, 53–73, https://doi.org/10.2458/azu_js_rc.50.3033, 2008.

Petrenko, V. V., Severinghaus, J. P., Schaefer, H., Smith, A. M., Kuhl, T., Baggenstos, D., Hua, Q., Brook, E. J., Rose, P., Kulin, R., Bauska, T., Harth, C., Buizert, C., Orsi, A., Emanuele, G., Lee, J. E., Brailsford, G., Keeling, R., and Weiss, R. F.: Measurements of 14C in ancient ice from Taylor Glacier, Antarctica constrain in situ cosmogenic 14CH4 and 14CO production rates, Geochimica et Cosmochimica Acta, 177, 62–77, https://doi.org/10.1016/j.gca.2016.01.004, 2016.

Rasmussen S. O., Andersen K. K., Svensson A. M., Steffensen J. P., Vinther B. M., Clausen H. B., Siggaard-Andersen M.-L., Johnsen S. J., Larsen L. B., Dahl-Jensen D., Bigler M., Röthlisberger R., Fischer H., Goto-Azuma K., Hansson M. E., and Ruth U.: A new Greenland ice core chronology for the last glacial termination, Journal of Geophysical Research: Atmospheres, 111, https://doi.org/10.1029/2005JD006079, 2006.

Rasmussen, S. O., Abbott, P. M., Blunier, T., Bourne, A. J., Brook, E., Buchardt, S. L., Buizert, C., Chappellaz, J., Clausen, H. B., Cook, E., Dahl-Jensen, D., Davies, S. M., Guillevic, M., Kipfstuhl, S., Laepple, T., Seierstad, I. K., Severinghaus, J. P., Steffensen, J. P., Stowasser, C., Svensson, A., Vallelonga, P., Vinther, B. M., Wilhelms, F., and Winstrup, M.: A first chronology for the North Greenland Eemian Ice Drilling (NEEM) ice core, Clim. Past, 9, 2713–2730, https://doi.org/10.5194/cp-9-2713-2013, 2013.

Turney, C., Fogwill, C., Van Ommen, T. D., Moy, A. D., Etheridge, D., Rubino, M., Curran, M. A., and Rivera, A.: Late Pleistocene and early Holocene change in the Weddell Sea: a new climate record from the Patriot Hills, Ellsworth Mountains, West Antarctica, 28, 697–704, 2013.

Shackleton, S., Baggenstos, D., Menking, J. A., Dyonisius, M. N., Bereiter, B., Bauska, T. K., Rhodes, R. H., Brook, E. J., Petrenko, V. V., McConnell, J. R., Kellerhals, T., Häberli, M., Schmitt, J., Fischer, H., and Severinghaus, J. P.: Global ocean heat content in the Last Interglacial, *Nat. Geosci.*, **13**, 77–81, 2020.

van De Wal, R. S. W., Meijer, H. a. J., De Rooij, M., and Van Der Veen, C.: Radiocarbon analyses along the EDML ice core in Antarctica, *Tellus. B*, **59**, 157–165, 2007.

van der Kemp, W. J. M., Alderliesten, C., Van der Borg, K., Holmlund, P., de Jong, A. F. M., Karlöf, L., Lamers, R. A. N., Oerlemans, J., Thomassen, M., and Van de Wal, R. S. W.: Very little in situ produced radiocarbon retained in accumulating Antarctic ice, *Nucl. Instrum. Meth. B*, **172**, 632–636, 2000.

Veres, D., Bazin, L., Landais, A., Toyé Mahamadou Kele, H., Lemieux-Dudon, B., Parrenin, F., Martinerie, P., Blayo, E., Blunier, T., and Capron, E.: The Antarctic ice core chronology (AICC2012): an optimized multi-parameter and multi-site dating approach for the last 120 thousand years, 9, 1733–1748, 2013.

Wacker, L., Bollhalder, S., Sookdeo, A., and Synal, H.-A.: Re-evaluation of the New Oxalic Acid standard with AMS, Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 455, 178–180, https://doi.org/10.1016/j.nimb.2018.12.035, 2019.