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Abstract. Surface-mass-balance (SMB) and firn-
densification (FD) models are widely used in altimetry
studies as a tool to separate atmospheric-driven from
ice-dynamics-driven ice-sheet mass changes and to parti-
tion observed volume changes into ice-mass changes and
firn-air-content changes. Until now, SMB models have been
principally validated based on comparison with ice core and
weather station data or comparison with widely separated
flight radar-survey flight lines. Firn-densification models
have been primarily validated based on their ability to match
net densification over decades, as recorded in firn cores, and
the short-term time-dependent component of densification
has rarely been evaluated at all. The advent of systematic
ice-sheet-wide repeated ice-surface-height measurements
from ICESat-2 (the Ice Cloud, and land Elevation Satellite,
2) allows us to measure the net surface-height change of
the Greenland ice sheet at quarterly resolution and compare
the measured surface-height differences directly with those
predicted by three FD–SMB models: MARv3.5.11 (Modèle
Atmosphérique Régional version 3.5.11) and GSFCv1.1
and GSFCv1.2 (the Goddard Space Flight Center FD–SMB
models version 1.1 and 1.2). By segregating the data by
season and elevation, and based on the timing and magnitude
of modelled processes in areas where we expect minimal
ice-dynamics-driven height changes, we investigate the
models’ accuracy in predicting atmospherically driven
height changes. We find that while all three models do well
in predicting the large seasonal changes in the low-elevation

parts of the ice sheet where melt rates are highest, two of
the models (MARv3.5.11 and GSFCv1.1) systematically
overpredict, by around a factor of 2, the magnitude of height
changes in the high-elevation parts of the ice sheet, particu-
larly those associated with melt events. This overprediction
seems to be associated with the melt sensitivity of the
models in the high-elevation part of the ice sheet. The third
model, GSFCv1.2, which has an updated high-elevation
melt parameterization, avoids this overprediction.

1 Introduction

Ice-sheet surface heights vary on timescales from hours
(Amory et al., 2021; Lai et al., 2021) to millennia (Khan
et al., 2016; NEEM Community Members, 2013). Repeated
altimetry measurements can provide estimates of ice-sheet
mass changes (Shepherd et al., 2020) and thus their contribu-
tion to sea-level change, providing clues to the mechanisms
driving mass loss (Smith et al., 2020; Catania et al., 2020)
based on spatial patterns and timing of the changes. On an
ice sheet in steady state, whose volume and mass are con-
stant in time, snow accumulation and ice ablation at the sur-
face are balanced by ice-flux divergence in the ice–snow col-
umn (e.g. thinning of the ice column related to horizontal
stretching of the ice) and by snow and firn compaction in the
near-surface layers. Any deviation of the rate of one of these
processes from its steady-state rate will result in a non-zero
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rate of surface-height change. We expect to see large vari-
ations in the net surface mass balance over the course of a
year, and, over most of the ice sheet, we expect to see much
slower, annual-to-decadal variations in the rate of ice-flux di-
vergence driven by evolution of the local stress balance of the
ice. Thus, even in a part of the ice sheet where the climato-
logical mean surface mass balance exactly compensates for
ice flow, we expect to see seasonal surface-height variations.
Secular trends in the local net ice-sheet mass balance, such as
thickening due to net annual SMB that exceeds the local flux
divergence or thinning due to increased ice-flow speeds that
are not balanced by additional snowfall, are superimposed on
these seasonal signals.

Time series of ice surface height measured by altimeters
cannot, by themselves, distinguish between the effects of
surface-mass-balance changes and those of variations in ice
flow or between surface-height variations caused by changes
in the average firn density (e.g. due to imbalances between
snowfall and compaction) and those caused by changes in
the ice-column mass. This leads to two sets of challenges
in the interpretation of altimetry records from the ice sheet:
the first is in understanding the relationship between ice vol-
ume changes and ice mass changes, which is complicated
by variations in near-surface density. The second is in un-
derstanding whether ice mass changes are driven by changes
in ice dynamics, such as thinning driven by the acceleration
of outlet glaciers or by variability in surface mass balance.
These challenges may be addressed in part using surface-
mass-balance (SMB) and firn-density (FD) models. SMB
models provide estimates of the variability in accumulation,
melt, and runoff, which allow estimates of the contribution of
atmospheric processes to ice-sheet mass change. FD models
are driven by information about heat and moisture flux vari-
ability provided by SMB models and provide estimates of
variability in the firn air content (FAC) as a function of time
and depth; the difference between the total measured volume
change and the total FAC change gives the change in the ice
mass, which can be converted directly into ice mass change.
In some of the most rapidly changing parts of the Greenland
ice sheet (i.e. outlet glaciers and the regions immediately up-
stream), height variations are driven in large part by changes
in ice velocity (thus flux divergence rate changes) (Moon et
al., 2015). These areas, however, are limited to a zone near
the coast extending a few tens of kilometres inland; over the
majority of the ice sheets, ice velocity has been relatively
constant since the first systematic measurements in the late
1990s. In the absence of large variations in velocity, most
ice-elevation changes should be SMB and FD driven, and all
height-change components can, in principle, be described by
a combination of FD and SMB anomalies.

A variety of models are available that can generate SMB
(e.g. Gelaro et al., 2017; Fettweis et al., 2017; Noel et al.,
2015) and FD (e.g. Stevens et al., 2020; Brun et al., 1989;
Munneke et al., 2015) estimates for Greenland and Antarc-
tica, each with differing temporal and spatial resolutions,

with different internal representations of the physical pro-
cesses driving SMB and firn densification, and driven by
different climate-forcing data. Some processes within SMB
models (e.g. surface albedo evolution) can be tested by com-
parison with remote sensing data (e.g. Banwell et al., 2012),
and SMB models have been tested by comparison with point
measurements, such as automatic weather stations, ice cores,
and ablation stakes (e.g. Noel et al., 2015); by comparison
with accumulation estimates derived from layering observed
in ground-penetrating radar data (e.g. Medley et al., 2014;
Koenig et al., 2016); and, in bare-ice zones, by direct compar-
ison with altimetry data (Sutterley et al., 2018). Densification
in FD models has been tested and, in some cases, calibrated
by comparison with ice core density profiles (e.g. Ligtenberg
et al., 2011; Alexander et al., 2019; Lundin et al., 2017; Li
and Zwally, 2015; Kuipers Munneke et al., 2015); by com-
parison with borehole measurements (Morris and Wingham,
2014; Hawley et al., 2020); and, for a limited set of mea-
surements in Antarctica, by repeated radar measurements
(Ligtenberg et al., 2015). We have identified one study (Ver-
jans et al., 2021) that has used altimetry differences to vali-
date combined SMB and FD models in Antarctica and a sec-
ond (Kuipers Munneke et al., 2015) that used altimetry dif-
ferences to evaluate trends in snow-surface heights predicted
by models in Greenland.

Previous model evaluations, particularly those of the FD
models, have been limited in their spatial extent and do not
demonstrate how the accuracy of the models varies over the
full range of ice-sheet surface conditions and seasons. In this
paper, we present an evaluation of three SMB–FD models in
Greenland based on height changes measured with NASA’s
ICESat-2 satellite between the autumn of 2018 and the end
2020, a period that includes the substantially anomalous
summer-2019 melt season (Tedesco and Fettweis, 2020). Al-
though combined SMB and FD models can be evaluated at a
regional scale in studies that evaluate ice-sheet mass balance
based on multiple redundant datasets (e.g. Martin-Espanol et
al., 2016) including gravimetry and altimetry, the coarse spa-
tial resolution of these studies means that the effects of ve-
locity changes are not as easily separated from SMB-driven
changes in these data as they are in the altimetry measure-
ments. The high (centimetre-level) vertical precision, 100 m
spatial resolution, and quarter-annual temporal resolution of
the ICESat-2 data allow us to make pointwise comparisons
between the behaviour predicted by the models and the mea-
sured height differences, and, by selectively isolating groups
of difference data in which the models predict different SMB
processes to play a strong role in surface-height change,
we evaluate the accuracy with which the models can pre-
dict these processes. Our results offer an ice-sheet-wide view
of the accuracy of model processes driving surface-height
changes.
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2 Data and methods

Our results are based on altimetry data from ICESat-2, se-
lected based on ice-surface velocity data. We compare these
data with height-change predictions based on modelled SMB
and FD changes from two atmospheric models, driving three
different FD models. We describe each below.

2.1 Altimetry data

Our altimetry data are derived from the ATLAS (Advanced
Topographic Laser Altimeter System) instrument on board
NASA’s ICESat-2 satellite. ATLAS measures the height of
the ice-sheet surface using six laser beams, which measure
three pairs of tracks, each separated from its neighbour(s)
by 3.3 km. The central pair follows a set of 1387 reference
ground tracks (RGTs), which are separated by about 10 km
in central Greenland (70◦ N), and the 3.3 km offsets between
the reference pair tracks (RPTs) followed by the right, cen-
tral, and left beam pairs help fill in the gaps between RGTs.
This orbital and beam geometry gives pair-to-pair sampling
better than 3.3 km for most of Greenland and Antarctica.

The beams within each of ICESat-2’s beam pairs are sep-
arated by ∼ 90 m, allowing each pair to uniquely determine
the cross-track surface slope. The satellite makes repeat mea-
surements on each RGT, once every 91 d cycle. ICESat-2 be-
gan making measurements in October 2018. For the first two
91 d cycles, the on-board software to point the central beam
pair at the RGT was not configured correctly, so ICESat-2
measured tracks displaced from the RGTs by up to several
kilometres. This problem was corrected at the start of cy-
cle 3, in April 2019, and subsequent cycles of data followed
the RPTs with a precision better than 10 m (Luthcke et al.,
2021). The ICESat-2 dataset continued uninterrupted to the
present (September, 2021) except for a 14 d period in be-
tween 26 June and 19 July 2019, when the instrument was
shut down because of problems with the satellite orientation.

Elevation-change data in this paper are based on release
004 of the ICESat2 ATL11 data product (Smith et al., 2021),
which combines measurements from multiple cycles to cor-
rect for the spatial variation in surface height around each
RPT. The limited precision of ICESat-2’s repeat-track point-
ing introduces small apparent height differences between
measurements from different cycles, with a magnitude ap-
proximately equal to the product of the across-track offset
and the surface slope. At each of a set of reference points
spaced every 60 m along the RPTs, the ATL11 algorithm
solves for a reference surface that corrects for these offsets to
give height estimates for each cycle with little or no contri-
bution from the across-track offset. It uses the same correc-
tion for points where tracks from different cycles cross the
RPTs (crossover points). For this study, height differences
since the beginning of RPT pointing (April 2019) are cal-
culated based on height measurements along the same RPT.
Height differences from cycles 1 and 2 (prior to April 2019)

are calculated based on crossover-difference measurements
between the early non-RGT-pointed measurements and the
cycle-3 (and later) RGT-pointed measurements.

ATL11 provides two kinds of error estimates. Per-point
estimates (h_corr_sigma) include the errors related to the
accuracy of the reference surface and the precision of
the ICESat-2 range estimates, which are uncorrelated be-
tween adjacent reference points. Systematic error estimates
(h_corr_sigma_systematic) include the contribution of un-
certainties in measurement geolocation and the satellite’s ra-
dial orbit errors to the measurement errors. In the interior
of the ice sheet, per-point errors tend to be on the order of
1–2 cm, becoming somewhat larger for coastal areas where
rougher surfaces and larger slopes degrade the precision of
the instrument. Correlated errors are roughly proportional
to the measurement geolocation uncertainties times the sur-
face slope. However, because release-004 along-track prod-
ucts use nominal, pessimistic estimates of the geolocation er-
rors (20 m in each direction) and studies that assessed the ac-
curacy of release-003 products found that they in fact had
smaller geolocation errors, generally less than 6.5 m (Ma-
gruder et al., 2020), we expect to see correlated errors rang-
ing from a few centimetres in the interior to ∼ 0.65 m in the
most strongly (∼ 10%) sloping areas near the coasts. We find
that typical rms error magnitudes for the subsamples of data
we present here are on the order of 3 cm for the inland part
of the ice sheet and on the order of 10 cm for coastal regions.

We present the ICESat-2 data as eight epochs of height dif-
ferences – all except the first made up of differences between
subsequent 91 d cycles. Because cycles 1 and 2 were not col-
lected on the RGTs, the first two epochs use crossover differ-
ences relative to cycle 3; thus, the first epoch is made up of
differences between the fourth quarter of 2018 (18.Q4) and
the second quarter of 2019 (19.Q2), and subsequent epochs
are made up of differences between adjacent quarters (e.g.
the second epoch is 19.Q1 to 19.Q2).

2.1.1 Velocity-variability-based data selection

This study is intended to evaluate the accuracy of the rep-
resentation of SMB-driven processes on the Greenland ice
sheet. In parts of the ice sheet where the ice-flux divergence
is out of balance with SMB, we expect to see surface-height
changes due to a combination of ice-dynamic changes and
SMB changes. Because we cannot accurately predict the
magnitude of height variations associated with surface ve-
locity variations, we restrict our analysis to areas of the ice
sheet for which the temporal ice-flow variability is small
(less than 20 m yr−1 deviation from the multi-decadal mean,
with seasonal variations less than 10 m yr−1; see Fig. S2
in the Supplement). This approach removes much of the
lowest-elevation portion of the ice sheet and part of the up-
per catchments of a few of the fastest-changing glaciers (e.g.
Jakobshavn glacier). Although this remaining low-velocity-
variability region includes about 88 % of the ice sheet’s area,
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it excludes the coastal portions of a few of the catchments,
particularly in the southeast where the apparent velocity vari-
ability is large.

2.2 Surface-mass-balance and firn-density model
estimates

We use our altimetry data to evaluate three state-of-the-art
SMB and FD models, which were chosen for this paper be-
cause of their low temporal latency, which made them avail-
able for the same time period as the recently released ICESat-
2 data. Two of these models (MARv3.11.5 and GSFCv1.1)
have different surface-mass-balance forcing and a different
firn model but share a similar melt-rate forcing. The third
model (GSFCv1.2) updates the surface-melt forcing from
GSFCv1.1.

Each model provides estimates of the height change due to
surface mass balance and that due to firn-air-content change.
The sum of these together represents the model estimate of
surface-height change due to atmospheric and firn processes.
Table S1 in the Supplement gives the internal model variables
and the abbreviations used in this study for each.

2.2.1 MAR regional climate model

The Modèle Atmosphérique Régional (MAR) (Fettweis et
al., 2017; Amory et al., 2021; Tedesco and Fettweis, 2020) is
a coupled surface–atmosphere regional climate model forced
at 6 h intervals at the lateral boundaries and ocean surface
with climate reanalysis data (here ERA5). It includes detailed
snow and firn evolution based on the CROCUS snow model
(Brun et al., 1989, 1992), an atmospheric model (Gallee and
Schayes, 1994), and a land-surface energy-balance model
(DeRidder and Schayes, 1997). MAR has been extensively
validated over the Greenland ice sheet, showing general good
agreement with weather station and SMB measurements,
with some local biases (Alexander et al., 2019; Fettweis et
al., 2020, 2017; Montgomery et al., 2020). MAR simulates
the top 25 m of snow, firn, and ice, including energy and
mass transfer between 30 layers of variable thickness, and
incorporates the process of liquid water retention and refreez-
ing. A physically based scheme is used to simulate snow
densification as a function of the weight of overlying snow
(Alexander et al., 2019). Here we use MAR version 3.11.5
(MARv3.11.5) (Amory et al., 2021), which contains modi-
fications to the previous (Fettweis et al., 2020) versions, in-
cluding updates to the cloud parameterization and bare ice
albedo adjustments, but without the blowing-snow module.
The simulations presented here are run at a spatial resolution
of 10 km, forced with the ERA5 reanalysis over 1950–2020
(Hersbach et al., 2020).

2.2.2 GSFC modelling based on MERRA-2 and CFM

We generated two sets of SMB and FD products (the GSFC
model, after the Goddard Space Flight Center, where the

modelling was carried out) using output from a global at-
mospheric model as input to an open-source FD model. Im-
provements between the initial (v1.1) and updated (v1.2) ver-
sions of this modelling scheme allowed us to explore some
of the model processes that can lead to errors in SMB–FD
models.

Both versions of the GSFC model used atmospheric vari-
ables from the Modern-Era Retrospective analysis for Re-
search and Applications, Version 2 (MERRA-2), developed
at the Global Modeling and Assimilation Office (GMAO)
at the NASA Goddard Space Flight Center (Gelaro et al.,
2017). Atmospheric variables including snowfall, total pre-
cipitation, evaporation, 2 m air temperature, and skin tem-
perature were downscaled to 12.5 km spatial resolution us-
ing an offline, high-resolution MERRA-2 replay, in which
an atmospheric model (a nonhydrostatic version of the God-
dard Earth Observing System model, version 5, GEOS-5)
was nudged to match the MERRA-2 reanalysis. In other stud-
ies, the improved resolution due to this downscaling tech-
nique has led to improved agreement in skin temperature and
SMB with other state-of-the-art models over the Greenland
ice sheet (Cullather et al., 2014). One complication in the
use of the MERRA-2 model output to drive the firn model
was that MERRA-2 does not provide melt as an output. To
derive a consistent melt-rate field, we used the MERRA-2
2 m temperatures as input to a degree-day model calibrated
to MARv3.5.2 annual melt; the updates between MARv3.5.2
and the MARv3.11.5 model evaluated in this study did not
have a major effect on temperature or melt-rate estimates in
Greenland, so we assume that the melt-rate calibration for
the GSFC models is consistent with MARv3.11.5.

These atmospheric products were used as forcing for the
Community Firn Model (CFM; Stevens et al., 2020), which
provided ice-sheet-wide simulations of the variations in FD
through time (Medley et al., 2022a). The configuration of
the CFM included several firn processes comprising densi-
fication, heat transport, grain-size evolution, meltwater per-
colation and refreezing, and sublimation. The combination
of atmospheric variables from MERRA-2 and output from
the CFM produces total firn-column height variations from
January 1980 to December 2020 at 5 d time steps. The total
thickness simulated depends on the ambient climate, typi-
cally varying between 118 and 298 m (lower and upper fifth
percentile).

Between the GSFCv1.1 and GSFCv1.2 model versions,
the positive-degree-day model used to generate melt esti-
mates was refined, and a more complicated model was used
to derive the near-surface density (Medley et al., 2022a). For
the GSFCv1.1 model, the factor relating the model positive
degree days to the melt estimates was derived based on a cal-
ibration for each 12.5 km grid cell between the MARv3.5.2
annual melt production and the MERRA-2 2 m temperature,
and the calibration factor for each cell was applied to de-
rive melt estimates from the MERRA-2 temperatures. This
calibration yielded calibration factors that were consistent
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for cells with elevations up to around 1500 m but increased
sharply to large, likely unrealistic values at higher elevation.
Thus, to help avoid overestimation of surface melt in the GS-
FCv1.2 model, any grid cell with a surface elevation higher
than 1500 m was assigned a calibration factor equal to the
minimum of the calibrated value and 0.13 kg m−2 h−1 K−1.
This value was chosen based on typical calibration values at
1500 m. The GSFCv1.2 model also included a small increase
in the melt-threshold temperature, from the GSFCv1.1 value
of 269 to 270.25 K, which led to minor changes in the cal-
ibration factors. This modification was based on an adjust-
ment of model performance as a function of the temperature
threshold to better replicate mean melt rates.

For GSFCv1.1, the surface density was assigned based on
a linear function of several climatic parameters (wind speed,
specific humidity, accumulation rate, and temperature), with
coefficients chosen to match the observed surface densities
at 151 core sites (Medley et al., 2022a), while for GSFCv1.2,
the surface density was assigned based on a Gaussian pro-
cess regression model relating similar parameters to density
and trained based on a larger set of 187 core sites. This re-
sulted in modestly higher surface densities in GSFCv1.2: the
5 %–95 % range of surface densities for GSFCv1.1 was 247–
364 kg m−3, while the corresponding range for GSFCv1.2
was 327–387 kg m−3 (Medley et al., 2022a). The distribu-
tion of density differences between the two models (Fig. S3)
is not spatially uniform, with slightly (0 %–10 %) lower den-
sities in GSFCv1.2 in the high-elevation northern portion
of the ice sheet and larger densities in the south and near
the coast, although initial evaluations suggest that the low-
elevation surface densities in GSFCv1.2 are biased high.

2.2.3 Anomaly calculations

For our models, the SMB and temperature data provided do
not reflect a steady-state climate, and we do not expect the re-
sults to converge to any particular equilibrium state. Instead,
we choose the period between 1980 and 1995 as a reference
period and calculate the anomalies in surface-height change
relative to the mean height change over this period. This is
equivalent to assuming, first, that the mean vertical veloc-
ity of the ice at the bottom of the firn column is equal to the
mean ice-equivalent SMB over this reference epoch and, sec-
ond, that any change in the FAC over the reference period re-
flects a systematic error in the model, whose effects are cor-
rected by subtracting a linear interpolation of the modelled
FAC at the beginning and end of the reference period (so that
there is no net modelled FAC change during that period) and
by extrapolating the same linear relationship to later times.
This is consistent with the way in which firn models have
been used in correcting altimetry time series (e.g. Smith et
al., 2020) and is useful in this study because it allows us
to compare model-predicted changes with less potential in-
fluence from long-term drifts in the SMB rate or the total
FAC, so that any differences between the models in this study

here can only reflect differences relative to the calibration pe-
riod, with less potential influence from the spin-up processes
used to initialize the models. Although the spin-up of the FD
model and our assumption of zero change during the refer-
ence period may result in errors in the detrended FD model
results (e.g. Helsen et al., 2008), we expect these errors to
result primarily in errors in the modelled height change that
are steady over long (decadal) periods of time. The quarter-
annual height changes that are the main focus of this study
may experience a temporally uniform shift (i.e. might all be
too positive or too negative at a particular location) as a result
of these errors, but we do not expect the temporal variability
of height changes to be significantly affected.

2.3 Model–data comparison

For each model, we reduce the full set of 57 million height-
difference measurements from ICESat-2 to a more compact
sample with a more even spatial distribution by calculating
a block-median set of height differences for each cycle-to-
cycle (∼ 91 d) epoch. For each epoch in each model, we as-
sign the height differences into 2.5 km cells for each ICESat-
2 pair track. For each such cell in each epoch, we identify the
measurement (or measurements) that matches (or bracket)
the median height difference. For each median difference
measurement, we sample each of our model fields (i.e. model
total height, model SMB anomaly, model FAC, and model
accumulated melt) at the time and location of the height mea-
surements and calculate their differences. This gives a set
of model-field-difference values that are precisely collocated
with the measured differences.

2.3.1 Weighting the data

After applying the block median to the height differences,
there are still substantially more measurements in the north-
ern part of the ice sheet than in the south. Without a correc-
tion for this measurement-density bias, differences described
by regressions and other block statistics on the residuals
would overrepresent the statistics to the north of the ice sheet,
with less sensitivity to the south of the ice sheet, where some
of the most dramatic changes have happened. To help cor-
rect for this sampling variability, we calculate the density of
measurements (i.e. the number of measurements per square
kilometre) on 10 km cells over the ice sheet and smooth the
calculated measurement-density values with a 100 km square
averaging kernel. This gives a map of measurement den-
sity for the whole ice sheet, which we then interpolate to
the difference-measurement locations. We then calculate a
weight value for each difference measurement that is equal
to the inverse of its interpolated measurement-density value.
Because the data gap in June/July 2019 leads to about 50 %
fewer difference measurements in all epochs that included
the second quarter of 2019, we also reduced the weights for
all epochs later than Q3–Q4 2019, inclusive, by a factor of
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2. The resulting weighting ensures that a weighted average
of measurements assigns approximately the same weight per
unit area to regions in the south of Greenland that it does to
regions in the north in addition to accounting for changes in
sampling density over time.

2.3.2 Regression analysis

To help describe the relationship between modelled and mea-
sured height-change estimates, we calculate weighted regres-
sions using components of the models’ height changes as in-
dependent variables. Our goal in these regressions is to iden-
tify how the modelled height changes differ from the mea-
sured height differences over the ice sheet. These regressions
estimate the scaling(s) for the model parameters that mini-
mize the variance between the measured height differences
and the sum of the scaled model parameters:

Rmodel =
∑

W

(
dh−

(
dh0+

∑
parameter j

SjdPj

))2

. (1)

Here, W represents the point-density-based weights from
Sect. 2.3.1, dh represents the measured height differences,
dPj represents differences in model parameters interpolated
to the locations and times for the measurements that make
up each height-change measurement, Sj represents the scal-
ing values for each parameter, and dh0 is the mean resid-
ual height change. The main statistic we use to evaluate the
goodness of fit is the weighted standard deviation, calculated
as

σ =

[∑
r2
i Wi∑
Wi

]1/2

. (2)

Here, Wi represents the inverse point densities, and ri rep-
resents the regression residuals. As an example, in a regres-
sion between the total model height change and the observed
height change (Sect. 3.2.1) we solve for the coefficient, A,
and the mean residual height change, dh0, that minimize the
quantity:

Rmodel =
∑

W(dh− (dh0+Adhm))
2. (3)

Here, dhm represents the modelled height changes. Hypo-
thetically, if one of the models were to systematically over-
estimate the surface mass balance by a factor of 2, we would
expect to see a regression for SMB result in a coefficient of
0.5 (meaning that scaling the SMB by 0.5 causes the model
to fit the data) and residuals to that regression approximately
equal to the data errors. Conversely, if the modelled SMB
was not strongly correlated with the measured height differ-
ences, we expect to see an arbitrary value for the regression
coefficient and to see a residual variance only slightly smaller
than the data variance. Our analysis of the variance statistics
is somewhat qualitative because we do not have a convincing

way to determine the number of independent parameters in
our regressions, but, as will be seen later in this paper, the
distinction between variables for which regressions reduce
the variance and those for which they do not is usually clear.

To isolate the effects of different processes on the data–
model misfit, we calculate regressions against groups of
model parameters for a few different spatial and temporal
subsets of the data. Because regressions can be sensitive to
points with large residuals that are not representative of the
statistics of the data, for each subset of the data, we first
remove large outlying difference values caused by, among
other things, complex and steeply sloping ice surfaces, as
well as blunders in the ATL06 data underlying the ATL11
data. To identify these, we calculate the robust spread of
height-difference distribution (here defined as the half width
of the central 68 % of the distribution) and remove from
the analysis any outlying points whose difference values are
more than 12 times this spread away from the mean. This
editing strategy is applied iteratively until subsequent means
are identical or until 10 iterations are complete. The final re-
gressions and their residual are calculated after these outlying
points are removed. For the ice sheet as a whole, this editing
procedure removes about 1 % of points, of which the stan-
dard deviation is equal to 2.3 m.

We perform regressions for the total model change (dhm),
the height change due to SMB anomalies (dhSMB), and the
height change due to firn air content (dhFAC). We use the
modelled total melt to segregate the data into strong-melt
(zmelt > 0.2|dhm|) and weak-melt (zmelt < 0.2|dhm|) subsets
but do not perform explicit regressions between surface-
mass-balance change and melt because melt does not have
a consistent linear relationship with surface-height change.
The height change associated with melt depends on the den-
sity of the snow or ice being melted and on whether the melt-
water runs off the ice sheet or is refrozen, which makes the
results of a regression between zmelt and dh more difficult to
interpret than those for the other variables.

2.3.3 Model subsets

To help identify the processes at work in determining the
model–data misfit, we divided the data into low- and high-
elevation subsets (h < 2000 m and h > 2000 m); divided the
data into weak- and strong-melt subsets using the models’
accumulated melt parameter, zmelt (zmelt < 0.2|dhm|, zmelt >

0.2|dhm|); and isolated the high-melt time periods for which
we have data from both 2019 and 2020 (spring–summer,
spanning Q1–Q2 and Q2–Q3 for each year). Figure 1 shows
maps of the elevation subsets and of the spatial distribution
of high-melt differences. Based on Fig. 1, we can see that all
three models estimate frequent strong melt in low-elevation
regions around the coast and that both MARv3.11.5 and GS-
FCv1.1 estimate that melt occurred sporadically throughout
the ice sheet, while GSFCv1.2 estimates that strong melt was
rare in the high-elevation portion of northern Greenland.
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Table 1. Properties of subsamples of the models. The elevation and subset columns indicate the subsample of data for which the statistics
were calculated. The elevation column indicates “low” for elevations below 2000 m, “high” for elevations above 2000 m, or “all”. The subset
column indicates “strong melt” for data for which zmelt > 0.2|dhm|, indicates “weak melt” for data for which zmelt < 0.2|dhm|, or indicates
temporal divisions of the data. The “f_wt” column indicates the fraction of the total data weight for each subsample of the data. The f_melt
column indicates the fraction of points in each subsample that fell into the strong-melt category.

Model Elevation Subset f_wt f_melt sigma_SMB sigma_FAC rms_data

MARv3.11.5 all all 1.00 0.29 0.17 0.24 0.25
all sp-su 2019 0.22 0.60 0.34 0.42 0.43
all sp-su 2020 0.28 0.34 0.16 0.22 0.22
high weak melt 0.50 0.00 0.04 0.09 0.12
low weak melt 0.22 0.00 0.13 0.18 0.26
high strong melt 0.15 1.00 0.08 0.39 0.24
low strong melt 0.15 1.00 0.59 0.49 0.74

GSFCv1.1 all all 1.00 0.28 0.14 0.20 0.25
all sp-su 2019 0.22 0.64 0.26 0.34 0.43
all sp-su 2020 0.28 0.29 0.13 0.17 0.22
high weak melt 0.50 0.00 0.04 0.08 0.12
low weak melt 0.21 0.00 0.15 0.17 0.26
high strong melt 0.14 1.00 0.09 0.35 0.24
low strong melt 0.15 1.00 0.44 0.36 0.73

GSFCv1.2 all all 1.00 0.23 0.14 0.13 0.25
all sp-su 2019 0.22 0.49 0.27 0.22 0.43
all sp-su 2020 0.28 0.24 0.12 0.11 0.22
high weak melt 0.55 0.00 0.04 0.06 0.12
low weak melt 0.22 0.00 0.14 0.11 0.26
high strong melt 0.10 1.00 0.09 0.23 0.29
low strong melt 0.14 1.00 0.47 0.26 0.75

Figure 1. Spatial distribution of elevation and melt categories. Panel (a) shows the location of the low-and high-elevation data. Panels (b),
(c), and (d) show the fraction of all points in 10×10 km bins for each model that fall into the strong-melt (zmelt > 0.2|dhm|) category. Letters
“H”, “M”, and “L” indicate locations for plots in Fig. 2.

Table 1 gives some general properties of the model out-
puts for all of the data together and for each subset. Based on
these values, we can see that melt was considerably stronger
in 2019 than it was in 2020 for all three models, with nearly
3 times as much of the data weight falling into the strong-

melt category (compare the f_melt statistics for sp-su 2019
with those from sp-su 2020). The rms statistics of the SMB
variables reflect the strong surface-melt signal in the summer
of 2019 and the large melt signals associated with the lowest-
elevation part of the ice sheet. FAC variability is largest
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in 2019 and for both strong-melt subsets of the data. The
fraction-of-weight column indicates that the largest fraction
of the data (by weight) fell into the high-elevation, weak-
melt category, while the smallest fraction fell into the low-
elevation, strong-melt category. MARv3.11.5 and GSFCv1.1
had similar distributions of data weight and variance among
the subsamples, but GSFCv1.2 had less weight in the strong-
melt category, particularly in the high-elevation region, and
had smaller FAC variance within the high-melt subsamples.
Note that because of the outlier editing applied to each sub-
set, the superset of the high- and low-elevation, weak- and
strong-melt subsets contains a slightly larger (∼ 1.3%) total
weight than does the “all” subset for each model. We do not
believe that including or omitting these points makes a large
difference in our results.

3 Results

Figure 2 shows height-change measurements, model data,
and measurement-model residuals for three 20× 20 square
regions in Greenland with different melt characteristics (lo-
cations indicated in Fig. 2). For each region, we plot the
SMB anomalies converted to height (dashed lines) and the
total height anomalies (solid lines) for each model (a–c).
We plot the mean ATL11 height differences for each RPT
within each box (d–f, different colours for different RPTs),
as well as the residuals between the ATL11 height differ-
ences and predicted height change for GSFCv1.1 (g–i), GS-
FCv1.2 (h–j), and MARv3.11.5 (k–m), and the models’ melt
estimates. The three locations show a range of melt intensi-
ties: at the high-elevation location (3160 m, “H” in Fig. 2),
only the GSFCv1.1 shows a visible melt signal, while at
the middle-elevation location (2420 m, “M”), GSFC1.1 and
MARv3.11.5 each have decimetre-level melt signals in the
summer of 2019, while GSFCv1.2 has only a few centime-
tres of melt. At the lower-elevation location (1680 m, “L”) all
three models have tens of centimetres of melt in the summers
of 2019 and 2020. For the high-elevation location, the ATL11
data show a dip in elevation over the summer of 2019, recov-
ered the following winter. All three models match the data
well, except that GSFCv1.1 overpredicts the summer-2019
drawdown by around 10 cm. For the middle-elevation loca-
tion, the summer drawdown is larger and is predicted well by
GSFCv1.2 and overpredicted by the other two models. At the
lower-elevation location, the ATL11 data show drops of 20–
80 cm during the summers, which are matched well by the
GSFC models and overpredicted by MARv3.11.5. These ex-
amples span much of the range of variability seen around the
ice sheet but are not necessarily typical of any larger subset of
the data, particularly with respect to the relative accuracy of
GSFCv1.1 and MARv3.11.5, which can be notably different
between measurements separated by a few tens of kilometres,
likely because of the small-scale variability in melt shown for
these models in Fig. 1. The relative variability of the models’

surface-height and SMB fields seen in these examples, how-
ever, is consistently seen throughout the ice sheet: over much
of the area covered by our masked data, runoff plays only
a small role in SMB variations, which limits the temporal
variability in the SMB height-change estimates, so that SMB
variations consist of small height increases driven by accu-
mulation events, balanced by the detrending in the anomaly
calculations. The surface-height predictions often have much
larger seasonal cycles that reflect changes in FAC, because
melt events result in a loss of low-density snow, where the
meltwater infiltrates deeper layers to fill pore space.

3.1 Measured changes and model residuals

Figure 3a–h show maps of height differences (δh) measured
by ICESat-2 between October 2018 and December 2020.
This span includes both the 2019 and 2020 melt seasons
(2019 Q2–Q3 and 2020 Q2–Q3), of which 2019 appears to
have been substantially more intense. The 2019 melt season
shows thinning over most of the ice sheet, with height lost
even in the middle of the ice sheet where melt is typically
rare. The strongest thinning rates were concentrated within a
few tens of kilometres near the coast, declining inland, with
the largest inland extent of thinning in the southwest and with
relatively small thinning extent in the northeast. The sum-
mer of 2020 shows a narrower band of thinning, confined
mostly to the coast. The fall and winter seasons show nar-
row coastal bands of thickening reflecting winter snowfall,
with the largest values in the southeast, where the maximum
precipitation rates occur (Fettweis et al., 2020).

Figure 3i–z5 show the corresponding height differences
expected solely due to modelled SMB–FD processes for each
epoch (δhm). These plots show that the models match the
overall temporal and spatial extent of the thinning in the sum-
mers of 2019 and 2020, but the predicted thinning is some-
what more spatially extensive than the observed thinning;
likewise, winter and fall thickening appears to be more spa-
tially extensive in the models than in the measured values.

Figure 4 shows the residuals between the measured height
differences and the changes predicted by the models, which
we term the “corrected” height changes (δhc). Consistent
with the time series in Fig. 2, these plots show that δhc has
smaller variations than δh over most of the ice sheet but
that in many parts of the ice sheet, subtracting the predicted
SMB–FD signal reverses the sign of the observed differ-
ences. This indicates that the models predict larger changes
than are observed in the data: for example, MARv3.11.5 and
GSFCv1.1 predict stronger thinning between Q2 and Q3 of
2019 than was measured, resulting in positive corrected val-
ues (Fig. 4c, k), and these overestimates of thinning are mir-
rored by overestimates of thickening during the colder sea-
sons (Fig. 4e, m). During the summer of 2019, the GSFC
models appear to underestimate thinning in the low-elevation
bare-ice zone of the southwest margin (Fig. 4k, s), while
MARv3.11.5 appears to be much closer to correct (Fig. 4c).
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Figure 2. Data and model estimates for three locations indicated in Fig. 1. (a–c) Model total height anomalies (solid) and SMB-driven height
anomalies (dashed) for all the three models. (d–f) ATL11 height time series for each location, with different colours indicating different
RPTs. (g–o) Differences between ATL11 time series and total model height anomaly for each model and location. Solid black lines show a
90 d running mean of the melt estimated by each model (positive indicates height lost to melt). To align the time series vertically, we subtract
the value for cycle 6 (Q1 of 2020) from each. Time series for each RPT are joined by a solid line when derived from continuous repeat-track
measurements. Broken lines or lone points indicate crossover measurements or missing values in the repeat-track measurements.

3.2 Regression experiments

3.2.1 Regression of height change against total model
change, for temporal subsamples of the data

Figure 5 shows histograms of observed height differences,
model-corrected height differences, and regression residu-
als for the full time series, as well as for subsamples of the
data spanning the spring-to-summer and summer-to-autumn
epochs of 2019 and 2020. For each subset of the data, we
plot the histograms of the data (measured height differences),
of the residuals between the unscaled model and the data

(equivalent to the residuals for A= 1 in Eq. 1), and of the
residuals between the scaled model and the data (after solv-
ing for the value of A that minimizes Rmodel). The legend for
each panel in Fig. 4 specifies the quantity shown in the his-
togram, the mean residual (equivalent to dh0 in Eq. 1), and
the scaled standard deviation (Eq. 2).

Distributions of measured height differences (Fig. 5a–c)
have a standard deviation of 0.25 m and a mean of −0.02 m,
with a tail of negative values likely corresponding to the
strong low-elevation melt-season drawdown. Evaluating the
corrections and regressions shows a clear distinction between
two of the models (MARv3.11.5 and GSFCv1.1) and the
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Figure 3. Measured height differences in Greenland from ATL11 (a–h) and the predicted height changes from MAR3.11.5 (i–p), from
GSFCv1.1 (q–x), and from GSFCv1.2 (y–z5). Points on the plots show the measured or predicted height differences for each epoch (listed
at top) and are masked to include only on-ice points but are not masked based on velocity variations.

third (GSFCv1.2); we describe the results from the first two
and then describe how these differ from those of the third.
Subtracting the models gives distributions with smaller stan-
dard deviations (0.19 m for MARv3.11.5, 0.18 m for GS-
FCv1.1) and near-zero means. Results from the regressions
show that when the MARv3.11.5 and GSFCv1.1 are rescaled
by 0.63 and 0.76, respectively, the residual standard devia-
tions are notably smaller (0.14 m for MARv3.11.5, 0.15 for
GSFCv1.1), and the residual means remain close to zero.
For these models, the unscaled model outputs account for
less than half the variance in the measured height differ-
ences (39 % for MARv3.11.5, 46 % for GSFCv1.1), while
the scaled models each account for more than 60 % of the
variance (see Tables S2–S4 for variance statistics). By con-
trast to MARv3.11.5 and GSFCv1.1, the residuals to the un-

scaled GSFCv1.2 model are smaller (at 0.15 m), the optimal
rescaling is close to unity (0.88), and the residuals to the
rescaled model (at 0.14 m) are only marginally smaller than
those of the unscaled model.

The data from spring–summer 2019 (Fig. 5d–f) show sub-
stantial (−0.21 m) average ice-sheet height loss and larger
(0.37 m) height-difference standard deviations. Similar to the
full time series, the residuals to the unscaled models have
smaller spreads than do the data (0.25 m for MARv3.11.5,
0.22 m for GSFCv1.1), and the spreads of the residuals to the
optimally rescaled models (by 0.63 for MARv3.11.5, 0.76
for GSFCv1.1) are yet smaller (0.17 m for MARv3.11.5, 0.20
for GSFCv1.1). For both MARv3.11.5 and GSFCv1.1, the
mean residuals to the unscaled models are positive (around
0.10 m for both), and the mean residuals to the scaled mod-
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Figure 4. Residuals between measured and predicted height changes from MAR3.11.5 (a–h), GSFCv1.1 (i–p), and GSFCv1.2 (q–x). Mea-
surements are masked to remove areas where there have been large velocity variations.

els are close to zero (−0.01 m for MARv3.11.5, 0.03 for GS-
FCv1.1). For MAR, the summer-2019 unscaled-residual his-
tograms (Fig. 5d) show a positive tail of residuals that mir-
rors the negative tail seen in the uncorrected data. For GS-
FCv1.1, instead of a large positive tail, the unscaled-residual
histograms show a second peak at around 0.25 m, suggest-
ing that for some points where MARv3.11.5 overcorrects the
data, GSFCv1.1 overcorrects the data less drastically. Rescal-
ing the models reduces the magnitude of the positive tail of
residuals for MARv3.11.5 and brings the second peak for
GSFCv1.1 closer to zero. As we observed with the full time
series, in contrast to the other two models, GSFCv1.2 has
an optimal 2019 rescaling coefficient close to unity (0.96),
and the unscaled and scaled models make substantial reduc-
tions in the standard deviation (to 0.17 m, comparable to the
MARv3.11.5 rescaled model).

The spring–summer 2020 statistics and histograms are
similar to the full-time-series statistics, and the rescaling co-
efficients and the improvements in residuals due to the rescal-
ing are identical within a few percent to those of the full time
series.

Maps of the residuals to the rescaled MARv3.11.5 and GS-
FCv1.1 models (Fig. 6a–p) show that the model overcorrec-

tions that were apparent as a blue-tinged rim around the ice
sheet in the summer epochs in Fig. 4 (panels c, k, g, and o)
are much less prominent, although for some points immedi-
ately adjacent to the margin during the summers, the rescaled
model under-corrects for the measured height differences, re-
sulting in locally larger residuals. For GSFCv1.2, the maps
of residuals to the rescaled model (Fig. 6q–x) are not visi-
bly different to those of the unscaled model and are visually
similar to the rescaled residuals from the other two models.

3.2.2 Regression of height change against total model
change for melt and elevation subsamples of the
data

The behaviour of the ice sheet and the models was evidently
substantially different between the spring–summer subsam-
ple of 2019 and the rest of the model domain. To explore
the role of melt in the data–model differences, we subdivide
the full time series of data into four groups of difference
measurements based on model melt and elevation: one di-
vision splits the data between strong-melt (zmelt > 0.2|dhm|)
and weak-melt (zmelt < 0.2|dhm|) differences, and the other
splits the data between low-elevation (< 2 km) and high-
elevation (> 2 km) differences. Figure 7 shows regression
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Figure 5. Height-difference and residual histograms for the whole ice sheet, for three time periods. The curves in each plot represent measured
height change (black, dh), height change corrected by the total model (green, dh− dhm), and height change corrected by the model scaled
by [A] (blue, dh− [A] dhm). Vertical axis units are arbitrary, but the areas under the curves within each plot are the same. Plots in the top
row (a–c) show measured and model-residual distributions for all epochs together (Q3 2018–Q4 2020). Plots in the middle row (d–f) show
distributions for spring–summer for 2019 (Q1–Q2 and Q2–Q3). Plots in the bottom row (g–i) show corresponding distributions for 2020. In
the legends to each histogram, dh indicates the measured height differences, and dhmindicates the modelled height changes. The second row
of each legend gives the mean and [standard deviation] of the distribution in each histogram.

results for these four subsamples of the data for the entire
model time span. Note that in these plots, the points included
in the histograms are slightly different from model to model,
because the points included in the strong- and weak-melt
subsamples were determined by each model’s melt field.

For the weak-melt subsamples of the data (Fig. 7a–f), the
MARv3.11.5 and GSFCv1.1 models perform well with no
rescaling, reducing the high-elevation residuals from 0.12 to
around 0.09 m and the low-elevation residuals from 0.25 to
∼ 0.18 m. The optimal rescalings (between 0.68 and 0.79)
result in marginally smaller residuals.

For the strong-melt, high-elevation subsample of the data
(Fig. 7g–i) the results are markedly different. The data in
these subsamples show substantial mean height loss (∼
0.1 m) and spreads of 0.23–25 m. Corrections for the un-
scaled MARv3.11.5 and GSFCv1.1 models result in small-
to-moderate reductions in the residual spread. In the case of
MARv3.11.5, the resulting histogram has positive peak and
a strong tail of values in the positive direction, and in the
case of GSFCv1.1, the histogram has a peak substantially
shifted in the positive direction but a smaller tail of posi-
tive values. Comparisons to panels d and e in Fig. 5 suggest
that high-elevation melt events account for the shapes of the
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Figure 6. Residuals between measured height differences and rescaled MARv3.11.5 (a–h), GSFCv1.1 (i–p), and GSFCv1.2 (q–x) models.
The time periods for each set of differences are indicated at the top of each column. MARv3.5.11 is rescaled by 0.61, GSFCv1.1 is rescaled
by 0.66, and GSFCv1.2 is rescaled by 0.88. In each plot, the data are masked to remove areas with large velocity variations.

unscaled-model residual histograms for the spring–summer
2019 period. For both MARv3.11.5 and GSFCv1.1, rescaling
the model by just more than half resulted in a substantial de-
crease in the residual standard deviation to 0.12 and 0.13 m,
respectively. This is in contrast to the GSFCv1.2 model, for
which the optimal scaling is close to unity (0.91), and the un-
scaled model has residuals that are comparable in magnitude
to those of the rescaled MARv3.11.5 and GSFCv1.1 models.

For the strong-melt, low-elevation subsample of the data
(Fig. 7j–l), the histograms of uncorrected height differences
have a near-zero peak, with a large negative tail of values
indicating strong summer drawdown, a substantial negative
mean, and standard deviations of around 0.65 m. All three
models correct for a large fraction (71 %–75 %) of the vari-
ance in the data, and all have optimal rescaling values close to
unity (between 0.79 for MAR3.11.5 and 1.13 for GSFCv1.2),
which make very small improvements in the residuals over
the unscaled models.

3.2.3 Regression of height change against model
components for melt and elevation subsamples of
the data

To further explore the importance of different components of
modelled height change, we perform regressions in which we
allow different scaling factors for individual components of
the SMB and FD models. In these experiments, we solve for
the coefficients, B and C, that minimize the quantity:

Rcomp =
∑

W(dh− (dh0+B dhSMB+C dhFAC))
2. (4)

Here, dhSMB is the modelled height change due to SMB vari-
ations, and dhFAC is the modelled height change due to FAC
variations. For each subset of the data, we perform three sets
of regressions: in the first, we set B = 1 to solve only for the
scaling of dhFAC; in the second, we set C = 1 to solve for the
optimal scaling of dhSMB; and in the third, we solve for B
and C together. Because rescaling the components individu-
ally for the weak-melt data changes the statistics of the resid-
uals only marginally, we do not present these histograms, and
we likewise omit the GSFCv1.2 model. Instead, Fig. 8 shows
histograms for the optimal scaling of the FAC and SMB com-
ponents for the MARv3.11.5 and GSFCv1.1 models, for both
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Figure 7. Height-difference and residual histograms for subsamples of the data based on height and model estimates of melt and SMB. The
curves in each plot represent measured height change (black, dh), height change corrected by the total model (green, dh− dhm), and height
change corrected by the model scaled by [A] (blue, dh- [A] dhm). Vertical axis units are arbitrary, but the areas under the curves in each
panel are the same. Panels (a)–(c) show data from high elevation (h0 > 2 km) with weak melt (zmelt < 0.2|dhm|) for the three models. Panels
(d)–(f) show data from low elevation (h0 > 2 km) with weak melt. Panels (g)–(i) show data from high elevation (h0 > 2 km) with strong melt
(zmelt < 0.2|dhm|). Panels (j)–(l) show low elevation with strong melt. Legend labels follow the format used in Fig. 5.
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elevation subsamples of the strong-melt data. For each model
and elevation category, we show histograms of the observa-
tions corrected with the unscaled model, the observations
corrected for each height-change component scaled sepa-
rately (i.e. with the full correction applied for the other com-
ponent), and for the two components scaled independently.

For the high-elevation data and MARv3.11.5 (Fig. 8a),
rescaling of the FAC makes a notable reduction in residu-
als relative to the unscaled model, with only small improve-
ments due to rescaling the SMB. The combination of the FAC
rescaled by 0.45 and the full SMB leaves a residual standard
deviation of 0.11, while the SMB rescaled (by −0.23) plus
the unscaled FAC leaves a larger (0.19 m) standard deviation.
The optimal scaling for the two together, of 0.46 for FAC and
0.88 for SMB, produces results essentially identical to the
rescaling of the FAC alone (0.11 m standard deviation).

We see similar results for the high-elevation data and
the GSFCv1.1 model (Fig. 8b), where the combination of
the FAC rescaled by 0.51 and the full SMB correction
leaves residuals with a standard deviation of 0.13 m, approx-
imately the same as seen for rescaling of the complete model
(Fig. 7h). The optimal scaling for the SMB alone is −0.04,
so rescaling for the SMB alone is essentially equivalent to
using the unscaled FAC alone as a correction; this leaves a
residual standard deviation of 0.16 m. Adjusting both SMB
and FAC yields optimal scaling factors of 0.57 for FAC and
0.67 for SMB but approximately the same standard deviation
as the FAC scaling alone.

For the low-elevation, high-melt subsample, none of the
rescalings result in large reductions in the residual stan-
dard deviations. The largest reduction is for MARv3.11.5
(Fig. 8c), where the FAC scaled by 0.57 plus the unscaled
SMB yields a residual standard deviation of 0.30 (which
should be compared to 0.35 for the unscaled model) and
scaling the SMB (by an optimum value of 0.89) makes lit-
tle or no improvement over the unscaled model. For GS-
FCv1.1 (Fig. 8d), the high-melt, low-elevation regressions all
produce residual standard deviations at most 1–2 cm smaller
than those from the unscaled model.

For the GSFCv1.2 model, the optimal rescalings do not
make any notable improvement in the residuals over the un-
scaled model for either subsample of the data (see Fig. S4).
The spread of residuals to the unscaled model for the high-
elevation subsample of the data (0.15 m) is comparable to
that of the fully rescaled GSFCv1.1 (0.13 m) but slightly
larger than that of the rescaled MARv3.11.5 (0.11 m). For
the low-elevation subsample, the GSFCv1.2 model, like the
other two, has a residual spread of around 0.33 m for the un-
scaled model, and none of the rescalings improves the spread
by more than 0.01 m.

4 Discussion

Our results show that all three models considered here ac-
count for a significant portion of the cycle-to-cycle vari-
ance in the measured height change, particularly in the low-
elevation, strong-melt subsamples of the data. However, the
MARv3.11.5 and GSFCv1.1 models both tend to overpredict
total height changes by factors of up to around 2, depend-
ing on the subsample of the data considered. These over-
estimates are most prominent in the spring–summer period
in 2019 and in the strong-melt, high-elevation subsamples
of the data, suggesting that melt processes play an impor-
tant part in the overestimates. The updates to the melt model
between GSFCv1.1 and GSFCv1.2 appear to improve these
overestimates.

Likewise, the rescaling experiments on the SMB and FAC
showed that systematic rescaling of the magnitude of the
SMB processes in the model alone produced much smaller
reductions in the residuals than systematic rescaling of FAC
changes did, and for both MARv3.11.5 and GSFCv1.1,
rescaling of FAC alone produced residual improvements ap-
proximately equal to those due to rescaling the total model
or to rescaling the SMB and FAC separately. This points to
melt of snow as the process most strongly driving the mod-
els’ overestimates of height changes. In both MARv3.11.5
and the GSFC models, runoff is small over most of the ice
sheet. This means that the SMB component of detrended
height change is approximately equal to positive contribu-
tions equal to the ice-equivalent snowfall and negative contri-
butions equal to the long-term average SMB rate that we sub-
tracted to detrend the SMB. This component has relatively
small temporal variability and cannot explain much of the
variance in the height-change rate. In contrast to the SMB
component, the FAC component has large temporal varia-
tions: when the surface of a snowpack begins to melt, the
meltwater flows downward into the pore space in the snow-
pack, and until that pore space is full, the SMB change due
to the melt is zero (because none of the melt runs off the
ice sheet) and the total model height change is equal to the
FAC change. This means that any overestimate of melt over
snow translates directly into equal overestimates of surface-
height change and FAC change. The MARv3.11.5 and GSFC
models used different FD models, but the melt for the GSFC
models was based on a degree-day parametrization of the
MARv3.5.2 melt. We expect GSFCv1.1 to share the MARv3
models’ overestimates of height change, but in GSFCv1.2,
the positive-degree-day scalings were limited for the high-
elevation part of the ice sheet, which results in less total
melt in this part of the ice sheet and makes a notable im-
provement in the model’s performance during times when
melt is large. We observe, however, that GSFCv1.2 does not
fare better than the other models and in fact has marginally
larger residuals than MARv3.11.5 for the weak-melt sub-
samples of the data. Changes between GSFCv1.1 and GS-
FCv1.2 also include a different calculation of the initial sur-
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Figure 8. Unscaled-model residuals and regression residuals for individual model components of the MARv3.11.5 (a, c) and GSFCv1.1 (b,
d) models, for the high-elevation (a, b) and low-elevation (c, d) subsamples of the high-melt (zmelt > 0.2|dhm|) data. Model components
listed in the legends are the firn-air-column change (dhFAC) and the surface-mass-balance height change (dhSMB). The mean and [standard
deviation] of the residuals are given in each legend. Note that in each of these plots, the histogram for the separate rescaling of dhFAC and
dhSMB is nearly identical to that for rescaling of dhFAC alone, so the histograms for dhFAC are not separately visible.

face density, which likely slightly increased the sensitivity
of GSFCv1.2 total height change to melt events in the high-
elevation interior of the ice sheet and decreased it at low ele-
vations. The improved model performance in regions where
GSFCv1.2 was likely more sensitive to melt events than GS-
FCv1.1 points again to better representation of melt in GS-
FCv1.2 as the major improvement between the GSFC mod-
els. The small reductions in residual spread that result from
rescaling the SMB alone in the high-elevation part of the
ice sheet for MARv3.11.5 and GSFCv1.1 (Figs. 7a–b, 8a–b)
might provide weak evidence that the models overestimate
SMB variability in this region, but the reductions in spread
are much smaller than those associated with rescaling the
FAC, suggesting that our analysis is not strongly sensitive
to SMB scaling in this area.

The analysis in this study has focused on the variability of
surface height at quarter-annual timescales. Any long-term
differences between the modelled SMB–FD and the com-
bined SMB, FD, and ice-flux divergence in the ice sheet will
appear in our results as a non-zero mean residuals, caused
by the regional mean of the differences, and as extra spread
in the residuals, caused by spatial variability in the differ-
ences. Without additional information about the state of the

ice sheet, we cannot distinguish the extent to which FD
model errors (e.g. Helsen et al., 2008), SMB model errors,
and errors in our assumption that the ice sheet was in balance
between 1980 and 1995 contribute the means and spreads
in the residuals we measure. Despite this, the spread of the
residuals to the best-fitting regressions (e.g. Fig. 7) bounds
the spatial variability in any of these errors to ∼ decimetre
scales or better in the ice-sheet interior and to scales of a few
decimetres for elevations less than 2 km. The mean values
of the corrected histograms also show clearly that the choice
of models and scaling can make a substantial change in the
interpretation of observed height differences. For example,
Tables S2–S4 show that although subtracting the uncorrected
MARv3.11.5 and GSFCv1.1 models leads to whole-ice-sheet
estimates of dynamic change that are slightly positive for the
spring–summer subsample of 2019 (∼ 0.11 m for both mod-
els), subtracting the GSFCv1.2 model leads to a dynamic-
change rate much closer to zero (0.028 m). This pattern holds
for all subsamples of the data considered, where subtracting
the GSFCv1.2 results in mean residuals closer to zero. Note
that these means are not a good proxy for estimates of the
total ice-sheet mass balance, because they are based on a
weighted per-point average that is not guaranteed (or espe-

The Cryosphere, 17, 789–808, 2023 https://doi.org/10.5194/tc-17-789-2023



B. E. Smith et al.: Evaluating Greenland surface mass balance 805

cially likely) to produce a spatially uniform sampling of the
surface area and because the dynamic areas that we inten-
tionally omitted from the study will have a strong influence
on the total ice-sheet mass balance. Rather, they illustrate that
the choice of FD model and SMB model is likely to have a
large influence on recovered mass-balance estimates.

5 Conclusions

This study demonstrates one of the first applications of
altimetry-difference data to the validation of surface-mass-
balance and firn-densification models (and, to our knowl-
edge, the first in Greenland). It demonstrates that the three
models evaluated account for a large fraction of the observed
height change in the low-elevation, high-melt areas of the ice
sheet, but two of the three do not accurately account for the
observed changes in higher elevation areas where melt is less
common.

The results presented here are based on only 2 years’ data,
and we do not attempt to distinguish model errors from long-
term ice-sheet mass imbalances. Consequently, we cannot
reach firm conclusions about whether these models correctly
represent long-term volume change rates for the ice sheet. In
MARv3.11.5 and GSFCv1.1, The largest model–data differ-
ences appear to be associated with the representation of FAC
changes in high-elevation parts of the ice sheet during melt
events, which, for two reasons, should not necessarily imply
errors in the long-term behaviour of the model. First, if the
model densification is too rapid near the surface, the densifi-
cation rates in the excessively dense firn should be slower at
a later time, and the long-term mean densification rate may
be largely correct. Second, until recently, high-elevation melt
events were rare (Trusel et al., 2018), so longer-term stud-
ies that use SMB–FD models to investigate decadal ice-sheet
mass changes (e.g. Smith et al., 2020) should see relatively
small errors due to these events. Conversely, studies seek-
ing to interpret ICESat-2 time series at seasonal timescales
will need to account for errors in FD models to obtain ac-
curate mass-change estimates. We note that for MARv3.11.5
and GSFCv1.1, residuals to the rescaled models tend to have
means that are closer to zero than the unscaled models, sug-
gesting that model errors may lead to more extreme (larger
in absolute value) estimates of ice-sheet change due to ice
dynamics.

Our results give little or no evidence for substantial er-
rors in SMB rates in any of the models. Notably, rescaling
SMB rates (Fig. 8) produces only marginal improvements
in misfits beyond those from rescaling FAC. This is con-
sistent with studies that have compared mass balance from
ice-discharge and SMB models with gravimetric estimates of
mass changes, which show consistent seasonal and interan-
nual mass variations (e.g. Sasgen et al., 2020; Fettweis et al.,
2020). We note that high-temporal-resolution gravimetric es-
timates of ice-sheet mass change have been available for val-

idation of SMB models for at least a decade, while seasonal
altimetric measurements are relatively new, so it should not
be surprising that the SMB models are better calibrated than
the FD models. At the same time, the most significant defi-
ciency that we infer in MARv3.11.5 and GSFCv1.1 is in the
estimation of melt rates in the interior of the ice sheet, where
meltwater is absorbed by the firn and makes no contribution
to runoff. If the same problem were to be present in models
used to predict ice-sheet SMB in the future, when the climate
is warmer and runoff is more prevalent at in the ice-sheet in-
terior, we would expect them to predict excessively negative
SMB rates.

Considered as a direct comparison of model accuracy, our
results suggest that the most recent of the three models con-
sidered here, GSFCv1.2, has substantially smaller errors in
representing surface changes in the high-elevation part of
the ice sheet during melt events. Model improvements be-
tween GSFCv1.1 and GSFCv1.2 include changes in the ini-
tial density of new snow and a limitation in degree-day scal-
ing factors in the melt model for high-elevation grid cells,
and based on the improvement in unscaled model residuals
at high elevations, we suggest that the latter made a sub-
stantial improvement in the model representation of surface-
height change. Because GSFCv1.1 derives scaling factors
based on melt and temperature data from an earlier MAR ver-
sion (v3.5.2) and both models show similar behaviour dur-
ing melt events in high-elevation regions, our observations
confirm the suggestion that MARv3.11.5 likely overpredicts
melt for the white-snow surfaces prevalent at high elevation
in Greenland.

This study demonstrates a technique for directly evaluat-
ing surface-mass-balance model output using altimetry data.
We propose that this has the potential to become a stan-
dard technique to allow modellers to test whether updates
to model calculations or parameters improve model fidelity.
Our study compared model versions that included a variety
of different processes and parameters and were thus not de-
signed to isolate the melt-driven height changes that we iden-
tified as needing improved representation in MARv3.11.5
and GSFCv1.1; a more targeted future study might include
model experiments that change only a single parameter or
process change at a time. We would also hope to see future
studies include a larger variety of models, including, poten-
tially, the popular RACMO-driven IMAU firn model (Ligten-
berg et al., 2018), and would hope to see the short-term densi-
fication information provided by altimetry studies fused with
in situ data such as firn strain measurements (e.g. MacFer-
rin et al., 2022) and firn-density profiles (e.g. Montgomery
et al., 2018) to produce holistic calibration of the short- and
long-term evolution of models.

Data availability. ICESat-2 ATL11 data are available
from the National Snow and Ice Data Center (NSIDC):
https://doi.org/10.5067/ATLAS/ATL11.004 (Smith et al., 2021).
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MEASURES ice-velocity data are also available through the
NSIDC: https://doi.org/10.5067/OC7B04ZM9G6Q (Joughin et
al., 2015). The MAR model results are available by anonymous
FTP: ftp://ftp.climato.be/fettweis/MARv3.11/Greenland/ERA5_
1950-2020-10km/daily_10km. The GSFC model results are
available through Zenodo: https://doi.org/10.5281/zenodo.7221954
(Medley et al., 2022)

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-17-789-2023-supplement.
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