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Abstract. Snow water equivalent (SWE) is a valuable char-
acteristic of snow cover, and it can be estimated using passive
spaceborne radiometer measurements. The radiometer-based
GlobSnow SWE retrieval methodology, which assimilates
weather station snow depth observations into the retrieval,
has improved the reliability and accuracy of SWE retrieval
when compared to stand-alone radiometer SWE retrievals.
To further improve the GlobSnow SWE retrieval method-
ology, we investigate implementing spatially and tempo-
rally varying snow densities into the retrieval procedure.
Thus far, the GlobSnow SWE retrieval has used a constant
snow density throughout the retrieval despite differing lo-
cations, snow depth, or time of winter. This constant snow
density is a known source of inaccuracy in the retrieval.
Four different versions of spatially and temporally varying
snow densities are tested over a 10-year period (2000–2009).
These versions use two different spatial interpolation tech-
niques: ordinary Kriging interpolation and inverse distance
weighted regression (IDWR). All versions were found to
improve the SWE retrieval compared to the baseline Glob-
Snow v3.0 product, although differences between versions
are small. Overall, the best results were obtained by im-
plementing IDWR-interpolated densities into the algorithm,
which reduced RMSE (root mean square error) and MAE
(mean absolute error) by about 4 mm (8 % improvement) and
5 mm (16 % improvement) when compared to the baseline
GlobSnow product, respectively. Furthermore, implement-
ing varying snow densities into the SWE retrieval improves
the magnitude and seasonal evolution of the Northern Hemi-
sphere snow mass estimate compared to the baseline product
and a product post-processed with varying snow densities.

1 Introduction

Passive spaceborne microwave radiometer observations can
be used to retrieve valuable information on snow cover char-
acteristics, such as snow water equivalent (SWE) and snow
depth (SD). Information about seasonal snow cover charac-
teristics is needed in many applications; seasonal snow cover
stores a large amount of freshwater, and around a sixth of
the world’s population is dependent on the melting snow for
fresh water (Hall et al., 2008; Barnett et al., 2005). Meltwater
from snow is also a significant source of hydropower (Mag-
nusson et al., 2020), and climate model evaluation requires
accurate information on snow cover characteristics (Derksen
and Brown, 2012).

Passive microwave radiometer observations are often used
to estimate SWE as they provide frequent repeat coverage
and are mostly unaffected by different weather conditions.
Spaceborne passive microwave measurements are available
from 1978 onwards, meaning these measurements can be
used to produce SWE retrievals that cover over 4 decades.
Passive microwave SWE retrievals are usually based on a
brightness temperature (Tb) gradient between two channels.
Tb measurements at a frequency insensitive to dry snow
(around 19 GHz) are used as a reference and compared
to Tb measurements at a frequency sensitive to dry snow
(around 37 GHz, the wavelength becomes comparable to the
snow grain size, and there is significant volume scattering)
(Chang et al., 1987; Kelly et al., 2003; Mätzler, 1994). How-
ever, the performance of SWE retrievals based on the ra-
diometer measurements alone is limited by high uncertain-
ties, and these retrievals do not meet user accuracy require-
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ments with respect to retrieval skill and are poorly correlated
in space and time with all other SWE products; see, for ex-
ample, Derksen et al. (2005), Mudryk et al. (2015), and Mor-
timer et al. (2020).

An assimilation approach for SWE retrieval introduced by
Pulliainen (2006) and complemented by Takala et al. (2011)
that combines ground-based snow depth observations and
satellite radiometer data can improve radiometer-based SWE
retrievals. The assimilation-based method, also known as the
GlobSnow method, has been found to produce superior re-
sults to the typical SWE retrievals based only on radiometer
data (Mortimer et al., 2020). The monthly GlobSnow ver-
sion 3.0 (GSv3.0) climate data record with bias correction
has been used for the accurate reconstruction of the March
Northern Hemisphere snow mass and its trends for the pe-
riod of 1979 to 2018 (Pulliainen et al., 2020). Refining the
GlobSnow SWE retrieval algorithm will improve our under-
standing of Northern Hemisphere snow conditions, variabil-
ity, and change.

The use of a constant snow density is a known source of
uncertainty in the original GlobSnow SWE retrieval (Takala
et al., 2011). In the GlobSnow SWE retrieval, snow density
is used to model the brightness temperatures (Tb) required to
estimate effective snow grain sizes and to retrieve SD esti-
mates. Snow density is also used to convert retrieved SD to
SWE. A constant snow density value of 240 kg m−3 is used
throughout the retrieval regardless of snow depth, location, or
length of snow season. Different approaches have been tested
to overcome this known source of uncertainty. Implement-
ing the statistical snow density model presented by Sturm et
al. (2010) – whereby snow densities are predicted as a func-
tion of the snow depth, day of the year, and snow class –
into SWE retrieval had a negligible impact on SWE retrieval
accuracy (Luojus et al., 2013). Venäläinen et al. (2021) pro-
posed a method of using available in situ snow density data
to create spatially and temporally varying snow density fields
that can be used to post-process the GSv3.0 SWE retrieval
product. This approach corrects the final retrieved SWE ac-
cording to these spatially and temporally varying snow den-
sities, but all instances of snow density inside (estimation of
the effective snow grain size and modelling Tb) the retrieval
algorithm remain unchanged. Post-processing was found to
improve SWE retrieval accuracy; however, it also overcor-
rects SWE magnitude, especially during accumulation sea-
son (Mortimer et al., 2022). Specifically, post-processing re-
duces the total Northern Hemisphere snow mass when com-
pared to the GSv3.0 snow mass, which is the opposite to
the more accurate bias-corrected estimates of Pulliainen et
al. (2020).

In this study, we test the implementation of dynamic snow
density fields, derived from available in situ snow density
data, inside the GlobSnow SWE retrieval processor with the
goal of improving retrieval accuracy. We test different tempo-
ral and spatial interpolation methods and evaluate the impact
of these dynamic snow densities on the effective snow grain

size estimates and on the final SWE retrieval over a 10-year
period (2000–2009). Our new implementation is found to im-
prove SWE retrieval accuracy without the reduction in over-
all snow mass present in previous post-processing versions.
The improved SWE retrieval approach will also be applied in
the Copernicus Global Land Service and Horizon 2020 G3P
project which strives to assess SWE conditions to improve
satellite-based groundwater estimation on a global level.

2 Snow density and SWE data

SWE and snow density datasets used in this study are ob-
tained from various sources; see Table 1 for an overview.
The Eurasia data are obtained from Russia (Bulygina et al.,
2011) and Finland (Haberkorn, 2019). North American snow
datasets are obtained from Canada (Vionnet et al., 2021) and
multiple sources in the United States. All Eurasian and some
of the North American data are snow course observations.
Snow course measurements consist of multiple gravimetric
snow measurements made along the snow course. Measure-
ments are averaged together, and one SWE and one snow
density value are given for each location and for each day
with measurements. The frequency at which snow course
measurements are made varies from every 5 d (Russia dur-
ing melting season) to once a month (Finland). In addition to
traditional snow course measurements, the Canadian dataset
contains automated measurements from snow pillows and
gamma monitor (GMON) sensors. GMON sensors are based
on measurements of the absorption of the natural gamma ra-
diation through the snow cover and have a measurement foot-
print of 50 to 100 m2 (Choquette et al., 2013). The data from
Alaska and northwestern United States consist of measure-
ments from SNOTEL stations (Serreze et al., 1999) which
provide automated SWE, snow depth, precipitation, and air
temperature measurements over an area of ∼9 m2. SWE is
measured by a snow pillow filled with an antifreeze solution.
Hourly data are available from the snow pillows, but daily
measurements are used as they are more robust, as hourly
data are more easily affected by wind conditions and sensor
issues. For snow pillow sites, we calculate snow density from
SWE and snow depth. GMON measurements from locations
where snow depth is also measured are used.

These snow density and SWE datasets are divided into
two parts: the first part is used for creating the spatially and
temporally varying snow density fields, and the second is
used for validating interpolated snow densities and retrieved
SWE values. Data from Finland are used only for validation,
as measurements are made only once a month, while auto-
mated data are only used for implementation. Figure 1 shows
the locations of implementation (red) and validation (blue)
datasets. Only manual snow courses are used for validation
because they cover a larger area (500 m–4 km) and are thus
more representative of the grid cell. The automated data fill
in critical areas (western US) and are necessary for deriving
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Table 1. An overview of SWE and snow density datasets.

Region Data provider Reference

Finland Finnish Environmental Haberkorn (2019)
Institute (SYKE)

Russia RIHMI-WDC Bulygina et al. (2011)
http://aisori-m.meteo.ru/waisori/
(last access: 10 November 2022)

Canada CanSWE v2 – Environment and Vionnet et al. (2021)
Climate Change Canada and https://zenodo.org/record/5217044#.YzHFYbTMI2w
partners (last access: 10 May 2022)

Western USA US Department of Serreze et al. (1999)
Agriculture Natural Resources https://www.nrcs.usda.gov/wps/portal/wcc/home/snowClimateMonitoring/snowpack
Conservation Service (NRCS) – (last access: 10 May 2022)
SNOTEL

Northeastern USA North Regional Climate Centre https://www.nrcc.cornell.edu/
(last access: 5 January 2022)

New Hampshire Department of https://www.des.nh.gov/
Environmental Services – Dams (last access: 10 May 2022)

Maine Geological Survey https://mgs-maine.opendata.arcgis.com/datasets/maine-snow-survey-data/explore
(last access: 10 May 2022)

accurate interpolated density fields. The in situ dataset used
here is a significant update of that used in the previous post-
processing version of Venäläinen et al. (2021) which allows
for improved characterization of snow density. The north-
east US data were not included in the previous work, and
the Canadian dataset has been updated and expanded.

2.1 Original SWE retrieval algorithm

The GSv3.0 data record is based on the methodology intro-
duced by Pulliainen (2006) and Takala et al. (2011), and the
latest version is presented in detail in Luojus et al. (2021).
The two main data inputs to the algorithm are vertical pas-
sive microwave brightness temperature (Tb) and daily syn-
optic snow depth (SD) measurements. The satellite Tb data
are from the Special Sensor Microwave/Imager (SSM/I) and
Special Sensor Microwave Imager/Sounder (SSMIS) instru-
ments on board the Defense Meteorological Satellite Pro-
gram (DMSP) F-series satellites. Measurements at 37 and
19.40 GHz (SSM/I) or 19.35 GHz (SSMIS) are used for SWE
retrieval. Both synoptic SD and Tb measurements are filtered
before being ingested by the algorithm. Filtering is needed
to guarantee convergence on a solution during the assimila-
tion process, and the filtering process is described in detail in
Luojus et al. (2021). The main SD filtering steps include re-
moving grid cells with a height standard deviation according
to ETOPO5 (Earth topography 5 arcmin grid) greater than
200 m, removing the deepest 1.5 % of SD measurements,
removing measurements from stations where the mean SD
exceeds 150 m in March during at least 50 % of the years
that have more than 20 annual measurements, and remov-

Figure 1. Snow density and SWE measurement locations. Imple-
mentation (red) and validation (blue) data are separated.

ing SD values above 200 cm. Water, mountain, and dry snow
masking are applied to Tb measurements. SWE retrieval is
performed only for dry snow, and for wet snow, the SWE
estimates are based on the background SD field. Dry snow
is detected using the dry snow detection algorithm by Hall
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et al. (2002). The GSv3.0 product is produced on a 25 km
equal-area scalable grid (EASE-Grid version 1) for latitudes
between 35 and 80◦ N. The GlobSnow methodology does
not produce SWE estimates for complex terrain, glaciers, or
Greenland.

The four main steps of the SWE retrieval are described
below; for more details see Luojus et al. (2021).

– Step 1. Ordinary Kriging interpolation is used to inter-
polate an “observed SD” field and interpolation variance
using filtered synoptic SD observations for the day un-
der investigation.

– Step 2. The effective snow grain size values, d0, are re-
trieved for grid cells with SD observations (measure-
ments, not interpolated values) by numerical inversion
of the multi-layer HUT (Helsinki University of Tech-
nology) snow emission model. The HUT snow model
expresses Tb as a function of SWE, snow density and
snow grain size (Pulliainen et al., 1999). As previously
mentioned, a constant value of 240 kg m−3 is used for
snow density, as this is a reasonable global value given
by the analysis of Sturm et al. (2010). The model is fit to
radiometer Tb observations at the locations of SD obser-
vations by optimizing the values of d0. The final d0 esti-
mate, as well as its standard deviation, at each SD mea-
surement location is obtained by calculating the average
value of the six nearest SD measurements.

– Step 3. Background d0 field (and its variances) is in-
terpolated from the effective snow grain size estimates
produced for pixels with SD observations in step 2.

– Step 4. The bulk SWE is retrieved by ingesting ob-
served Tb, retrieved effective snow grain sizes, grain
size variances, and constant snow density (steps 2 and 3)
into a numerical inversion of the HUT snow emission
model. The HUT model estimates are matched to ob-
servations numerically by incrementing the SD value.
The background SD field (produced in step 1) is used to
constrain the retrieval. The assimilation procedure adap-
tively weighs the Tb measurements and the background
SD field to produce a final SD estimate, converted to
SWE using the constant snow density, and a measure of
the statistical uncertainty (variance estimate) for each
pixel:

minSD
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After these four main steps are performed, snow-free areas
are detected and cleared of SWE to form final SWE estimate
maps. The snow-free areas are detected using a combination
of radiometer information and optical remote sensing snow
extent information. A time-series thresholding approach by
Takala et al. (2009) is used to detect the end of snowmelt,
and any remaining SWE estimates are cleared from those
pixels. After this, SWE estimates are also cleared from re-
gions where optical data indicate snow-free conditions. The
JASMES 5 km Snow Cover Extent data product for 1978–
2018 (Hori et al., 2017) is used to construct a cumulative
snow mask in a 25 km EASE-Grid projection. Cumulative
masking retains the latest cloud-free observation for each
EASE-Grid pixel and uses the daily product to update snow-
free/snow-covered conditions, based on a 25 % snow cover
fraction threshold.

2.2 Updated SWE retrieval algorithm

To improve the performance of the SWE retrieval algorithm,
dynamic snow densities were inserted into the retrieval,
which required some structural changes to the algorithm set-
up described in Sect. 3.1. Firstly, in step 2, where the d0 val-
ues are determined, the HUT snow emission model is given a
spatially and temporally varying snow density value instead
of the constant snow density. Similarly, in step 4 modelling
is done with varying snow density values. Additionally, in
step 4 SWE is calculated from the retrieved SD field using
varying snow density information.

In step 4, SWE values are fluctuated between 0 and
350 mm to find the optimal SWE value. SWE values out-
side of this range can occur in instances where the back-
ground SD field (which ingests filtered data that are limited
≤ 200 cm) determines the estimated SWE value. When we
replaced the constant snow density with a dynamic one as an
input to the HUT model, anomalously high SWE values that
were considerably larger than those of the surrounding pixels
were retrieved for some pixels, mostly in northeast Asia. To
overcome this issue, SWE is considered not to be retrieved
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Figure 2. Processing chain of the updated SWE retrieval algorithm.
The addition of dynamic snow density information is indicated with
red arrows. The four main steps described in Sect. 3.1 are labelled
in the figure.

correctly if the retrieved SWE is 80 mm larger than that esti-
mated directly from the interpolated background SD field. In
these instances, SWE is re-estimated with the range of possi-
ble SWE values set to 0 to 150 mm (comprising ∼ 5 % of all
pixels). Figure 2 shows the general processing chain of the
updated SWE retrieval algorithm. The addition of the new
variable snow density information is indicated with red ar-
rows. The four main steps described in detail are also indi-
cated in Fig. 2.

3 Dynamic snow densities

Before producing the dynamic snow density fields, the avail-
able density data (described in Sect. 2) are pre-processed.
First, all negative values and values larger than 1000 kg m−3

are removed. Then duplicate measurements are filtered by
averaging density measurements within the same 25 km
EASE-Grid pixel on the same date. In cases where there are
exactly two measurements with large differences (more than
200 kg m−3), the measurement closest to the grid cell centre
is used (or mean of closest measurements if multiple mea-
surements are at the same distance) as reference. Duplicate
measurements are not common, but there is some overlap be-
tween measurements from Canada and the northeast United
States. Lastly, all locations in grid cells masked in the Glob-
Snow SWE product, primarily mountain areas, are removed.

The manual snow transects are typically only made every
few weeks (Sect. 2) so temporal interpolation is necessary
to fill in missing days. We tested two different implementa-
tions of temporal interpolation using the filtered snow density
data: (i) a decadal version where 10-year averages are calcu-

lated for days with any snow density measurements using all
data between 2000–2009 and (ii) an annual version where
daily measurements or daily grid cell averages are used. We
also tested two different spatial interpolation methods, or-
dinary Kriging interpolation and inverse distance weighted
regression (IDWR), on the temporally interpolated annual
and decadal datasets. Ordinary Kriging interpolation is used
to interpolate background SD fields in the GlobSnow SWE
retrieval, and given its successful implementation, we also
tested it to interpolate snow density values. Ordinary Krig-
ing interpolation produces variances for estimates, which are
needed in the SWE assimilation procedure, but as these vari-
ance estimates are not needed for the dynamic snow density
estimates, other interpolation methods can also be tested. The
IDWR method was chosen because it can produce better re-
sults than the ordinary Kriging interpolation when only a lim-
ited number of measurements are available (Emmendorfer
and Dimuro, 2021), which is often the case for in situ snow
density. IDWR is also considerably more computationally
efficient than Kriging interpolation (Longley et al., 2005).
These spatial interpolation methods are described in more
detail in Sect. 4.1 and 4.2. Snow density fields are produced
in EASE-Grid 1.0 25 km to match the GSv3.0 product. Snow
densities are estimated for the Northern Hemisphere domain
even though not all locations are snow covered during the full
snow season.

3.1 Kriging interpolation

Ordinary Kriging interpolation is a geostatistical interpola-
tion method that estimates the value at an unsampled loca-
tion based on the spatial autocorrelation with observed values
at surrounding locations (Goovaerts, 1997). The estimated
value can be calculated from a linear combination of the ob-
served values, given by

ẐOK (s0)=

n∑
i=1

Z(si)wi, (4)

where ẐOK(s0) is the ordinary Kriging estimated value of the
variable Z (snow density) at the unsampled location s0, and
wi is the weight set for observed measurement. The weights
can be solved from the system of equations (O’Sullivan and
Unwin, 2010):

n∑
i=1

γ
(
dij
)
wi + λ= γ

(
djp
)

for j = 1, . . ., n

n∑
i=1

wi = 1, (5)

where n is the number of data points, γ (d) is the semivari-
ance between the relevant points, and λ is a Lagrangian mul-
tiplier. The constraint on weights ensures that Kriging esti-
mates do not have systematic bias.
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The variance is obtained by creating a semivariogram and
then fitting the variogram model to the empirical variogram.
The empirical semivariogram can be estimated from the ob-
servations as follows (O’Sullivan and Unwin, 2010):

γ̂
(
djp
)
=

1
2Nd

Nd∑
i=1

(Z (si)−Z(si + d))
2, (6)

where Z(si) and Z(si + d) are sampled data pairs at a dis-
tance d. In this study, the fitting of the variogram is done
for each day individually, separately for Eurasia and North
America and using an exponential function:

γ (d)= c1 · exp(d · c2)+ c0. (7)

3.2 IDWR interpolation

IDWR is a deterministic, non-statistical interpolation model
modified from inverse distance weighting (IDW) interpola-
tion. An IDW-interpolated value at an unsampled location is
calculated as a weighted average of know values, similar to
Kriging interpolation:

ẐIDW (s0)=

n∑
i=1

Z(si)wi . (8)

Calculating the weights for IDW interpolation is consider-
ably simpler than calculating weights for Kriging interpola-
tion. IDW weights are calculated as shown below (Shepard,
1968):

wi =
d−α0i
n∑
i=1
d−α0i

, (9)

where d is the distance between unsampled and sampled lo-
cations, and n is the number of data points available. The
control parameter α is set to 2 in this study. IDW is a pop-
ular and straightforward interpolation method that is easy to
implement and fast to compute (Longley et al., 2005). How-
ever, this method has some well-known limitations, including
the fact that the weighting parameters are not empirically de-
termined. Additionally, the range of the estimated values is
limited by the minimum and maximum of the known values
(Lam, 1983).

The IDWR modification, proposed by Emmendorfer and
Dimuro (2021), introduces a new term to the IDW expres-
sion. IDWR retains the efficiency and straightforwardness of
the IDW method but reduces the RMSE when compared to
IDW. When the number of data points is limited, the IDWR
method can produce interpolation results that are compara-
ble to or even better than results obtained using Kriging in-
terpolation. When more data are available, Kriging interpo-
lation tends to produce superior results. The IDWR method
estimates the value at an unsampled location as shown in
Eq. (10):

ẐIDWR (s0)= Ẑ
IDW (s0)+ n

n∑
i=1
Z(si)− nẐ

IDW (s0)

n2−
n∑
i=1
d−2
i0

n∑
i=1
d2
i0

. (10)

For a more detailed explanation of the method, see Emmen-
dorfer and Dimuro (2021).

4 Results

In this study, we tested four different versions of dynamic
snow densities inside the SWE retrieval algorithm. The first
two versions use Kriging interpolation – one with decadal
data and the other with annual data. These two versions allow
us to test the impact of the temporal aggregation and interpo-
lation approaches (Sect. 4). The third version uses decadal
data and IDWR interpolation, and the fourth version uses an-
nual data and IDWR interpolation. A comparison of these
versions with the first two versions that use Kriging interpo-
lation allows us to evaluate the impact of spatial interpolation
methods. We first compare snow density accuracies of these
four density versions (Sect. 5.1) and then evaluate their im-
pact on snow grain size estimation (Sect. 5.2.1) and SWE
retrieval (Sect. 5.2.2 and 5.2.3).

4.1 Snow densities

The derived snow density fields were validated against the
validation dataset (Fig. 1, blue). The interpolated snow den-
sity values were matched with co-located snow transect
snow density measurements, and bias, root mean square er-
ror (RMSE), mean absolute error (MAE), and correlation co-
efficient were calculated. Table 2 shows validation parame-
ters for the four different snow density sets for 2000–2009.
Table 2 also shows validation parameters for the leave one
out version of decadal IDWR snow densities. This dataset is
similar to decadal IDWR, but densities for each year were
calculated using 9-year averages leaving out data from the
year under investigation. Differences between different ver-
sions are small. For Eurasia, both annual datasets have bet-
ter results than the corresponding decadal versions, and the
IDWR approach outperforms ordinary Kriging interpolation.
For North America, the results are the opposite, with the
decadal versions producing the best results. The performance
of the annual densities is worse in western North America
(west of 90◦W) than in eastern North America (see Ap-
pendix A). In eastern North America all four density versions
have similar performance. The majority of the density in-
formation in western North America comes from automated
point data (snow pillows) which are less representative of the
surrounding land cover and of a 25 km grid cell than snow
courses are. Increasing the pool of data temporally, as is done
for the decadal product, may somewhat compensate for this
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Figure 3. Average daily snow density between 2000–2009 for four
different snow density versions. The constant snow density used in
SWE retrieval procedure is also shown.

lack of spatial representativeness and could explain the su-
perior performance of the decadal version in western North
America.

Figure 3 shows average daily snow densities for 2000–
2009 for the four different snow density versions along
with the constant density used in the GSv3.0 product
(240 kg m−3). The constant density is larger than any of the
varying snow densities until mid-March. After mid-March,
the constant snow density is smaller than the different dy-
namic snow densities. Both decadal densities follow the ex-
pected progression of increased densities over the course of
the snow season. In contrast, both annual density fields (Krig-
ing and IDWR interpolated) reach a maximum in early April,
after which point the snow density starts to decrease, and are
lower than expected from the literature (e.g. Brown et al.,
2019; Sturm et al., 2010; Sturm and Holmgren, 1998; Zhong
et al., 2014). Snow courses are not conducted in extremely
wet conditions or in patchy snow, so the evolution of snow
density during the ablation period may not be captured in
the annual datasets. However, local snow densities derived
from SNOTEL snow depth and SWE have been shown to ex-
hibit large variability during both the accumulation and ab-
lation seasons, and oftentimes the density decreases towards
the end of the ablation period (Bormann et al., 2013).

Conversely, the decadal densities continue to increase un-
til April when the values stabilize. Analysis of snow densi-
ties in Eurasia over 42 years found that snow densities in-
crease throughout the spring (Zhong et al., 2014) in con-
cert with increasing temperatures and snowmelt. However,
when looking at shorter time periods or a smaller number
of locations, snow density exhibits a more varied behaviour.
Specifically, although snow densities generally increase over
the course of the snow season, often times there is a reduc-

tion in density at the end of the season before the full snow
cover has ablated (see, for example, Bormann et al., 2013).
Figure 4 shows differences in monthly average densities be-
tween two Kriging-interpolated density sets (decadal and an-
nual) and between two annual (Kriging and IDWR) sets of
densities, as well as the monthly average IDWR densities
for January, February, March, and April. Annual Kriging-
interpolated densities are generally higher than decadal Krig-
ing densities in North America. In Eurasia, differences are
small between annual and decadal densities, except in April
when decadal densities are higher, which is consistent with
Fig. 3. IDWR densities are consistently higher in western
North America and lower in eastern North America com-
pared to the annual Kriging-interpolated values. IDWR den-
sities are also usually higher in Eurasia, except western Eu-
rope in January and February, than the Kriging densities. In
North America, there is a clear delineation between east and
west in the IDWR density field (bottom row of Fig. 4) that
is not present in Kriging-interpolated densities. This feature
is most likely due to the dense network of automated snow
measurements in the western United States. These measure-
ments have a more significant effect on IDWR densities than
on the Kriging-interpolated densities, as only one variogram
is fitted for North America.

4.2 Dynamic snow densities inside the SWE retrieval

As outlined in Sect. 2, snow density is an input to the HUT
snow emission model that is used to estimate effective snow
grain size at locations with in situ SD measurements and to
model the brightness temperature. Snow density is also used
to convert the final SD estimate to SWE. To understand the
effect of implementing dynamic snow densities into the SWE
retrieval more clearly, we look at the impact of dynamic snow
densities on (i) effective snow grain size (Sect. 5.2.1) and
(ii) SWE estimates made without constraining the retrieval
with the background SD field in step 4 (Sect. 5.2.2). For
these two analyses, we compare the IDWR version, which
had the best snow density accuracy (Sect. 5.1), to Glob-
Snow 3.0 (static density) for a test year (2005). The year 2005
was chosen as a test year as the performance of the Glob-
Snow SWE retrieval is average that year. Additionally, the
behaviour and amount of snow mass is similar to the 10-
year average in 2005. We then assess the impact of dynamic
density on the final SWE retrieval (Sect. 5.2.3), outlined in
Sect. 2, in comparison to the baseline GlobSnow v3.0 dataset
and a dataset where variable densities are implemented in
post-processing.

4.2.1 Effective snow grain size

The effective snow grain size, d0, is that which minimizes
the error in modelled Tb compared to the satellite observa-
tions, and it is used to compensate for spatial and temporal
changes in the snow structure. In the SWE retrieval proce-
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Table 2. Summary of validation parameters for three snow density sets for 2000–2009.

Bias RMSE MAE Correlation Average value
[kg m−3

] [kg m−3
] [kg m−3

] coefficient [kg m−3
]

In situ Modelled

Eurasia

Decadal, Kriging 2.2 44.8 33.0 0.74 216.7 218.9
Annual, Kriging −0.1 41.9 30.2 0.79 216.7 216.6
Decadal, IDWR 2.7 44.3 32.7 0.75 216.7 219.4
Decadal, IDWR (leave one out) 2.8 45.6 33.8 0.73 216.7 219.5
Annual, IDWR −0.2 39.8 28.6 0.80 216.7 216.5

North America

Decadal, Kriging 4.2 71.2 51.0 0.64 274.0 278.4
Annual, Kriging 11.6 80.0 55.9 0.59 274.0 285.5
Decadal, IDWR 4.1 65.5 48.0 0.65 274.0 271.2
Decadal, IDWR (leave one out) 4.7 67.7 49.8 0.63 274.0 275.8
Annual, IDWR 10.4 76.4 53.5 0.61 274.0 284.4

Figure 4. Top row shows monthly difference between average snow density values of decadal and annual (Kriging) densities. Middle row
shows average differences between Kriging and IDWR (annual) densities. Bottom row shows average IDWR densities. Differences and
densities are shown for January, February, March, and April.

dure, the d0 values range between 0.2 and 2.5 mm. Values
smaller than 0.2 mm are rounded up to 0.2 mm, while val-
ues larger than 2.5 mm do not occur as this is the upper limit
set in step 2 in the inversion of the HUT snow model. Fig-
ure 5 shows the monthly average effective snow grain sizes
for January, February, March, and April 2005 for the GSv3.0

product and the product with the annual IDWR snow densi-
ties implemented into the SWE retrieval. Figure 5 also shows
differences in average d0 between the two products for the 4
months under investigation. Figure 6 shows distributions of
d0 values for January, February, March, and April 2005 for
GSv.3.0 and IDWR products. We have focused our analysis
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on the product with IDWR densities implemented into the
processor, as IDWR densities have the best overall perfor-
mance of the four different density versions.

The effective snow grain size is affected by multiple fac-
tors that include snow microstructure and variations in land
cover, soil, and vegetation. IDWR grain sizes tend to be
larger in northern Eurasia and eastern North America through
the winter and smaller in central Eurasia and northwest North
America compared to the GSv3.0 grain sizes. Overall, for
January, February, and March, IDWR effective snow grain
size values are larger than those of GSv3.0. The monthly
mean d0 values show how the effective grain size values
grow from January to February but are smallest in March
and slightly larger in April.

Although there are some large (local) differences in snow
grain size estimates between the density implementations,
these changes do not necessarily correspond to large dif-
ferences in snow density (between static density and IDWR
densities) and vice versa. Differences in grain size (between
constant and dynamic density implementations; Fig. 5) are
smaller than the differences in density themselves. This is not
surprising given that snow density is only one of multiple pa-
rameters ingested by the HUT emission model. The passive
microwave brightness information is the same in both the
constant and dynamic density implementations, so slightly
altering the snow density while keeping all other parame-
ters the same will not yield substantial changes in grain size,
which in the retrieval algorithm essentially acts as a fitting
parameter to achieve optimal agreement between simulated
and observed Tb. Furthermore, the final effective snow grain
size estimate (and its variance) at each location is the av-
erage grain size of the six nearest stations, which produces
a smoother field than that of SD or density. Snow density
influences not only the grain size estimates themselves but
also the magnitude of the variance, which in turn affects the
weight of the radiometer data on the final SWE estimation
(left-hand side of Eq. 1). If the true snow density between sta-
tions varies significantly, the variance of the estimated snow
grain sizes increases. Higher variances are often associated
with less accurate individual grain size estimates and can po-
tentially reduce the weight of radiometer measurements on
the final SWE estimation. Using dynamic snow densities can
help with this, as these varying snow densities are likely to be
closer to the true snow density at each location compared to
the constant density, thereby improving effective grain size
estimates.

4.2.2 SWE retrieval without the final assimilation

To isolate the effect of implementing dynamic snow densities
inside the SWE retrieval, we ran the retrieval without con-
straining it with the background SD field in step 4. That is to
say that the SWE estimates are made without the final SD as-
similation by minimizing the difference between modelled
and measured Tb observations (i.e. only the left-hand side of

Eq. 1 was run). The background SD field can have a consid-
erable impact on the final SWE estimates, and it can dampen
the effects of other input data and parameterizations such
as snow density. Running the SWE retrieval without the fi-
nal SD assimilation helps to highlight the effects of dynamic
snow densities on the SWE retrieval. Synoptic SD observa-
tions are still used to estimate effective snow grain size at the
measurement station locations (step 2). We again focus our
analysis on the product produced using annual IDWR densi-
ties.

Figure 7 shows density scatter plots and validation param-
eters for SWE retrievals without the final SD assimilation
with static and annual IDWR densities for the year 2005.
Validation parameters are calculated using the validation
datasets (Fig. 1, blue). As seen in Fig. 4, MAE and bias are
smaller for the IDWR density version than for the static den-
sity version, but the RMSE is larger. The scatter plots show
that the IDWR version has a large concentration of points
following the diagonal line but also more outlier values than
the static snow density product. This concentration of points,
which are located in eastern Russia (around 120◦ E), explains
the smaller MAE and bias and larger RMSE (RMSE is more
sensitive to outliers than MAE) of the IDWR density ver-
sion as compared to the static density product. It is promis-
ing that the annual IDWR densities are able to produce im-
proved SWE estimates when compared to the static density
product even when the retrieval is not constrained with the
background SD field. In the next section we will look at the
full retrieval.

4.2.3 SWE retrieval results

Finally, we ran the full processing algorithm, including the
final SD assimilation step, for each of the four dynamic
density versions. The SWE retrieval results from each of
the four dynamic density versions are compared with the
baseline GSv3.0 dataset and a post-processed dataset. The
post-processed product is similar to that of Venäläinen et
al. (2021) but with updated snow density data consistent with
those used in this study. The validation parameters shown
in Table 3 are again calculated using the validation dataset
(Fig. 1, blue).

As shown in Table 3, both adjusting the SWE retrieval
with dynamic snow densities in post-processing and insert-
ing dynamic snow densities into the retrieval improve RMSE,
MAE, and correlation when compared to the baseline GSv3.0
product. This shows that spatially and temporally varying
snow densities provide a more accurate SWE estimate than
a single constant value does. Furthermore, applying dy-
namic density inside the algorithm produces more accurate
SWE retrievals than applying it in post-processing. Overall,
IDWR interpolation performs better than Kriging interpola-
tion, which is consistent with the results from Sect. 5.1 that
showed IDWR had the most accurate snow density accura-
cies for Eurasia and the most accurate annual snow densities
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Figure 5. Monthly average effective snow grain sizes for GSv3.0 and IDWR densities in the SWE processor are shown in the top and middle
row, respectively. Effective snow grain sizes are shown for January, February, March, and April 2005. Bottom row shows the differences in
average effective snow grain sizes between GSv3.0 and IDWR densities in the processor.

in North America. In general, annual densities yield more
accurate SWE retrievals than decadal densities when imple-
mented into the retrieval. This result differs slightly from
our analysis of the density fields (Sect. 5.1) which found the
decadal version to have the best accuracies over North Amer-
ica. Although the decadal densities had better RMSE and
correlations in North America (especially in western North
America), from January onwards, decadal density values are
consistently lower than the annual densities (Sect. 5.1). For
the same SD, lower snow densities result in lower SWE (re-
trieve SD is converted to SWE using snow density value);
these smaller decadal densities may explain the poorer SWE
estimates obtained with the decadal densities (compared to
annual) in North America where SWE is generally under-
estimated in middle to late winter. The lower SWE values
obtained with the decadal densities will therefore be less ac-
curate.

Figure 8 shows monthly and annual bias, correlation co-
efficient, and RMSE against validation data for the Northern
Hemisphere for 2000–2009 for the GSv3.0 product, decadal
post-processed product, and product with annual IDWR den-
sities implemented into the retrieval. Similar to Table 3,
we see that post-processing and implementing densities into
the retrieval improve SWE estimates when compared to the

GSv3.0 dataset. IDWR densities reduce the overestimation
(underestimation) at low (high) SWE values compared to the
post-processed and baseline (GSv3) versions. Accuracy dif-
ferences between density versions implemented inside the
processor are small compared to the difference from imple-
menting dynamic densities inside the algorithm rather than in
post-processing. Overall, the choice of dynamic density field
(annual/decadal or IDWR/Kriging) and the way it is applied
to estimate SWE (inside the processor or post-processing)
have a much smaller impact than the choice of a constant
density value versus a variable snow density value does. It is
encouraging, though not surprising, that more accurate local
densities yield improved SWE retrievals.

4.3 Northern Hemisphere snow mass

Figure 9 shows the total average snow mass for the North-
ern Hemisphere (excluding mountains) for 2000–2009 for
the GSv3.0 product, decadal Kriging post-processed product,
and the product with the annul IDWR densities implemented
into the retrieval. Both post-processing and implementing
densities into the retrieval shift the timing of peak snow
mass later, bringing it more in line with gridded reanalysis
products and historically forced snow models (Mortimer et
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Figure 6. Histograms of effective snow grain size values for January, February, March, and April 2005. The monthly median value is shown
with dotted lines.

Figure 7. Scatter plots showing the normalized density of scattered points and validation parameters for SWE retrievals without final assim-
ilation with static density (a) and IDWR-interpolated dynamic density (b) for 2005.

al., 2022), but post-processing reduces the snow mass when
compared to the GSv3.0 dataset which is already biased low
(Pulliainen et al., 2020). When dynamic snow densities are
implemented into the retrieval, the aforementioned reduction
in snow mass is negligible. The IDWR approach retains the
magnitude of peak SWE present in GSv3 and the timing of
peak SWE of the post-processed version.

Figure 10 shows spatial differences in average monthly
SWE (for a 10-year period from 2000–2009) between the
decadal Kriging post-processed SWE product and GSv3.0
product (top row), the differences between the product with

dynamic annual IDWR densities in retrieval and the GSv3.0
product (middle row), and differences between the decadal
Kriging post-processed product and the product with dy-
namic annual IDWR densities in retrieval (bottom row).

Over the course of the snow season, the Glob-
Snow v3.0 SWE bias generally follows the degree of over-
/underestimation of the constant density compared to the true
snow density (Mortimer et al., 2022). In early winter, the con-
stant density of 240 kg m−3 is often too high (Fig. 3 shows
that the daily average snow density value of all dynamic snow
density versions reaches the constant density in mid-March),
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Table 3. Summary of validation parameters for GSv3.0, post-processed product, and different densities in the retrieval products for 2000–
2009 for SWE< 500/200 mm. The best value in each category is in bold.

Bias RMSE MAE Correlation Average SWE value
[mm] [mm] [mm] coefficient [mm]

In situ Modelled

GS3, Northern Hemisphere −6.8/2.3 54.2/36.7 34.3/27.2 0.61/0.68 91.3/78.5 82.3/78.4
Post-processed, decadal Kriging −10.9/− 3.2 51.4/35.1 30.7/24.1 0.67/0.72 91.3/78.5 81.0/75.8
In processor, decadal Kriging −10.7/− 3.0 50.9/34.8 30.5/24.0 0.68/0.73 91.3/78.5 81.2/76.0
In processor, annual Kriging −10.2/− 2.8 50.2/34.2 29.4/23.1 0.69/0.74 91.3/78.5 82.0/76.4
In processor, decadal IDWR −10.7/− 3.0 51.0/34.9 30.6/24.1 0.68/0.73 91.3/78.5 81.0/75.8
In processor, annual IDWR −10.7/− 3.3 49.8/33.4 28.7/22.3 0.70/0.75 91.3/78.5 79.5/74.1

Eurasia

GS3, Eurasia 2.9/10.0 39.5/29.6 27.2/23.2 0.73/0.74 81.8/74.8 82.2/79.2
Post-processed, decadal Kriging −3.0/2.8 37.4/27.3 23.6/19.4 0.77/0.77 81.8/74.8 79.6/76.0
In processor, decadal Kriging −2.8/3.0 37.0/27.3 23.5/19.4 0.77/0.77 81.8/74.8 79.9/76.1
In processor, annual Kriging −2.8/2.6 36.3/26.9 22.5/18.5 0.79/0.78 81.8/74.8 80.1/76.1
In processor, decadal IDWR −2.7/3.0 36.9/27.3 23.5/19.4 0.77/0.77 81.8/74.8 79.6/75.0
In processor, annual IDWR −2.9/1.9 34.5/25.4 21.1/17.5 0.80/0.80 81.8/74.8 76.7/73.2

North America

GS3, North America −49.6/− 22.3 95.2/55.8 65.7/42.4 0.44/0.46 132.9/97.5 82.6/74.3
Post-processed, decadal Kriging −46.2/− 22.5 90.3/55.2 62.1/41.4 0.52/0.51 132.9/97.5 86.3/75.0
In processor, decadal Kriging −45.8/− 22.2 89.4/54.4 61.5/40.9 0.53/0.52 132.9/97.5 86.9/75.4
In processor, annual Kriging −42.8/− 19.6 88.4/53.5 59.9/39.7 0.53/0.52 132.9/97.5 90.4/78.2
In processor, decadal IDWR −45.2/− 21.9 89.0/54.3 61.1/40.8 0.53/0.52 132.9/97.5 86.9/75.4
In processor, annual IDWR −42.7/− 18.9 88.3/53.3 60.0/39.6 0.53/0.52 132.9/97.5 90.9/78.6

Figure 8. Correlation, bias, and RMSE by month (a, c, e) and year (b, d, f) against validation data.

and the retrieval overestimates at the lower ranges of SWE
(e.g. below ∼ 100 mm; see Fig. 8). Overall differences be-
tween different products are smaller in Eurasia than in North
America, and the largest differences occur in January (earlier
months in the snow season not shown) and decrease as the

snow season progresses. Spatially, GSv3.0 has higher SWE
than the dynamic density products (post-processed and in-
side the retrieval) for large parts of Eurasia throughout the
year, except for western Europe in March and April as indi-
cated by the red colours in Fig. 10. Both post-processing and
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Figure 9. The total Northern Hemisphere snow mass (without
mountains) calculated from GSv3.0 and dynamic densities in re-
trieval products for 2000–2009.

implementing densities into the retrieval reduce much of this
overestimation in Eurasia, but differences are slightly more
muted when dynamic densities are implemented inside the
processor (compared to in post-processing).

The magnitude and spatial distribution of SWE differ-
ences compared to GSv3.0 with the post-processed and in-
side retrieval density implementations are more varied in
North America compared to Eurasia. In North America, post-
processing reduced SWE in January and February across
the boreal forest and increased it in the Canadian Arctic
Archipelago (CAA) and coastal western US. Conversely,
when dynamic densities are implemented inside the retrieval,
January SWE is lower (compared to GSv3.0) in eastern
Canada and parts of Alaska and higher in the west (west of
∼ 100◦W) and the CAA. The spatial pattern of January SWE
between GSv3.0 and IDWR somewhat mirrors the density
pattern in Fig. 4 where IDWR densities were lower (higher)
east (west) of 100◦W compared to Kriging densities. In Jan-
uary the post-processed product has larger (smaller) SWE
values in eastern (western) North America than the ver-
sion with IDWR densities implemented in the processor. In
February, IDWR SWE is generally higher than GSv3.0 ex-
cept in central Canada south of Hudson Bay and in Alaska.
In March and April, both density implementations result in
higher SWE across North America (with some exceptions),
and the magnitude of increased SWE compared to GSv3.0
is larger when densities are implemented inside the retrieval.
North America tends to have higher SWE than Eurasia, so
seeing a larger increase in SWE in the IDWR product com-
pared to GlobSnow is encouraging, although not unexpected.

5 Discussion

A key limitation of passive microwave SWE retrievals is the
systematic underestimation of large SWE values and over-
estimation of small SWE values. Most passive microwave
SWE retrieval algorithms are based on differences between
measurements made at a frequency sensitive to snow grain
volume scattering and measurements at a frequency consid-
ered largely insensitive to snow (Chang et al., 1987; Kelly,
2009; Tedesco and Narvekar, 2010). This leads to the un-
derestimation of SWE values under deep-snow conditions
(larger than 150 mm) as the snowpack changes from a scat-
tering medium to a source of emission. The GlobSnow SWE
algorithm partially mitigates this issue with the assimila-
tion of in situ snow depth measurements and provides bet-
ter estimates for moderate snowpacks (SWE∼< 200 mm)
than stand-alone passive microwave algorithms (Mortimer et
al., 2020). However, the underestimation (overestimation) of
large (small) SWE values is still present in the GlobSnow re-
trieval. One key remaining source of uncertainty in the Glob-
Snow SWE retrieval is the use of a constant snow density
with value of 240 kg m−3. Although this is a reasonable mean
value, it fails to capture spatial and temporal density variabil-
ity, which in turn can lead to local inaccuracies. Snow den-
sity is one of the input parameters to the HUT snow emission
model which determines the absorption coefficient of snow,
refraction, transmissivity at the snow–ground interface, and
transmissivity at the air–snow interface through modelled
permittivity of the snow layer (Pulliainen et al., 1999). The
HUT snow model is used within the retrieval algorithm to
ascertain d0 estimates at weather station locations (step 2)
and to determine the final SWE estimates using numerical
model inversion (step 4). More accurate snow density esti-
mates can improve effective snow grain size estimates (and
decrease variance), as well as the modelled Tb estimates used
to determine the final SWE estimates. Additionally, snow
density values are used to convert retrieved snow depth to
SWE (step 4), and the constant density used in the GSv3.0 is
often too small (large) in late (early) winter, which decreases
(increases) SWE estimates. This final step of converting re-
trieved SD values to SWE values can be improved by using
dynamic snow densities in post-processing, but it has been
found to reduce the total snow mass. When dynamic densi-
ties are implemented inside the retrieval, retrieved SD values
are improved, and after conversion to SWE, the reduction
in Northern Hemisphere snow mass compared to GSv3.0 is
negligible.

SWE retrieval without constraining the retrieval with the
background SD (Sect. 5.2.2) helps to isolate the impact of
dynamic snow densities on SWE retrieval. The background
SD field can have a substantial impact on the final SWE esti-
mates, and it can dampen the effects of other input data and
parameterizations such as snow density. Without the assim-
ilation of SD, using dynamic densities inside the retrieval
produced a smaller MAE but larger RMSE than using the
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Figure 10. Top row shows the average monthly difference in SWE between the GSv3.0 product and post-processed product (decadal,
Kriging). The middle row shows the average monthly difference between the GSv3.0 product and product with IDWR densities inside the
processor. The bottom row shows the average monthly difference between the post-processed product and product with IDWR densities in the
processor. Note the differing scales in the monthly (left) and annual (right) plots. Monthly averages are calculated for the years 2000–2009.

constant density. We attribute the larger RMSE, when dy-
namic densities are used, to the presence of outlier values
(Fig. 7) concentrated in a small area of eastern Russia. How-
ever, Fig. 7 shows that the bulk of the SWE estimates made
using varying densities are improved compared to static snow
density estimates; specifically, the largest density of points
more closely follows the 1 : 1 line. When the retrieval is con-
strained with the background SD field, these outlier values
are removed, and the dynamic density product has a smaller
RMSE than the static density SWE retrieval. Outliers are
reduced or removed when the background SD field is used
because, when the HUT model Tb estimates are matched to
Tb observations by incrementing the SD values (step 4), the
procedure is constrained with the background SD field, and
more optimal SD estimates are obtained than when this step
is not constrained. For comparison, when the SWE retrieval
is constrained with the background SD field, the RMSE
is 46.03 and 42.11 mm and MAE 31.40 and 26.30 mm for
GSv3.0 and IDWR densities in retrieval, respectively, for the

same period as shown in Fig. 4 (i.e. year 2005). Using the
background SD field, which is a key feature of the GlobSnow
algorithm, improves RMSE by around 40 mm and MAE by
around 30 mm regardless of the density parameterization.

It is well documented that the GlobSnow SWE retrieval
algorithm performs better in Eurasia than in North Amer-
ica (Mortimer et al., 2020, 2022). The weaker retrieval skill
over North America is partially due to higher average SWE
in North America. As seen in Table 2, the average measured
SWE is 132.9 mm in North America compared to 81.8 mm
in Eurasia. Locations with a high RMSE tend to have a large
negative bias and generally correspond to locations with
higher SWE. As seen in Fig. 8, RMSE increases and cor-
relation decreases as the bias becomes more negative. Snow
densities are larger in North America (274.0 kg m−3 in North
America and 216.7 kg m−3 in Eurasia) and are farther from
the static value (240.0 kg m−3). Therefore, we might have ex-
pected larger improvements in North America (compared to
Eurasia) when moving from a constant to a variable density.
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However, although accuracies improved in both domains, the
magnitude of improvement was larger in Eurasia (12.6 %
and 14.2 %) compared to North America (7.2 % and 4.5 %)
(< 500 and 200 mm).

In North America, large errors occur in densely forested
high-SWE areas in the northeast and in the mountainous west
(Mortimer et al., 2022; Fig. 7). Dense forest and high SWE
are challenging for stand-alone passive microwave SWE re-
trievals. Assimilation of in situ SD information from a suf-
ficiently dense observation network can improve SWE esti-
mates in forested deep-snow regions such as Finland (Pul-
liainen, 2006; Takala et al., 2011). However, if the in situ
SD network is sparse and the SD variance high, as is the
case in northern Quebec, Canada, the SWE estimate is more
heavily weighted towards the passive microwave informa-
tion, which has limited sensitivity to higher SWE (Larue et
al., 2017; Brown et al., 2018). Complex terrain is masked out
in GlobSnow, but high mountain plateaus, which often have
high SWE, are included and can result in large errors in parts
of western North America.

While developing and evaluating the density fields to
be implemented into the retrieval algorithm, we found the
IDWR interpolation produced more accurate density esti-
mates than (annual) Kriging interpolation. Similarly, imple-
menting annual IDWR densities into the SWE retrieval re-
sulted in larger improvements compared to the Kriging den-
sities. Differences between IDWR and Kriging were larger in
Eurasia than in North America. In North America, available
snow density measurements are clustered (Fig. 1), mean-
ing validation locations are often quite close to implemen-
tation locations. In Eurasia, the in situ data are more dis-
tributed across the region, resulting in greater distances be-
tween validation and implementation locations. This differ-
ent spatial distribution of available snow density data may
also explain some of the differences in performance between
North America and Eurasia as the IDWR interpolation is
known to produce better results than Kriging interpolation
when the amount of data is limited (Sect. 4.2). Additionally,
the fitting the variogram is an important part of Kriging inter-
polation, and if the variogram does not adequately describe
the data, Kriging may not provide optimal predictive results.
When calculating dynamic snow densities using Kriging in-
terpolation, the variogram is fitted daily for two separate ar-
eas: North America and Eurasia. This means that small-scale
local behaviour of the snow density might not be reflected in
the Kriged density fields. The IDWR interpolation captures
more local variability, which can have both positive and neg-
ative consequences. For example, although IDWR density es-
timates are more accurate than Kriging-interpolated densities
in North America, there is an artificial border in the IDWR
density estimates between eastern and western North Amer-
ica that is not present in the Kriging-interpolated densities.

At the hemispheric scale, using annual snow densities
(Kriging and IDWR) in SWE retrieval was found to pro-
duce better results than using decadal snow densities. How-

ever, one issue connected with the use of annual densities is
the availability of snow density data. In many cases, snow
transect data only become publicly available after a signif-
icant delay. Hence, if the goal is to produce near-real-time
SWE retrievals, historical snow density data need to be used.
For these purposes, decadal or model-based snow densities
are required. Another approach for obtaining dynamic snow
density information would be to use snow density informa-
tion available from different reanalysis products. For exam-
ple, snow density data from ERA5-land were successfully
used as an input to the HUT snow model in a study by Yang
et al. (2021). We have not used reanalysis products in the
GlobSnow SWE retrieval to keep the retrieval independent
of reanalysis products and dependent only on observed data.

6 Conclusion

In this study, we implemented three different versions of spa-
tially and temporally varying snow densities into the Glob-
Snow SWE retrieval methodology in place of a constant den-
sity value with the goal of improving SWE retrieval. The first
two snow density versions use Kriging interpolation – one
with decadal data (10-year daily average snow densities) and
the other with annual data (daily average snow densities or
just single measurements). These two versions allowed us to
test the impact of temporal aggregation and interpolation ap-
proaches. The third version uses annual data and IDWR inter-
polation and allowed us to evaluate effects of different spa-
tial interpolation methods. Annual IDWR densities had the
most accurate snow densities in Eurasia and were superior to
the annual Kriging densities in North America. However, in
North America, the most accurate interpolated densities were
obtained using decadal data with Kriging interpolation. Im-
plementing varying snow densities into SWE retrieval altered
effective snow grain size estimates when compared to the
baseline GSv3.0 grain size estimates. Although differences
in effective snow grain size estimates over the full Northern
Hemisphere domain were quite small, there were large local
differences. Differences in grain size (between constant and
dynamic density implementations) are smaller than the dif-
ferences in snow densities and can be explained by the fact
that density is only one of multiple parameters ingested by
the HUT emission model and that the effective grain size is
essentially a fitting parameter to optimize agreement between
simulated and observed Tb.

We found that implementing these dynamic snow densities
into the SWE retrieval algorithm improved the accuracy of
the retrieval. Snow densities implemented using annual data
and IDWR spatial interpolation produced the best results, re-
ducing the RMSE and MAE by about 8 % (9 %) and 16 %
(18 %), respectively, for SWE under 500 (200) mm. Imple-
menting varying densities into the retrieval reduced the over-
estimation of small SWE values and the underestimation of
large SWE values, though the underestimation of large SWE
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values is still present. The assimilation of SD data used in the
GlobSnow retrieval improves estimates of large SWE values
when compared to algorithms based only on radiometer data.
However, the physics upon which the SWE retrieval is based
limits the SWE estimates to below about 200 mm. Similar
improvements in validation parameters (RMSE, MAE, and
correlation coefficient) are obtained when the baseline SWE
product is post-processed with the dynamic snow densities.
However, post-processing reduced the total Northern Hemi-
sphere snow mass when compared to GSv3.0, which itself
is biased low. Implementing dynamic snow densities into the
SWE retrieval removes this reduction in the Northern Hemi-
sphere peak snow mass. Additionally, both implementing dy-
namic snow densities into the SWE retrieval and using them
for post-processing delay the timing of the peak snow mass
by around 2 weeks, which brings it more in line with other
hemispheric SWE datasets (Mortimer et al., 2022). The de-
velopment of the SWE retrieval algorithm continues in the
ESA SnowCCI+ project, and, as implementing annual dy-
namic snow densities into the retrieval improves the retrieval
skill, this modification will be used in the production of the
next iteration of ESA SnowCCI+ SWE. However, as decadal
snow densities are more accurate in North America, they
might be preferred for some applications.

Appendix A: Validation of snow densities in North
America

Table A1. Validation parameters of different snow densities for eastern (east of 90◦W) and western North America.

Bias RMSE MAE Correlation Average value
[kg m−3

] [kg m−3
] [kg m−3

] coefficient [kg m−3
]

In situ Modelled

Eastern North America

Decadal, Kriging −9.2 76.8 53.3 0.53 257.8 248.9
Annual, Kriging 0.6 77.8 52.1 0.52 257.8 258.2
Decadal, IDWR −3.8 71.4 51.7 0.59 257.8 254.0
Annual, IDWR −8.9 77.6 50.7 0.53 257.8 248.9

Western North America

Decadal, Kriging 17.7 65.0 48.8 0.72 290.5 308.3
Annual, Kriging 22.9 82.3 59.8 0.59 290.5 313.4
Decadal, IDWR 5.1 57.3 42.9 0.77 290.5 295.6
Annual, IDWR 30.0 75.1 56.4 0.66 290.5 320.8
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(Luojus et al., 2022b). The snow density processing code is avail-
able upon request from the corresponding author.
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