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Abstract. Seasonal snow has crucial impacts on climate,
ecosystems, and humans, but it is vulnerable to global
warming. The land component (ELM) of the Energy Ex-
ascale Earth System Model (E3SM) mechanistically simu-
lates snow processes from accumulation, canopy intercep-
tion, compaction, and snow aging to melt. Although high-
quality field measurements, remote sensing snow products,
and data assimilation products with high spatio-temporal res-
olution are available, there has been no systematic evalu-
ation of the snow properties and phenology in ELM. This
study comprehensively evaluates ELM snow simulations
over the western United States at 0.125◦ resolution during
2001–2019 using the Snow Telemetry (SNOTEL) in situ
networks, MODIS remote sensing products (i.e., MCD43
surface albedo product), the spatially and temporally com-
plete (STC) snow-covered area and grain size (MODSCAG)
and MODIS dust and radiative forcing in snow (MOD-
DRFS) products (STC-MODSCAG/STC-MODDRFS), and
the snow property inversion from remote sensing (SPIReS)
product and two data assimilation products of snow water
equivalent and snow depth – i.e., University of Arizona (UA)
and SNOw Data Assimilation System (SNODAS). Overall
the ELM simulations are consistent with the benchmark-
ing datasets and reproduce the spatio-temporal patterns, in-
terannual variability, and elevation gradients for different
snow properties including snow cover fraction (fsno), surface
albedo (αsur) over snow cover regions, snow water equiv-
alent (SWE), and snow depth (Dsno). However, there are
large biases of fsno with dense forest cover and αsur in the

Rocky Mountains and Sierra Nevada in winter, compared to
the MODIS products. There are large discrepancies of snow
albedo, snow grain size, and light-absorbing particle-induced
snow albedo reduction between ELM and the MODIS prod-
ucts, attributed to uncertainties in the aerosol forcing data,
snow aging processes in ELM, and remote sensing re-
trievals. Against UA and SNODAS, ELM has a mean bias
of −20.7 mm (−35.9 %) and −20.4 mm (−35.5 %), respec-
tively, for spring, and −13.8 mm (−27.8 %) and −10.2 mm
(−22.2 %), respectively, for winter. ELM shows a relatively
high correlation with SNOTEL SWE, with mean correlation
coefficients of 0.69 but negative mean biases of −122.7 mm.
Compared to the snow phenology of STC-MODSCAG and
SPIReS, ELM shows delayed snow accumulation onset dates
by 17.3 and 12.4 d, earlier snow end dates by 35.5 and 26.8 d,
and shorter snow durations by 52.9 and 39.5 d, respectively.
This study underscores the need for diagnosing model biases
and improving ELM representations of snow properties and
snow phenology in mountainous areas for more credible sim-
ulation and future projection of mountain snowpack.

1 Introduction

Snow, a key component of the cryosphere, has a large influ-
ence on the terrestrial energy budget and water and carbon
cycles (Berghuijs et al., 2014; Niittynen et al., 2018). With
high albedo and low thermal conductivity, snow also affects
regional climate (Flanner et al., 2011; Henderson et al., 2018;
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Skiles et al., 2018). Under global warming, less precipita-
tion will fall as snow and snow will melt earlier (Barnett et
al., 2005), which will have large impacts on water availabil-
ity in snow-dominated regions (Barnett et al., 2005; Mus-
selman et al., 2021). Climate models project the snow wa-
ter equivalent (SWE) declines of ∼ 25 % by 2050 for the
western United States (WUS; see Table A1 for acronyms
and symbols used in the study) (Musselman et al., 2021;
Siirila-Woodburn et al., 2021), with large impacts on ecosys-
tem function, wildlife habitats, flood hazard, tourism, recre-
ation, and socio-economic activities (Hamlet and Letten-
maier, 2007; Mameno et al., 2022). Accurately characteriz-
ing and projecting future changes in snow processes and tim-
ing of these changes is crucial for planning our response to
climate change.

Numerous parameterizations and models with various de-
grees of complexity have been developed to simulate sea-
sonal snow dynamics and improve our understanding of
snow processes (Krinner et al., 2018; Lee et al., 2021;
Magnusson et al., 2015). These parameterizations/models
have been coupled to land surface models (LSMs) (Krin-
ner et al., 2018) to represent snow grain particles (Räisänen
et al., 2017), snow cover (Swenson and Lawrence, 2012),
snow albedo (Flanner et al., 2007), snowpack compaction
(Decharme et al., 2016), and snow interception by vegeta-
tion (Lundquist et al., 2021). The Energy Exascale Earth Sys-
tem Model (E3SM) land model (ELM) (Leung et al., 2020)
includes a multi-layer snow scheme to simulate the prog-
nostic snow processes such as snow accumulation, snow in-
terception, snow compaction, and snow melt. Recently, the
snow albedo model in ELM was improved to include new
radiative transfer solvers with improved accuracy (Dang et
al., 2019), add non-spherical snow grain shape (Hao et al.,
2023), account for the internal mixing of light-absorbing par-
ticles (LAPs) with snow (Böttcher et al., 2014; Hao et al.,
2023), and incorporate new parameterizations to account for
the subgrid topographic effects on solar radiation (Hao et al.,
2021, 2022) (see Sect. 2.1 for details). With these enhance-
ments and improvements, ELM may skillfully simulate snow
dynamics at a regional scale (e.g., WUS).

Previous studies evaluated simulations of snow cover frac-
tion (fsno), SWE, snow depth (Dsno) (Toure et al., 2016,
2018), and snowmelt timing (Toure et al., 2018) in the Com-
munity Land Model v.4 (CLM4) in the Northern Hemisphere
at a coarse spatial resolution of 0.5◦× 0.67◦. The 0.25◦ sim-
ulations of surface albedo (αsur), fsno, and SWE in the Cana-
dian Land Surface Scheme (CLASS) were evaluated over
eastern Canada (Verseghy et al., 2017), but snow phenol-
ogy was not assessed. Monthly SWE in the 1◦ coupled land–
atmosphere simulations of E3SM v.1 was evaluated over the
contiguous United States by Brunke et al. (2021), who at-
tributed SWE uncertainties to the biases in temperature and
precipitation. Overall, previous studies only evaluated a few
snow variables in LSMs mostly at coarse spatial resolutions
(Table A2), although more high-resolution remote sensing

observations and data assimilation products of snow vari-
ables (e.g., snow albedo – αsno, snow grain size – Ssno, and
snow albedo reduction induced by LAPs in snow – Rsno)
have become available. The snow phenology in LSMs has
rarely been evaluated explicitly, and how LSMs capture the
interannual variability of snow variables and how those vari-
ables vary along an elevation gradient have not been well
investigated.

A series of high-quality field snow measurements and
remote sensing and data assimilation snow datasets/prod-
ucts with high spatio-temporal resolution are available over
the WUS. The in situ Snow Telemetry (SNOTEL) stations
widely distributed across the WUS provide long-term SWE
field measurements (Serreze et al., 1999). Optical remote
sensing data have been widely used to map snow dynam-
ics (Dietz et al., 2012; Dong, 2018). The Moderate Reso-
lution Imaging Spectroradiometer (MODIS) reflectance data
at 463 m spatial resolution have been used to retrieve mul-
tiple key snow-related variables including αsur (Schaaf et
al., 2002), fsno (Bair et al., 2021b; Painter et al., 2009),
αsno, Ssno, and Rsno (Bair et al., 2021b; Painter et al., 2012).
These MODIS data accurately capture snow dynamics dur-
ing accumulation and melt (Rittger et al., 2013; Wang et
al., 2018), and the high daily temporal resolution of these
datasets is helpful for capturing rapid snow variations. Some
available remote sensing snow phenology products (Chen et
al., 2015; Metsämäki et al., 2018; Takala et al., 2009) adopt
different optical or microwave satellite observations to ex-
tract snow phenology date and duration. Besides, they use
different snow phenology definitions and include different
snow phenology metrics, which can affect their use as a refer-
ence. Alternatively, the same phenology extraction methods
can be used to derive snow phenology metrics for both LSMs
and MODIS daily fsno data, avoiding inconsistencies of def-
initions and extraction methods. Data-assimilated SWE and
snow depth (Dsno) products are also available that integrate
field measurements, remote sensing observations, and model
simulations (National Operational Hydrologic Remote Sens-
ing Center, 2004; Zeng et al., 2018). These data assimilation
products have high spatial resolution of < 5 km and higher
reliability over mountainous and forested regions due to the
constraints of in situ networks (Dawson et al., 2018). These
datasets provide good opportunity for comprehensively eval-
uating the accuracy of snow variables and snow phenology
in LSMs.

The aim of this study is to systematically evaluate the
high-resolution 0.125◦ ELM simulations of key snow vari-
ables and snow phenology over the WUS, using in situ, re-
mote sensing, and data assimilation snow products. Specif-
ically, offline ELM simulations with new improvements re-
lated to snow processes over the WUS were conducted dur-
ing 2001–2019. Field snow measurements, three MODIS re-
mote sensing products, and two data assimilation snow prod-
ucts were collected as benchmarking datasets for the ELM
simulations (see Sect. 2.3 for details). All the ELM outputs
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and benchmarking datasets were regridded to an identical
spatio-temporal resolution of 0.125◦ and made daily. Snow
properties’ variables including αsur, fsno, αsno, Ssno, Rsno,
SWE, and Dsno were used in the analysis. Multiple snow
phenology metrics were derived from both ELM and remote
sensing products using the same definitions and extraction
methods (see Sect. 2.4 for details). The spatial patterns, tem-
poral correlations, interannual variabilities, elevation gradi-
ents, and change with forest cover of snow properties and
snow phenology in ELM were evaluated against the bench-
marking datasets. Uncertainties in the ELM and benchmark-
ing datasets, implications for model improvements, and lim-
itations of the study are discussed.

2 Materials and methods

2.1 Model description

ELM, the land component of E3SM, originates from the
Community Land Model v.4.5 (CLM4.5) (Golaz et al.,
2019). ELM uses a multi-layer scheme (up to five layers
by default) to dynamically simulate various snow processes,
e.g., snow accumulation, melting, aging (i.e., the evolution of
snow grain size), compaction, metamorphism, aerosol depo-
sition and redistribution, and canopy snow interception and
unloading. Specifically, ELM uses the snow, ice, and aerosol
radiative (SNICAR) model to calculate snow albedo and
vertically-resolved absorption of solar radiation, consider-
ing the evolving snow grain size, solar zenith angles (SZAs),
sky conditions, underlying background, and snow impurities
(e.g., black carbon, BC, and dust) (Flanner et al., 2007). ELM
uses the snow water equivalent (SWE) and standard deviation
of elevation to estimate snow cover fraction (fsno). The hys-
teresis of snow accumulation and ablation is also accounted
for in ELM (Swenson and Lawrence, 2012).

Compared to CLM4.5, some key updates related to
snow processes have been included in ELM. First, the
original SNICAR model has been replaced by a hybrid
model (SNICAR-AD) of SNICAR and delta-Eddington
adding–doubling radiative transfer solver, which corrects the
snow albedo bias for large SZAs and can better represent the
shortwave radiative properties of snow (Dang et al., 2019).
Second, compared to only external mixing in CLM4.5, both
external mixing and internal mixing of hydrophilic BC snow
and dust snow are now represented in ELM (Hao et al.,
2023; Wang et al., 2020). Third, the direct and diffuse irra-
diance under different atmospheric profiles and their depen-
dence on SZA are included (Hao et al., 2023). Fourth, the
effects of non-spherical snow grain shape on snow albedo
are considered (Hao et al., 2023). Fifth, a new parameteri-
zation of subgrid topographic effects on solar radiation has
been implemented in ELM to account for the impacts of
macroscale shadow, occlusion, and multi-scattering between
adjacent terrain on surface albedo (Hao et al., 2021, 2022).

2.2 Model setup and experiment design

Selected for this study, the WUS has heterogeneous topog-
raphy with diverse elevations ranging from 0 to above 3 km
(Fig. 1a). The WUS includes three major mountain ranges:
the Cascades Range, Sierra Nevada, and Rocky Mountains,
which are characterized by frequent snow cover. The ele-
vation data were acquired from the Shuttle Radar Topogra-
phy Mission (SRTM) DEM dataset (Rabus et al., 2003). The
forest cover data in 2010 shown in Fig. 1b were acquired
from the 30 m Landsat Vegetation Continuous Fields (VCF)
tree cover datasets derived from the Global Forest Cover
Change (GFCC) surface reflectance product (Sexton et al.,
2013). Both the DEM and forest cover data were aggre-
gated to 0.125◦ using the area-weighted average method. For
analysis, elevations were divided into different intervals (see
Fig. 1c). Elevations less than 0.5 km are not included in the
statistical analysis, as snow cover is close to 0. The forest
cover was divided into five levels (see Fig. 1d). The area
fractions of different intervals of elevation and forest cover
are shown in Fig. 1c and d, respectively.

ELM simulations at 0.125◦ spatial resolution were con-
ducted over the WUS from 1979 to 2019 driven by hourly
meteorological forcing data from the National Land Data
Assimilation System phase 2 (NLDAS-2) with spatial res-
olution of 0.125◦ (Xia et al., 2012). Specifically, the pre-
scribed satellite phenology (SP) mode was used with input
of MODIS leaf area index data (Myneni et al., 2002). The
climatological monthly aerosol deposition data (e.g., black
carbon and dust) with a spatial resolution of 1.9◦×2.5◦ from
the Community Atmosphere Model v.5 coupled with chem-
istry (Lamarque et al., 2010) were used, which were tem-
porally and spatially downscaled to half-hourly and 0.125◦

using bilinear interpolation. For the snow albedo module,
SNICAR-AD was configured with: (1) the SZA-dependence
solar irradiance under the mid-latitude winter atmosphere,
(2) spherical snow grain shape, (3) internal mixing of hy-
drophilic BC snow, (4) external mixing of dust snow, and
(5) neglect of organic carbon due to its high uncertainties.
The subgrid topographic effects on solar radiation were in-
cluded in the ELM configuration. The model was run at a
half-hourly step. The first 31-year run from 1979 to 2000
was used to spin up the model to reach equilibrium, and then
the remaining 19-year run (i.e., 2001–2019) was used in the
analysis. The variables of interest were output at half-hourly,
daily, and monthly scales.

2.3 Benchmarking datasets

In situ bias correction and quality control (BCQC) SNOTEL
daily SWE data from 2001–2019 (Table 1) were used as the
benchmarking dataset to evaluate the performance of ELM.
SNOTEL stations, operated by the US Department of Agri-
culture Natural Resources Conservation Service (NRCS),
provide long-term, widely-distributed, and high-quality field
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Figure 1. Spatial distributions of (a) elevation and SNOTEL sites (grey points) and (b) forest cover over the WUS, and the area proportions of
different (c) elevation and (d) forest cover intervals. The Cascades Range, Sierra Nevada, and Rocky Mountains are highlighted in panel (b).

Table 1. Summary of the in situ, remote sensing, and data assimilation datasets used in the study. These datasets provide different snow
properties’ variables, and snow cover fraction in both STC-MODSCAG/STC-MODDRFS and SPIReS was used to derive snow phenology
metrics.

Product Product name Snow property Spatial Temporal Period Reference
type resolution resolution

In situ BCQC (bias correction and Snow water equivalent (SWE) Site-level daily 2001–2019 Sun et al. (2019), Yan
quality control) SNOTEL et al. (2018)

Remote MODIS Surface albedo (αsur) 463 m daily 2001–2019 Schaaf et al. (2002)
sensing MCD43A3

STC-MODSCAG/ Snow cover fraction (fsno) 463 m daily 2001–2019 Rittger et al. (2020)
STC-MODDRFS Snow albedo (αsno)

Snow albedo reduction (Rsno)
Snow grain size (Ssno)

SPIReS Snow cover fraction (fsno) 463 m daily 2001–2019 Bair et al. (2021b)
Snow albedo (αsno)
Snow albedo reduction (Rsno)
Snow grain size Ssno)

Data UA Snow water equivalent (SWE) 4 km daily 2001–2019 Broxton et al. (2019),
assimilation Snow depth (Dsno) Zeng et al. (2018)

SNODAS Snow water equivalent (SWE) 1 km daily 2004–2019 National Operational
Snow depth (Dsno) Hydrologic Remote

Sensing Center
(2004)
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measurements of SWE across the WUS (https://www.nrcs.
usda.gov/, last access: 4 February 2023). BCQC SNOTEL
eliminated data outliers and erroneous values, fixed the in-
consistencies of different variables, and corrected the bias of
the raw data (Sun et al., 2019; Yan et al., 2018). Specifically,
788 SNOTEL sites in the WUS were included in the study
(Fig. 1a).

Three daily 463 m MODIS-based remote sensing products
from 2001–2019 were used to evaluate the performance of
ELM (Table 1). The first one is the MCD43A3 surface albedo
v.6 product (named as MCD43 hereafter). The MCD43 prod-
uct provides black-sky and white-sky surface albedo at local
solar noon (Schaaf et al., 2002), which could well capture the
snow effects on αsur (Wang et al., 2018). This dataset repre-
sents the albedo of the entire MODIS pixel which could in-
clude vegetation or soil if the observed pixel is not 100 %
snow cover, and thus it will underestimate snow albedo
for fractionally covered pixels, as vegetation and soil have
darker broadband albedos. The second one is the spatially
and temporally complete (STC) MODIS snow-covered area
and grain size (MODSCAG) and MODIS dust and radiative
forcing in snow (MODDRFS) product (hereafter referred to
as STC-MODSCAG/STC-MODDFRS). The third one is the
snow property inversion from remote sensing (SPIReS) prod-
uct. These two products provide fsno, αsno, Ssno, and Rsno at
around 10:30 LST (local solar time) and represent αsno
(i.e., excluding soil and vegetation portions of the observed
pixel). STC-MODSCAG first estimates fsno and Ssno based
on the spectral unmixing and physically-based snow radia-
tive transfer models (Painter et al., 2009). STC-MODDRFS
then uses Ssno to calculate the αsno of the clean snow with
the difference between clean and dirty (observed) snow
for computing Rsno (Painter et al., 2012). SPIReS adopts
a physically-based approach without empirical assumptions
to simultaneously estimate fsno, αsno, Ssno, and Rsno (Bair
et al., 2021b). Both STC-MODSCAG/STC-MODDRFS and
SPIReS are interpolated and smoothed to reduce the effects
of data noise, cloud contamination, and sun-sensor geome-
try (Bair et al., 2021b; Dozier et al., 2008; Rittger et al.,
2020). Both of the fsno products show good performance
with the basin-wide root mean square error (RMSE) values
of 6.5 % and 6.7 % against airborne lidar datasets (Stillinger
et al., 2022). Initial validation against field measurements
for Ssno at a single site for the original MODSCAG shows
a 51 µm mean absolute error for a clear sky day (Painter et
al., 2009). The gap-filled MODSCAG/MODDRFS at three
sites in the WUS has an accuracy (RMSE) of 118 µm for Ssno
and 0.0036 for Rsno (Bair et al., 2019) considering both clear
and cloud days. SPIReS has a αsno RMSE of 4.6 % against
the 3-year field measurements at Mammoth Mountain, CA
(Bair et al., 2021b), nearly identical to the reported accu-
racy of 4.8 % RMSE for STC-MODDRFS against the field
measurements at the same site (Bair et al., 2019). Note that
there is an underestimation of fsno in the northern WUS re-
gion in winter occurring because of a known issue in current

versions of STC-MODSCAG (https://nsidc.org/snow-today,
last access: 4 February 2023). Specifically, MOD09GA sur-
face reflectance processed to produce STC-MODSCAG at
the Jet Propulsion Laboratory (JPL) is not processed when
SZA is larger than 67.5◦. This issue is being resolved dur-
ing the transfer of processing during 2022 to 2023 from JPL
to the National Snow and Ice Data Center Distributed Ac-
tive Archive. We conservatively excluded data north of 42◦

in latitude during the winter in our comparisons in Sect. 3.1.
Two data assimilation SWE andDsno products from 2001–

2019 were used to compare with ELM (Table 1). The first
one is the University of Arizona (UA) daily snow product
v.1 with the spatial resolution of 4 km over the contermi-
nous US (Zeng et al., 2018). This product was generated
by fully utilizing the field measurements from multiple in
situ networks, including SNOTEL constrained by the grid-
ded precipitation and temperature data in the 4 km parameter-
elevation regressions on independent slopes model (PRISM).
A series of algorithm robustness tests and independent accu-
racy evaluations against remote sensing and airborne lidar
measurements showed that the UA product is reliable as a
reference snowpack dataset (Zeng et al., 2018). The second
one is the SNOw Data Assimilation System (SNODAS) daily
product with 1 km spatial resolution developed by the NOAA
National Weather Service’s National Operational Hydrologic
Remote Sensing Center (National Operational Hydrologic
Remote Sensing Center, 2004). SNODAS uses a physically
consistent modeling and data assimilation framework to in-
tegrate physically-based model estimates and multi-source
snow data from satellite remote sensing, airborne-based ob-
servations, and in situ measurements including SNOTEL.
SNODAS has shown a similar performance as UA (Zeng
et al., 2018). The SNODAS product is available from Octo-
ber 2003, and thus only the data from 2004–2019 were used
in the study. UA and SNODAS both assimilate the SNOTEL
observations in their models directly, so better performance
relative to those observations is expected, while the ELM
simulations are not constrained by the SNOTEL data.

2.4 Snow phenology extraction and data processing

Time series of fsno from ELM and two remote sensing snow
products (i.e., STC-MODSCAG and SPIReS) were used to
extract the snow phenology (Fig. 2). First, based on the ob-
served seasonal cycle of snow cover over the WUS (Brutel-
Vuilmet et al., 2013; Peng et al., 2013; Rittger et al., 2022),
the snow accumulation and snowmelt seasons are defined as
the periods from September to January and from February to
August, respectively. Next, four snow timing dates and one
duration metric were retrieved from ELM and remote sens-
ing products that include: (1) snow accumulation onset date
(Accumulation_onset_date), (2) snow cover depletion onset
date (Depletion_onset_date), (3) snow cover depletion mid-
point date (Midpoint_date), (4) snow end date (End_date),
and (5) snow duration days (Duration). Following Peng et
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Figure 2. Time series of snow cover fraction (fsno) and sigmoid curve fitting at a typical pixel, represented by black and red lines, respectively.
The blue lines indicate four phenology dates and one duration, and the shaded area shows the snow accumulation season.

al. (2013), Accumulation_onset_date for year t is defined as
the first continuous 5 d with fsno > 0.05 during the snow ac-
cumulation season from September (year t − 1) to January
(year t), and End_date is defined as the last continuous 5 d
with fsno > 0.05 during the snowmelt season of the year t ,
to avoid the interference of ephemeral snow. Note that us-
ing different thresholds (e.g., 0.00, 0.03, 0.05, 0.10, 0.15)
of fsno to defining Accumulation_onset_date and End_date
can lead to different date estimates but the same conclu-
sions, which are not shown in the paper. Duration was cal-
culated as the number of days between Accumulation_onset
date and End_date. Depletion_onset_date and Midpoint_date
were determined by fitting the fsno time series during the
snowmelt season using the sigmoid function (Anttila et al.,
2018; Böttcher et al., 2014; Kouki et al., 2019) as follows:

f DOY
sno = a+

b

1+ ec·(DOY−d) , (1)

where DOY is day of year, and a, b, c, and d are the fitted
parameters. Specifically, the nonlinear least squares method
was used to fit a sigmoid function. Following Anttila et
al. (2018), Depletion_onset_date is defined as the date when
the fitted sigmoid curve reaches 99 % of its variation range,
and Depletion_midpoint_date is defined as the date at the
midpoint of the curve change (Fig. 2). To reduce the impacts
of noise, the retrievals at the individual pixels for a specific
year was deemed as unsuccessful when: (1) the fsno differ-
ence at the start and end date of snowmelt season is smaller
than 0.05; and (2) for the sigmoid fitting, the coefficient
of determination (R2) between observed and fitted fsno is
smaller than 0.95 and RMSE is larger than 0.2. Only the pix-
els with successful retrievals of snow timing metrics for at
least 10 years were used in the subsequent analysis.

MODIS data and ELM outputs were adjusted for tempo-
ral consistency and to unify the variable definitions. MCD43
only provides black-sky and white-sky albedo, and thus the
ELM-derived ratio of diffuse to total solar radiation was used
as a weighting factor to calculate αsur for the blue sky. For
ELM, the average values of αsur from 11:30 to 00:30 LST
were calculated to match the time of MODIS MCD43 prod-

uct, and those of fsno, αsno, Ssno, and Rsno from 10:00 to
11:00 LST were calculated for ELM to match the time of
STC-MODSCAG/STC-MODDRFS and SPIReS.

The snow timing metrics and snow variables in the remote
sensing and data assimilation products (Table 1) were ag-
gregated to 0.125◦ using the area-weighted average method.
They were temporally upscaled to seasonal, annual, and
multi-year average scales. For a specific year, only the pix-
els with fsno > 0 were used to calculate the regional average
values for αsur, fsno, αsno, Ssno, Rsno, SWE and Dsno using
the area-weighted average method.

2.5 Evaluation methods

Using the field measurements, remote sensing products,
and data assimilation products as the reference, the spatio-
temporal distributions of ELM snow outputs were evaluated.
For spatial correlation, multiple statistical metrics were cal-
culated for the multi-year average seasonal ELM outputs:
correlation coefficient (R), bias, relative bias (rBias, calcu-
lated as the ratio of bias to the average value), root mean
square deviations (RMSDs), and relative RMSD (rRMSD,
calculated as the ratio of RMSD to the average value). This
study mainly focused on winter (DJF) and spring (MAM) in
the analysis, and there is little or no snow cover for the WUS
in Summer (JJA) and Autumn (SON) in the ELM simulations
(Fig. S1 in the Supplement). For the temporal correlation,
R between ELM and the reference datasets was calculated
only for the grids where there are at least 10 snow-covered
days for 1 year, excluding highly ephemeral snow.

The long-term trends of snow variables over the whole
WUS were detected using the non-parametric Mann–
Kendall (MK) test. However, the MK test showed that
there is no significant increasing or decreasing trend (p-
value> 0.05) for all the snow variables, and thus the corre-
sponding results are not included in the paper. The interan-
nual variabilities (IAVs), defined as the standard deviation of
the annual values, were calculated to evaluate whether ELM
can capture the interannual variations of snow processes. In
addition, the distributions of snow variables along the ele-
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vation gradients and forest cover for winter and spring were
also analyzed.

3 Results

3.1 Snow properties

3.1.1 Snow cover fraction

The ELM-simulated fsno has heterogeneous spatial patterns
in the WUS for both winter and spring (Fig. 3a and b).
The regional average fsno is 0.41 and 0.15, respectively, for
winter and spring. Overall, ELM also shows similar spa-
tial patterns with both STC-MODSCAG and SPIReS for all
the seasons (Fig. S1). STC-MODSCAG underestimates fsno
over the northern regions in winter due to the known issues
(Fig. S1, see Sect. 2.3 for details). When excluding Decem-
ber and January with larger SZAs, STC-MODSCAG shows
similar spatial distribution as SPIReS for February (Fig. S2).
In spring, compared to STC-MODSCAG, ELM underesti-
mates fsno over the western mountains in spring (Fig. 3d).
Compared to SPIReS, ELM has an overestimation over most
regions in winter but performs well in spring (Fig. 3g and h).
Overall ELM has a high spatial correlation to both STC-
MODSCAG and SPIReS, with a higher relative accuracy in
winter than spring (Table 2). For temporal correlation, ELM
has a low correlation in the mountainous areas with both
STC-MODSCAG and SPIReS in winter (Fig. 3e and i) but
has a relatively high correlation with those data in spring
(Fig. 3f and j). The winter–spring contrast in skill is possi-
bly due to the smaller change of fsno in winter than spring.

ELM well reproduces the interannual variabilities and el-
evation gradients of fsno (Figs. 4 and S3). The IAV val-
ues are 0.055 and 0.049, respectively, for ELM and SPIReS
in winter, while they have closer values of 0.027, 0.029,
and 0.030, respectively, for ELM, STC-MODSCAG, and
SPIReS in spring (Fig. 4a and b). ELM underestimates re-
gional average fsno in spring and is overall consistent with
STC-MODSCAG and SPIReS in terms of magnitude and
IAVs. As the elevation increases, fsno values in all three
datasets become higher for both winter and spring (Fig. 4c
and d). At relatively low elevation, the fsno distributions
in ELM are broader than those of SPIReS in winter, while
the three datasets have more consistent elevation gradi-
ents in spring. Overall, when forest cover is higher, ELM
shows larger differences with SPIReS for spring and STC-
MODSCAG for winter (Fig. 4e and f). Same conclusions can
be drawn for the regions below 42◦ in latitude (Fig. S3). Con-
sidering the uncertainties of the remote sensing retrievals,
the ELM regional average fsno is within the range of STC-
MODSCAG and SPIReS (Figs. 5a, b, and S4).

3.1.2 Surface albedo and snow albedo

Overall, the ELM-simulated αsur over snow cover regions
shows similar spatio-temporal distribution with MCD43 for
both winter and spring (Figs. 6 and 7). Compared to MCD43,
ELM overestimates αsur over Sierra Nevada and Rocky
Mountains in winter, possibly due to the bias in snow cover
(Fig. 3c and d). The mean biases of ELM are−0.01 and 0.00,
respectively, for winter and spring. The spatial R values be-
tween ELM and MCD43 are 0.77 and 0.71, respectively, for
winter and spring (Table 2). ELM shows a low temporal cor-
relation to MCD43 over most regions in winter but has a rel-
atively higher temporal correlation in spring especially over
the mountain areas and northern regions (Fig. 6e and f). ELM
also has similar interannual variability especially in winter
(Fig. 7a and b), similar elevation gradient (Fig. 7c and d),
and similar distributions under different forest cover (Fig. 7e
and f) with MCD43. As fsno increases, αsur in both ELM
and MCD43 increases, and ELM and MCD43 have simi-
lar αsur distributions for different elevation intervals (Fig. 7g
and h).

For αsno, ELM overall shows good consistencies with
STC-MODDRFS and SPIReS over mountainous regions but
has an underestimation over other regions (Fig. 8). Against
STC-MODDRFS, the mean biases of ELM are −0.08 for
winter over the WUS regions below 42◦ in latitude and
−0.11 for spring over the WUS. Against SPIReS, the mean
biases of ELM are−0.13 and−0.08, respectively, for winter
and spring. The spatial R values between ELM and two re-
mote sensing products are lower than 0.30 (Table 2). ELM
shows a low temporal correlation to two remote sensing
products over most regions and has a relatively higher tem-
poral correlation over the Rocky Mountains (Fig. 8e and f).
Larger inconsistencies between ELM and two remote sens-
ing products are founded in terms of interannual variations,
elevation gradients, and change with forest cover (Figs. 9
and S5).

3.1.3 Snow grain size and snow albedo reduction

There are large differences in the magnitudes and spatio-
temporal patterns of Ssno between ELM and STC-
MODSCAG/SPIReS (Figs. 10 and 11). ELM has larger Ssno
in spring than in winter (Fig. 10a and b), with large neg-
ative biases over the western mountains and positive bi-
ases over the central and eastern regions compared to STC-
MODSCAG, with the mean biases of −71.6 µm for spring
(Fig. 10c and d). ELM has positive biases over most regions
compared to SPIReS, with the mean bias of 93.9 and 31.6 µm
for winter and spring, respectively (Fig. 10g and h). Ssno in
ELM has a poor spatial correlation to the two MODIS prod-
ucts for both winter and spring (Table 2). ELM has varying
temporal correlations with STC-MODSCAG and SPIReS for
both seasons with a mean value of around 0.3 (Fig. 10e, f, i,
and j). ELM has a similar interannual variability to SPIReS
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Figure 3. Spatial distributions of (a, b) snow cover fraction (fsno) in ELM, and (c, d, g, h) the fsno difference between ELM and two remote
sensing products (i.e., STC-MODSCAG and SPIReS) and (e, f, i, j) their temporal correlations (Rs) for different seasons: (a, c, e, g, i) winter
and (b, d, f, h, j) spring. In all panels, regions with no snow cover are masked with white color. The area-weighted average values are labeled
in each panel.

Table 2. Evaluation of snow properties in ELM against two remote sensing products (STC-MODSCAG/STC-MODDRFS and SPIReS) and
two data assimilation products (UA and SNODAS) for winter and spring. Here, the snow properties include snow cover fraction (fsno),
surface albedo (αsur), snow albedo (αsno), snow grain size (Ssno), snow albedo reduction (Rsno), snow water equivalent (SWE), and
snow depth (Dsno). The statistical metrics were calculated using the data over the WUS, except that those against STC-MODSCAG/STC-
MODDRFS in winter were calculated using the data over the WUS regions below 42◦ in latitude.

Variables Products Winter Spring

R Bias rBias RMSD rRMSD R Bias rBias RMSD rRMSD
(%) (%) (%) (%)

fsno STC-MODSCAG 0.91 −0.03 −10.4 0.13 39.5 0.90 −0.04 −22.1 0.11 57.8
SPIReS 0.86 0.00 −1.0 0.16 39.1 0.94 −0.02 −11.7 0.08 46.6

αsur MCD43 0.77 −0.014 −4.2 0.097 30.1 0.71 0.004 2.3 0.056 29.6

αsno STC-MODDRFS −0.09 −0.15 −19.3 0.18 22.2 −0.27 −0.11 −14.7 0.13 17.6
SPIReS 0.15 −0.13 −16.2 0.16 19.5 −0.09 −0.08 −11.4 0.11 14.8

Ssno (µm) STC-MODSCAG −0.15 78.2 37.7 159.3 76.9 0.02 −71.6 −17.2 226.5 54.4
SPIReS 0.16 93.9 50.6 120.6 65.0 0.18 31.6 10.1 128.2 40.9

Rsno STC-MODDRFS 0.58 −0.007 −77.7 0.011 126.7 0.50 0.000 −8.7 0.006 153.1
SPIReS 0.10 −0.002 −26.4 0.014 170.0 0.63 −0.007 −66.3 0.013 118.8

SWE (mm) UA 0.91 −13.8 −27.8 37.1 75.1 0.90 −20.7 −35.9 62.9 108.9
SNODAS 0.90 −10.2 −22.2 36.7 80.1 0.87 −20.4 −35.5 71.5 124.5

Dsno (mm) UA 0.92 −39.9 −21.6 119.2 64.5 0.91 −70.0 −43.2 172.9 106.8
SNODAS 0.90 −48.1 −24.9 138.9 72.0 0.87 −85.7 −48.2 228.8 128.9
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Figure 4. (a, b) Time series of regional average values, (c, d) elevation gradients, and (e, f) change with forest cover of snow cover frac-
tion (fsno) in ELM (green), STC-MODSCAG (red), and SPIReS (blue) over the WUS. Panels (a, c, e) are for winter, and panels (b, d, f) are
for spring. In panels (c–f), the white dots represent the average values.

(Figs. S6a, b and S7a, b). As the elevation increases, ELM
and SPIReS have decreasing Ssno in winter, but there is no
obvious and comparable pattern along the elevation in spring
(Figs. S6c, d and S7c, d). As forest cover increases, the three
data show larger differences for spring (Figs. S6f and S7f).
Considering the uncertainties of Ssno in the remote sensing
products, the regional average Ssno is within the range be-
tween STC-MODSCAG and SPIReS (Figs. 5c, d and S4).

There are also large spatial biases and low temporal corre-
lations ofRsno between ELM, STC-MODDRFS, and SPIReS
(Figs. 11 and S4). In ELM,Rsno shows extremely high values
in the northeastern corner for winter (Fig. 11a), due to the
large aerosol deposition in the aerosol deposition data (see
Sect. 2.2). Apart from the northeastern corner, ELM is more
similar to SPIReS in winter (Fig. 11c–g). For spring, ELM is
more similar to STC-MODSCAG and has large negative bi-
ases relative to SPIReS (Fig. 11d–h). ELM has higher tempo-
ral correlations with both remote sensing products in winter
than spring and shows higher correlations with SPIReS than
STC-MODDRFS in spring (Fig. 11e, f, i and j). For interan-
nual variability, ELM is more identical to STC-MODSCAG
in spring (Figs. S8a, b and S9a, b) than SPIRES. However,
note that ELM simulations in the study used climatological
monthly aerosol deposition data, so they are not comparable
to the remote sensing data in any specific year. In spring,
Rsno in all the three datasets shows an increasing trend

with elevation (Figs. S8d and S9d). All the three data show
larger differences across different forest cover (Figs. S8e, f
and S9e, f). Overall, Rsno is within the uncertainty ranges of
STC-MODSCAG and SPIReS (Figs. 5e, f and S4).

3.1.4 Snow water equivalent and snow depth

ELM shows higher SWE values over the mountainous areas
(Fig. 12a and b) but also has larger underestimations over the
mountainous areas, compared to both UA and SNODAS in
both winter and spring (Fig. 12c, d, g and h). Against UA and
SNODAS, ELM has a mean bias of −20.7 mm (35.9 %) and
−20.4 mm (−35.5 %), respectively, in spring, while those in
winter are −13.8 mm (−27.8 %) and −10.2 mm (−22.2 %),
respectively. Overall ELM has a high spatial similarity with
both UA and SNODAS, and ELM has higher spatial con-
sistency with UA than SNODAS in spring (Table 2). For
temporal correlation (Fig. 12e, f, i, and j), ELM has high
mean R values of 0.64 and 0.65 for winter and spring, com-
pared to UA, and the R values are 0.53 and 0.54, respec-
tively, compared to SNODAS. ELM captures the interannual
variabilities and elevation gradients of SWE well, but some
underestimations of the regional average values are observed
(Fig. 13a–d). In winter, ELM has similar IAV values to UA
and SNODAS but has a lower value of 11.7 mm compared
to UA (16.7 mm) and SNODAS (18.1 mm) in spring. Overall,
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Figure 5. The area-weighted average (a, b) snow cover fraction (fsno), (c, d) snow grain size (Ssno), and (e, f) snow albedo reduction (Rsno)
for (a, c, e) winter and (b, d, f) spring of ELM (green), STC-MODSCAG/STC-MODDRFS (red), and SPIReS (blue) over the WUS. The bar
width represents the uncertainty bounds of STC-MODSCAG/STC-MODDRFS and SPIReS from Bair et al. (2021a).

Figure 6. Spatial distributions of (a, b) surface albedo (αsur) in ELM, and (c, d) the αsur difference between ELM and MCD43 and (e, f) their
temporal correlations (Rs) for different seasons: (a, c, e) winter and (b, d, f) spring. In all panels, the regions with no snow cover are masked
with white color. The area-weighted average values are labeled in each figure.

ELM shows larger differences from UA and SNODAS when
there is a higher forest cover, especially for spring (Fig. 13e
and f). Dsno shows very similar results to SWE (Figs. S10
and S11).

Compared to SNOTEL, UA presents a high correlation
across sites (Fig. 14), with the mean R values being 0.69.

The mean RMSE of ELM is 189.6 mm, the Cascades Range
shows larger RMSE values than other regions. ELM under-
estimates SWE nearly across all sites, with the mean biases
of −122.7 mm. The biases of the meteorological forcing in
NLDAS-2 and the spatial-scale mismatch between the point-
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Figure 7. (a, b) Time series of regional average values, (c, d) elevation gradients, (e, f) change with forest cover, and (g, h) statistical distribu-
tions of surface albedo (αsur) under different snow cover conditions in ELM (green) and MCD43 (red) for different seasons: (a, c, e, g) winter
and (b, d, f, h) spring over the WUS. The IAV values of different datasets are shown in (a, b). In panels (c)–(h), the white dots represent the
average values.

scale SNOTEL and the grid-level ELM simulations can con-
tribute to uncertainty in the comparison.

3.2 Snow phenology

ELM well reproduces the snow phenology, compared to two
remote sensing products (Figs. 15 and 16). As expected,
over mountainous areas, ELM shows earlier snow onset,
later depletion, and thus longer snow duration compared
to flat and generally lower elevation areas (first column of
Fig. 15). Compared to STC-MODSCAG and SPIReS (sec-
ond and third columns of Fig. 15), ELM shows later Ac-
cumulation_onset_date over the whole WUS with a mean
bias of +17.3 and +12.4 d, respectively, which may be
caused by the bias in the meteorological forcing data of
NLDAS-2 and the simple parameterizations of the partition-
ing of precipitation into rainfall or snowfall and has later De-
pletion_onset_date but earlier Midpoint_date and End_date.
For instance, ELM melts off earlier with a mean bias of
−35.5 and −26.8 d, respectively, than STC-MODSCAG and
SPIReS, suggesting that ELM has higher snowmelt rate.
Thus, ELM has a short snow duration with a mean bias of
−52.9 and−39.5 d, respectively, compared to the two remote

sensing products. The large biases exist in the western moun-
tains for End_date (Fig. 15k, l, n, and o). Overall snow phe-
nology in ELM has a high spatial correlation with that of the
remote sensing products (Table 3). Although ELM overes-
timates Accumulation_onset_date and Depletion_onset_date
and underestimates Midpoint_date, End_date, and Duration,
ELM well captures the IAVs of all five snow phenology met-
rics (first column of Fig. 16), As the elevation increases, Ac-
cumulation_onset_date decreases, but the other four metrics
increase for all the three datasets (second column of Fig. 16).
ELM also has similar magnitudes and distributions for each
elevation interval compared to the remote sensing products,
while the three data show larger and larger differences with
the increase of forest cover (third column of Fig. 16).

4 Discussion

The evaluation results suggest an overall good performance
of ELM in simulating snow properties, while some biases
and uncertainties still exist, especially over mountainous ar-
eas with dense forest cover. Compared to the remote sens-
ing products, ELM well reproduces the spatio-temporal pat-
tern, interannual variabilities, and elevation gradients of fsno
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Figure 8. Spatial distributions of (a, b) snow albedo (αsno) in ELM, and (c, d, g, h) the αsno difference between ELM and two remote sensing
products (i.e., STC-MODDRFS and SPIReS) and (e, f, i, j) their temporal correlations (Rs) for different seasons: (a, c, e, g, i) winter and
(b, d, f, h, j) spring. In all panels, regions with no snow cover are masked with white color. The area-weighted average values are labeled in
each panel.

Figure 9. (a, b) Time series of regional average values, (c, d) elevation gradients, and (e, f) change with forest cover of snow albedo (αsno)
in ELM (green), STC-MODSCAG (red), and SPIReS (blue) over the WUS. Panels (a, c, e) are for winter, and panels (b, d, f) are for spring.
In panels (c)–(f), the white dots represent the average values.
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Figure 10. Spatial distributions of (a, b) snow grain size (Ssno) in ELM, and (c, d, g, h) the Ssno difference between ELM and two remote
sensing products (i.e., STC-MODSCAG and SPIReS) and (e, f, i, j) their temporal correlations (Rs) for different seasons: (a, c, e, g, i) winter
and (b, d, f, h, j) spring. In all panels, regions with no snow cover are masked with white color. The area-weighted average values are labeled
in each panel.

Figure 11. Spatial distributions of (a, b) snow albedo reduction (Rsno) in ELM, and (c, d, g, h) the Rsno difference between ELM and
two remote sensing products (i.e., STC-MODDRFS and SPIReS) and (e, f, i, j) their temporal correlations (Rs) for different seasons:
(a, c, e, g, i) winter and (b, d, f, h, j) spring. In all panels, regions with no snow cover are masked with white color. The area-weighted
average values are labeled in each panel.
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Figure 12. Spatial distributions of (a, b) snow water equivalent (SWE) in ELM, and (c, d, g, h) the SWE difference between ELM and two
data assimilation products (i.e., UA and SNODAS) and (e, f, i, j) their temporal correlations (Rs) for different seasons: (a, c, e, g, i) winter
and (b, d, f, h, j) spring. In all panels, regions with no snow cover are masked with white color. The area-weighted average values are labeled
in each panel.

Figure 13. (a, b) Time series of regional average values, (c, d) elevation gradients, and (e, f) change with forest cover of snow water
equivalent (SWE) in ELM (green), UA (red), and SNODAS (blue) over the WUS. Panels (a, c, e) are for winter, and panels (b, d, f) are for
spring. In panels (c)–(f), the white dots represent the average values.
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Figure 14. Spatial distribution of statistical metrics of ELM performance against the field snow water equivalent (SWE) data from SNOTEL:
(a) R, (b) bias, and (c) RMSE.

Figure 15. Spatial distributions of (a, d, g, j, m) snow timing, and (b–c, e, f, h, i, k, l, n–o) the snow timing difference between ELM and
two remote sensing products (i.e., STC-MODSCAG and SPIReS). Five snow timing metrics are included: (a–c) Accumulation_onset_date,
(d–f) Depletion_onset_date, (g–i) Midpoint_date, (j–l) End_date, and (m–o) Duration. The regions with no successful retrievals of snow
timing are masked with white color. The area-weighted average values are labeled in each figure.
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Figure 16. (a, d, g, j, m) Time series of regional average values, (b, e, h, k, n) elevation gradients, and (c, f, i, l, o) change with forest
cover of snow timing in ELM and two remote sensing products (i.e., STC-MODSCAG and SPIReS) for different metrics: (a–c) Accumu-
lation_onset_date, (d–f) Depletion_onset_date, (g–i) Midpoint_date, (j–l) End_date, and (m–o) Duration over the WUS. The IAV values of
different data are shown in (a, d, g, j, m). In panels (b, c, e, f, h, i, k, l, n, o), the white dots represent the average values.

Table 3. Evaluation of snow phenology in ELM against STC-MODSCAG and SPIReS.

Products Variables R Bias rBias RMSD rRMSD
(%) (%)

STC-MODSCAG Accumulation_onset_date 0.83 17.3 5.6 22.0 7.1
Depletion_onset_date 0.77 6.8 9.4 15.6 21.6
Midpoint_date 0.91 −9.2 −8.1 15.2 13.4
End_date 0.81 −35.5 −32.1 42.9 38.9
Duration 0.84 −52.9 −30.0 63.6 36.1

SPIReS Accumulation_onset_date 0.86 12.4 3.9 14.6 4.6
Depletion_onset_date 0.82 10.6 15.7 16.0 23.7
Midpoint_date 0.93 −5.7 −5.3 12.6 11.7
End_date 0.89 −26.8 −26.4 32.2 31.7
Duration 0.90 −39.5 −25.0 45.2 28.5

and αsur (Figs. 3–6), but large biases exist in Rocky Moun-
tains and Sierra Nevada for αsur (Figs. 3 and 5). There are
still large spatio-temporal inconsistencies of αsno, Ssno, and
Rsno among ELM, STC-MODSCAG, and SPIReS (Figs. 8–
11 and S6–S9). The underestimation of SWE and snow
depth by ELM is comparable to the reported results based

on CLM4 (Toure et al., 2016, 2018). The NLDAS-2 data
used in the ELM simulations have large negative precipita-
tion biases and high air temperature uncertainties over high-
elevation terrain compared to both field measurements and
PRISM over the WUS (Henn et al., 2018; O’Neill et al.,
2021; Pan et al., 2003; Schreiner-McGraw and Ajami, 2022),
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which can partly explain the negative SWE bias in ELM. Be-
sides, a 0.125◦ grid may have high subgrid variabilities of
snow, especially in mountainous areas (Meromy et al., 2013),
and SNOTEL stations in mountains located on flat surface
may not capture the subgrid spatial variabilities (Toure et al.,
2016). Overall ELM can well track the snow phenology but
shows a late start of snow accumulation in winter. This is
consistent with the underestimation of SWE and may be re-
lated to the precipitation and air temperature bias in the me-
teorological forcing data of NLDAS-2 and the partitioning
of precipitation into rainfall or snowfall in ELM. An earlier
snowmelt is also found in ELM, and there are similar issues
in other LSMs, e.g., CLM4 (Toure et al., 2018) and Noah
with multi-parameterization (Noah-MP) (Xiao et al., 2021).
Note that in this study, we defined snow season and phe-
nology based on fsno rather than SWE, and thus how ELM
captures the date of peak snowpack, snowmelt timing, and
snowmelt rate needs further investigation based on SWE.

There are still some uncertainties in the benchmarking
datasets used in this study. First, the MCD43 product per-
forms well in representing αsur during snow cover periods but
may have poor performance for ephemeral snow due to its
assumptions of stable land surface status within 16 d (Wang
et al., 2012, 2014). Besides, frequent cloud cover and a lack
of explicit representations of topographic effects can affect
the accuracy of the MCD43 product over mountainous ar-
eas (Hao et al., 2018a, b, 2019). There are some inconsisten-
cies between STC-MODSCAG and SPIReS (Figs. 3 and 4)
due to the different algorithms and data processing (e.g.,
interpolation and filtering). Although the physically-based
STC-MODSCAG and SPIReS provide higher quality unbi-
ased fsno estimates than the MOD10A1 snow product, based
on empirical algorithms against field measurements across
different forest cover, snow cover, snow climate and view-
ing angles (Bair et al., 2021b; Rittger et al., 2013; Stillinger
et al., 2022), the issues of reflectance errors, one to many
problems intrinsic to spectral unmixing, cloud contamina-
tion, topographic shadows, sun-sensor geometric effects, and
the impacts of forest cover can still affect their reliabilities
(Bair et al., 2022; Raleigh et al., 2013; Stillinger et al., 2022).
These issues can also affect the accuracy of extracted snow
phenology (Sect. 2.4). Uncertainties of Ssno andRsno in STC-
MODSCAG/STC-MODDRFS and SPIReS exist (Bair et al.,
2019). In summary, the heterogeneity of snow within pix-
els, relatively low spectral resolution, and interference from
clouds limits the diagnostic capabilities of snow properties
from MODIS. Ongoing and upcoming hyperspectral remote
sensing missions (e.g., the recently launched Environmen-
tal Mapping and Analysis Program (https://www.enmap.org/,
last access: 4 February 2023) and NASA’s Surface Biology
and Geology (Cawse-Nicholson et al., 2021) will enhance the
abilities of remote sensing to monitor snow properties. There
are also some discrepancies between UA and SNODAS
(Figs. 11 and 12). The uncertainties in the PRISM data over
complex terrain (Henn et al., 2018) may degrade the per-

formance of UA. Compared to ground survey data, SWE in
SNODAS over alpine areas has degraded performance due to
the neglect of wind redistribution of snow (Clow et al., 2012).
Compared to GPS interferometric reflectometry snow depth
data, SNODAS still needs to be improved over complex ter-
rain and areas with high vegetation heterogeneities (Boniface
et al., 2015). The independent comparisons also have shown
the underestimations and overestimations of SNODAS (Bair
et al., 2016; Dozier, 2011; Dozier et al., 2016). Developing
reliable benchmarking datasets for advancing snow modeling
is still challenging but necessary (Ménard et al., 2019).

There is significant room for improving simulations of
snow processes in ELM, ranging from the input forcing data
to parameter settings and model structure. Meteorological
forcing data have been demonstrated to have large impacts
on snow simulations (Günther et al., 2019). The NLDAS-2
forcing data were used to drive ELM in the study, which is
rather coarse to represent the subgrid heterogeneity of precip-
itation over mountainous areas (Tesfa et al., 2020). Although
NLDAS-2 has many improvements compared to NLDAS-
1 (Xia et al., 2012), there are still some spatio-temporal
discontinuities in the precipitation of NLDAS-2 (Ferguson
and Mocko, 2017; Xia et al., 2019). Besides, there are still
some documented systematic precipitation and air tempera-
ture biases in NLDAS-2, especially over mountainous areas
(Henn et al., 2018; O’Neill et al., 2021; Pan et al., 2003).
The 1.9◦× 2.5◦ climatological aerosol deposition data used
in the ELM simulations are too coarse to capture the fine-
scale spatial variations of BC and dust, which limits the ac-
curacy of simulated Rsno and thus αsno. The model structures
used in different LSMs have different complexities, assump-
tions, and simplifications (Lee et al., 2021; Magnusson et
al., 2015). In ELM, some snow processes are modeled em-
pirically, and some parameters were set empirically or from
the literature, which may contain large uncertainties. For in-
stance, in the ELM snow albedo model, spherical snow grain
shape, internal mixing of BC snow and external mixing of
dust snow are default settings, which may be oversimplified
(Hao et al., 2022) and can potentially affect the accuracy
of Rsno and αsno. The large uncertainty of Ssno is relevant
to the unrealistic snow aging representations in ELM (Qian
et al., 2014), which can further affect αsno. The bias of αsno
can further affect the accuracy of absorbed energy by snow
and αsur (contains the contributions from snow and non-snow
vegetation/soil), and thus the change of SWE and Dsno. The
uncertainties of SWE can further propagate to fsno, because
ELM uses SWE to estimate fsno (Swenson and Lawrence,
2012). In the snow cover parameterization of ELM, snow ac-
cumulation ratio and snowmelt shape factor are empirically
set as fixed values without spatio-temporal variations (Swen-
son and Lawrence, 2012), which can also affect the accuracy
of fsno. The snow cover over complex terrain was simply
parameterized as a function of the standard deviation of el-
evation, which may explain the large biases of fsno (Fig. 3)
over mountainous areas (Swenson and Lawrence, 2012). All
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of these uncertainties contribute to the bias of snow phenol-
ogy in ELM (Sect. 3.2). Besides, some important processes
are missing in ELM, such as the snow redistribution and sub-
limation by blowing snow (Xie et al., 2019), and the inter-
action between vegetation and snow, which possibly lead to
the degraded performance of ELM (Sect. 3). Developing ac-
curate forcing data, improving/choosing suitable snow mod-
els/parameterizations, and calibrating/optimizing model pa-
rameters are all important for accurate simulations of snow
processes in LSMs.

Further studies are needed to conduct systematic diagno-
sis and attributions of ELM simulation biases and evaluate
the ability of ELM in capturing the long-term trends and cli-
mate effects of snow. Attributing the snow simulation biases
to the specific parameterizations or processes is still chal-
lenging but necessary to identify and locate the major sources
of errors. Because the snow processes are coupled and im-
pacted by each other, further sensitivity analysis and numer-
ical experiments varying factors one at a time are needed.
An international coordinated project of the intercomparison
of snow schemes in Earth system models, ESM-SNOWMIP,
provides a good opportunity for ELM to identify crucial pro-
cesses leading to large biases in simulated snow and com-
pare with other LSMs from local to global scales (Krinner
et al., 2018; Menard et al., 2021). In this study, we found no
significant increasing or decreasing trend of snow from 2001
to 2019 over the WUS for both ELM and other benchmarking
datasets. However, 19 years are not long enough to character-
ize long-term trends of snow, and analysis was not performed
on discrete a river basin or elevation subsets that may be ex-
periencing change nor during the JJA time period. To reduce
the impacts of the uncertainties from atmospheric forcing,
this study focused on evaluating the offline ELM simulations
forced by NLDAS-2, since errors in both simulated temper-
ature and precipitation have been recognized as the main
drivers of snowpack errors in E3SM (Brunke et al., 2021).
However, snow-related land–atmosphere interactions are ne-
glected in the land-only simulations. Additional studies are
required to evaluate E3SM’s ability to capture the impacts
of snow on regional climate by performing coupled E3SM
simulations with an active land and atmosphere model.

5 Conclusions

Snow over the WUS plays an important role in regional cli-
mate, hydrological and ecological systems, and human so-
ciety. This study systematically evaluated the snow proper-
ties (including αsur, αsno, fsno, Ssno, Rsno, SWE, and Dsno)
and snow phenology (including four snow dates and one
snow duration) simulated by ELM using SNOTEL field mea-
surements, MODIS remote sensing products, and two data
assimilation products. Overall, the ELM snow simulations
agree well with the benchmarking datasets in terms of spatio-
temporal distributions, interannual variabilities, and eleva-
tion gradients for different snow properties. However, ELM
has large biases of fsno for dense forest cover and αsur in
the Rocky Mountains and Sierra Nevada, while underesti-
mating SWE and Dsno, especially over mountainous areas
with dense forest cover for both winter and spring. The ELM
simulations show large inconsistencies with the remote sens-
ing retrievals of αsno, Ssno, and Rsno. Compared to SNOTEL,
ELM has larger negative biases of SWE, probably because
there are some systematic biases of precipitation and air tem-
perature in NLDAS-2. Besides, there is a large spatial-scale
mismatch between point-scale field measurements and grid-
level simulations, which can contribute to the large biases of
ELM. There are also some inconsistencies of snow phenol-
ogy between ELM and remote sensing products, with ELM
showing later snow onset, earlier depletion, and shorter snow
duration, consistent with the underestimation of SWE. This
study documents the ELM performance in simulating snow
processes and demonstrates the necessity for further improv-
ing the snow properties and snow phenology represented in
LSMs. Further efforts are needed to improve the accuracy of
snow properties, especially Ssno and Rsno in both ELM sim-
ulations and remote sensing retrievals, and resolve the early
melt-off of snow in spring and underestimations of SWE in
ELM, especially over the complex terrain of the WUS.
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Appendix A

Table A1. The acronyms and symbols used in the study.

Category Abbreviation Explanation
or symbol

Snow property αsur Surface albedo
αsno Snow albedo
fsno Snow cover fraction
Ssno Snow grain size
Rsno Snow albedo reduction
SWE Snow water equivalent
Dsno Snow depth

Snow phenology Accumulation_onset_date Snow accumulation onset date
Depletion_onset_date Snow cover depletion onset date
Midpoint_date Snow cover depletion midpoint date
End_date Snow end date
Duration Snow duration days

Model name E3SM Energy Exascale Earth System Model
ELM E3SM land model
LSM Land surface model
CLASS Canadian Land Surface Scheme
CLM Community Land Model
SNICAR The snow, ice, and aerosol radiative model
SNICAR-AD SNICAR with the delta-Eddington adding–doubling radiative transfer solver
PRISM Parameter-elevation regressions on independent slopes model
Noah-MP Noah with multi-parameterization

Dataset name MODIS Moderate Resolution Imaging Spectroradiometer
BCQC Bias correction and quality control data
SNOTEL Snow Telemetry stations
STC-MODSCAG/STC-MODDRFS The spatially and temporally complete (STC) MODIS snow-covered area

and grain size/MODIS dust and radiative forcing in snow
MCD43A3 MODIS daily surface albedo v.6 product
SPIReS Snow property inversion from remote sensing product
UA University of Arizona daily snow product
SNODAS SNOw Data Assimilation System daily snow product
MOD10A1 Official MODIS snow cover product
NLDAS-2 National Land Data Assimilation System phase 2

Accuracy metrics R2 Coefficient of determination
RMSE Root mean square error
IAV Interannual variability
R Correlation coefficient
rBias Relative bias
RMSD Root mean square deviations
rRMSD Relative RMSD

Others DOY Day of year
SZA Solar zenith angle
BC Black carbon
LAP Light-absorbing particles
MK Mann–Kendall test
NASA National Aeronautics and Space Administration
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Table A2. Overview of some typical studies and this study on the evaluation of snow processes in land surface models (LSMs).

Model Spatial Involved Involved snow Reference
resolution snow phenology metrics

properties

CLM4 0.5◦× 0.67◦ fsno, SWE, Dsno – Toure et al. (2016)

CLM4.5 0.5◦× 0.67◦ fsno, SWE, Dsno End_date Toure et al. (2018)

CLASS 0.25◦ αsur, fsno, SWE – Verseghy et al. (2017)

Noah-MP 10 km αsur, fsno, Dsno – Jiang et al. (2020)

E3SM v.1 1◦ SWE – Brunke et al. (2021)

ELM 0.125◦ αsur, fsno, Ssno, Accumulation_onset_date, This study
Rsno, SWE, Dsno Depletion_onset_date,

Midpoint_date,
End_date, Duration

Code and data availability. ELM model codes with new
updates used in the study are publicly available at
https://doi.org/10.5281/zenodo.6324131 (Hao, 2022a). All
the SRTM DEM, and GFCC forest cover and MCD43 sur-
face albedo data can be freely downloaded from the Google
Earth Engine (https://earthengine.google.com; GEE team,
2023) (Gorelick et al., 2017). The STC-MODSCAG/STC-
MODDRFS and SPIReS data used in the study are available at
https://doi.org/10.5281/zenodo.7194703 (Hao, 2022b). The SPIReS
code is publicly available at https://github.com/edwardbair/SPIRES
(Bair, 2023). UA and SNODAS data can be accessed at
https://doi.org/10.5067/0GGPB220EX6A (Broxton et al., 2019)
and https://doi.org/10.7265/N5TB14TC (National Operational
Hydrologic Remote Sensing Center, 2004), respectively. BCQC
SNOTEL data are available at https://www.pnnl.gov/data-products
(Sun and Wigmosta, 2023; Sun et al., 2019; Yan et al., 2018). Codes
to process data, generate all results, and produce all figures are
archived at https://doi.org/10.5281/zenodo.7607813 (Hao, 2023).

Supplement. The supplement related to this article is available on-
line at: https://doi.org/10.5194/tc-17-673-2023-supplement.
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