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Abstract. State-of-the-art snow sensing technologies cur-
rently provide an unprecedented amount of data from both
remote sensing and ground sensors, but their assimilation
into dynamic models is bounded to data quality, which is of-
ten low – especially in mountain, high-elevation, and unat-
tended regions where snow is the predominant land-cover
feature. To maximize the value of snow-depth measurements,
we developed a random forest classifier to automatize the
quality assurance and quality control (QA/QC) procedure of
near-surface snow-depth measurements collected through ul-
trasonic sensors, with particular reference to the differentia-
tion of snow cover from grass or bare-ground data and to
the detection of random errors (e.g., spikes). The model was
trained and validated using a split-sample approach of an al-
ready manually classified dataset of 18 years of data from 43
sensors in Aosta Valley (northwestern Italian Alps) and then
further validated using 3 years of data from 27 stations across
the rest of Italy (with no further training or tuning). The F1
score was used as scoring metric, it being the most suited to
describe the performances of a model in the case of a mul-
ticlass imbalanced classification problem. The model proved
to be both robust and reliable in the classification of snow
cover vs. grass/bare ground in Aosta Valley (F1 values above
90 %) yet less reliable in rare random-error detection, mostly
due to the dataset imbalance (samples distribution: 46.46 %
snow, 49.21 % grass/bare ground, 4.34 % error). No clear
correlation with snow-season climatology was found in the
training dataset, which further suggests the robustness of our
approach. The application across the rest of Italy yielded F1

scores on the order of 90 % for snow and grass/bare ground,
thus confirming results from the testing region and corrob-
orating model robustness and reliability, with again a less
skillful classification of random errors (values below 5 %).
This machine learning algorithm of data quality assessment
will provide more reliable snow data, enhancing their use in
snow models.

1 Introduction

Snow plays a key role in shaping the dynamics of the hydro-
logical cycle, influencing streamflow as well as surface and
groundwater storage availability in terms of quantity, qual-
ity, and timing (Dettinger, 2014). Snow-depth measurements
and related snow water equivalent (SWE) data provide in-
sightful knowledge, exploitable for water management, hy-
drological forecasting, and emergency preparedness (Hart-
man et al., 1995). Recent analyses prove that a significant
reduction in streamflow is often a direct consequence of a
reduction in precipitation as snow, exacerbated by temper-
ature increase (Berghuijs et al., 2014). In this framework,
snow droughts severely affect the hydrological cycle (Har-
pold et al., 2017), leading to hydrological droughts (Toreti
et al., 2022). Additionally, the snow cover and ice cover are
key climate change indicators, especially because the high
albedo and low thermal conductivity of snow cover strongly
affect the global radiant energy balance and the atmospheric
circulation (Flanner et al., 2011). A decline in snowfall and
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snow cover on the ground not only affects water supplies, but
also alters the equilibrium of wildlife and vegetation as well
as transportation, cultural practices, travel, and recreation for
millions of people (Bair et al., 2018).

Assessing the implication of snow-driven hydrological
processes on streamflow and precipitation events helps with
resource management. Indeed, a more in-depth understand-
ing of snowmelt implications for the time and quantity of
freshet supports forecasting for water management, dealing
with water security and water-related vulnerability. Most im-
portantly, better understanding of snow processes enables the
development of a sustainable water resource carrying capac-
ity, which is crucial to cope with the shift in water balance
caused by climate change (Maurer et al., 2021). In this frame-
work, physics models are often used to support engineers,
scientists, and decision-makers in real world hydrological
operations.

Contemporary environmental technologies have made it
possible to easily gain new information, even in real time,
with an increasing quantity of data made available from re-
mote sensing and more sophisticated ground sensors. How-
ever, high-resolution data of snow come with a variety of
noise sources that make quality assurance and quality control
(QA/QC) indispensable to use such data in snowpack model-
ing (Avanzi et al., 2014; Bavay and Egger, 2014). A recurring
case in this context is snow-depth data, with two frequent
noise categories: (1) snow vs. grass ambiguity due to snow-
depth ultrasonic sensors detecting not only snow cover but
also plant and grass growth in spring and summer (Vitasse
et al., 2017) and (2) random errors (e.g., spikes, anomalous
data points that protrude above or below an interpolated sur-
face).

Traditionally, in the field of snow cover and snow-
depth monitoring, QA/QC procedures have been carried out
by visual inspection, heavily depending on subjective ex-
pert knowledge (Robinson, 1989). While expert-knowledge
QA/QC is arguably the most reliable approach to data pro-
cessing, these practices are not easily reproducible or trans-
ferable and are highly time-consuming (Fiebrich et al.,
2010). In this context, QA/QC with regard to grass detection
is often based on static climatological or minimum-snow-
depth thresholds, while random errors are generally detected
based on maximum-snow-depth thresholds or criteria based
on signal variance (Avanzi et al., 2014). An exception in this
regard is the approach implemented by the Swiss MeteoIO
algorithm for grass detection, which however requires infor-
mation on surface snow temperature, ground surface temper-
ature, and radiation (Bavay and Egger, 2014).

In view of this knowledge gap, Jones et al. (2018) high-
light the burden of subjectivity that may affect overall data
quality and comparability, stressing how even expert scien-
tists are not immune to mistakes, especially if performing re-
current unguided quality-checking procedures. As explained
by Schmidt et al. (2018), automatic environment data quality
control literature is still fragmented, with heterogeneous ap-

plications. It is clear then the necessity for a quality-checking
procedure that ought to be defined through common and it-
erable guidelines to guarantee repeatability and consistency
(Jones et al., 2018).

Considering the ever-growing volume of data and the lim-
itations arising from traditional QA/QC procedures, here we
follow intuitions from Schmidt et al. (2018) and propose the
use of machine learning to automatically quality check high-
resolution snow-depth sensor data from ultrasonic sensors.
The choice of machine learning was driven by its efficiency
in dealing with big datasets and as a valid reinforcement
of traditional analytic tools (Ferreira et al., 2019). More-
over, machine learning techniques may also be able to han-
dle different data formats more easily that traditional statis-
tical tools, while they deal better with a combination of fea-
tures that are a priori unknown to the developer (Zhong et al.,
2021).

We trained and validated our algorithm using as the train-
ing dataset an already classified pool of 18 years of hourly
data from 43 snow-depth sensors in Aosta Valley. We then
expanded the validation by applying the final algorithm over
3 years of independent data from 27 stations across the rest
of Italy (no further tuning in this case) as a pilot case study to
assess the applicability of this algorithm to larger and more
heterogeneous domains. This research thus answered three
questions. (i) What is the accuracy of a random forest clas-
sifier algorithm in automatically performing QA/QC of near-
surface snow-depth observations? (ii) Is the approach trans-
ferable to untested regions and, if so, what is the potential
drop in performance? (iii) How do meteorological conditions
influence model performance and the random forest decision
process?

This paper is organized as follows. Section 2 describes the
dataset used to train and test the random forest algorithm.
Section 3 describes the methodology followed to develop
such an algorithm. Finally, Sect. 4 provides an analysis of
the results, while Sect. 5 discusses the main findings and im-
plications of our work.

2 Data

To develop, test, and validate the algorithm, two different
datasets were used: a dataset with 18 years of already clas-
sified snow-depth data at 43 locations from Aosta Valley,
which was used as the intensive study domain to develop the
algorithm, and 3 years of data from 27 snow-depth sensors
across the rest of Italy, which were used to test the general-
ization and transferability of the algorithm in time and space.

2.1 Aosta Valley data

Aosta Valley is located in the northwestern Italian Alps
(Fig. 1). The region includes some of the highest peaks
in the Alps (Mont Blanc – 4808 m a.s.l.; Monte Rosa –
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4634 m a.s.l.; Mount Cervino – 4478 m a.s.l.; and Gran Par-
adiso – 4061 m a.s.l.). While some of these peaks, such as
Mont Blanc, are inner-Alpine, others, such as Monte Rosa
and Gran Paradiso, overlook the Pianura Padana (Po Valley)
and thus are more exposed to maritime conditions (Sturm and
Liston, 2021). This generates marked precipitation-regime
discrepancies, hence climatic differences and different snow
regimes, across the region (Avanzi et al., 2021). Despite be-
ing a comparatively small mountainous region, the climate
variability and the abundance of already classified snow mea-
surements were the reasons that led us to the choice of this
area as the training domain.

The Aosta Valley dataset consists of hourly snow-depth
measurements from 43 ultrasonic sensors (precision on the
order of a few centimeters; Fig. 1; Ryan et al., 2008), pro-
vided by the regional Functional Center of the National Civil
Protection Service. The period of record goes from Au-
gust 2003 to September 2021, thus covering a variety of snow
seasons across 18 years of data (Avanzi et al., 2023). The el-
evation range of these sensors goes from 545 to 2842 m a.s.l.,
with an average elevation of 2007 m a.s.l. that is representa-
tive of average elevations across the Italian Alps where the
bulk of sensors are located (Avanzi et al., 2021).

Each data record in this dataset was subject to visual
screening by expert hydrologic forecasters during periodi-
cal QA/QC manual data processing, with the goal of dis-
criminating random and systematic errors from actual snow-
depth measurements. This manual processing follows well-
established practices in the field, including crosschecking
with concurrent weather (e.g., air temperature, precipita-
tion, relative humidity) and nearby sensors (Avanzi et al.,
2014, 2020). As a result, each data point came with a quality
code (Table 1): data with code 0 or 1 are valid snow cover
data, codes 2 or 4 are for missing data reconstructed from
trends or aggregated from different time resolutions, codes 8
and 16 are grass or bare ground, code 32 denotes recon-
structed grass data, and codes 64 to 256 denote a variety of
flags for random and instrumental errors; codes 1024–1032
refer to data classified as invalid after a preliminary proce-
dure based on fixed thresholds (introduced in 2018). While
the dataset includes some reconstructed data, these are only
0.03 % of the whole dataset, which means they do not affect
our analyses.

In this work, we reduced the number of classes to 3 by
aggregation: correct snow depth, identified with code “0”;
grass or bare ground, identified with code “1”; and random
errors, identified with code “2”.

2.2 Other Italian data

The validation dataset across the rest of Italy comprises
hourly data from 27 ultrasonic depth sensors, randomly cho-
sen among the ∼ 300 Italian automatic snow-depth sensors
available outside Aosta Valley. These 27 snow-depth sensors
were chosen based on a geographical-diversity criterion to

guarantee heterogeneity, especially with regard to the Aosta
Valley data (Fig. 2). This second dataset includes data from
3 years – 2018, 2020, and 2022 – which were chosen due
to their significantly different accumulation patterns (deep
snowpacks in 2018, somewhat average snowpacks in 2020,
and extraordinarily low snowpacks in 2022; see Avanzi et al.,
2023). No prior processing was available for these data; thus
we proceeded with our own manual classification to assign
codes as in Table 1. The procedure included visual screening,
checks on seasonality to detect snow vs. grass, and a compar-
ison with measurements from nearby sensors (Avanzi et al.,
2014, 2020).

Italy (301×103 km2) is a topographically and climatically
complex region. Its main mountain chains, the Alps and the
Apennines, are among the highest peaks in Europe. Partially
snow-dominated regions like the Po River basin or the cen-
tral Apennines have high socioeconomic relevance (Group,
2021). The Italian climate presents a considerable variability
from north to south. According to the Köppen–Geiger cli-
mate classification (Beck et al., 2018), in the Alps the climate
is humid and continental. Central Italy, alongside the Apen-
nine chain, is characterized by a warm, temperate, Mediter-
ranean climate with dry, warm summers and cool, wet win-
ters. In Southern Italy, where the climate is still a warm tem-
perate, Mediterranean climate, winters are mild, with higher
humidity and higher temperature during summer. Concern-
ing snow-cover distribution, accumulation across the Alps is
generally higher and more persistent than across the Apen-
nines, where it is spatially more limited and more variable
from one season to the others (Avanzi et al., 2023). Rivers
draining from the snow-dominated Alps and a handful of
basins draining from the central Apennines host the vast ma-
jority of snow water resources across the Italian territory. In
particular, the Alpine water basins host nearly 87 % of Ital-
ian snow. The central Apennines accumulate about 5 % of
the national mean winter SWE, leaving the remaining 8 %–
9 % scattered across the remaining basins over the territory.
Intraseasonal melt, expected in a Mediterranean region, is
a common feature in sites where cold alpine and maritime
snow types coexist like the Apennines (Avanzi et al., 2023).

3 Methods

3.1 Random forest: background

Among all machine learning approaches, we chose random
forest due to its benchmarking nature as well as its simplic-
ity of use (Tyralis et al., 2019), as proven by an increasing
number of studies proving the effectiveness of random forest
as a classifier or regressor algorithm. For instance, Desai and
Ouarda (2021) developed a flood frequency analysis based on
random forest, which proved to be equally reliable but more
efficient than more complex models; Park et al. (2020) de-
veloped a random forest classifier for sea ice using Sentinel-1
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Figure 1. Considered snow-depth sensor data across Aosta Valley (see the bottom-left corner for the location of this study region in Italy).
The two snow-depth sensors of Chosoz (Valpelline) and Lillaz (Cogne) were used in Sect. 4.3. The histogram in the bottom-right corner of
this figure reports the frequency distribution of the elevation of the Aosta Valley sensors.

Table 1. Snow-depth data classification system developed by the Functional Center of Aosta Valley.

Code Data type No. of total Code Data type

0 or 1 Valid snow data 46.43 %
2 Qualitatively (aggregated) valid snow data < 0.01 % 0 Snow data
4 Reconstructed missing snow data 0.03 %

8 or 16 Grass/bare-ground data 49.20 % 1 Grass/bare-ground data
32 Reconstructed missing grass/bare-ground data 0.01 %

64–72 Random error, invalid data 3.95 %
128 Calibration error 0.02 % 2 Errors
256 Maintenance error 0.03 %
1024–1032 Rejected data based on climatological thresholds 0.34 %

data; random forest proved to be efficient in big data environ-
ments (Liu, 2014); recently, Ponziani et al. (2023) proved the
efficiency of random forest over other machine learning al-
gorithms, developing a predictive model for debris flows that
could be experimentally implemented in the existing early
warning system of the Aosta Valley. In the context of snow
data, Meloche et al. (2022) proved the ability of a random
forest algorithm to predict snow-depth distribution from to-
pographic parameters with a root mean square error of 8 cm
(23 %) in western Nunavut, Canada. In particular, the algo-
rithm object of the present study is a random forest classifier,
an ensemble classifier based on bootstrap aggregation, and
random features selection.

A random forest is an ensemble of decorrelated decision
trees that are allowed to grow and vote for the most pop-
ular class (Breiman, 2001). The growth of each tree in the
ensemble is governed by randomness, proven to be a per-
formance enhancer. Randomness is given by two randomiza-
tion principles: bagging and random feature selection. Ac-
cording to the bagging principle, a large number of relatively
uncorrelated trees, each built using a split sample of n di-
mensions retrieved from the entire training dataset of size m,
operate as a committee; this ensemble is proven to outper-
form any of the individual constituent trees. Therefore, the
class definition, made by averaging the scores of each tree,
is mildly affected by the weight of misclassification done by
less performant trees. Furthermore, instead of splitting a node
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Figure 2. (a) Considered snow-depth sensor data across the rest of Italy. (b) Frequency distribution of the elevation of these sensors. Three
black arrows indicate the location of three snow-depth sensors used in Sect. 4.5.

searching for the most important feature (i.e., predictor), a
random forest uses the best one among a random subset of
features, performing random feature selection and thus in-
creasing the performances. Randomness injection minimizes
correlation across trees and reduces variance and overfitting,
increasing stability (Breiman, 2001). Our algorithm was im-
plemented using scikit-learn Version 0.20.1, a Python soft-
ware programming platform, using the class RandomForest-
Classifier.

3.2 Random forest development

To train the random forest, we used the Aosta Valley classi-
fied dataset. Based on data frequency (Fig. 3), this is a typi-
cal imbalanced dataset where class distribution is skewed or
biased towards one or a few classes in the training dataset
(Kuhn and Johnson, 2013).

In this framework, data belong either to majority or minor-
ity classes. The majority classes are the classes with a larger
number of observations, while the minority classes are those
with comparatively few observations. In this case, the num-
ber of data classified as random errors (code 2) is signifi-
cantly lower than the number of data from category 0 (snow
height) or category 1 (grass/bare ground). Thus, classes 0 and
1 were defined as majority class, while class 2 was defined
as minority class.

Class imbalance can severely affect the classification per-
formance (Ganganwar, 2012; Ramyachitra and Manikandan,
2014) and therefore requires a preprocessing strategy. To this

Figure 3. Aosta Valley data subdivision into classes.

end, acknowledging the work of Ponziani et al. (2023) in
which no clear evidence of outperformance of any such strat-
egy was shown, we performed an oversampling of the mi-
nority class by selecting examples to be duplicated and then
added to the training dataset; we used the class RandomOver-
Sampler from the package imbalanced-learn version 0.8.1.
To decrease the computational effort that may have stemmed
from this oversampling procedure (Branco et al., 2016), a
representative sample of 1.3× 106 measurements was taken
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from the entire dataset prior to the oversampling of the mi-
nority class for random forest training. This sample was
proven to be representative of the entire dataset distribution
(approximately 5.5× 106 data points) by performing a two-
sample Kolmogorov–Smirnov test, with a significance level
equal to 0.05.

After the oversampling procedure, a sample of 1.9× 106

oversampled measurements (including both the majority and
the oversampled minority classes) was used to train the ran-
dom forest. From the remaining not oversampled dataset, an
independent test sample of 4.8×105 measurements was ran-
domly selected. As a result, a train and test split share of
80 % training and 20 % testing was used, in agreement with
current standards in machine learning problems (Harvey and
Sotardi, 2018).

When dealing with an imbalance classification, standard
evaluation criteria focusing on the most frequent classes may
lead to misleading conclusions because they are insensitive
to skewed domains (Branco et al., 2016). For example, ac-
curacy, which is defined as the number of correct predic-
tions over the total number of predictions and is a frequently
used metrics for classification problems, underestimates the
importance of the least represented classes when compared
with the majority classes, as it does not take into account
data distribution. Adequate metrics need to be used not only
for model validation but also for model selection, given that
accuracy scores may ignore the difference between types of
misclassification errors, as they seek to minimize the overall
error. A good metric for imbalance classification must con-
sider overall data distribution, giving at least the same im-
portance to misclassification in both majority and minority
classes.

In this paper, we thus used the F measure (Van Rijsbergen,
1979), i.e., the harmonic mean of precision (measure of ex-
actness), defined as the number of true positives divided by
the total number of positive predictions, and recall (measure
of completeness), defined as the percentage of data samples
that a machine learning model correctly identifies as belong-
ing to a class of interest out of the total samples for that class.

The harmonic mean is the reciprocal of the arithmetic
mean and tends to mitigate the impact of large outliers while
aggravating the impact of small ones since it tends strongly
toward the least represented elements.
Fβ (the so-called F measure) is defined as

Fβ = (1+β)2 · (recall · precision/((β2) · precision)+ recall). (1)

We set β = 1 to give equal importance to precision and recall.
The metrics of precision and recall were used to character-

ize the performance of the random forest for each class sep-
arately. Then macro-averages of both measures were com-
puted to characterize the multi-class performance. A macro-
average is the arithmetic mean computed giving equal weight
to all classes and is used to evaluate the overall performance
of the classifier.

The performances of the trained random forest algorithm
were tested on the 20 % test dataset using the model in pre-
diction and comparing the model’s classification with that of
the expert forecasters. Validation was also performed by ap-
plying the final algorithm on the 3 years of data from the rest
of Italy (Sect. 2.2).

We chose as candidate predictors (features) of our random
forest a collection of meteorological, topographic, and tem-
poral variables that are known to influence snow accumu-
lation and melt, thus mimicking the decision process made
by experts when assigning a classification code. These fea-
tures include snow-depth values themselves, elevation, as-
pect, concurrent air temperature, incoming shortwave radi-
ation, total precipitation, wind speed, relative humidity, and
the day of the year. Feature values were extracted for each
data point in both the Aosta Valley and the rest-of-Italy
samples using available geographic information and weather
maps operationally developed by the CIMA Research Foun-
dation (see Avanzi et al., 2021, for Aosta Valley and Avanzi
et al., 2023, for other Italian data).

A feature importance analysis was also performed. Impor-
tance was calculated using the attribute “feature importance”
of the class RandomForestClassifier in sklearn.ensemble (Pe-
dregosa et al., 2011). The ranking is driven by each feature
contribution to a decrease in impurity over trees.

A set of hyperparameters were optimized through a com-
bination of automatic, random searching, and further manual
tuning to reduce overfitting, while ensuring good F1 scores
and reliable training times for the Aosta Valley dataset. The
parameters that were tuned in this work were the number
of estimator (namely, the number of trees in the forest), the
maximum depth (namely, the maximum number of levels in
each decision tree), the minimum sample leaf (namely, mini-
mum number of data points placed in a node before the node
is split), and the minimum sample split (namely, minimum
number of data points needed to split an internal node). Oth-
ers default hyperparameters were not modified.

In addition to the general training strategy above, a ran-
dom forest algorithm was also trained using the Aosta Val-
ley dataset separately for each year, with 80 % of the data
used in training and then an out-of-bag validation with the
remaining 20 % of the same year of data. The aim of this fur-
ther test was to investigate the possible correlation between
the performance of the classification by the random forest
algorithm and annual weather characteristics. For each year,
the F1 score for the test sample was analyzed against annual
mean values of features used for the classification, comput-
ing correlation factors.

Finally, we mapped classification results as a function of
feature values to shed light on the decision process taken by
the random forest in classifying snow vs. grass/bare ground
vs. random errors and how they relate to the original classifi-
cation by operational forecasters.
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4 Results

4.1 Training and test performances: Aosta Valley

The macro-averaged F1 score of classification for the Aosta
Valley dataset during the testing phase was 0.96, with a pre-
cision value of 0.97 and a recall of 0.95 (Fig. 4a). In de-
tail, the random forest scored 0.99 in both precision and re-
call for the classification of snow data. In the classification
of grass/bare ground, recall was maximum (1), with a pre-
cision of 0.99. Lower values were obtained in the classifi-
cation of random errors, with a recall of 0.86 and a preci-
sion of 0.93, resulting in an F1 score of 0.89. Most of the
snow-depth data and grass/bare-ground data were correctly
classified (45.94 % and 46.45 %; 49 % and 49.19 %), while a
comparatively large sample of error data that was misclas-
sified as snow (0.50 % and 4.43 %; Fig. 4b). Overall, the
model resulted in being equally precise and robust in snow
and grass/bare-ground classification, while the precision and
recall of the random-error class were lower compared to the
other two classes (F1 score for snow and grass/bare-ground
classes of 0.99 and F1 score for random-error classes of
0.89). As a whole, the model tested in Aosta Valley proved
to be slightly more precise than robust (precision 0.97, recall
0.95).

In order to identify recurring patterns in snow cover and
grass cover classification during the hydrological year, we vi-
sually screened results of the random forest classifier for all
data and hydrological years. Figure 5 reports examples for
two snow-depth sensor locations (October 2016 to Septem-
ber 2017), which were randomly selected from the entire
pool of 43 snow-depth sensors throughout 18 years of the
Aosta Valley domain. Note that we removed samples used for
the random forest training. We found an expected tendency of
the random forest to misclassify snow as grass/bare ground
during transitional periods at the beginning and at the end
of the snow season (Fig. 5a2), especially when snow cover
and grass height are comparable (Fig. 5b2 and b3). More-
over, the random forest sometimes misinterprets settling dur-
ing the snow period.

4.2 Model configuration

The best set of parameters for the development of the ran-
dom forest resulted in a number of estimators equal to 500,
a maximum depth of 40, a minimum sample leaf equal to 1,
and a minimum sample split equal to 2. The choice of the best
set of features was initially driven by the F1 macro-average
obtained on the test set (Table 2, featuring combination sets
from T1 to T7); then, training time was also considered as a
discriminant (+10 min for T6 compared to T7). Hence, the
set of features selected as the best consisted of the snow-
depth record measured by the snow-depth sensor, elevation,
aspect, concurrent air temperature, incoming shortwave ra-
diation, cumulative precipitation, relative humidity, and the

day of the year to capture seasonality (Table 2, set T7). Re-
garding elevation and aspect, previous studies have shown
that geographic location and elevation indeed contribute to
improving machine learning model performance (Bair et al.,
2018).

Feature importance (Fig. 6) suggested that measured snow
depth itself (regardless of whether is represents actual snow
depth, grass, bare ground, or random errors) was the most
important feature in our random forest, followed by the day
of the year, air temperature, and aspect. Radiation, relative
humidity, and elevation scored similarly, while total precip-
itation was the least important feature. Feature importance
results followed a somewhat intuitive ranking, similar to hu-
man perception. For example, the model gave high impor-
tance to snow depth, likely replicating the concept of a “plau-
sible range” of snow depth as opposed to grass, bare ground,
or random errors. Seasonality (expressed as day of the year
and air temperature) was the second most influencing fac-
tor, likely mimicking the concept of a “plausible” period for
snow on the ground. Aspect and elevation were less influen-
tial, which is likely because of the comparatively small size
of the Aosta Valley study region.

It is important to acknowledge that correlation among fea-
tures and multi-collinearity are problematic for feature im-
portance and interpretation in a random forest. Features im-
portance may spuriously decrease for features that are corre-
lated with those selected as the most important (Strobl et al.,
2007). On the other hand, Hastie et al. (2009) point out that
the predictive skill of the algorithm is relatively robust to
correlations thanks to de-correlation factors involved in boot-
strapping. Indeed, even features of low importance may drive
the decision process of the algorithm (Avanzi et al., 2019).
In our case, we chose to use all the features after verifying
the lack of correlations across features below −0.5 or above
+0.5.

4.3 F1 correlation with annual climate

Annual mean feature values showed low or negligible cor-
relation coefficients with the annual F1 score (Fig. 7, with
removal of training data points). All correlation coeffi-
cients were statistically tested, and no correlation was found
(p value between −0.21 and 0.40 for all the features).

4.4 Mapping the decision process

Analysis of the random forest decision process highlighted
consistency with the classification procedure by expert fore-
casters, as well as agreement with the expected decision pro-
cess behind the human-made classification, despite a gen-
eral underestimation of the number of random-error samples
(Fig. 8).

The frequency of data classified as snow decreased with
increasing temperature, as expected and in agreement with
the original expert classification (Fig. 8a1). Simultaneously,
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Figure 4. (a) Model performances in prediction mode for the test dataset in Aosta Valley. Each set of columns reports the values of precision,
recall, and F1 score for the three classes, while the last group on the right shows the macro-averaged values referring to the random forest
performances as a whole. The dashed black line is a reference for the macro-averaged F1 score of the random forest. (b) Confusion matrix.

Figure 5. Application of random forest on two Aosta Valley snow-depth sensors locations from October 2016 to September 2017. The first
row displays the samples of snow height, grass/bare ground, and error correctly classified by the model. In blue are the correctly classified
snow samples, in green the correctly classified grass samples, and in orange the correctly classified errors. The second row shows misclassified
snow height in red, and the third row reports misclassified grass/bare-ground samples in purple. Data refer to a hydrological year.

the frequency of data classified as grass/bare ground in-
creased with temperature (Fig. 8a2), again as expected due
to the progressive melt and snow disappearance as tempera-
ture increases. Regarding random errors, the random forest
underestimated their frequency up to 10 ◦C, while automatic
and human-made classifications were more comparable in
frequency above that temperature threshold (Fig. 8a3).

Considering the day of the year, most snow classifications
occurred at the beginning and at the end of the calendar year
(thus, in winter); this proved to be consistent between the
random forest and the human classification (Fig. 8b1), with

then a shift towards the grass/bare-ground class in summer
(Fig. 8b2). Overall, we found an underestimation of random-
error samples throughout the year, especially in the first 150 d
of the year (Fig. 8b3).

The number of data classified as snow progressively in-
creased with elevation (Fig. 8c1), while the number classi-
fied as grass/bare-ground decreased with elevation (Fig. 8c2)
consistently between the random forest and the original
dataset. The frequency of random-error classifications gen-
erally matched the human classification, except for an un-
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Table 2. F1 scores for a variety of tests used to identify the best feature combination for the random forest algorithm. T7 was then selected
as the best option in terms of features.

Features T1 T2 T3 T4 T5 T6 T7

Snow height X X X X X X X
Aspect X X X X X X X
Elevation X X X X X X X
Air temperature X X X X X X X
Radiation X X X X X
Relative humidity X X X X X
Cumulative precipitation X X X X X
Day of the year X X
Wind velocity X

F1 score 0.84 0.87 0.85 0.86 0.93 0.95 0.96

Figure 6. Feature importance for the random forest classification procedure in Aosta Valley. The dimensionless values, along the x axis, sum
up to 1; the higher the value, the more important the feature is in the definition of the class. Cum Precip.: cumulative precipitation; Elev:
elevation; RH: relative humidity; Rad: radiation; air T : air temperature.

derestimation around 2500 m (1 % of misclassified samples)
(Fig. 8c3).

When looking at aspect, both the automatic and human-
made snow vs. ground-soil classification were related to lo-
cal climate. For example, they both classified more snow
than grass across southern slopes (between 50 and 251◦),
where precipitation is generally more abundant due to sea-
sonal circulation from the Gulf of Genoa (Fig. 8d1 vs. d2;
see Rudari et al., 2005; Brunetti et al., 2009). On the other
hand, grass classifications increased on north-facing slopes
(from 250 to 351◦), likely because these areas are exposed to
naturally more humid conditions. Overall, the model under-
estimated the frequency of random-error classification along
all aspects.

As for the other, less important features, they generally
showed a negligible influence on the decision process. The
only clear exception was relative humidity, since we found
a progressive decrease in snow classifications as relative hu-
midity increased (Fig. 8e1), coupled with an increase in the
grass/bare-ground classification (Fig. 8e2).

Finally, considering measured snow depth (by far the most
important feature)), the model correctly classified all values

above 400 cm as random errors, correctly matching the hu-
man classification (Fig. 8h3). This is due to an instrumental
limit given by the height of the sensor from the ground in
this study region. Given that snow depth is the most impor-
tant feature in driving the classification problem, we found
a perfect match between model and human classifications
(Fig. 8h1 and h2).

4.5 Validation on the rest-of-Italy sample

The application of the random forest on the 27 ultrasonic
snow-depth sensors from the rest of Italy showed a surprising
robustness in the classification of snow depth and grass/bare
ground, with F1 score values between 0.93 and 0.96 across
the 3 years. The performances of the random forest on the
classification of both snow samples and grass/bare-ground
samples proved to be comparable to the ones already noted
in Aosta Valley; a severe reduction in performance was reg-
istered in the detection of random errors, for which the F1
score was below 0.05 in every year. We explain this as po-
tentially due to the fact that we operated our own classifica-
tion of this dataset, with an inevitably different subjectivity
to that used by the expert forecasters in Aosta Valley; this is
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Figure 7. Annual F1 score correlated with mean annual feature values. The y axis reports the F1 score macro-averaged for each year, while
the x axis shows the values of annual mean for each feature. The straight blue line indicates a linear regression. The last plot indicates the
correlation coefficient between single features and F1 score.

particularly impactful for random errors due to their smaller
frequency in the sample (error sample frequency: 0.36 % in
2018, 0.92 % in 2020, 0.52 % in 2022).

Results of model application for 2 years at the exemplary
station of Pratignano (Fig. 10a2 and b2) suggested a better
performance for the model in cases of higher snow depth. In
other words, the model better distinguished snow from grass
or bare ground when their heights were less commensurable,
hence the slightly better performance in a year with higher
snow depth (F1 score in 2018: 0.95 for snow and 0.96 for
grass/bare ground; F1 score in 2022: 0.93 for snow and 0.94
for grass/bare ground). This example also showed a recur-
ring tendency to confound snow and grass at the beginning
and at the end of the season, as already noted in Aosta Valley.
Considering grass classification (Fig. 10a3 and b3), we also
found a tendency to misclassify snow and grass during peri-
ods of intraseasonal melt. Two other examples of the applica-
tion of the random forest to exemplary sites can be found in
the Appendix. We chose to show a snow-depth sensor located
in the Apennines (Fig. A1) and one located in northeastern
Italy (Fig. A2) to better portrait snow regimes and random
forest performances across Italy.

5 Discussion

Due to the central role that snow plays in the global water
cycle (Flanner et al., 2011; Beniston et al., 2018), snow mea-
surements have proven to be essential in the development
of trustworthy numerical prediction models and snowpack
models (Horton and Haegeli, 2022). In this framework, high-
resolution measurements not only include meaningful infor-
mation, for example related to snowfall intensity and amount
(Lehning et al., 2002b, a) or snowmelt patterns (Malek et al.,
2017; Zhang et al., 2017), but also embed a variety of noise
sources that hamper their use in operations unless intensive
QA/QC is performed (Avanzi et al., 2014). The overarching
hypothesis of this paper was that a random forest classifier
could replace expert manual checking and automatically pro-
cess snow-depth high-resolution measurements from ultra-
sonic snow-depth sensors and thus add new value to these
data for hydrologic practice and research. The main findings
of this paper in this regard are threefold.

First, the proposed random forest classifier was able to
correctly replicate expert-made snow vs. grass/bare-ground
classifications, with F1 scores over 90 % for the training–
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Figure 8. Classification results as a function of feature values: the left is for snow classifications, the center is for grass/bare-ground classi-
fications, and the right is for random-error classifications. Orange is the human-made classification, and blue is the classification performed
by the random forest. The x axis reports feature values, while the y axis reports the percentage of classification on the total. The plots refer
to the test sample in Aosta Valley, it being representative of the entire residual dataset. Data are normalized over the total sample size.

Figure 9. Classification performance on the 27 stations across the
rest of Italy. The columns grouped along the x axis are the F1 scores
for snow, grass/bare ground, and random-error classes subdivided
by year. The y axis reports the dimensionless values of each scoring
metric. The straight lines are the F1 scores macro-averaged for each
year.

testing case study of Aosta Valley. These results show that
the human assessment based on expert knowledge is largely
replicable (see Fig. 8), at least for what concerns the classi-
fication of snow and grass/bare-ground samples. While intu-
itively simple in nature, this differentiation is instead com-
plex to automatize due to nonlinearities across climate, snow
regimes, vegetation patterns, and topography. Meanwhile,
differentiating grass/bare ground from snow bears significant
implications with regard to snow-depth assimilation in snow-
pack models (Bartelt and Lehning, 2002), satellite-data vali-
dation using ground-based data (Parajka and Blöschl, 2006;
Da Ronco et al., 2020), and a variety of ecological analyses
related to snow (Sanders-DeMott et al., 2018). In this regard,
our proposed random forest is a pathway towards minimizing
this noise and thus accelerating the use of snow-depth data in
science and technology by opening the way for a fast, ob-
jective, and replicable QA/QC of snow-depth data that could
complement existing practices (Avanzi et al., 2014; Bavay
and Egger, 2014). Regarding speed, Table 3 shows that ap-
plying our random forest of one season’s worth of data takes
about 8 s as opposed to an estimate of hours for visual screen-
ing based on our own experience.
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Figure 10. Example of application of the random forest to an Italian station (Lago Pratignano, Emilia Romagna). (a1–a3) October 2017 to
September 2018; (b1–b3) October 2021 to September 2022. The first row reports the correct classification of snow, grass/bare ground, and
random errors (blue for snow depth, green for grass/bare ground, orange for random errors); the second row reports misclassified snow depth
(in red); and the third row reports misclassified grass/bare ground (in purple). All plots also report measured snow depth in black (whether it
represents actual snow depth, grass/bare ground, or random errors).

Table 3. Execution time.

Phase Execution time Sample

Training 00:16:29 1.9× 106

Testing phase 00:02:35 4.8× 105

Single-year validation 00:00:08 2.3× 105

Visual screening hours/days 2.3× 105

Second, the algorithm proved to be equally robust and re-
liable in an independent application across the rest of Italy, at
least for what concerns the snow vs. grass/bare-ground clas-
sification (F1 scores above 90 % for this larger domain). We
explain this outcome as being due to our random forest in-
cluding all features of the Sturm and Liston (2021) snow
classification, such as air temperature and precipitation or
proxies thereof (elevation for wind speed). At the same time,
the vast majority of Italian sites falls between the maritime
and the montane-forest snow-climatology classes, with only
a small portion of tundra snow at very high, inner-Alpine ele-
vations (Sturm and Liston, 2021). In other words, our testing
sample might be quite homogeneous with regard to snow cli-
matology, and testing over other regions would still be help-
ful.

Third, we found little to no sensitivity to snow-season
climatology (Fig. 7), including temperature or mean snow
depth. This result may point to our random forest being ro-

bust to different climatic regimes, including recent dry and
warm snow droughts (Hatchett and McEvoy, 2018; Toreti
et al., 2022; Koehler et al., 2022) and future climate change
(Beniston et al., 2018). However, long-term climatic shifts
will also bring about modifications to vegetation patterns
(Cannone et al., 2008) and so changes in the expected season-
ality of grass vs. snow, as well as changes to the “expected”
snow depth during winter (Marty et al., 2017). Both aspects
will need further testing in areas with different climates.

It is worth mentioning that, although the choice of these
validation datasets allowed us to test the spatial extrapola-
tion abilities of the random forest, a full evaluation of the
spatiotemporal extrapolation skills was not achieved. The al-
gorithm was trained on all the available years, with a stan-
dard out-of-bag validation. This was performed in an effort
to maximize the number of training points and climate vari-
ability in our training sample. Thus no year was withdraw to
reduce the impact of impoverishment of the sample on the
least represented class of random errors.

One critical aspect of our results is the frequently reported
underestimation of random errors, like spikes, particularly
across the rest-of-Italy data. This may be seen as the natural
consequence of our samples being inherently imbalanced to-
wards snow or grass/bare-ground measurements (see Fig. 3).
Moreover, random errors are by definition hard to predict,
with the only documented pattern of snowflake interference
within the field of view of ultrasonic snow-depth sensors
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(Avanzi et al., 2020). A potential solution in this regard is
for future applications to specifically target the classification
of random errors by either including more samples of this
class or simply extending the analysis to more data. The use
of more data is likely the most straightforward option to de-
tect rare random errors. However, other options may prove to
be effective. In light of this, the proposed algorithm may be
coupled with classical QA/QC procedures imposing a priori
thresholds, like those already proposed by Bavay and Egger
(2014). Such procedures could, e.g., help with the detection
of spikes in data using climatological snow-depth thresholds
for maximum values.

In recent years, deep learning has proven successful in
dealing with many complex tasks (Camps-Valls et al., 2021).
Future research questions may investigate the ability of other
algorithms in this classification problem, such as neural net-
works, which are able to deal with time series and incorpo-
rate memory features. One concrete example in this regard is
a recurrent neural networks or LSTM (long short-term mem-
ory). In particular, it would be important to explore the per-
formances of such algorithms in dealing with the recognition
of the error class. In any case, the small proportion of ran-
dom errors over the much more influential systematic issue
of grass interference makes our random forest a promising
component of future QA/QC procedures.

6 Conclusions

Noise sources in high-resolution snow-depth data severely
limit their automatic use in snow models, whether in as-
similation or in evaluation mode, thus affecting water man-
agement, hydrological forecasting, and emergency prepared-
ness. In particular, snow-depth measurements from ultra-
sonic sensors are prone to snow vs. grass ambiguity and
random noise. Meanwhile, the increasing volume of avail-
able data highlights that non-replicable, time-consuming,
and error-prone visual screening procedures are increasingly
less feasible. Here, we hypothesized that current practices in
snow-depth data processing could be improved by training a
random forest to replicate expert-knowledge data processing
of snow-depth data and so develop an automatic, time-saving
quality-checking procedure. The algorithm used is a random
forest classifier, a competitive and straightforward approach
compared to other machine learning algorithms. Our results
show that the proposed random forest is reliable and can gen-
eralize on large domains the important detection of snow vs.
grass/bare ground (F1 score values above 90 % even in areas
outside the original training sample). The algorithm shows
little to no sensitivity to snow-season climatology, while it is
still exposed to an underestimation of rare random errors that
will be the subject of future studies. Our random forest can
be readily employed as a component of supervised or unsu-
pervised processing procedures for snow depth.
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Appendix A: Random forest test on Italian stations

Figure A1. For Monte Cucco (Umbria), application of random forest to an Italian station from October 2017 to September 2018 on the
left and from October 2021 to September 2022 on the right. The first row reports the correct classification of snow, grass/bare ground, and
random errors (blue for snow depth, green for grass/bare ground, orange for random errors); the second row reports misclassified snow depth
(in red); and the third row reports misclassified grass/bare ground (in purple). All plots also report measured snow depth in black (whether it
represents actual snow depth, grass/bare ground, or random errors).

Figure A2. For Sauris di Sopra (Friuli Venezia Giulia), application of random forest to an Italian station from October 2017 to Septem-
ber 2018 on the left and from October 2021 to September 2022 on the right. The first row reports the correct classification of snow, grass/bare
ground, and random errors (blue for snow depth, green for grass/bare ground, orange for random errors); the second row reports misclassified
snow depth (in red); and the third row reports misclassified grass/bare ground (in purple). All plots also report measured snow depth in black
(whether it represents actual snow depth, grass/bare ground, or random errors).
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