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Abstract. This work quantifies the uncertainty of
accumulation-season peak snow water storage in the
portions of the midlatitude American Cordillera where snow
is a dominant driver of hydrology. This is accomplished
through intercomparison of commonly used global and
regional products over the Western United States (WUS) and
Andes domains, which have similar hydrometeorology but
are disparate with respect to the amount of available in situ
information. The recently developed WUS Snow Reanal-
ysis (WUS-SR) and Andes Snow Reanalysis (Andes-SR)
datasets, which have been extensively verified against in
situ measurements, are used as baseline reference datasets
in the intercomparison. Relative to WUS-SR climatological
peak snow water equivalent (SWE) storage (269 km3),
high- and moderate-resolution products (i.e., those with
resolutions less than ∼ 10 km) are in much better agree-
ment (284± 14 km3; overestimated by 6 %) compared to
low-resolution products (127± 54 km3; underestimated by
53 %). In comparison to the Andes-SR peak snow storage
(29 km3), all other products show large uncertainty and bias
(19± 16 km3; underestimated by 34 %). Examination of
spatial patterns related to orographic effects showed that
only the high- to moderate-resolution Snow Data Assimi-
lation System (SNODAS) and University of Arizona (UA)
products show comparable estimates of windward–leeward
SWE patterns over a subdomain (Sierra Nevada) of the
WUS. Coarser products distribute too much snow on the
leeward side in both the Sierra Nevada and Andes, missing
orographic and rain shadow patterns that have important
hydrological implications. The uncertainty of peak seasonal
snow storage is primarily explained by precipitation uncer-
tainty in both the WUS (R2

= 0.55) and Andes (R2
= 0.84).

Despite using similar forcing inputs, snow storage diverges
significantly within the ECMWF Reanalysis v5 (ERA5)
(i.e., ERA5 vs. ERA5-Land) products and the Global Land
Data Assimilation System (GLDAS) (modeled with Noah,
Variable Infiltration Capacity (VIC), and Catchment model)
products due to resolution-induced elevation differences
and/or differing model process representation related to
rain–snow partitioning and accumulation-season snowmelt
generation. The availability and use of in situ precipitation
and snow measurements (i.e., in WUS) in some products
adds value by reducing snow storage uncertainty; however,
where such data are limited, i.e., in the Andes, significant
biases and uncertainty exist.

1 Background and motivation

Seasonal snow storage in mountains provides vital freshwa-
ter to downstream users estimated to be over 16.7 % of the
global population (Immerzeel et al., 2020; Rhoades et al.,
2022). Melt of accumulated winter snow in the spring and
summer impacts agriculture, hydropower generation, and
water supply and recreation, making it a key component of
the food–energy–water nexus in many regions of the world
(Siirila-Woodburn et al., 2021; Huss et al., 2017; Qin et al.,
2020). Despite its importance, a complete understanding of
continental terrestrial water cycles is hampered by a limited
characterization of seasonal mountain snow storage uncer-
tainty.

The lack of in situ and remotely sensed measurements of
mountain snow water equivalent (SWE), a key metric related
to water availability, is primarily responsible for the limited
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characterization of seasonal snow storage in these regions.
For example, in the midlatitude American Cordillera, where
snowmelt is estimated to contribute to as much as 70 % of
total runoff in some basins (Li et al., 2017), existing in situ
networks are both sparse and unrepresentative of the con-
ditions spanning the larger domains in the Western United
States (WUS) and South American Andes (Nolin et al., 2021;
Dozier et al., 2016; Molotch and Bales, 2006; Saavedra et al.,
2018). Current remotely sensed SWE estimates from passive
microwave measurements are useful over much of the globe,
but they are too coarse to capture the spatial heterogeneity
and deep snowpacks in these regions with complex terrain
(Luojus et al., 2021).

In lieu of measurements, globally available snow products,
typically generated from land surface models (LSMs), pro-
vide the majority of large-scale estimates of the spatiotempo-
ral patterns of mountain snow water storage. However, sea-
sonal snow storage estimates from global snow products re-
main highly uncertain, which results from discrepancies in
meteorological forcings, variations in snow process represen-
tation, and coarse spatial resolution (Broxton et al., 2016b;
Wrzesien et al., 2019; Cho et al., 2022; Liu et al., 2022). The
uncertainty (including bias) of seasonal snow storage further
propagates to streamflow forecasts (Kim et al., 2021) and
impacts water resources management. Coarse spatial reso-
lutions smooth topography and impact the ability to resolve
orographic features (including rain shadows) over complex
terrain (Daly, 2006). Current estimates of mountain snow
water storage uncertainties in both space and time need to
be characterized to ensure the reliability of impact studies
that rely on SWE estimates (e.g., Mankin et al., 2015; Im-
merzeel et al., 2020; Huning and AghaKouchak, 2020; Liu
et al., 2021).

The analysis herein is applied to the snow-dominated
midlatitude portions of the American Cordillera (Fig. 1),
which are representative of regional mountains of signifi-
cant importance to humans. To quantify the spatiotemporal
uncertainties of snow storage from commonly used snow
products, recently developed high-resolution snow reanaly-
sis datasets covering the WUS (Fang et al., 2022a) and An-
des (Cortés and Margulis, 2017) are used in this work as ref-
erence datasets. The WUS and Andes domains have compa-
rable atmospheric circulation patterns and hydrologic cycles
(Rhoades et al., 2022), but they are disparate with respect
to elevation and the amount of available in situ information.
The WUS has among the highest density of in situ snow in-
formation, which either directly or indirectly inform SWE
estimates, while the Andes has few to no ground measure-
ments, making SWE estimates almost entirely model-based.
This paper aims to assess the following: (1) the spatiotem-
poral uncertainty of SWE in the WUS and Andes over the
accumulation season and (2) the drivers of the SWE uncer-
tainty. Knowledge of the uncertainty and its drivers will put
current snow-impact studies in better context and provide a

pathway for improving future estimates aimed at reducing
SWE quantification uncertainty.

2 Study domain and datasets

2.1 Study domain

This study focuses on the snow-dominated midlatitude
mountain ranges of the America Cordillera (Fig. 1), where
snowmelt-driven runoff serves large populations. Specifi-
cally, the WUS and Andes are selected as the study domains
based on recently developed snow-specific reanalysis prod-
ucts (Fang et al., 2022a; Cortés and Margulis, 2017). These
SWE estimates have been significantly verified against in-
dependent in situ and airborne measurements, making them
well-suited to being used as references for other products.
The average elevation across the WUS is ∼ 1383 m with a
maximum > 4300 m, in contrast to a higher average eleva-
tion of ∼ 2999 m with a maximum > 6800 m in the Andes.
The beginning of the seasonal snow cycle starts from 1 Octo-
ber and 1 April in the WUS and Andes, respectively. Hence,
a water year (WY) spans from 1 October to 30 September in
the WUS and 1 April to 31 March in the Andes.

The WUS contains three major mountain ranges includ-
ing the Sierra Nevada, the Rocky Mountains, and the Cas-
cades (Fig. 1). Amongst these, the Sierra Nevada subdomain
is the closest analog to the Andes, sharing similar hydrocli-
matology and topography. Winter westerlies dominate pre-
cipitation timing and patterns in these two mountain ranges,
leading to orographic gradients on the windward side of the
mountains and rain shadow effects resulting in significant
snow differences across relatively short windward–leeward
gradients.

2.2 Datasets

This paper intercompares data from the Andes Snow Re-
analysis (Andes-SR) and WUS Snow Reanalysis (WUS-SR)
datasets (as reference datasets) to seven global snow datasets
(available over both domains) and two regional datasets
(available only over the WUS domain) shown in Table 1.
The Andes-SR (WYs 1985 to 2015; Cortés and Margulis,
2017) SWE estimates were derived at a regular 180 m reso-
lution grid before regridding to a regular latitude–longitude
grid (0.001◦ or∼ 100 m). The WUS-SR (WYs 1985 to 2021;
Fang et al., 2022a) SWE estimates are at ∼ 480 m resolu-
tion. The different resolutions used for the Andes and WUS
domains were based on computational constraints. In addi-
tion to spatial resolution differences, glaciers and elevation
below 1500 m were masked out before applying the Andes-
SR. The newer WUS-SR dataset is applied over the full do-
main and then masked afterwards as described in Fang et
al. (2022a). The Andes-SR and WUS-SR datasets were both
generated from the Bayesian framework developed by Mar-
gulis et al. (2016, 2019) with assimilation of fractional snow-
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Figure 1. DEM and location of midlatitude American Cordillera including its subdomains in the Western United States (WUS) and Andes.
Bottom left cartoon highlights the typical rain shadow effect whereby moist air rises on the windward side of a mountain depositing significant
amounts of snow, and drier air flows down the leeward side of the mountain creating a rain shadow effect. Arrows represent the generalized
directions of westerlies that drive orographic and rain shadow SWE patterns. The Sierra Nevada (SN, sub-basin of WUS) and Andes are
chosen to study the rain shadow effect. Windward watersheds are shown in gray boundaries, and leeward watersheds are shown in black
boundaries. Mountain ranges are based on Snethlage et al. (2022).

covered area images derived from Landsat 5, 7, and 8 using
a particle batch smoother (PBS; Margulis et al., 2015). In-
dependent verification shows that both datasets are consis-
tent with in situ peak SWE with a correlation coefficient of
0.73 over the Andes (Cortés and Margulis, 2017) and 0.77
(using > 25000 station years of in situ data) over the WUS
(Fang et al., 2022a). Further verification of the WUS-SR
SWE against Airborne Snow Observatory (ASO) SWE esti-
mates shows consistent performance between these two spa-
tial products with correlation coefficients ranging from 0.75

to 0.91. With high consistency against point-scale in situ and
spatially distributed airborne SWE estimates, as well as the
high spatial resolutions specifically targeting mountainous
domains, these two snow reanalysis datasets are used as ref-
erence SWE datasets to evaluate the snow storage of global
and regional products over the WUS and Andes.

The seven global snow products include ECMWF Reanal-
ysis v5 (ERA5)-Land, ERA5, MERRA2, and four Global
Land Data Assimilation System (GLDAS)-2.1 products
(GLDAS-NOAH at 0.25◦, GLDAS-NOAH at 1.0◦, GLDAS-
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VIC (Variable Infiltration Capacity) at 1.0◦, and GLDAS-
CLSM (Catchment) at 1.0◦). The Snow Data Assimilation
System (SNODAS) and University of Arizona (UA) products
only cover the United States and therefore are not included
in the Andes intercomparison. Following Liu et al. (2022),
SWE, precipitation, and snowfall were collected from each
of the seven global products, SNODAS, and UA (includ-
ing PRISM precipitation (Daly et al., 1994) used in the UA
product). Since the reference snow reanalysis datasets do not
output precipitation and snowfall, only SWE is used for ref-
erence. For the purposes of analysis and discussion in this
work, the products described above are classified by their
spatial resolution. Specifically, reference datasets and those
products with spatial resolution less than∼ 1 km are deemed
“high resolution” (HR: WUS-SR, Andes-SR, and SNODAS),
those with spatial resolutions between ∼ 1 and ∼ 10 km
are deemed “moderate resolution” (MR: UA, ERA5-Land),
and those with spatial resolutions greater than ∼ 10 km are
deemed “low resolution” (“LR”: ERA5, GLDAS subset).
Globally and regionally available datasets are referred to as
“products” to distinguish them from the reference “datasets”,
i.e., WUS-SR and Andes-SR.

The snow reanalysis reference datasets are, by design, con-
strained by satellite snow cover observations using a data
assimilation approach. However, not all the products are
solely model-based. SNODAS uses in situ snow, airborne
SWE from gamma radiation snow surveys, and satellite snow
cover, and UA uses in situ SWE as inputs to constrain esti-
mates. Although ERA5 assimilates snow depth, limited ex-
amples of these in situ measurements are used in the WUS
and Andes. However, in the WUS, with its relatively high
density of in situ meteorological sites, almost all products
are based on models with meteorological forcings that in-
clude some in situ measurements. In contrast, due to limited
in situ meteorological sites in the Andes, the quality of in-
put forcings remains unclear, but it is likely more uncertain
than over the WUS. More details on the snow products used
herein are given in Table 1 and Appendix A.

3 Intercomparison methodology

3.1 Intercomparison study period

Where possible, the intercomparison study periods in the two
domains are chosen as WYs 1985–2021 (1 October 1984
to 30 September 2021) for the WUS, and WYs 1985–2015
(1 April 1984 to 31 March 2015) for the Andes, based on
the availability of the respective snow reanalysis datasets.
Among the products listed in Table 1, only GLDAS (starting
in WY 2001) and SNODAS (starting in WY 2005) are not
available over the full snow reanalysis period. For those prod-
ucts, long-term climatologies are necessarily derived over the
shorter periods. Hence in the WUS, climatologies for the
GLDAS and SNODAS products are over their available 21-

and 17-year records, while all other products span the 37-
year record. In the Andes, the GLDAS products are over
their 15-year record, while all other products span the 31-
year record. Analysis of climatological results from the prod-
ucts with longer periods does not show significant differ-
ences when applied to the shorter study periods (Fig. S1).

3.2 Focusing on intercomparison during the snow
accumulation season

The intercomparison herein focuses on the snow accumula-
tion season. To motivate this focus, the climatological (long-
term average) daily time series of domain-aggregated SWE
volume across all products are illustrated in Fig. 2. Two key
points are evident: (i) there are significant discrepancies be-
tween products (which are analyzed in more detail below),
and (ii) much of the uncertainty occurs during the accumula-
tion season (and then propagates to the ablation season). An
accurate characterization of peak SWE (at the end of the ac-
cumulation season) is a key metric of the final condition of
snow accumulation processes and the initial condition lead-
ing into the main snowmelt season. Intercomparison of mod-
eled snowmelt season processes is made more difficult when
the initial conditions (i.e., peak SWE prior to the primary ab-
lation season) across models are different. Given the large
uncertainties observed in domain-wide peak SWE climatol-
ogy (Fig. 2), this paper focuses on the uncertainties in the
accumulation season (as done in Liu et al., 2022) in order
to better understand how and why accumulation season esti-
mates diverge across products. All the analyses focus on the
accumulation season using metrics described below.

3.3 Snow metrics used in the intercomparison

The processes leading to the domain-aggregated peak SWE
shown in Fig. 2 depend on pixel-scale snow mass balance
processes. Hereafter, for each product, the pixel-wise pro-
cesses are analyzed prior to aggregating to the larger domain.
The day corresponding to pixel-wise peak SWE (defined as
tpeak) is computed for each product at their raw spatial res-
olution. The pixel-wise peak SWE depth (swepeak) is aggre-
gated to get pixel-wise peak SWE volume (SWEpeak). Hence
in results to follow, swepeak is used to describe and analyze
maps of SWE, while SWEpeak is used to describe spatially
aggregated volumes of SWE.

At each pixel, accumulation-season precipitation and
snowfall are accumulated from the beginning of the WY up
to tpeak, where the accumulated maps of SWE can then be ag-
gregated over the domain of interest. The mass balance equa-
tions relating domain-aggregated cumulative snowfall (Sacc),
SWE (SWEpeak), cumulative ablation (Aacc), cumulative pre-
cipitation (Pacc), cumulative snowfall (Sacc), and cumulative
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Table 1. Details of snow datasets and products used in this work. Note that SNODAS data in WY 2004 are not used due to quality issues
cited in Webster and Fetterer (2004).

Datasets/products Land surface model Spatial resolu-
tion

Temporal coverage Forcings Assimilated snow data
(method)

Domain availability

WUS-SR* SSiB – SDC 16 arcsec
(∼ 480 m)

1985–2021 MERRA2 Landsat fSCA (PBS) WUS

ANDES-SR* SSiB – SDC 6 arcsec
(∼ 180 m)

1985–2015 MERRA Landsat fSCA (PBS) Andes

SNODAS NOHRSC Snow Model (NSM) 1 km
(∼ 0.01◦)

2004–present Downscaled
NWP forcing

Ground based snow/air-
borne SWE/satellite
snow cover (Newtonian
nudging)

WUS

UA – 4 km
(∼ 0.04◦)

1981–present PRISM In situ SWE/ snow
depth from SNOTEL
and snow depth from
COOP (Ordinary
kriging interpolation)

WUS

ERA5-Land H-TESSEL (IFS Cy45r1) 0.1◦

(∼ 10 km)
1950–present ERA5 with

“lapse rate
correction”

– WUS, Andes

ERA5 H-TESSEL (IFS Cy41r2) 0.25◦

(∼ 25 km)
IFS Cy41r2
with 4D-Var

In situ snow depth
(optimal interpolation);
IMS snow cover

WUS, Andes

MERRA2 Catchment 0.5◦× 0.625◦

(∼ 50–63 km)
1980–present MERRA2 – WUS, Andes

GLDAS-2.1 Noah 0.25◦

(∼ 25 km)
2001–present NOAA/GDAS,

GPCP 1.3,
bias-corrected
AGRMET

– WUS, Andes

Noah 1◦

(∼ 100 km)
– WUS, Andes

VIC 1◦

(∼ 100 km)
– WUS, Andes

Catchment (CLSM) 1◦

(∼ 100 km)
– WUS, Andes

* Snow reanalysis datasets are used as reference datasets.

rainfall (Racc) are shown below:

SWEpeak = Sacc−Aacc (1)
Sacc = Pacc−Racc, (2)

where in Eqs. (1) and (2), Pacc, Sacc, and SWEpeak are di-
rectly computed from the snow products. Racc and Aacc are
the residuals based on these two mass balance equations. Cli-
matological values are computed as the long-term (interan-
nual) mean of Pacc, Sacc, and SWEpeak over the intercompar-
ison periods.

Persistent snow and ice areas are excluded before spatially
integrating the SWE volumes, since most products analyzed
in this work do not explicitly estimate glaciers and persistent
snow. Such persistent snow and ice masks are first obtained
from the Andes-SR and WUS-SR products and then aggre-
gated to the spatial resolution of each product (as done in Liu
et al., 2022). Domain masks in each product are also applied
here, which are derived based on the reference datasets using
the same approach. Details of persistent snow and ice masks

and domain masks are described in Sect. S2 and shown in
Figs. S2 and S3.

Beyond domain-wide results, we intercompare products
and their ability to capture rain shadow effects, which of-
ten occur over short geographic scales but have significant
influence on the water availability between windward and
leeward sides of mountain ranges. For simplicity we focus
on the windward–leeward contrasts over the Sierra Nevada
in the WUS and those over the Andes. Figure 1 shows the
boundaries of windward basins (in gray) and leeward basins
(in black) for both domains. The Sierra Nevada and An-
des are analogs of each other due to the mostly north–south
orientation of the mountain ranges that are relatively per-
pendicular to the mostly westerly prevailing winds. In both
cases, the windward and leeward basins serve distinct down-
stream populations, and so resolving those spatial variations
has important hydrological implications. To assess the abil-
ity of products in capturing rain shadow effects, pixel-wise
SWEpeak is aggregated over the windward (SWEwind

peak ) and
leeward (SWElee

peak) watersheds. Since pixels may cover both
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Figure 2. Climatology of seasonal cycle of SWE volume in the
WUS and Andes domains. Solid lines represent high-resolution
(HR) datasets and products, dashed lines represent moderate-
resolution (MR) products, and dotted lines represent low-resolution
(LR) products.

windward and leeward watersheds, for MR and LR prod-
ucts, fractional swepeak is aggregated to get SWEpeak over
the two types of watersheds separately (Figs. S4 and S5).
For HR products and datasets, the pixels spanning the wind-
ward to leeward side have a negligible impact on the distri-
bution. The fractional swepeak is computed by multiplying
pixel-wise swepeak and the fraction of pixel within the wind-
ward or leeward watershed. The detailed steps used to derive
the windward and leeward watershed snow storage are de-
scribed in Sect. S3.

4 Results and discussion

4.1 Climatological SWE uncertainty

4.1.1 Spatial distribution of pixel-wise peak SWE

Climatological pixel-wise swepeak maps for the WUS-SR
(Fig. 3a) clearly show the highest snow storage occurring in
the Sierra Nevada, the Cascades, and the Rocky Mountains.
When integrated over the whole domain, the climatological
WUS SWEpeak is 269 km3 (Fig. 3k). Similar spatial distribu-
tions of swepeak are observed for the HR (SNODAS; Fig. 3b)
and MR products (UA and ERA5-Land; Fig. 3c and d). How-
ever, the remaining products (ERA5, MERRA5 and GLDAS
subset; Fig. 3e to j) significantly underestimate swepeak and
smooth out the spatial patterns captured by the HR and MR
products. The combined HR and MR inter-product average

of climatological WUS SWEpeak is 284±14 km3, in contrast
to an average of 127±54 km3 for LR products (Fig. 3k). This
suggests large uncertainty (both bias and spread) in SWEpeak
among LR products. Compared to WUS-SR, SNODAS over-
estimates SWEpeak by ∼ 12 % (Fig. 3k) and exhibits higher
swepeak in the Sierra Nevada, the Cascades, and the Rocky
Mountains. UA and ERA5-Land both exhibit a similar mag-
nitude of SWEpeak (differences < 5 %) compared to WUS-
SR, both of which have higher swepeak in the Cascades. De-
spite a similar spatial distribution of swepeak, ERA5 underes-
timates WUS SWEpeak by 22 % (Fig. 3k) compared to WUS-
SR. All GLDAS products severely underestimate SWEpeak,
where GLDAS-VIC10 shows the highest WUS SWEpeak
(with a 35 % underestimation compared to WUS-SR).

Based on the Andes-SR, the climatological SWEpeak is
29 km3 (Fig. 4i). The southern Andes has higher swepeak
compared to the northern region (Fig. 4a). The spatial dis-
tribution of swepeak and integrated SWEpeak volumes vary
much more broadly across different products (Fig. 4b to k) in
the Andes than they do in the WUS. The MR and LR inter-
product average of climatological SWEpeak is 19± 16 km3

(Fig. 4i). ERA5-Land and ERA5 overestimate SWEpeak by
66 % and 18 %, respectively (Fig. 4i). ERA5-Land signifi-
cantly overestimates swepeak in the southern part of the An-
des. Most of the LR products, including MERRA2 and the
GLDAS subset, significantly underestimate SWEpeak by as
much as 79 % (MERRA2), compared to Andes-SR (Fig. 4i).
These findings for the Andes domain are qualitatively similar
to Liu et al. (2022), where ERA5 and ERA5-Land overes-
timate SWEpeak and MERRA2 and GLDAS underestimate
SWEpeak in High-Mountain Asia (HMA), another snow-
dominated region with limited in situ measurements.

4.1.2 Resolving key spatial gradients: rain shadow
effects

In addition to the overall spatial distribution in SWE, the oro-
graphically driven rain shadow (windward vs. leeward) dis-
tribution represents an example of an important spatial fea-
ture in many mountain contexts. In mountain ranges exposed
to persistent prevailing winds, it is expected that the wind-
ward side of the range will have more SWE than the leeward
side (Fig. 1). While significant biases exist in products as
described in Sect. 4.1.1, this section focuses on the relative
patterns of windward vs. leeward storage. The differences in
rain shadow storage gradients are specifically examined in
the Sierra Nevada subdomain of the WUS and the Andes.
While resolving rain shadow effects is challenging for nar-
row topographic regions like the Sierra Nevada and the An-
des, it has important hydrological implications as large gradi-
ents in SWE storage propagate to spring/summer runoff and
streamflow that supply downstream users.

Based on the WUS-SR in the Sierra Nevada (Fig. 5), the
latitudinal distribution of SWEwind

peak is the largest in the 37–
38◦ N latitudinal band, while the latitudinal distribution of
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Figure 3. (a–j) Spatial distribution of climatological swepeak in the WUS. Panel (k) shows the climatological WUS SWEpeak (colored
bars) and the interannual interquartile range (IQR; black error bars). The bar plots are ordered by spatial resolution, with highest resolution
on the left and lowest resolution on the right. The vertical dashed lines separate the three spatial resolution categories (i.e., HR <∼ 1 km,
∼ 1 km < MR <∼ 10 km, LR >∼ 10 km). Glacier and permanent snow areas are masked out in the maps and domain-aggregated volumes.

SWElee
peak is the largest in the 38–39◦ N latitudinal band. The

latitudinal windward and leeward storage of SWE decreases
monotonically north and south of these maximum values.
The total stored windward volume SWEwind

peak is 3.74 times
more than the leeward volume SWElee

peak. This ratio is the
combined effect of variations in area and SWE depth be-
tween the windward and leeward basins and identifies that
(on average) the windward basins store between 3 and 4
times more SWE volume than the leeward basins. Given that
the windward and leeward areas across which SWE is inte-
grated are effectively the same across products, any differ-
ences in windward–leeward ratio are driven by differences
in SWE depth. SWE depth variations are primarily driven
by resolving orographic enhancement of snowfall between

windward and leeward slopes. In the Sierra Nevada, only
SNODAS and UA products (spatial resolutions <∼ 4 km)
exhibit comparable SWEwind

peak to SWElee
peak ratios. The ratios of

SWEwind
peak to SWElee

peak are 4.20 (12 % greater than the WUS-
SR) for SNODAS and 3.14 (16 % less than WUS-SR) for
UA, suggesting a fairly good agreement between windward–
leeward snow volume distributions in these products. How-
ever, resolving the pattern of windward–leeward snow dis-
tribution is significantly impaired in the other MR and LR
products. The ratios computed from ERA5-Land, ERA5,
GLDAS-NOAH025, MERRA2, GLDAS-VIC10, GLDAS-
NOAH10, and GLDAS-CLSM10 range from 1.08–2.40 and
are 36 %, 46 %, 43 %, 55 %, 68 %, 66 %, and 71 % less than
that in the WUS-SR, respectively. Hence, the MR and LR
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Figure 4. (a–h) Spatial distribution of climatological swepeak in the Andes. Panel (i) shows the climatological Andes SWEpeak (colored
bars) and the interannual interquartile range (IQR; black error bars). The bar plots are ordered by spatial resolution, with highest resolution
on the left and lowest resolution on the right. The vertical dashed lines separate the three spatial resolution categories (i.e., HR <∼ 1 km,
∼ 1 km < MR <∼ 10 km, LR >∼ 10 km). Glacier and permanent snow areas are masked out in the maps and domain-aggregated volumes.

products generally have too little snow on the windward side
compared to the leeward side. The location of the wind-
ward maximum SWEpeak is consistent in most snow products
with the exception of the LR products (i.e., ERA5, GLDAS),
which have a secondary maximum between 39–40◦ N. The
location of the leeward maximum SWEpeak is consistent in
most of the snow products with the exception of MERRA2,
which is maximum at a lower latitude.

Based on the Andes-SR, the largest SWEwind
peak is distributed

in the 35–36◦ S latitudinal band, while the distribution of
SWElee

peak has two local maxima in the 31–32◦ S and 35–
36◦ S latitudinal bands (Fig. 6). The ratio of SWEwind

peak to
SWElee

peak is 1.58 from the Andes-SR, which is again the com-
bined effect of windward–leeward variations in both area
and SWE depth. Like the Sierra Nevada, ERA5-Land and
all of the LR products improperly partition SWEpeak over the

windward vs. leeward basins in the Andes. These products
have SWEwind

peak to SWElee
peak ratios less than 1 indicating de-

ficient snow in the windward watersheds compared to the
leeward watersheds. The lowest SWEwind

peak to SWElee
peak ratio

of 0.72 is observed from MERRA2 (54 % less than Andes-
SR). GLDAS-VIC10 has the largest SWEwind

peak to SWElee
peak

ratio of 0.92 among Andes global products, which is still
42 % less than the Andes-SR. For the windward watersheds,
SWEwind

peak from ERA5-Land and GLDAS-CLSM10 are the
highest in the same latitudinal band as the Andes-SR; how-
ever, the other products have an erroneous SWEwind

peak distribu-
tion. None of the products resolve the SWElee

peak distribution
on the leeward side.

The elevational distributions of bin-averaged climatolog-
ical swepeak in the Sierra Nevada (Fig. 7a) and the Andes
(Fig. 7b) are plotted to compare the elevational gradient of
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Figure 5. Latitudinal distribution of integrated SWEpeak (km3) over windward (SWEwind
peak ; light gray areas) and leeward basins (SWElee

peak;

dark gray areas) in the Sierra Nevada in first and third columns. Text labels indicate the ratio of latitudinally integrated SWEwind
peak to SWElee

peak.
The climatological swepeak (m) spatial patterns corresponding to the latitude bands indicated by dashed boxes are illustrated in the second
and fourth columns. The red line represents the Sierra Nevada ridgeline separating windward (western) from leeward (eastern) basins. Note:
different swepeak ranges are used for each product to highlight latitudinal/spatial patterns more than absolute values (due to significant biases
in some products).

windward and leeward swepeak from products with different
spatial resolutions. The lapse rate in swepeak was determined
by linear regression of swepeak averaged across elevational
bins (Sect. S5). Lapse rates from GLDAS products at 1.0◦

are not included because the subdomains analyzed are cov-
ered by fewer than 10 pixels (Figs. S7 and S8).

Based on the WUS-SR, climatological swepeak on the
windward side of the Sierra Nevada monotonically increases
up to ∼ 3.5 km. Across different products, the uncertainty of
swepeak is smaller at the lower elevation ∼ 1–1.5 km; how-
ever, the differences in lapse rate project larger swepeak un-
certainty as elevation increases. The gradients of windward

swepeak (i.e., d(swepeak)/dz) from WUS-SR, averaged over
HR and MR products, and averaged over LR products are
0.34, 0.26, and 0.05 m km−1, respectively. On the leeward
side of the Sierra Nevada, the swepeak increases monotoni-
cally with elevation from ∼ 1–3.5 km in the WUS-SR and
most of the other products. Similarly, the uncertainty of
swepeak is smaller at low elevation from ∼ 1–2 km and grad-
ually increases with elevation corresponding with the differ-
ences in lapse rate across different products. The gradients of
leeward swepeak (i.e., d(swepeak)/dz) from WUS-SR, aver-
aged over HR and MR products, and averaged over LR prod-
ucts are 0.21, 0.19, and 0.07 m km−1, respectively. HR and
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Figure 6. Latitudinal distribution of SWEpeak (km3) over windward (SWEwind
peak ; light gray areas) and leeward basins (SWElee

peak; dark gray

areas) in the Andes in first and third columns. Text labels indicate the ratios of latitudinally integrated SWEwind
peak to SWElee

peak. The climato-
logical swepeak (m) spatial patterns corresponding to the latitude bands indicated by dashed boxes are illustrated in the second and fourth
columns. The red line represents the Andes ridgeline separating windward (western) from leeward (eastern) basins. Note: different swepeak
ranges are used for each product to highlight latitudinal/spatial patterns.

MR products have qualitatively similar elevational distribu-
tions of swepeak on both the leeward and windward side of
the Sierra Nevada for elevations below 3 km, whereas those
of swepeak from LR are underestimated with large differences
in lapse rates compared to WUS-SR.

On the windward side of the Andes, swepeak from the
Andes-SR increases from ∼ 1.5–3 km, with decreases be-
tween 3 and 6 km. The swepeak uncertainty is smaller at low
elevation bands between ∼ 1.5–2 km. The uncertainty gets
larger as elevation increases from 2–3 km corresponding to
large differences in positive lapse rates. In contrast, large
differences in negative lapse rates above 3 km reduce the
uncertainty as elevation increases. The lapse rates of wind-
ward swepeak from the Andes-SR are 0.30 m km−1 between
elevation bands of ∼ 1.5–3 km and −0.08 m km−1 between
3–6 km (Table S1). On the leeward side, swepeak increases
between ∼ 1.5–3 km and slightly decreases above 3 km in
the Andes-SR. Similar to the windward side, differences in

positive lapse rate below 3 km project larger swepeak uncer-
tainty as elevation increases from ∼ 1.5 km, whereas differ-
ences in negative lapse reduces uncertainty as elevation in-
creases above 3 km. The lapse rates of leeward swepeak from
the Andes-SR are 0.22 m km−1 between elevations of∼ 1.5–
3 km and −0.02 m km−1 between 3–6 km.

4.2 Interannual SWE uncertainty

The interannual variability of SWEpeak is in general agree-
ment (with correlation coefficients R > 0.85) between the
WUS-SR snow reanalysis and other products shown in
Fig. 8. SWEpeak from UA and ERA5-Land agrees well with
WUS-SR in both magnitude and correlation (Fig. 8b and c),
with relative mean differences (RMDs) of less than 3 % in
absolute value and R > 0.9. While SNODAS overestimates
SWE volume with a RMD of 14 % (Fig. 8a), it shows con-
sistent interannual variations with a high R value of 0.92.
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Figure 7. Elevational distribution of windward and leeward swepeak
in the Sierra Nevada (a) and the Andes (b) across reference datasets
and products with spatial resolution higher than 1◦. Each dot rep-
resents the elevation bin-averaged swepeak. The number of pixels
per bin is roughly equal. GLDAS products at 1◦ are not included
for comparison due to too few points. On the windward side of the
subdomains, dots within the red shaded areas are used to compute
lapse rates. On the leeward side, dots in the darker shaded areas are
used to compute lapse rates.

The LR products are generally well correlated with WUS-
SR, although SWEpeak from these products is underesti-
mated by as much as 190 km3 (GLDAS-CLSM10), equiv-
alent to a RMD of 71 % compared to WUS-SR. Figure 8j
shows that SWE percentiles computed from different prod-
ucts in the WUS are in better agreement in extreme years
and in less agreement for near-average years. For example,
WY 2017 was the wettest year among all products and WY
2015 was the driest year for all products except for SNODAS
(in which WY 2005 is suspiciously low). WY 2014 was a
normal-to-wet year with SWEpeak between the 60th and 70th
percentiles from GLDAS-NOAH025, MERRA2, GLDAS-
NOAH10, and GLDAS-CLSM10 but a normal-to-dry year
with SWEpeak less than the 50th percentile in the other prod-
ucts.

The interannual variability of SWEpeak is in much less
agreement in the Andes (Fig. 9; with R as low as 0.56).
Figure 9 shows that ERA5-Land and MERRA2 are most
consistent with Andes-SR in terms interannual variability
(R > 0.85). However, ERA5-Land overestimates SWEpeak
by 18 km3 (RMD= 65 %), and MERRA2 underestimates
SWEpeak by 23 km3 (RMD=−80 %). Although ERA5 has

Table 2. Correlation of SWEpeak percentiles of each product against
the reference datasets over WYs 2005 to 2021 in the WUS and WYs
2001 to 2021 in the Andes.

Products WUS-SR ANDES-SR

SNODAS 0.89 –
UA 0.86 –
ERA5-Land 0.91 0.93
ERA5 0.95 0.11
GLDAS-NOAH025 0.92 0.85
MERRA2 0.87 0.51
GLDAS-VIC10 0.95 0.60
GLDAS-NOAH10 0.91 0.42
GLDAS-CLSM10 0.84 0.46

the smallest RMD of 17 %, the correlation coefficient R is
0.74, suggesting that SWEpeak from ERA5 is less represen-
tative of interannual variation in the Andes. For the GLDAS
products, GLDAS-NOAH025 has R = 0.79, whereas R val-
ues for other GLDAS products at 1◦ are less than 0.65, in-
dicating that SWE from these LR products are less con-
sistent with the interannual variation from Andes-SR. Fig-
ure 9a illustrates that the SWEpeak percentiles computed from
the common 12-year record are much less consistent in the
Andes than in the WUS (shown in Fig. 8j) for both nor-
mal and extreme years. Despite good temporal correlation of
SWEpeak (R > 0.86) in WUS, the relatively poorer temporal
correlations (R > 0.56) identified from the LR products in
the Andes indicate that they may be less suitable for trend or
other analyses that require snow estimates with representa-
tive interannual variability.

Overall, dry to wet years identified from products in the
WUS generally agree with the WUS-SR with a correla-
tion coefficient above 0.8 over WYs 2005 to 2021 (Ta-
ble 2). In contrast, discrepancies are evident among SWEpeak
percentiles computed from different products over WYs
2001 to 2021. Percentiles from ERA5-Land and GLDAS-
NOAH025 agree well with the Andes-SR. However, the cor-
relation is low between other products and Andes-SR. Al-
though SWEpeak from ERA5 has comparable climatology
with Andes-SR (Fig. 4i), its interannual distribution dis-
agrees with the Andes-SR, especially after WY 2001.

4.3 Drivers of SWE uncertainty

4.3.1 Impact of accumulation-season precipitation and
snowfall on annual SWEpeak

To better understand the accumulation-season SWEpeak un-
certainty driven by model inputs, the relationship among
Pacc, Sacc, and SWEpeak is quantified for all products. The
annual data points are more clustered in the WUS (Fig. 10a,
b) than those in the Andes (Fig. 10c, d). GLDAS-CLSM10
and MERRA2 tend to have lower Pacc, Sacc and there-
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Figure 8. Scatter plots (a–i) of SWEpeak volumes between WUS-SR and other products. Each dot represents SWEpeak volume (km3) for
each year over the study period (WYs 1985 to 2021) where data are available. For the SNODAS and GLDAS products, the comparison is
over WYs 2005 to 2021 and 2001 to 2021, respectively. The WY 1993 SWEpeak in WUS-SR is the highest and much higher than those from
UA and ERA5-Land. Statistics do not change significantly if this data point is excluded. Panel (j) shows the SWEpeak percentiles in each
WY over the overlapping period including all products (WYs 2005 to 2021).

fore SWEpeak in both the WUS and Andes. ERA5-Land
and ERA5, on the other hand, have higher Pacc, Sacc, and
SWEpeak in both domains. For rain–snow partitioning, UA
(Fig. 10a) tends to have higher Sacc over the WUS com-
pared to the other products. Given similar Sacc, SNODAS
(Fig. 10b) is inclined to generate higher SWEpeak. In the An-
des, GLDAS-NOAH10 and GLDAS-CLSM10 partition less
Pacc into Sacc (circles lower than the regression line), in con-
trast to ERA5-Land and ERA5 that tend to partition more
(Fig. 10c). SWEpeak from ERA5-Land diverges from ERA5
(Fig. 10d) given a similar amount of Pacc and Sacc, presum-

ably caused by different melt amounts between the two prod-
ucts driven by resolution-induced elevation differences.

Annual values of Pacc and Sacc estimates from all products
show that the variance in Pacc explains the majority of the
variance in snowfall in the accumulation season with a coeffi-
cient of determination R2

= 0.55 in the WUS (Fig. 10a) and
R2
= 0.84 in the Andes (Fig. 10c). This is consistent with

previous findings (Cho et al., 2022; Broxton et al., 2016b;
Liu et al., 2022) and the expectation that precipitation is the
major contributor to uncertainty in SWE. The lower R2 in the
WUS compared to the Andes suggests that other factors such
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Figure 9. Scatter plots (b–h) of SWEpeak volumes between Andes-SR and other products. Each dot represents SWEpeak volume (km3) for
each year over the study period (WYs 1985 to 2015) where data are available. For the GLDAS products, the comparison is over WYs 2001
to 2015. Panel (a) shows the SWEpeak percentiles in each WY over the overlapping period including all products (WYs 2001 to 2015).

as air temperature plays a more important role in rain–snow
partitioning in the WUS. Approximately 49 % of Pacc falls
as snow in the WUS, whereas around 75 % of Pacc falls as
snow in the Andes (Fig. 10a, c). This is because the Andes are
at higher average elevation (∼ 2999 m) with cooler tempera-
ture than the WUS (∼ 1383 m), leading to more precipitation
falling as snow. The variance in SWEpeak is mostly explained
by the variance in Sacc, i.e., R2

= 0.77 in WUS (Fig. 10b)
and R2

= 0.87 in the Andes (Fig. 10d). As a fraction of
cumulative snowfall, 65 % and 76 % remain as SWEpeak in
the WUS and Andes, respectively, while the rest is lost to
accumulation-season ablation.

4.3.2 Impact of LSM and spatial resolution on
climatological SWEpeak

To understand the impact of varying LSM mechanisms (i.e.,
rain–snow partitioning and snowmelt generation) and spatial
resolution on the uncertainties in SWE, the climatological
precipitation, snowfall, and SWEpeak for all products over
the WUS and Andes are shown in Fig. 11. The rainfall to
precipitation ratio (Racc/Pacc, gray text) represents the im-

pact of rain–snow partitioning mechanisms, and the ablation
to snowfall ratio (Aacc/Sacc, black text) represents the impact
of accumulation-season snowmelt mechanisms. It should be
noted that different peak SWE days may impact Racc/Pacc
via the accumulation window; i.e., the shorter accumulation
season in the GLDAS subset (associated with earlier peak
SWE days, tpeak, Fig. 11 red symbol) has cooler average tem-
perature and thus lower Racc/Pacc. However, no significant
relationship was found between tpeak and Racc/Pacc, suggest-
ing that Racc/Pacc is not sensitive to tpeak. The WUS, with rel-
atively lower elevation, has higher precipitation in the form
of rainfall and higher snowfall loss to ablation than the An-
des at higher elevation. In the WUS, Racc/Pacc ranges from
0.39 (UA) to 0.69 (GLDAS-CLSM10), and Aacc/Sacc ranges
from 0.15 (SNODAS) to 0.56 (MERRA2). In the Andes,
Racc/Pacc ranges from 0.19 (ERA5-Land) to 0.57 (GLDAS-
CLSM10), and Aacc/Sacc ranges from 0.13 (ERA5-Land) to
0.48 (GLDAS-CLSM10). Precipitation tends to fall more as
snow in the HR, MR, and ERA5 products, whereas a higher
fraction of precipitation falls as rainfall in the other products
(GLDAS, MERRA2), even though lower Pacc is observed in
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Figure 10. Panels (a) and (c) show scatter plots of accumulation-season Sacc (km3) vs. Pacc (km3) volumes over the WUS and Andes,
respectively, indicating the partitioning of precipitation into snowfall. Panels (b) and (d) show scatter plots of accumulation-season SWEpeak
(km3) vs. Sacc (km3) over WUS and Andes, respectively, indicating how much snowfall remains as SWE vs. being lost to ablation. Solid
lines are linear regression, and dashed lines are 1 : 1 lines.

both domains. The differences in melt mechanisms across
product models further differentiate the Aacc/Sacc and there-
fore SWEpeak.

Accumulation-season snowfall and SWEpeak are sensitive
to different rain–snow partitioning and snowmelt generation
mechanisms across products. The same precipitation inputs
(with only minor differences caused by downscaling) are
used to derive GLDAS estimates at 1.0◦ from three differ-
ent LSMs, making the GLDAS models a useful subset to un-
derstand the impact of LSM process representation on SWE
estimates. Among the GLDAS subset at 1.0◦, Racc/Pacc and
Aacc/Sacc range from 0.59–0.69 and 0.24–0.54, respectively,
in the WUS (Fig. 12a), and range from 0.48–0.57 and 0.34–
0.48, respectively, in the Andes (Fig. 12b). Compared to
Racc/Pacc, a wider range of Aacc/Sacc values are observed in
both the WUS and Andes, suggesting that snowmelt gener-
ation mechanism differences contribute more to the climato-
logical SWEpeak uncertainties than the rain–snow partition-
ing differences. Given a similar amount of Pacc, GLDAS-

VIC10 partitions the most into snowfall even with later peak
days, whereas GLDAS-CLSM10 partitions the least in both
domains. The differences in Racc/Pacc are ≤ 0.1 between
GLDAS-VIC10 and GLDAS-CLSM10 in contrast to the dif-
ferences of 0.2–0.3 in Aacc/Sacc. GLDAS-VIC10 tends to
have higher Pacc, Sacc, and SWEpeak, which are closer to
those from the HR or MR snow products. The better per-
formance of GLDAS-VIC10 than others might be associ-
ated with the usage of snow elevational bands in the VIC
model, in which sub-grid snowfall and SWE estimates are
better represented. GLDAS-CLSM10 has the highest rates of
Aacc/Sacc and the lowest SWEpeak. A previous study shows a
larger portion of snowfall is lost as accumulation-season ab-
lation in the Catchment model (Xiao et al., 2021). Therefore,
a better characterization of snowmelt during the accumula-
tion season is beneficial to improve SWEpeak accuracy.

Domains with larger variance in elevation are likely to be
more sensitive to model spatial resolution and therefore im-
pact elevation-dependent mechanisms in the LSMs. ERA5-
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Figure 11. Climatological SWEpeak, Sacc, and Pacc volumes aggregated over WUS (a) and the Andes (b) (in km3). Red triangles (cor-
responding to right y axis) show the tpeak averaged over all pixels and WYs. The horizontal dashed lines and red lines are the reference
snow reanalysis SWE volumes and tpeak, respectively, from WUS-SR and Andes-SR. The vertical dashed lines group the products by spatial
resolution (i.e., HR, MR, LR). The black text lists the Aacc/Sacc, and gray text lists the Racc/Pacc.

Land (0.1◦) and ERA5 (0.25◦) SWE are derived from the
same LSM driven by similar forcings but modeled at differ-
ent spatial resolutions. Similarly, GLDAS-NOAH025 (0.25◦)
and GLDAS-NOAH10 (1◦) SWE are derived from the same
Noah model driven by similar forcings but at two spatial res-
olutions. These two groups of products (Fig. 12c to f) are
useful to isolate the impact of spatial resolution on SWE es-
timates via differences in elevation representation. The raw
DEMs from each product are used to compute the mean and
standard deviation of elevation over WUS and Andes. The
Andes, located at higher elevation, also has a larger vari-
ance in elevation (standard deviation > 1100 m) compared
to the WUS (standard deviation < 800 m) for any resolu-
tion. The standard deviation varies more significantly with
resolution than the mean in both WUS and Andes (Fig. 12g,
h). With coarser spatial resolution, the variance in elevation
decreases, indicating that coarse-resolution products tend to
underestimate the true variance in elevation. The differences
in elevation variance between products are larger in the An-
des than the WUS. For example, when increasing resolu-
tion of GLDAS from 1.0◦ (∼ 100 km) to 0.25◦ (∼ 25 km),
the standard deviation of elevation increases by 14 % in

the Andes compared to 8 % in the WUS. The Racc/Pacc
is similar in the ERA5-Land and ERA5 for the same do-
mains (i.e., 0.46 from ERA5-Land and 0.47 from ERA5 in
the WUS; 0.19 from ERA5-Land and 0.20 from ERA5 in
the Andes), suggesting that the rain–snow partitioning in
the ERA5 models is relatively insensitive to the elevation
differences introduced by different spatial resolutions. The
Andes are located at a higher elevation than the WUS, re-
sulting in lower Racc/Pacc. However, the Aacc/Sacc varies
significantly between ERA5-Land and ERA5 in both WUS
(0.32 vs. 0.44, respectively) and Andes (0.13 vs. 0.35, re-
spectively). Hence, even though similar amounts of snow-
fall are generated for ERA5 and ERA5-Land, SWEpeak can
be significantly different due to differences in ablation re-
sulting from spatial resolution-based elevation differences.
For GLDAS-NOAH025 and GLDAS-NOAH10, Racc/Pacc
and Aacc/Sacc are similar in the WUS. Large differences of
both Racc/Pacc and Aacc/Sacc are observed between GLDAS-
NOAH025 and GLDAS-NOAH10. This suggests that in-
creasing spatial resolution from 0.25 to 0.1◦ (ERA5 sub-
sets) significantly impacts snowmelt generation in both An-
des and WUS, whereas increasing spatial resolution from to
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1 to 0.25◦ (GLDAS subsets) impacts rain–snow partition and
snowmelt generation only in Andes with its larger differences
in standard deviation of elevation between products at two
different spatial resolutions.

5 Conclusion

This paper quantifies the spatiotemporal snow storage un-
certainty over the midlatitude American Cordillera (i.e., the
intermountain WUS and Andes) that is influenced signifi-
cantly by snow processes. These two domains are both snow-
dominated areas sharing similar hydrometeorology; how-
ever, a lot fewer in situ measurements are available in the
Andes compared with the WUS. The uncertainties of snow
water storage, spatial patterns (including orographic and
rain shadow effect), and interannual variability are analyzed
among the high-resolution (HR, less than∼ 1 km), moderate-
resolution (MR, between∼ 1 to∼ 10 km) and low-resolution
(LR, greater than ∼ 10 km) snow products. The impact of
forcings, LSM differences, and spatial resolution on snow
storage uncertainty is assessed to provide insights for gen-
erating future snow products, especially for snow-dominated
regions including areas with scarce in situ measurements.

With respect to characterizing climatological and interan-
nual storage uncertainty, the key conclusions are the follow-
ing:

1. In the WUS, HR and MR snow products are in better
agreement with WUS-SR peak snow storage (269 km3)
than the LR snow products, where the snow storage is
biased low with large uncertainty. The climatological
snow storage was found to be 284± 14 km3 among HR
and MR products and 127± 54 km3 among LR prod-
ucts. For context, the reservoir capacity in the con-
tiguous United States is around 600 km3 (Steyaert et
al., 2022). Thus, based on the WUS-SR, the snow wa-
ter stored in the WUS is 45 % (269 km3 of WUS-SR
SWEpeak/600 km3 of contiguous US reservoir capac-
ity) of the total reservoir capacity. Compared to the
snow storage from WUS-SR, the averaged snow wa-
ter storage from LR products misses 142 km3 of snow
water storage, equivalent to 24 % of total reservoir ca-
pacity over the contiguous United States. In the Andes,
MR and LR products exhibit much larger relative un-
certainty in snow storage. The Andes-wide peak snow
storage estimates are less clustered by spatial resolution
with climatological estimates of 19± 16 km3 compared
with peak snow storage of 29 km3 from Andes-SR. The
averaged SWE volumes from LR products in the WUS
and Andes are underestimated by over 30 % compared
to the reanalysis datasets. For similar melt rates, SWE
computed from LR models would therefore disappear
more quickly than HR/MR products. Hence calculation
of snow volume sensitivity based on LR products could
exaggerate the impact of warming on snow loss.

2. Beyond significant biases in overall storage, most of the
global products poorly characterize snow storage varia-
tions related to orographically induced rain shadow ef-
fects. Compared to the WUS-SR, only SNODAS (spa-
tial resolution of ∼ 1 km) and UA (∼ 4 km) reasonably
distribute snow storage over windward and leeward wa-
tersheds in the Sierra Nevada. Globally available MR
and LR products partition less snow storage on the
windward side in both the Sierra Nevada and the An-
des. In the Andes, global products show that more snow
water is stored on the leeward side of the mountain
than the windward side, completely missing the oro-
graphic and rain shadow patterns. Based on these re-
sults, to accurately resolve topographically driven fea-
tures in snow storage likely requires spatial resolutions
less than ∼ 5 km.

3. Consistent interannual variability is observed among all
products assessed in the WUS, whereas there is less
agreement in the Andes. This suggests that snow trend
studies based on these globally availably snow products
applied in the Andes might not be as reliable as those
applied in the WUS.

With respect to drivers of uncertainty in snow storage esti-
mates, the key conclusions are as follows:

1. Precipitation primarily explains the variance of snowfall
as expected, which propagates to the variance of snow
storage. Precipitation uncertainty accounts for a larger
portion of snowfall uncertainty in the Andes than the
WUS.

2. Aside from precipitation, LSM differences result in
varying rain–snow partitioning and snowmelt genera-
tion, which play important roles in snow storage vari-
ance. Accumulation-season snowmelt generation mech-
anisms tend to contribute more to the climatological
SWEpeak uncertainties than the rain–snow partitioning.
At coarser spatial resolutions, there is a larger spatial
variance in elevation between products in the Andes that
propagates to larger differences in precipitation falling
as rainfall, snowfall loss to ablation, and thus SWEpeak
than in the WUS where elevation variance is lower.

Data assimilation techniques are used to constrain the SWE
uncertainties in SNODAS, UA, WUS-SR, and Andes-SR.
Moreover, many products are implicitly constrained by their
use of in situ precipitation data in some form over the
WUS. With more accurate precipitation estimates in the
WUS, products at HR to MR show reasonable estimates of
SWEpeak. However, ERA5-Land (MR) and LR products miss
orographic and rain shadow patterns (Sect. 4.1.2). SNODAS
and UA generate high-quality SWE estimates in the WUS
via inclusion of in situ SWE measurements that are gener-
ally unavailable for regions like the Andes. Additionally, re-
gions like Andes do not have sufficient in situ forcing mea-
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Figure 12. (a, b) Racc/Pacc and Aacc/Sacc for three GLDAS LSMs (VIC, Noah, and Catchment) at the same spatial resolution (∼ 100 km).
(c, d) Racc/Pacc and Aacc/Sacc for ERA5-Land (∼ 10 km) and ERA5 (∼ 25 km) using the same LSM and similar forcings, but different
spatial resolutions. (e, f) Racc/Pacc and Aacc/Sacc for GLDAS-NOAH025 (∼ 25 km) and GLDAS-NOAH10 (∼ 100 km) using the same
LSM and similar forcings, but different spatial resolutions. (g, h) Mean and standard deviation of elevation over WUS and Andes from
the ERA5-Land and ERA5 group and the GLDAS-NOAH025 and GLDAS-NOAH10 group (where colors represent the products shown in
(c–f)).

surements, resulting in a large uncertainty in forcings that
propagates to SWE.

Although HR and MR products reasonably estimate snow
storage in the WUS, uncertainty in snow storage from prod-
ucts at coarse spatial resolution in the WUS and at moderate
and coarse spatial resolution in the Andes (where there are
limited in situ measurements) needs to be reduced to increase
their utility for understanding the role of snow in regional
water and energy cycling. Resolving orographic and rain
shadow patterns is still a challenging task among existing
products. Future work is needed to reduce the accumulation-
season snow storage uncertainty for mountainous regions
with limited in situ measurements. Beyond the accumulation-
season processes focused on herein, the snowmelt uncer-
tainty and its drivers in the melt-season should be investi-

gated to further characterize additional uncertainty in warm-
season snowmelt rates and timing. New and future SWE
products such as the recently published SWE reconstruc-
tion at 500 m (Bair et al., 2023) and other products such as
Daymet SWE at 1 km (Thornton et al., 2021) could be exam-
ined to further characterize uncertainty in higher-resolution
products. The ability to capture orographic and rain shadow
patterns from snow reanalysis datasets and SNODAS en-
courages the usage of existing spaceborne snow-covered area
measurements and/or future spaceborne missions that can di-
rectly provide high-resolution SWE measurements to con-
strain mountain SWE.
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Appendix A: Description of products compared to
WUS-SR and Andes-SR

A1 HR product

SNODAS (Webster and Fetterer, 2004) outputs daily SWE
from WY 2004 at 1 km over CONUS. Although SNODAS
is available starting from WY 2004, data assimilation was
only regularly performed from WY 2005. Therefore, it is
suggested to exclude SNODAS data in WY 2004 for anal-
ysis. SNODAS SWE is generated the from NOHRSC Snow
Model, an energy and mass balance model forced with down-
scaled forcings from numerical weather prediction (NWP)
models. Assimilation of ground-based snow data, airborne
SWE from gamma radiation snow surveys, and satellite snow
cover is performed via Newtonian nudging.

A2 MR products

The UA daily SWE dataset (Zeng et al., 2018; Broxton et
al., 2019) at 4 km over CONUS is generated from analysis
and interpolation of in situ measurements including SWE
from SNOTEL, snow depth, air temperature, and precipita-
tion from COOP stations, and gridded estimates including
air temperature and precipitation from PRISM. The ordinary
kriging method is used for interpolating the ratio of SWE
to net snowfall at in situ sites to the PRISM grid. The in-
terpolated ratio is then multiplied by gridded 4 km PRISM
net snowfall to get gridded SWE. At in situ sites, precipita-
tion falls as snow on days when snow depth change is posi-
tive. As a result, snowfall may be overestimated on rain-on-
snow days when both rainfall and snowfall occur, but pre-
cipitation is entirely recorded as snowfall. The temperature
threshold to partition PRISM precipitation into snowfall and
rainfall is interpolated from in situ threshold determined by
each site (Broxton et al., 2016a, b). Net snowfall is esti-
mated by the difference in accumulated snowfall and accu-
mulated ablation, which is a function of degree days above
0 ◦C. A new snow density parameterization (Dawson et al.,
2017) was developed to convert snow depth at COOP stations
to SWE. Precipitation and air temperature for UA are taken
from PRISM (Daly et al., 1994).

ERA5-Land (Muñoz-Sabater et al., 2021) hourly SWE
globally at 0.1◦ is generated from the same land surface
model as ERA5 (with different versions) but driven by down-
scaled and lapse rate corrected forcings from ERA5 at higher
spatial resolution. Specifically, shortwave, longwave, liquid,
and solid precipitation are downscaled using a linear trian-
gular mesh interpolation. Other variables such as air temper-
ature, specific humidity, relative humidity, and surface pres-
sure are adjusted to account for differences in elevations be-
tween the two spatial resolutions. No additional data assimi-
lation is involved in generating the ERA5-Land SWE.

A3 LR products

ERA5 (Hersbach et al., 2020) outputs hourly SWE globally
at 0.25◦ using the H-TESSEL model. An optimal interpola-
tion (OI) method is used to update the grid-averaged snow
depth from a maximum of 50 in situ measurements within a
radius of 250 km from a given grid cell. In situ snow depth
observations from surface synoptic (SYNOP) and World Me-
teorological Organization Global Telecommunication Sys-
tem (GTS) are used as assimilated measurements, and 4 km
snow extent from NOAA/National Environmental Satellite,
Data and Information Service (NESDIS) has been applied
at an elevation lower than 1500 m since 2004. However,
SNOTEL/SCAN/COOP snow depths in the WUS are not
currently used in the snow assimilation system. Though there
might be some sparsely distributed in situ sites that measure
snow depth which were assimilated in the WUS and Andes,
the impact of data assimilation on SWE in both regions ap-
pears to be negligible. The binary snow extent is converted
to snow depth at grids below 1500 m, assuming 5 cm of snow
depth when snow cover is 100 %. The conversion is not con-
ducted at elevations above 1500 m to avoid improper terrain
information from coarse spatial resolution in mountainous
areas. SWE is set to 10 m at permanent snow and ice grids.
Beyond snow observations, 4 km precipitation data from Na-
tional Centers for Environmental Prediction (NCEP) stage
IV over the United States were assimilated in ERA5 using
4D-Var data assimilation method (Lopez, 2011). NCEP pre-
cipitation data are produced radar and gauge observations
(Lin and Mitchell, 2005). Hence it is reasonable to assume
that ERA5 precipitation may be more accurate over the WUS
than the Andes, where such data are not assimilated.

The suite of GLDAS 2.1 products consist of daily SWE
since WY 2001 from four globally distributed products
(Rodell et al., 2004). The four products are generated from
three LSMs and at two spatial resolutions (i.e., Noah LSM at
0.25◦: GLDAS – NOAH025; Noah LSM at 1.0◦: GLDAS –
NOAH10; VIC LSM at 1.0◦; GLDAS – VIC10; Catchment
LSM at 1.0◦: GLDAS – CLSM10). The same meteorologi-
cal forcings from multiple sources, including NOAA/GDAS,
GPCP1.3, and corrected AGRMET, are employed to generate
the four products. Adjustments for forcings are conducted to
account for the elevation differences between GLDAS at 1.0
and 0.25◦. No snow data assimilation is conducted in gen-
erating the products, whereas input forcings include sources
from in situ measurements.

MERRA2 outputs hourly SWE globally at 0.625◦× 0.5◦

resolution using the Catchment LSM (Reichle et al., 2017).
The Catchment LSM is forced by bias-corrected precipita-
tion using Climate Prediction Center (CPC) unified gauge-
based analysis of global daily precipitation products. Similar
to the GLDAS subset, no snow data assimilation is involved
in generating the MERRA2 dataset, whereas in situ precipi-
tation measurements are involved in deriving the SWE.
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Data availability. The Andes-SR and WUS-SR datasets are pub-
licly available at https://doi.org/10.5061/dryad.ngf1vhj0s (Margulis
and Fang, 2023) and https://doi.org/10.5067/PP7T2GBI52I2 (Fang
et al., 2022b), respectively. The SNODAS product is available
at https://doi.org/10.7265/N5TB14TC (National Operational
Hydrologic Remote Sensing Center, 2004). The UA daily SWE
product is available at https://doi.org/10.5067/0GGPB220EX6A
(Broxton et al., 2019). The PRISM product is available
at https://prism.oregonstate.edu (PRISM Climate Group,
Oregon State University, 2014). The ERA5 product is
available at https://doi.org/10.24381/cds.adbb2d47 (Hers-
bach et al., 2023). The ERA5-land product is available
at https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater,
2019). For GLDAS 2.1 products, the GLDAS–NOAH025
is available at https://doi.org/10.5067/E7TYRXPJKWOQ
(Beaudoing and Rodell, 2020a); GLDAS–NOAH10 is
available at https://doi.org/10.5067/IIG8FHR17DA9 (Beau-
doing and Rodell, 2020b); GLDAS–VIC10 is available
at https://doi.org/10.5067/ZOG6BCSE26HV (Beaudo-
ing and Rodell, 2020c), and GLDAS–CLSM10 products
are available at https://doi.org/10.5067/VCO8OCV72XO0
(Li et al., 2020). MERRA2 SWE is available at
https://doi.org/10.5067/RKPHT8KC1Y1T (Global Modeling
and Assimilation Office, 2015a); bias-corrected precipitation is
available at https://doi.org/10.5067/7MCPBJ41Y0K6 (Global
Modeling and Assimilation Office, 2015b); bias-corrected snowfall
is available at https://doi.org/10.5067/L0T5GEG1NYFA (Global
Modeling and Assimilation Office, 2015c).
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