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Abstract. Local analytical optimal nudging (LAON) is in-
troduced and thoroughly evaluated for assimilating the Ad-
vanced Microwave Scanning Radiometer 2 (AMSR2) sea
ice concentration (SIC) in the Norwegian High-resolution
pan-Arctic ocean and sea ice Prediction System (NorHAPS).
NorHAPS is a developing high-resolution (3–5 km) pan-
Arctic coupled ocean and sea ice modeling and prediction
system based on the HYbrid Coordinate Ocean Model (HY-
COM version 2.2.98) and the Los Alamos multi-category sea
ice model (CICE version 5.1.2), with the LAON for data as-
similation. In this study, our focus is on the LAON assimila-
tion of AMSR2 SIC, which is designed to update the model
SIC in every time step such that the analysis will eventually
reach the optimal estimate. The SIC innovation (observation
minus model) is designed to be proportionally distributed to
the multiple sea ice categories.

A hindcast experiment is performed with and without
the LAON assimilation for the period 1 January 2021 to
30 April 2022, in which the extra computational cost for
the LAON assimilation is about 5 % of the free run with-
out assimilation. The results show that the LAON assimi-
lation greatly improves the simulated sea ice concentration,
extent, area, thickness, and volume, as well as the sea sur-
face temperature (SST). It also produces significantly more
accurate sea ice edge and marginal zone (MIZ) than the
observed AMSR2 SIC that is assimilated when evaluated
against the Norwegian Ice Service (NIS) ice chart. The re-
sults are also compared with the Copernicus Marine Environ-
ment Monitoring Service (CMEMS) operational SIC analy-
ses from NEMO, TOPAZ4, and neXtSIM, which use ensem-
ble Kalman filters and direct insertion for data assimilation. It

is shown that the LAON assimilation produces significantly
lower integrated ice edge error (IIEE) and integrated MIZ
error (IME) than the CMEMS SIC analyses when evaluated
against the NIS ice chart. LAON also produces a continuous
and smooth evolution of sub-daily SIC, which avoids abrupt
jumps often seen in other assimilated products. This efficient
and accurate method is promising for data assimilation in
global and high-resolution models.

1 Introduction

Arctic sea ice is one of the most sensitive components in
Earth’s climate system. In recent decades it has been under-
going a dramatic change, where vast areas previously cov-
ered by multiyear sea ice are now dominated by younger,
thinner ice or are even seasonally ice-free (Comiso, 2012;
Meier et al., 2014; Kwok, 2018; Stroeve and Notz, 2018;
Kacimi and Kwok, 2022; Constable et al., 2022; Sumata
et al., 2023). While this change is opening new opportunities
for accessing the Arctic (Smith and Stepheson, 2013; PAME,
2020; Berkman et al., 2022; Constable et al., 2022), it also
brings higher environmental risks and climate challenges to
the Arctic (Emmerson and Lahn, 2012; Meier et al., 2014;
Dammann et al., 2018; Cohen et al., 2020). To effectively
manage the opportunities and risks, sound measures are ur-
gently needed to ensure adequate sustainable development,
safe operation, and ecosystem-based management. Accurate
and timely sea ice forecast is thus becoming more and more
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important for the planning and regulation of the activities in
the Arctic (Eicken, 2013; Jung et al., 2016).

Accurate sea ice forecast depends strongly on the initial
conditions, which are commonly prepared by data assimila-
tion via a combination of model simulations and observa-
tions. A variety of sea ice data assimilation methods have
been developed in the last 2 decades, including direct inser-
tion (Caya et al., 2010; Posey et al., 2015; Williams et al.,
2021), nudging (Lindsay and Zhang, 2006; Caya et al., 2010;
Wang et al., 2013; Tietsche et al., 2013; Fritzner et al., 2018),
optimal interpolation (OI; Zhang et al., 2003; Stark et al.,
2008; Wang et al., 2013), three-dimensional variational as-
similation (3D-Var; Caya et al., 2010; Buehner et al., 2013;
Blockley et al., 2014; Waters et al., 2015), and the ensem-
ble Kalman filter (EnKF; Lisæter et al., 2003; Sakov et al.,
2012; Mathiot et al., 2012; Yang et al., 2014; Fritzner et al.,
2018). It is noteworthy that when assimilating the same sea
ice observations, the forecast quality tends to be quite similar
regardless of the different assimilation methods (e.g., Caya
et al., 2010; Fritzner et al., 2018).

In recent years, with the continuous development of cou-
pled atmosphere, ocean, and sea ice models and increasing
model spatial resolutions, there is a growing interest in com-
putationally efficient data assimilation methods for providing
accurate and timely high-resolution forecasts. In the present
study, local analytical optimal nudging (LAON) is introduced
to provide an efficient and accurate method to assimilate
the high-resolution (3.125 km) Advanced Microwave Scan-
ning Radiometer 2 (AMSR2) sea ice concentration (SIC)
into the multi-category Los Alamos sea ice model CICE
(Hunke et al., 2015) in the coupled ocean and sea ice model
HYCOM–CICE. The extra computational cost for the LAON
assimilation is negligibly small at about 5 % of the free run
in the present study.

LAON is a further development of combined optimal in-
terpolation and nudging (COIN; Wang et al., 2013). The orig-
inally empirical treatments of the combination of OI and
nudging in COIN have been upgraded as a theoretically self-
contained optimization (see Sect. 2). The analysis in LAON
is designed to be gradually nudged to the optimal estimate
rather than nudged toward the observation in the ordinary
nudging (Anthes, 1974). The LAON assimilation is only per-
formed forward in time, with the optimal nudging coefficient
deduced analytically. This is different from variational opti-
mal nudging (Zou et al., 1992; Vidard et al., 2003), where
the optimal nudging coefficient is obtained through parame-
ter estimation with a complex minimization procedure using
integrations of both direct and adjoint models.

The present study is organized as follows. Section 2 intro-
duces the coupled HYCOM–CICE model system, together
with LAON that is coded in the multi-category CICE model
for SIC data assimilation. In Sect. 3, a variety of observation
data are introduced for model evaluation, including SIC, sea
ice thickness (SIT), sea surface temperature (SST), and sea
surface salinity (SSS), together with three Copernicus Ma-

Figure 1. Model domain and bathymetry of the coupled HYCOM–
CICE model. The ocean and sea names are denoted using blue and
white, which is only for clarity purposes. The red “+” and “x” show
two point locations for comparison of hourly sea ice concentration
in Fig. 12.

rine Environment Monitoring Service (CMEMS) SIC analy-
ses (NEMO, TOPAZ4, and neXtSIM). In Sect. 4 we perform
a hindcast experiment with and without the LAON assimila-
tion and evaluate the effect of the LAON SIC assimilation on
the modeled ocean and sea ice variables. In Sect. 5 we further
compare the LAON simulation with the CMEMS SIC anal-
yses from the NEMO, TOPAZ4, and neXtSIM models and
evaluate their skills in simulating sea ice edge and marginal
ice zone (MIZ) against the Norwegian Ice Service (NIS) ice
charts. In Sect. 6, we discuss some general issues relating to
the data assimilation and model evaluation. The conclusions
are given in Sect. 7.

2 Model and data assimilation

The Norwegian High-resolution pan-Arctic ocean and sea
ice Prediction System (NorHAPS) is a developing model-
ing and prediction system at the Norwegian Meteorolog-
ical Institute. It is based on the coupled HYCOM–CICE
model developed at the Nansen Environment and Remote
Sensing Center (NERSC; https://github.com/nansencenter/
NERSC-HYCOM-CICE, last access: 2021), with LAON for
data assimilation. Its free run version (no data assimilation)
is currently run operationally and delivers daily 10 d fore-
casts of sea surface height and sea surface velocity com-
ponents to CMEMS as snapshots at 15 min frequency (Ali
et al., 2021), which is available for free download from
CMEMS (https://doi.org/10.48670/moi-00005, Copernicus
Marine Service, 2019).
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2.1 HYCOM–CICE model

The coupled HYCOM–CICE model is based on the HYbrid
Coordinate Ocean Model (HYCOM version 2.2.98; Bleck,
2002) and the Los Alamos Community Ice Code (CICE ver-
sion 5.1.2; Hunke et al., 2015). Their coupling is accom-
plished using the Earth System Modeling Framework (ESMF
version 8.0). The model domain covers the Arctic and North
Atlantic oceans and their marginal seas (Fig. 1), with the hor-
izontal grid length varying from 3.2 to 5.1 km and a total grid
number of 1600× 1520.

HYCOM uses a 50-layer hybrid z-isopycnal vertical
coordinate, with the isopycnal coordinate in the strati-
fied ocean and z coordinate in the unstratified surface
mixed layer. The top 10 layers are chosen to be fixed
z layers, with the thickness of the top layer being 1 m.
This allows for better-resolved upper-ocean processes. The
bathymetry is from the General Bathymetric Chart of the
Ocean (GEBCO_2014, https://www.gebco.net/, last access:
2017), with a 30 arcsec global grid. The 3D non-tidal lateral
boundary forcing is from the CMEMS global NEMO analy-
sis (https://doi.org/10.48670/moi-00016, Copernicus Marine
Service, 2022a), and the tidal lateral boundary uses hourly
tidal currents and elevation from the FES2014 global model
(Lyard et al., 2021). The river runoff is extracted from the
Arctic-Hype Hydrographic model of SMHI (Lindström et al.,
2010). The model barotropic and baroclinic time steps are
7.5 s and 2.5 min, respectively. The atmospheric forcing is
from the ECMWF IFS HRES analysis, including 10 m wind
velocity, 2 m air temperature and due temperature, mean sea
level pressure, total cloudiness, total precipitation, surface
solar radiation downwards and surface net solar radiation,
and surface net thermal radiation. This atmospheric forcing
is read in via HYCOM and transferred to CICE through the
ESMF. The surface fluxes are parameterized based on the
COARE 3.0 bulk algorithm (Fairall et al., 2003).

Since the focus of the present study is on the LAON as-
similation of SIC, more effort is made here to describe the
CICE model, in particular aspects related to the evolution of
SIC. CICE is thus far one of the most widely used sea ice
models for climate studies and is now becoming more and
more involved in short-term and subseasonal to seasonal sea
ice predictions. It is a dynamic and thermodynamic, elastic–
viscous–plastic (EVP), multiple ice thickness category sea
ice model (Hunke and Dukowicz, 1997). It is a reformulation
of the earlier viscous–plastic model of Hibler (1979, 1980),
with an artificial elastic term introduced to enhance the com-
putational efficiency (Hunke and Dukowicz, 1997). Sea ice
conditions in CICE are described by the ice thickness distri-
bution (ITD) function, g(x,h, t), determined by the follow-
ing equation (Thorndike et al., 1975; Hibler, 1980; Hunke
et al., 2015):

∂g

∂t
=−∇ · (gu)−

∂(fg)

∂h
+ψ, (1)

where g(x,h, t)dh is defined as the fractional area covered
by ice in the thickness range (h,h+ dh) at a given time t
and location x= (x,y), u is sea ice velocity, f is the rate of
thermodynamic ice growth, and ψ is a ridging redistribution
function. In CICE, Eq. (1) is solved by partitioning the ice
cover in each grid cell into discrete thickness categories. For
each category n with a lower thickness bound Hn−1 and up-
per boundHn, by integrating Eq. (1) for h we get (Thorndike
et al., 1975; Hunke et al., 2015)

∂an

∂t
=−∇ · (anu)−

∂(f an)

∂h
+9, (2)

where 9 is the accumulative ice redistribution function, and
an is the accumulative ITD function or ice fraction for the
nth ice category, defined as the fractional area covered by ice
in the thickness range (Hn−1, Hn),

an =

Hn∫
Hn−1

g(x,h, t)dh. (3)

Equation (2) is solved by splitting it into three pieces,
namely a horizontal two-dimensional transport, a vertical
one-dimensional transport in thickness space, and a redis-
tribution of the ice in the thickness space through a ridg-
ing model. In our simulations, the original five-category ITD
(kcatbound= 0) is selected to describe the ice conditions,
and the vertical snow and ice are resolved with seven ice lay-
ers and one snow layer for each ice category.

The ice velocity u is calculated from the sea ice momen-
tum equation that accounts for air and water drags, Corio-
lis force, sea surface tilt, and the divergence of internal ice
stress. The evolution of internal stress is described by the
EVP rheology (Hunke et al., 2015), with the ice strength
reformulated according to Rothrock (1975) and the advec-
tion using the incremental remapping scheme (Lipscomb and
Hunke, 2004). The subgrid sea ice deformation and the redis-
tribution of various ice categories follow Rothrock (1975),
with a modified expression for the participation function
(Lipscomb et al., 2007). In this study, the revised EVP ap-
proach (Bouillon et al., 2013) is used to remove the artificial
deformation features.

The sea ice thermodynamic growth rate f is determined by
solving the one-dimensional vertical heat balance equations
for each ice thickness category and snow using the mushy-
layer scheme that also accounts for the evolution of sea ice
salinity (Turner et al., 2013). The upper snow–ice boundary
is assumed to be balanced under shortwave and longwave ra-
diation as well as sensible, latent, and conductive heat fluxes
when the surface temperature is below freezing. When the
surface is warmed up to the melting temperature, it is held at
the melting temperature and the extra heat is used to melt the
snow–ice surface. The bottom sea ice boundary is assumed
to be at dynamic balance, growing or melting due to the heat
budget between ice conductive heat flux and the under-ice
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oceanic heat flux. The lateral melting is calculated by the
default parameterization in CICE according to Maykut and
Perovich (1987). The melt pond is assumed to occur only on
level ice, following the LEVEL-ICE melt pond parameteri-
zation (Hunke et al., 2013).

2.2 LAON data assimilation

Nudging is an efficient four-dimensional data assimilation
method (Stauffer and Seaman, 1990). It has been about half
a century since the nudging method was first applied for
data assimilation in geoscience (Anthes, 1974), in which the
model values are designed to be gradually nudged toward the
observation,

∂X
∂t
= F(X, t)+G[Xobs−O(X)], (4)

where X denotes any concerned variables to be assimilated,
F(X, t) denotes the nonlinear model processes, e.g., the pro-
cesses shown by the right side of Eq. (2), Xobs is the corre-
sponding observations, O is observation operator, and G is
the nudging coefficient.

In contrast to the ordinary nudging, LAON nudges the
model results to the optimal estimate. Here we provide a de-
tailed deduction of the theoretical framework for the LAON
assimilation and then describe the special treatment for the
multi-category sea ice situations. Following Wang et al.
(2013), we only consider the local variance of the model and
observations; i.e., the spatial covariance between different
grids is assumed to be null in the model (so far, uncertainties
of sea ice observations only contain local variance or stan-
dard deviation). Such a treatment can significantly simplify
the coding and reduce the computation cost.

The LAON assimilation is coded in the physical model
(here CICE) and performed online with the physical model
in every time step, thus producing an overall continuous evo-
lution of the assimilated fields. This is different from other
nudging methods used for sea ice data assimilation, which
are performed offline and applied once a day (e.g., Lindsay
and Zhang, 2006; Tietsche et al., 2013) or every 10 d (e.g.,
Fritzner et al., 2018). Such a high-frequency assimilation ef-
fectively avoids model instabilities due to large changes dur-
ing the assimilation that often occurred in previous studies
(e.g., Lindsay and Zhang, 2006; Mathiot et al., 2012; Fritzner
et al., 2018). As a result, no particular post-processing is ap-
plied after the data assimilation.

Figure 2 shows a schematic illustrating the assimilation
procedures using OI, 3D-Var, LAON, and EnKF. In general,
OI and 3D-Var are equivalent when the model and obser-
vation error covariances are the same (Lorenc, 1986). As
shown in Fig. 2, we denote X as the local variable of X to
be assimilated. Xobs

k is the kth observation at time Tk , and
X−k and X+k are the model results before and after the as-
similation at time Tk when using OI or 3D-Var for assimila-
tion. The time period between two successive observations is

1T = Tk − Tk−1 =N1t , where 1t is the model time step.
In the present study, the observation time step is 1T = 1 d
and the model time step is 1t = 2.5 min, hence N = 576.

As a reference, the integration and assimilation using OI
or 3D-Var between two successive observations can be ex-
pressed as

X−k = X+k−1+

Tk∫
Tk−1

F(X, t)dt, (5)

X+k = X−k +K(Xobs
k −X−k )= (1−K)X−k +KXobs

k , (6)

where the integration of F(X, t) denotes the model free run
from Tk−1 to Tk , and K is the Kalman gain which in the local
situation is (e.g., Wang et al., 2013)

K =
σ 2

mod

σ 2
mod+ σ

2
obs
, (7)

where σmod and σobs are the standard deviations of the model
and observations, respectively. Similarly, when using the
EnKF, all the ensemble members will first be integrated after
N time steps from Tk−1 and then updated at time Tk , with the
optimal estimate being the assimilated ensemble mean which
is close to the optimal estimate using OI or 3D-Var.

In contrast to OI, 3D-Var, and EnKF, the LAON assimila-
tion is performed in every model time step (see Fig. 2), which
can be expressed for the period from Tk−1 to Tk as

∂X
∂t
= βK(Xobs

k −X)

X(0)= X−k , (8)

where βK =G is the nudging coefficient, and β is designed
as a constant to be determined such that the overall LAON
assimilation in the period [Tk−1,Tk] is equivalent to the sin-
gle assimilation update using OI or 3D-Var at time Tk (see
Fig. 2 and Eq. 6). The initial value is from the integration
of the free run following Eq. (5). For simplicity, we denote
the observation Xobs

k as Xobs, denote X−k as X0 (the initial
value when starting the LAON assimilation at Tk−1), and
denote X+k as XN (the final result at Tk after the whole
integration). The other intermediate results are denoted as
Xj , where j = 1,2, . . .,N−1. Using a simple forward Euler
scheme, the differential LAON assimilation equation (Eq. 8)
can be discretized as

Xj+1 =Xj +W(Xobs−Xj )= (1−W)Xj +WXobs, (9)

where W = βK1t is the nudging weight. From Eq. (9) we
get the contribution from the LAON assimilation at time step
j in terms of the initial value X0 and the observation Xobs:

Xj = (1−W)jX0+ [1− (1−W)j ]Xobs, (10)

where j = 1,2, . . .,N . According to the original design for
the LAON assimilation, Eq. (10) should be equivalent to the
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Figure 2. A schematic illustrating the assimilation procedures using OI, 3D-Var, LAON (a), and EnKF (b). Xobs
k

(black dot) denotes the
kth observation at time Tk ; X−

k
and X+

k
(red diamond) respectively denote the model results before and after assimilation at Tk using OI or

3D-Var for assimilation. The superscript i denotes the ensemble member in the EnKF. The observation time step is1T = Tk−Tk−1 =N1t ,
with 1t being the model time step. 1T and 1t are 1 d and 2.5 min in the present LAON assimilation. Here OI, 3D-Var, LAON, and EnKF
represent optimal interpolation, three-dimensional variational, local analytical optimal nudging, and ensemble Kalman filter, respectively. In
the lower legend, the EnKF mean is an average of all the EnKF members.

OI or 3D-Var single assimilation update in Eq. (6) when
j =N . Noting here that X0 =X

−

k , we get the correspond-
ing optimal nudging weight

W = 1− (1−K)
1
N ≈

K

N
(11)

and the corresponding optimal nudging coefficient

G= βK =
W

1t
≈

K

N1t
=

K

1T
(12)

in which β is approximate to the reciprocal of the observation
time step. This indicates that the observation time step 1T
is exactly the optimal nudging timescale. For the model er-
ror standard deviation, following earlier studies (Wang et al.,
2013; Fritzner et al., 2018), we take

σmod = |Xmod−Xobs|. (13)

With the optimal nudging weight W in Eq. (11), LAON is
ready for SIC assimilation in one-category sea ice models
using Eq. (9) such that

aice,j+1 = aice,j +W(aobs− aice,j ), (14)

where aice and aobs are the total model SIC and observed SIC.
For multi-category sea ice models, earlier studies designed

their assimilations to modify the thinnest sea ice category
(e.g., Lindsay and Zhang, 2006; Blockley et al., 2014). In
the present multi-category CICE model, we apply a different
formulation. When aice > 0, Eq. (14) can be rewritten as

aice,j+1 = aice,j [1+W(aobs/aice,j − 1)], (15)

Thus, a proportional formulation can be applied to update the
ice and snow conditions for all the ice categories such that

an,j+1 = an,j (1+ γ ), (16)
vn,j+1 = vn,j (1+ γ ), (17)
vsn,j+1 = vsn,j (1+ γ ), (18)

where vn and vsn are ice and snow volumes for the nth ice
category, and the rate of incremental innovation (see Eq. 15)
is modified as

γ =W

[
aobs

max(aice,0.1)
− 1

]
, (19)

where the function “max” is used to avoid huge values when
aobs/aice� 1. In this proportional formulation (Eqs. 16–18),
all the variables (an,vn, and vsn) are updated according to
the same incremental innovation γ (Eq. 19). Except for sit-
uations when the function “max” is activated, this formula-
tion keeps the actual SIT hn and snow depth hsn unchanged
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during the LAON assimilation. Similarly, the proportions of
an, vn, and vsn also remain unchanged when scaled with the
total SIC, sea ice volume (SIV) and snow volume. This con-
servative property facilitates the maintenance of valid sea ice
variables during the LAON assimilation.

For the situation when aice = 0 and aobs > 0, we assume
that new model ice will form with the actual SIT hbar is ei-
ther equal to 0.5 m (Wang et al., 2013) or determined by an
empirical formula (Fritzner et al., 2018):

hbar = 0.02e2.8767aobs . (20)

It is noted that in Eq. (20) we have extended the valid range
of aobs to (0, 1]. In addition, we set the snow volume as 0.1
of the ice volume, sea ice salinity as 5 PSU, and sea ice tem-
perature at the freezing temperature with the corresponding
entropy. Equation (20) is used in the present study.

3 Data

We choose the following parameters to evaluate the effect
of the LAON assimilation of SIC: SIC, sea ice extent (SIE),
sea ice area (SIA), SIT, SIV, SST, and SSS. These parame-
ters are generally considered closely related to the SIC. In
particular, SIE and SIA are direct products of SIC. As the
main focus is on the assimilation of SIC, we use three SIC
observations and three CMEMS SIC analyses to thoroughly
evaluate the LAON SIC assimilation. The SIT, SST, and SSS
data are mainly used to assess the effect of SIC assimilation
on the model simulations. All the data were interpolated to
the model grid using the nearest-neighbor method.

3.1 SIC observations

In the present study, we use three sources of SIC observation
data, namely the AMSR2 SIC, the Special Sensor Microwave
Imager/Sounder (SSMIS) SIC, and the NIS ice chart.

3.1.1 AMSR2 SIC

The AMSR2 SIC data are from the University of Bre-
men (https://seaice.uni-bremen.de/data/amsr2/asi_daygrid_
swath/n3125/, version 5.4, last access: 17 June 2022) and
represent the latest version with a spatial resolution of
3.125 km (Melsheimer, 2019). The AMSR2 on board the
GCOM-W1 satellite is a remote sensing instrument for mea-
suring weak microwave emission from the Earth, with a nom-
inal incident angle of 55◦ and swath width of 1450 km. The
AMSR2 SIC here uses the same ARTIST sea ice (ASI) algo-
rithm for the AMSR-E 89 GHz channel (Spreen et al., 2008)
and is interpolated from the same swath data for the AMSR2
6.25 km SIC product to make the best use of the AMSR2’s
89 GHz product (Gunnar Spreen, personal communication,
February 2022). The AMSR2 SIC data are the only data be-
ing assimilated in this study, and they are also used for eval-
uation in Sect. 4. Figure 3 shows the SIC and its uncertainty

(here standard deviation) on 1 January 2021 from this prod-
uct. The uncertainty is calculated following the same proce-
dure as in Spreen et al. (2008), where the overall error sums
from three sources: radiometric error from the bright temper-
ature, variability of the tie points, and atmospheric opacity.
It can be seen that the standard deviation is highest in the
open water and lowest in the close drift ice: about 0.25 when
SIC= 0 and about 0.057 when SIC= 1 as in Spreen et al.
(2008). It is noted that the uncertainties calculated here are
fully based on the AMSR2 radiometric properties, the tie-
point variability, and the atmospheric opacity. For the open
water and MIZ close to the sea ice edge, the high uncertainty
is generally realistic and implies that the observed ice edge
may be not very accurate. However, for the ice-free areas far
away from the sea ice edge (Fig. 3b), the uncertainty should
be much lower due mainly to the much higher SST. Such an
impact is not considered in the present study. Nevertheless,
the high uncertainty in these ice-free areas generally has lit-
tle effect on the assimilation of the sea ice cover, as the warm
ocean surface would enhance the maintenance of the ice-free
situation.

3.1.2 SSMIS SIC

The SSMIS SIC is from the EUMETSAT Ocean and Sea Ice
Satellite Application Facility (OSISAF; ftp://osisaf.met.no/
archive/ice/conc, last access: 18 November 2022). It is an
operational product with the product ID OSI-401-b (Tonboe
et al., 2017). The SSMIS is a polar-orbiting conically scan-
ning radiometer with an incidence angle around 50◦ and a
swath width of about 1700 km. It has window channels near
19, 37, 91, and 150 GHz and sounding channels near 22, 50,
60, and 183 GHz. The SSMIS SIC algorithm uses brightness
temperature swath data as input, using the 19V, 37V, and 37H
channel data. The brightness temperatures are corrected ex-
plicitly for air temperature, wind roughening over open wa-
ter, and water vapor in the atmosphere prior to the SIC cal-
culation. The algorithm uses dynamical tie points based on
the actual mean signatures over the last 30 d. A hybrid algo-
rithm is used which combines the bootstrap (Comiso, 1986)
and Bristol (Smith, 1996) frequency-mode algorithms. The
results are analyzed on the 10 km OSISAF grid. The SS-
MIS SIC is the main SIC product assimilated in NEMO (Lel-
louche et al., 2016) and TOPAZ4 (Hackett et al., 2022). It is
also assimilated in neXtSIM together with the AMSR2 SIC
(Williams et al., 2021).

3.1.3 NIS ice chart

Due to the large uncertainties in the passive microwave ra-
diometers for low-SIC conditions (e.g., Spreen et al., 2008;
Ozsoy-Cicek et al., 2009), we choose the NIS ice chart as an
independent SIC product to evaluate the model simulations
for sea ice edge and MIZ (Sect. 5). It is from the CMEMS
near-real-time product (https://doi.org/10.48670/moi-00128,
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Figure 3. AMSR2 SIC and its uncertainty on 1 January 2021. The SIC data are obtained from the University of Bremen.

last access: June 2022, Copernicus Marine Service, 2022d).
The ice chart is produced based on manual interpretation
of satellite data (Dinessen and Hackett, 2018), which rep-
resents a typical subjective analysis product. Unlike the
AMSR2/SSMIS SIC, which only uses passive microwave
measurements, ice charting employs a variety of satellite ob-
servations to obtain a more realistic sea ice edge and MIZ.
The main satellite data used are the weather-independent
synthetic aperture radar (SAR) data from RadarSat-2 and
Sentinel-1. The analyst also uses visual and infrared data
from METOP, NOAA, and MODIS in cloud-free conditions.
These satellite data cover the charting area several times a
day and are resampled to 1 km grid spacing.

It is noted that the NIS ice chart is only provided dur-
ing working days and only covers the European side of the
Arctic. Nevertheless, the ice chart provides important de-
tails for the sea ice edge and MIZ. The NIS ice chart in-
cludes six ice types following the WMO Sea Ice Nomen-
clature (WMO, 2014): fast ice (SIC= 10/10), very closed
drift ice (9–10/10), closed drift ice (7–8/10), open drift ice
(4–6/10), very open drift ice (1–3/10), and open water (0–
1/10). For practical use, a mean value is applied to denote the
different ice classes in the ice chart (Dinessen and Hackett,
2018).

3.2 SIC analyses

The three SIC analyses are all from the CMEMS opera-
tional products, which are the optimal estimates after data as-
similation of the operational models NEMO, TOPAZ4, and
neXtSIM. These analyses represent the state-of-the-art op-
erational sea ice forecast products in Europe. New develop-

ments are being performed with a focus on improving model
physics and spatial resolution, as well as extending biogeo-
chemical predictions.

3.2.1 NEMO SIC

The NEMO SIC analysis is from the CMEMS opera-
tional product (https://doi.org/10.48670/moi-00016, last ac-
cess: May 2022, Copernicus Marine Service, 2022a). It is
provided by Mercator Ocean of France through the Oper-
ational Mercator Global Ocean Analysis and Forecast Sys-
tem (Lellouche et al., 2016; Galloudec et al., 2022). The
system uses version 3.6 of the NEMO model (Madec and
the NEMO Team, 2017), with the sea ice component be-
ing the multi-category sea ice model LIM3 (Rousset et al.,
2015). The system uses a tripolar horizontal grid (Madec
and Imbard, 1996) and a 50-level vertical grid with a de-
creasing resolution from 1 m at the surface to 450 m at
the bottom. Its data assimilation system, SAM2 (Système
d’Assimilation Mercator), uses a reduced-order Kalman fil-
ter derived from the singular evolutive extended Kalman
(SEEK) filter (Brasseur and Verron, 2006). The assimilated
observations include SIC, SIT, SST, in situ T and S pro-
files, and sea level. The operational product includes daily
and monthly mean files of temperature, salinity, currents, sea
level, mixed layer depth, and ice parameters over the global
ocean. It also includes hourly mean surface fields of sea level
height, temperature, and currents. The global ocean output
files are displayed on a grid of 1/12◦ horizontal resolution
with regular longitude–latitude equirectangular projection.
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3.2.2 TOPAZ4 SIC

The TOPAZ4 SIC analysis is from the CMEMS opera-
tional product (https://doi.org/10.48670/moi-00001, last ac-
cess: May 2022, Copernicus Marine Service, 2022b), which
is the nominal product of the CMEMS Arctic Monitoring
and Forecasting Center (MFC) for ocean physics (Hackett
et al., 2022). It is produced by the Arctic MFC through
the operational TOPAZ4 Arctic Ocean and sea ice predic-
tion system (Sakov et al., 2012) using version 2.2.37 of
the HYCOM ocean model (Bleck, 2002) coupled to a one-
category sea ice model with the EVP rheology (Hunke and
Dukowicz, 1997). Its sea ice thermodynamics are described
in Drange and Simonsen (1996), with a correction of heat
flux for sub-grid-scale ice thickness heterogeneity follow-
ing Fichefet and Morales Maqueda (1997). The model do-
main covers the North Atlantic and Arctic basins with a grid
spacing of approximately 12–16 km. The model uses 28 hy-
brid vertical layers, with isopycnal vertical coordinates in
the stratified open ocean and z coordinates in the unstrati-
fied mixed layer. A 100-member deterministic EnKF is used
in TOPAZ4 for assimilation of SIC, SIT, sea ice drift, SST,
SSS, sea level anomaly, and in situ T and S profiles (Hackett
et al., 2022). The analysis is then interpolated and dissemi-
nated to a 12.5 km× 12.5 km grid using polar stereographic
projection.

3.2.3 neXtSIM SIC

The neXtSIM SIC is from the CMEMS operational product
(https://doi.org/10.48670/moi-00004, last access: May 2022,
Copernicus Marine Service, 2022c). It is an hourly prod-
uct produced by the Arctic MFC through the neXtSIM sea
ice prediction system (Hackett et al., 2022). The neXtSIM
is a stand-alone sea ice model using the Brittle–Bingham–
Maxwell sea ice rheology (Rampal et al., 2019). The model
domain covers the central Arctic, excluding the Cana-
dian Archipelago and the Pacific side of the Bering Strait
(Williams et al., 2021). The model uses a Lagrangian tri-
angular mesh with the mesh element size approximately
7.5 km from point to the opposite side variable (the side
length is approximately 10 km). A remeshing procedure is
used to avoid anomalously deformed meshes. The model is
forced with surface atmosphere forcing from the ECMWF
and ocean forcing from TOPAZ4. The model uses the di-
rect insertion method for assimilation, with the observed SIC
from a weighted SSMIS SIC and AMSR2 SIC as well as a
fixed model SIC uncertainty of 30 % (Williams et al., 2021).
The assimilation is run daily before the forecast is launched.
The output variables are hourly SIC, SIT, sea ice drift ve-
locity, and snow depth. The adaptive Lagrangian mesh is in-
terpolated for convenience to a 3 km resolution regular grid
using polar stereographic projection.

3.3 Weekly mean CS2SMOS SIT

The weekly mean CS2SMOS SIT is from the ESA (ftp:
//smos-diss.eo.esa.int/SMOS/L4_SIT/L4/north/, last access:
7 October 2022). It is a weighted mean of the weekly mean
SMOS thin SIT (Tian-Kunze et al., 2014) and the weekly
mean CryoSat-2 SIT (Laxon et al., 2013), with the spatial “no
observation” area interpolated from the surrounding observa-
tions using the OI method (Ricker et al., 2017). This weekly
averaged product is generated every day at the Alfred We-
gener Institute (AWI). The data are available from Novem-
ber 2010 but are only available in the winter seasons (from
mid-October to mid-April). The data are projected onto the
25 km EASE2 grid based on a polar aspect spherical Lambert
azimuthal equal-area projection (Ricker et al., 2017). This
CS2SMOS SIT is used in Sect. 4 for evaluating the effect of
SIC assimilation on the SIT simulation.

3.4 OSTIA skin SST

The Operational Sea Surface Temperature and Ice Analysis
(OSTIA) diurnal skin SST product is from CMEMS (Wang
et al., 2023b). It is an hourly mean skin SST at 0.25◦× 0.25◦

horizontal resolution, analyzed by the UK Met Office, using
in situ and satellite data from infrared radiometers (While
and Martin, 2013). The skin SST is the temperature mea-
sured by satellite infrared radiometers and can experience
a large diurnal cycle. The skin SST L4 product is created
by combining (1) the OSTIA foundation SST analysis which
uses in situ and satellite observations, (2) the OSTIA diurnal
warm layer analysis which uses satellite observations, and
(3) a cool skin model. This product is used in Sect. 4 for as-
sessing the effect of SIC assimilation on the SST simulation.

3.5 ISAS SSS

The In Situ Analysis System (ISAS) SSS is also from
CMEMS (https://doi.org/10.48670/moi-00037, last access:
15 November 2022, Copernicus Marine Service, 2022e). It
is a quality-controlled gridded salinity field based on the
objective analysis (OA) of the near-real-time in situ salin-
ity measurements from the Coriolis Database (Szekely and
Dobler, 2022). The measurements use a variety of instru-
ments, mainly Argos, moorings, drifting buoys, and sea
mammals. The OA is performed monthly using the ISAS
tool (Gaillard et al., 2016). The contribution of each quality-
controlled salinity observation is first assessed relative to a
first guess (climatology). The ISAS SSS is then reconstructed
by summing the objectively analyzed anomalies and the first-
guess field. It it noted that the analyzed results could be very
close to the climatology in poorly sampled areas (Szekely
and Dobler, 2022). Nevertheless, it remains one of the best
sources of SSS data in the Arctic, particularly under the sea
ice. This product is used in Sect. 4 for evaluating the effect
of SIC assimilation on the SSS simulation.
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4 Effect of LAON assimilation

The coupled HYCOM–CICE model is initialized and spun
up from 2010 using the World Ocean Atlas (WOA) 2018
climatology. A hindcast experiment with and without the
LAON data assimilation is performed to evaluate the effect of
the LAON assimilation on the model simulations from 1 Jan-
uary 2021 to 30 April 2022. In the following, the experiments
with and without data assimilation are denoted as LAON and
Free_run, respectively. We use the root mean square error
(RMSE) for evaluation. Denoting O(Ok) as the observed
variable vector (e.g., SIC, SST, SSS) and M(Mk) as the cor-
responding model variable vector, we have

RMSE=

√√√√ 1
m

m∑
k=1
(Mk −Ok)

2, (21)

where m is the total model grid number (here the observa-
tions have been interpolated to the model grid). In addition,
we use bias as a supplementary metric, which is a simple
mean difference between the model and observations.

4.1 SIC, SIE, and SIA

Figure 4 compares the monthly mean SIC between the
Free_run (upper), AMSR2 observations (middle), and the
LAON simulation (lower), with the columns from left to
right showing the dates June 2021, September 2021, Decem-
ber 2021, and March 2022, respectively. To remove the ef-
fect of data assimilation during the early stage, June 2021
is chosen as the starting month for analysis. On the whole,
the Free_run simulates the SIC quite well during the winter
months (panels c, d vs. g, h in Fig. 4), except for some areas
near the sea ice edge. However, there are considerable biases
in the simulated SIC during the summer months (panels a, b
vs. e, f in Fig. 4). In particular, the simulated September sea
ice cover deviates considerably from the observation (panel b
vs. f in Fig. 4). By contrast, the LAON assimilation signifi-
cantly improves the simulation (panels i–l vs. e–h in Fig. 4).
The spatial pattern of sea ice cover is particularly well repro-
duced, for example, in the low-SIC areas in the Beaufort Sea
in September 2021 (panel j vs. f in Fig. 4), in the Hudson Bay
in December 2021 (panel k vs. g in Fig. 4), and in the north-
ern Barents Shelf (north of Svalbard) in March 2022 (panel l
vs. h in Fig. 4).

The daily mean bias and RMSE of the simulated SIC
are shown in Fig. 5a. As partly demonstrated in Fig. 4, the
Free_run SIC has large RMSE (about 0.3) and relatively
low bias during the summer season, indicating large spatial
mismatch during the summer season. The low daily bias is
mainly due to the offset between the overestimate and un-
derestimate of the SIC in different areas in the Arctic (see
also Fig. 4b vs. f). By contrast, the LAON SIC has a much
lower daily mean bias and RMSE, with the mean values be-
ing 0.006 and 0.066 for the whole period.

SIE and SIA are two derivatives of SIC. In this section,
SIE is defined as the total area where SIC ≥ 0.15, whereas
SIA is defined as the total area covered by ice. The simu-
lated (Free_run and LAON) daily SIE and SIA are compared
with the AMSR2 observations in Fig. 5b, with their mean
bias shown in Fig. 5c. It is seen that all the simulated winter
SIE and SIA values agree very well with the AMSR2 ob-
servations. However, there are large biases in the Free_run
SIE and SIA during the summer season. The mean bias of
SIE reaches over 1.0×106 km2 during July to October 2021,
which is about 20 % of the observed SIE (see Fig. 5b). The
Free_run SIA has a large variation from notably less to sig-
nificantly larger than the observations as indicated by the
daily mean bias and RMSE (Fig. 5c). On the contrary, the
mean biases of the LAON SIE and SIA are generally close
to 0.2×106 km2, which is about 5 % of the summer SIE and
SIA and about 2 % of the winter SIE and SIA.

4.2 SIT and SIV

SIT is not assimilated in the model. This implies that the
model SIT will likely deviate from the observation if it was
initially biased. To be consistent with the observed weekly
mean CS2SMOS SIT, the modeled SIV and SIT have also
been averaged weekly. As the CICE model only tracks SIV,
the model SIT is calculated here via SIV / (SIC+10−16)
for each model grid. The observed SIV is calculated via
CS2SMOS SIT×AMSR2 SIC for each grid.

Figure 6 compares the SIT between the Free_run and
LAON simulations to the CS2SMOS observations, with
the columns from left to right showing the dates 1–7 Jan-
uary 2021, 9–15 April 2021, 15–21 October 2021, and 1–
7 January 2022, respectively. It is seen that the model initial
SIT fields are considerably biased, with a much larger area
of thick multiyear ice (MYI) located in the Beaufort Sea and
north of the Canadian Archipelago (Fig. 6a and i), whereas
the observed MYI is mainly located north of the Canadian
Archipelago and Greenland (Fig. 6e). There is only a mild
difference in the Free_run and LAON simulations during the
winter period until 9–15 April 2021 (see Figs. 6b and j), both
showing the MYI in the Beaufort and East Siberian seas,
while the observations show the MYI is mainly located north
of the Canadian Archipelago and Greenland (Fig. 6f).

Since the CS2SMOS SIT is only available during the win-
ter period from mid-October to mid-April, we choose the
mid-October 2021 to examine the SIT after the summer sea-
son (Figs. 6c, g, and k). The overestimated September SIC
in the East Siberian Sea in the Free_run simulation (Fig. 4b
vs. f) results in significant MYI there in October (Fig. 6c).
By contrast, in the LAON simulation most of the MYI in the
East Siberian Sea has been replaced by first-year ice (FYI).
The MYI is now located mostly to the north of the Canadian
Archipelago and Greenland (Fig. 6k), although the thickness
is considerably overestimated compared with the CS2SMOS
observation (Fig. 6g). It is particularly noteworthy that the
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Figure 4. Monthly mean SIC from Free_run simulations (a–d), AMSR2 observations (e–h), and LAON simulations (i–l).

LAON simulation produces a much more reasonable spa-
tial SIT pattern in early 2022 (Fig. 6l vs. h), whereas the
Free_run simulation returns to a similar pattern as 1 year be-
fore (Fig. 6d vs. a).

The initial SIV is about 28.2 % overestimated (Fig. 7a),
which corresponds to about 0.23 m thicker than the obser-
vation (Fig. 7b). The Free_run SIV is persistently overesti-
mated when compared with the observation during the win-
ter period (CS2SMOS SIT not available during the summer
period), with a general increasing bias from November 2021
to April 2022. The LAON SIC assimilation successfully re-
duces the SIV bias, particularly after the melt season, which
is already close to the observations (Fig. 7a). Such improve-
ment can also be clearly seen in the SIT mean bias, where the
overall mean bias has dropped to about 0.12 m in April 2022
(Fig. 7b).

The SIT RMSE remains similar between the Free_run
and LAON simulations during the early stage from January

to April 2021 (Fig. 7b) and differs significantly after the
summer period (Fig. 7b). However, the LAON SIT RMSE
tends to increase more rapidly than that of the Free_run after
November 2021 (Fig. 7b). A detailed check of the sea ice ve-
locity field (not shown) indicates that the exceptionally thick
ice north of the Canadian Archipelago and Greenland (see
Fig. 6l) considerably affected the sea ice circulation, which
is accumulated with time and thus results in a large bias in
the SIT fields in the LAON simulations. This problem will
be further investigated in a following study with additional
assimilation of SIT.

When combining the seasonal evolution of the SIC and
SIT fields (Figs. 4 and 6), we can see that the effect of the
SIC assimilation on the SIT is the most significant during
the summer period. The LAON assimilation effectively cor-
rected the large bias in the spatial distribution of the SIC,
particularly in the Arctic shelf seas. Such a correction not
only rectifies the summer SIT bias in these areas, but also
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Figure 5. Statistics of the simulated SIC, SIE, and SIA: (a) modeled daily SIC mean bias and RMSE, (b) modeled and observed SIE and
SIA, and (c) modeled SIE and SIA mean bias.

provides an open-ocean condition close to the observations
for the later new ice development during the freezing period.
By contrast, the persistent large overestimate in the MYI sug-
gests that the SIC assimilation tends to have limited SIT im-
provement for the ice that survives through the melt season.
Such a mechanism is unanimously applicable to the LAON
SIC assimilation when using other SIC products, although
the improvement may differ due to the variations in the SIC
values and uncertainties.

The effect of the SIC assimilation on the SIT implies that
the LAON SIC assimilation would also improve the SIV us-
ing any reasonable SIC products, with the largest improve-
ments in the melt season and from new seasonal sea ice
formed during the freezing period. While the improvement
in the surviving MYI is generally limited, such MYI is ex-
pected to be transported out of the Arctic in several years. It
is therefore anticipated that, after several years of SIC assim-
ilation, the SIT spatial distribution and the SIV will show an
overall improvement. Nevertheless, a direct SIT assimilation
would be more effective and prompt.

4.3 SST and SSS

SST is a challenging parameter to define precisely, since the
upper ocean has a complex and variable vertical temperature
structure related to ocean turbulence and air–sea fluxes of
heat, moisture, and momentum. For comparison, we use the
top layer model SST, which is the mean temperature of the
top 1 m. The hourly OSTIA skin SST is also averaged to ob-
tain the monthly mean SST. Figure 8 compares the monthly
mean SST bias between the Free_run and LAON simulations
evaluated against the OSTIA monthly mean skin SST. It is
noteworthy that the model SST has a positive bias in much
of the ice-free area, with the most significant bias around the
northern Labrador Sea and southern Davis Strait. Consistent
with the SIC (Fig. 4), the SIC assimilation only slightly im-
proved the SST simulations during the winter season (pan-
els c, d vs. g, h in Fig. 8), mainly close to the ice edge. How-
ever, during the summer season, the SIC assimilation consid-
erably improved the simulated SST. The Free_run simulation
produced a large negative bias in the East Siberian, Chukchi,
Beaufort, and Greenland seas and a large positive bias north
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Figure 6. Weekly mean SIT (m) from Free_run simulations (a–d), CS2SMOS observations (e–h), and LAON simulations (i–l).

of the Laptev Sea (Fig. 8b). These biases are considerably
mitigated in the LAON simulation (Fig. 8f). It is also note-
worthy that in the Baffin and Hudson bays the marked biases
in the Free_run are also considerably mitigated in the LAON
simulation (panels a, b vs. e, f in Fig. 8).

Over the large ice-free area in the North Atlantic Ocean,
the Free_run simulation reproduces the SSS very well,
with the absolute SSS bias generally smaller than 0.5 PSU
(Fig. 9a–d). However, there is significant SSS bias in the
Arctic. In particular, the SSS is considerably overestimated
in much of the Arctic shelf seas, with an occasional large
bias even up to 30 PSU. Such large overestimates are likely
related to the external forcing of river discharges and inaccu-
rate evaporation–precipitation processes. In addition, there is
clear SSS bias in the central Arctic under the sea ice. This
tends to suggest that the SSS in the Arctic proper has accu-
mulated a substantial drift during the 10-year spin-up run, as
no nudging to the climate was performed under the sea ice.
It is noteworthy that these large bias areas in the central Arc-

tic are often collocated with the large uncertainty areas in the
observed ISAS SSS (Fig. 9e–h). Further work is needed to
clarify the uncertainties and mitigate the deficiencies.

The SSS changes due to the SIC assimilation are much
weaker than the absolute SSS bias in the present study. For
better illustration, the monthly mean difference between the
LAON SSS and Free_run SSS is calculated (Fig. 9i–l). While
generally weaker than the absolute bias, the absolute differ-
ence over 1 PSU can often be seen in a remarkable part of
the Arctic Ocean, particularly in the shelf seas. During the
melting season (Fig. 9j), similar to the effect on the SST
(Fig. 8), the SIC assimilation notably increases the SSS along
the coasts of the Beaufort, Chukchi, New Siberian, Laptev,
and Kara seas. The assimilation removes the overestimated
sea ice there, thus mitigating the SSS decrease due to the un-
realistic sea ice melting. During the freezing period (Fig. 9k,
l), unlike the situation for SST which would generally re-
main close to the freezing point, the SSS tends to continu-
ously increase due to the sea ice freezing and brine rejection.
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Figure 7. Statistics of the simulated SIT and SIV: (a) total SIV as well as (b) modeled SIT mean bias and RMSE.

Figure 8. Monthly mean SST bias (◦C) from Free_run simulations (a–d) and LAON simulations (e–h). The results are evaluated against the
OSTIA monthly mean skin SST from CMEMS.

The SSS difference between the LAON and Free_run simu-
lations here is most probably caused by the different sea ice
freezing speeds, which are mainly controlled by the corre-
sponding SIT and snow depth. The relatively lower SIT in the
LAON simulation (Fig. 6) would foster a more rapid freezing
and therefore larger SSS increase during the freezing period.

Such a positive increment (Fig. 9l) is seen to counteract the
negative bias in the Arctic (Fig. 9d), thus improving the SSS
simulation. This is consistent with the findings by Lambert
et al. (2019), who identified sea ice melting and brine rejec-
tion due to sea ice freezing as playing a dominant role in the
Arctic SSS flux in their perfect model experiment using a
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Figure 9. Monthly mean SSS bias from Free_run simulations (a–d), ISAS SSS SD (e–h), and modeled SSS difference (i–l). The mean bias
is evaluated against the monthly mean ISAS SSS from CMEMS, and SD denotes standard deviation. The modeled SSS difference denotes
LAON SSS – Free_run SSS.

strong SSS climate restoration. It remains to be seen whether
longer-time SIC assimilation can further improve the SSS
simulation when no SSS climate restoration is applied.

The meltwater from the Greenland Ice Sheet is not in-
cluded in the current river discharge. This would induce an
overestimate of SSS in the Baffin Bay and Davis Strait, but
it would be counteracted by the extra sea ice in the Free_run.
The SIC assimilation tends to remove the extra sea ice in
September (Fig. 4j), thus recovering the overestimate of SSS
in the Baffin Bay and Davis Strait (Fig. 9j). On the whole,
an improvement in the external forcing of river discharges
including Greenland is highly needed.

5 Comparison with other products

SIC is so far one of the most extensively observed sea
ice parameters from space. Microwave radiometers such as

AMSR2 and SSMIS have the capability to penetrate clouds
and continuously monitor the sea ice throughout the year.
As a result, they are widely used for sea ice monitoring and
data assimilation. However, passive microwave radiometers
tend to underestimate low SIC (Spreen et al., 2008; Ozsoy-
Cicek et al., 2009). By contrast, the manually analyzed ice
chart based on a much larger data set is more reliable for
accurately detecting low-SIC areas and sea ice edge (Ozsoy-
Cicek et al., 2009; Breivik et al., 2009; Posey et al., 2015).
In this section, we evaluate the LAON assimilation by com-
paring the NorHAPS simulations to the CMEMS operational
SIC analyses and the passive microwave radiometer observa-
tions, evaluated against the NIS ice chart.

The Cryosphere, 17, 4487–4510, 2023 https://doi.org/10.5194/tc-17-4487-2023



K. Wang et al.: LAON assimilation of SIC in HYCOM–CICE 4501

Figure 10. Daily SIC on 16 March 2022 from different model analyses and observations. For better illustration of the ice edge, the areas
where SIC < 0.1 have been removed.

5.1 Daily SIC spatial distribution

Figure 10 compares the daily SIC of the NorHAPS
LAON and Free_run with six other daily products for
16 March 2022. Three are from the CMEMS model analy-
ses, namely NEMO, TOPAZ4, and neXtSIM, and the other
three are from observations, namely AMSR2, SSMIS, and
the NIS ice chart. All the SICs have been interpolated to the
NIS ice chart grid. Mid-March is chosen as a typical winter
condition. For better demonstration of the ice edge, the areas
where SIC < 0.1 have been removed. It is noteworthy that
NorHAPS LAON assimilated the AMSR2 SIC, NEMO and
TOPAZ4 assimilated the SSMIS SIC (Lellouche et al., 2016;
Hackett et al., 2022), and neXtSIM assimilated a combined
AMSR2 and SSMIS SIC (Williams et al., 2021). The NIS ice
chart is not assimilated by any of the models and is therefore
an independent observation.

As mentioned above, passive microwave radiometers gen-
erally have quite large uncertainties in low-SIC areas. This
can also be seen in both AMSR2 (Fig. 10f) and SSMIS
(Fig. 10g), where the very open drift ice north of Svalbard
seen in the NIS ice chart (Fig. 10h) is missing. Comparing
this very open drift ice with the bathymetry (Fig. 1), we see
that it collocates very closely with the northern Barents Shelf.
This suggests that strong warm Atlantic Water from the west
coast of Spitsbergen was turning east and flowing along the
northern coast of Svalbard on the northern Barents Shelf,
which plays an important role in the melting of sea ice there.
The five model analyses generally reproduced most of the sea
ice features in the European Arctic (Fig. 10a–e). However,
there are large differences among the simulations of the very
open drift ice area north of Svalbard and Franz Josef Land.
When compared with the NIS ice chart (Fig. 10h), the NEMO

SIC analysis (Fig. 10c) is moderately overestimated, showing
an area of open drift ice and close drift ice. The NorHAPS
Free_run, TOPAZ4, and neXtSIM tend to markedly overes-
timate the SIC in this very open drift ice area, all showing a
large part of very close drift ice (see Fig. 10b, d, and e). By
contrast, the NorHAPS LAON (Fig. 10a) produced a simula-
tion close to the observed NIS ice chart, although a small part
of the very open drift ice was slightly underestimated as open
water. In addition, the open-water and/or ice-free area in the
northeastern Barents Sea is well reproduced in the NorHAPS
LAON and neXtSIM, whereas a large part was simulated
as close or very close drift ice in the NorHAPS Free_run,
NEMO, and TOPAZ4. The overall seasonal evolution is as-
sessed through the integrated ice edge error (IIEE) and the
integrated MIZ error (IME) below.

5.2 IIEE and IME

The IIEE is determined following Goessling et al. (2016) as

IIEE=
∫
A

max(cf− ct,0)dA+
∫
A

max(ct− cf,0)dA, (22)

whereA denotes the whole model domain, and the subscripts
“f” and “t” denote the estimate and the truth (here we use the
NIS ice chart as an approximate). The first term on the right
side of Eq. (22) denotes the overestimate, and the second
term denotes the underestimate. In Goessling et al. (2016),
the variable c = 1 where SIC > 0.15 and c = 0 elsewhere.
The demarcation value 0.15 is commonly used in the sea ice
and climate modeling communities as the sea ice edge. How-
ever, this is rather arbitrary as there is no special reason to use
0.15 rather than, e.g., 0.10, as the sea ice edge. In fact, the
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WMO has used 0.10 as the demarcation between open water
and very open drift ice since 1970 (WMO, 2014), which has
long been applied in the sea ice charting community, such
as the NIS and US National Ice Center ice charts. There-
fore, using 0.10 as the demarcation for sea ice edge would
be more consistent and helpful for the joint sea ice modeling
and observation community. In this section, we use 0.10 as
the demarcation for the ice edge.

Following the formulation for the IIEE, we define the IME
as

IME=
∫
A

max(cf− ct,0)dA+
∫
A

max(ct− cf,0)dA. (23)

The only difference between Eqs. (23) and (22) is the def-
inition of the variable c. For the IME, c = 1 where SIC
∈ [0.1,0.8] and c = 0 elsewhere.

Figure 11 compares the IIEE and IME of NorHAPS
LAON and Free_run with two satellite observations (AMSR2
and SSMIS) and three model analyses (NEMO, TOPAZ4 and
neXtSIM). All the data are evaluated against the NIS ice
chart (total valid data 335). The discontinuities in the IIEE
and IME are due to the fact that the NIS ice chart is only
available on working days. The Baltic Sea is removed in all
the calculations, as neXtSIM does not cover this area. For
other areas, if a certain product has no data while the NIS ice
chart has a SIC > 0.8, then no IIEE and IME are accounted
for. This treatment is to remove the coastal effect on other
products. On the whole, the IME is about twice the IIEE,
indicating that modeling MIZ is considerably more difficult
than modeling sea ice edge. It is surprising to see that late
September to early October is the time of the lowest IIEE and
IME, whereas late June to early July is the time of the largest
IIEE and IME; this is ubiquitous in all the observations and
model analyses.

As shown in Fig. 5, the Free_run generally has a large bias
during the summer period. However, the bias is mainly lo-
cated in the central Arctic and Pacific marginal seas (Fig. 4),
particularly in the Beaufort, Chukchi, and New Siberian seas.
For the European Arctic as shown by the NIS ice chart
(Fig. 10), the bias is generally moderate (see Fig. 4). This
can also be seen in the IIEE and IME (Fig. 11). Except for
the summer IIEE which is apparently higher than the other
products (Fig. 11a), the Free_run IIEE and IME are generally
comparable to the largest IIEE and IME of the other products,
although significantly higher than those of LAON.

Table 1 summarizes the statistics of the IIEE and IME over
the whole period. It is seen that the two observation products
AMSR2 and SSMIS SIC have different capabilities to de-
scribe the sea ice edge and MIZ. SSMIS has higher capability
to capture the sea ice edge, whereas AMSR2 has higher ca-
pability to describe the MIZ. The CMEMS analyses (NEMO,
TOPAZ4, and neXtSIM) generally have larger IIEE and IME
than the SSMIS. TOPAZ4 has a markedly larger bias in the
simulated ice edge (see also Fig. 11a); however, it has a better

simulation of the MIZ than NEMO and neXtSIM (Fig. 11b).
On the contrary, neXtSIM has a relatively small bias in the
simulated ice edge but has a large bias in the simulated MIZ,
indicating an overestimate of the simulated SIC in the MIZ.
This is consistent with the spatial distribution in Fig. 10.

The NorHAPS Free_run has the highest mean IIEE and
IME, and the NorHAPS LAON has the lowest IIEE and
IME among all the products (Table 1). On average, the IIEE
and IME of the Free_run are about 70 % and 55 % higher
than those of LAON. Using Welch’s unequal variances t test
(Welch, 1947), we have estimated the p value (Table 1),
which indicates that the probability assuming a concerned
product (AMSR2, SSMIS, NEMO, TOPAZ4, neXtSIM, or
NorHAPS Free_run) does not have a statistically different
mean IIEE and IME from the NorHAPS LAON. It is seen
that all the p values are far smaller than 0.01, except SSMIS
with a p value of about 0.03 for the IIEE. It is not surpris-
ing that the p values for the NorHAPS LAON are both 1.0,
since they compare with the data themselves. It is particu-
larly noteworthy that the NorHAPS LAON produces a sig-
nificantly lower IIEE and IME than the observation AMSR2
SIC that is assimilated in NorHAPS, with the p values both
lower than 1.0× 10−10 for the IIEE and IME (Table 1). On
the whole, the improvement is especially pronounced during
the summer season (Fig. 11).

5.3 Hourly evolution

Operational sea ice forecasts rarely provide hourly products,
and neXtSIM in CMEMS is an exception. For comparison,
we selected two points close to the sea ice edge. One is in
the Fram Strait (0◦ E, 80◦ N) in April 2021 and the other
in the northern Barents Shelf (30◦ E, 81◦ N) in March 2022,
both covering 1 month (Fig. 12). Their exact locations are
shown as a red “x” and “+” in Fig. 1. The daily NIS ice
chart, AMSR2 SIC, and SSMIS SIC are also added for ref-
erence. All the data are interpolated to the two points us-
ing the nearest-neighbor method. It is seen that the daily
AMSR2 SIC generally has better agreement with the NIS ice
chart than the SSMIS SIC. This is partly due to the relatively
coarse spatial resolution of the SSMIS SIC, which could have
a smoothing effect near the ice edge, averaging high and low
SIC.

There are significant differences in the hourly SIC between
neXtSIM, Free_run, and LAON. On the whole, neXtSIM
tends to overestimate the SIC in the MIZ, as already men-
tioned (Figs. 10 and 11). For the March 2022 case (Fig. 12b),
both neXtSIM and Free_run significantly overestimate the
SIC, simulating the very open ice as very close ice. By
contrast, the NorHAPS LAON successfully reproduces the
evolution of the very open ice as classified by the NIS ice
charts. However, for the April 2021 case (Fig. 12a), while
the NorHAPS LAON generally captured the overall evolu-
tion of the SIC, it tends to underestimate the high SIC, par-
ticularly during 7–10 April 2021. By contrast, such high-SIC
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Figure 11. Integrated ice edge error (IIEE) and integrated MIZ error (IME) of different SIC products evaluated against the Norwegian ice
chart from 1 January 2021 to 30 April 2022: (a) IIEE and (b) IME.

Table 1. Statistics of IIEE and IME for the different SIC products evaluated against the NIS ice chart. The units of the mean and SD of
the IIEE and IME are 105 km2, in which SD denotes standard deviation. The p value denotes the probability assuming that the concerned
product does not have a statistically different IIEE or IME from NorHAPS LAON.

Product
IIEE IME

Mean SD p value Mean SD p value

AMSR2 2.22 0.91 8.04× 10−13 4.20 1.44 5.47× 10−11

SSMIS 1.89 0.68 3.02× 10−2 4.39 1.82 1.07× 10−12

NEMO 2.16 0.77 2.00× 10−12 4.89 1.70 1.51× 10−30

TOPAZ4 2.74 1.03 5.54× 10−41 4.62 1.56 5.44× 10−23

neXtSIM 1.99 0.73 6.91× 10−5 4.99 1.79 3.12× 10−32

NorHAPS Free_run 3.03 1.04 5.81× 10−62 5.50 1.89 3.81× 10−49

NorHAPS LAON 1.78 0.59 1.0 3.54 1.11 1.0

processes are very well captured by neXtSIM. A further im-
provement of the NorHAPS model and assimilation system
is therefore highly desirable.

The NorHAPS LAON also produces a continuous and
smooth change in the local SIC variation. On the contrary,
neXtSIM tends to produce abrupt changes in the local SIC
(often jumping between 0 and 1 immediately). Such abrupt
changes could partly be explained by the physical processes
(e.g., damage-induced rapid deformation) in neXtSIM. How-
ever, opening or closing of sea ice leads over 3 km wide in 1 h
is generally unlikely (considering the neXtSIM spatial reso-

lution of 7 km interpolated to a 3 km grid). More sub-daily
observations of the MIZ are needed to clarify such variations.

6 Discussion

6.1 Model and observation uncertainties

The overall goal of data assimilation is to find the opti-
mal estimate of the concerned variables, as close as possible
to the true values. Such an optimal estimate is generally a
weighted average of the model simulations and the observa-
tions, with the weights commonly being proportional to the
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Figure 12. Comparison of neXtSIM and NorHAPS hourly SIC close to the sea ice edge: (a) Fram Strait (0◦ E, 80◦ N) in April 2021;
(b) northern Barents Shelf (30◦ E, 81◦ N) in March 2022. The exact locations of these two points are shown as a red “x” and “+” in Fig. 1.
The NIS ice chart, AMSR2, and SSMIS SIC are daily and added for reference. All the data are interpolated to the corresponding locations
using the nearest-neighbor method.

inverse of the error covariance of the model and the observa-
tions. Therefore, the uncertainties of the model and the ob-
servations provide essential information for data assimilation
and need to be seriously treated.

In sea ice observations, uncertainty has gradually become
a standard of the operational products, e.g., SMOS SIT (Tian-
Kunze et al., 2014), weekly mean CS2SMOS SIT (Ricker
et al., 2017), and OSISAF SSMIS SIC (Tonboe et al., 2017;
Lavergne et al., 2019). Such estimated uncertainties provide
very useful information on the observed sea ice parameters
and are thus highly valuable for data assimilation.

Estimating model uncertainty remains one of the most dif-
ficult parts of data assimilation. The EnKF provides a feasi-
ble way to estimate this uncertainty. However, due to the non-
Gaussian distribution of SIC, applying EnKF for SIC uncer-
tainty estimate is very challenging. It can easily be biased
or even collapse into zero uncertainty in the winter central
Arctic (e.g., Lisæter et al., 2003; Fritzner et al., 2018). In the
current LAON assimilation, we have used a very simple for-
mulation (Eq. 13) to approximate the model uncertainty. The
results indicate that this simple equation may have captured
the essential part of the model uncertainty.

The local covariance assumption in the current LAON as-
similation may lose some useful information during the as-
similation. However, the heterogeneous spatial distribution

of the Arctic sea ice cover, particularly the existence of the
sea ice edge, may favor such a local covariance (simplified
as variance). In EnKF assimilation such as in the operational
TOPAZ4 system, the covariance is calculated from the pre-
vious 1 week, which at the ice edge can cause a noticeable
mismatch when applying the new analysis. The high resolu-
tion, local covariance, concurrent model and observation un-
certainties, and continuous assimilation in the LAON method
are likely the main reasons for a better simulation of the ice
edge and MIZ.

6.2 Data accuracy vs. independence

With continuous development of the remote sensing tech-
nique, it has become increasingly common to have multi-
ple observations for the same sea ice variables or parameters.
Such multiple data may have different coverage, resolution,
and accuracy. An important issue arising from this situation
is how to best use the observations in data assimilation and
model evaluation or whether we have some criteria to deter-
mine the data utilization during data assimilation and model
evaluation.

There has been little dispute about selecting appropriate
data for data assimilation or model evaluation alone. In gen-
eral, it is preferable to select the observation data with larger
spatial coverage and higher accuracy. For the spatial resolu-
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tion, a common practice is to choose the observations having
the closest resolution to the model, although data with other
resolutions are also utilized. There also seems to be implicit
agreement in the research community that the data accuracy
for model evaluation should not be lower than that for data
assimilation, whereas higher resolution and larger coverage
are generally preferable but not indispensable. In addition,
data independence is often stressed for model evaluation.

According to the timeliness, model evaluation can be sepa-
rated into two types: analysis evaluation and prediction eval-
uation. The prediction evaluation can basically be seen as in-
dependent of data assimilation. Consider a general data as-
similation and prediction evaluation loop: (1) data assim-
ilation of earlier observations, (2) model prediction, and
(3) prediction evaluation with new observations. Because the
new observations are independent of the earlier observations,
there is no inherent conflict between data assimilation and
prediction evaluation in terms of independence.

Unlike the prediction evaluation, large disagreement re-
mains on data usage for data assimilation and analysis eval-
uation in terms of accuracy and independence. When inde-
pendent, more accurate data are available (generally through
other instruments with limited temporal and spatial cover-
age), these data can be readily applied for analysis evalua-
tion. However, when such data are not available, we have
to consider other observations, including those that have al-
ready been assimilated. As a common practice, data assim-
ilation is performed earlier than analysis evaluation, where
the more accurate data will generally be first used for data
assimilation. In this case, no consensus has been reached on
whether to preferably use the same more accurate data or to
use other independent but less accurate data for analysis eval-
uation. In data science, evaluating model performance with
the data used for training is generally not acceptable because
it can easily generate overoptimistic and overfitted models.
This is reasonable as the trained model is heavily based on
the data. However, data assimilation has an essential differ-
ence from the model training. In particular, data assimilation
does not change the model itself (not for model parameter
estimation). Using the same data for analysis evaluation does
not necessarily lead to overoptimistic models, as using other
data would have other even more severe limitations. Since the
ultimate goal of data assimilation is to provide the optimal es-
timate, even the application of a cross-validation method for
analysis evaluation is not encouraged, as it would lose some
optimality by reserving the data from data assimilation. One
extreme case is perhaps quite intuitive: a true value (100 %
accuracy) would be best for both data assimilation and model
evaluation. With low-accuracy independent data, it remains
difficult to provide a convincing evaluation. Therefore, ac-
curacy should have a higher priority than independence for
analysis evaluation. This again stresses the importance of the
estimation of observation uncertainty, which can be seen as
a qualitative description of accuracy.

In the present study, we have used two sources of SIC data
for model evaluation: AMSR2 SIC and the NIS ice chart.
The AMSR2 SIC is assimilated in the present study and is
therefore closely related to the model SIC analysis. It is used
for SIC evaluation in Sect. 4. The NIS ice chart is an in-
dependent observation for evaluating the model SIC analy-
sis, and it is used in Sect. 5 for evaluating the sea ice edge
and MIZ. The main reason for such a distinction is that the
NIS ice chart provides a more accurate observation of sea
ice edge and MIZ, which are often underestimated in passive
microwave radiometer observations (e.g., Spreen et al., 2008;
Ozsoy-Cicek et al., 2009; Breivik et al., 2009; Posey et al.,
2015). On the contrary, the coarse resolution of the NIS ice
chart in the SIC space tends to provide a very rough estimate
of SIC, so the AMSR2 SIC would be more accurate for SIC
evaluation. This suggests that observations may have differ-
ent accuracies for different model variables, which is helpful
to consider during data assimilation and model evaluations.

7 Conclusions

In this paper, we have introduced the theory of LAON for
data assimilation, which is designed to gradually nudge the
model value to the optimal estimate. It is applied here for
assimilating the AMSR2 SIC into the multi-category CICE
model in the Norwegian High-resolution pan-Arctic ocean
and sea ice Prediction System: NorHAPS. A hindcast exper-
iment with and without the LAON assimilation is performed,
and the results are thoroughly evaluated against a variety of
sea ice and ocean observations as well as three CMEMS SIC
analyses. Based on the model evaluation, we have the follow-
ing conclusions.

– The LAON assimilation of SIC greatly improves the
simulation of SIC and its derivatives SIE and SIA. The
LAON SIC has a low mean RMSE of about 0.066 for
the whole period, whereas the Free_run SIC has a much
higher RMSE of about 0.15 during the winter season
and 0.3 during the summer season. The LAON assimi-
lation significantly improves the simulated sea ice edge
and MIZ evaluated against the NIS ice chart. It produces
a significantly lower IIEE and IME than the two passive
microwave radiometer observations AMSR2 and SS-
MIS, as well as the three CMEMS SIC analyses NEMO,
TOPAZ4, and neXtSIM, which use EnKFs and direct
insertion for data assimilation. LAON also produces a
continuous evolution of the simulated SIC, which pro-
vides a realistic description of sub-daily SIC evolution
with daily observations.

– The LAON assimilation of SIC improves the simula-
tion of SIT and SIV, with the largest improvements in
the melt season and from new seasonal sea ice formed
during the freezing period. In the present study, the spa-
tial pattern of the simulated SIT is noticeably improved
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after a 1-year LAON assimilation. The LAON assimila-
tion also reduces the overestimate of SIV, with the bias
in the second year being less than 3000 km3 compared
to over 4000 km3 in the Free_run simulation (Fig. 7).
However, the LAON assimilation of SIC generally has
limited improvement in the surviving MYI, and it may
take several years of assimilation to reach a notable im-
provement. Therefore, a direct assimilation of the SIT is
highly needed.

– The LAON assimilation of SIC improves the SST sim-
ulation. In particular, the LAON assimilation consider-
ably mitigates the large summer SST bias in the East
Siberian, Chukchi, and Beaufort seas, as well as in the
Hudson and Baffin bays. The LAON assimilation of SIC
also improves the SST simulation along the sea ice edge
throughout the year, with the most pronounced areas in
the Greenland and Barents seas. However, the assimi-
lation generally has little impact on the ice-free area in
the North Atlantic Ocean.

– The current NorHAPS reproduces the SSS very well in
the ice-free North Atlantic Ocean. However, it tends to
produce a large SSS bias in the Arctic, particularly in
the shelf seas, which likely results from inaccurate river
discharges, precipitation, and evaporation in the model,
as well as possible inaccuracy in the initial condition in
the Arctic. The SIC assimilation generally has a weaker
effect on the simulated SSS than the model SSS bias.
Nevertheless, the LAON SIC assimilation provides a
reasonable description of the seasonal SSS response to
the optimization of the sea ice cover. During the melting
season, the SIC assimilation removes the overestimated
sea ice, thus mitigating the SSS decrease due to the un-
realistic sea ice melting. During the freezing period, the
SSS tends to continuously increase due to the sea ice
freezing and brine rejection resulting from the relatively
lower SIT. A further investigation is needed to mitigate
the large model SSS bias.

– LAON is an efficient data assimilation method. The ex-
tra computational cost for the LAON assimilation is
negligibly small at about 5 % of the Free_run in the
present study. It also has a high capability to simu-
late the sub-daily evolution when only daily observa-
tions are available. These advantages provide a very
promising basis for further application in global high-
resolution coupled models. In the present study, due to
the large bias in the SIT field, our focus has been mainly
on the evaluation of the model analysis. Further evalua-
tion of model predictions will be performed in a follow-
ing study with additional SIT assimilation.
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