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Abstract. Snow conditions in the Northern Hemisphere are
rapidly changing, and information on snow depth is critical
for decision-making and other societal needs. Uncrewed or
unmanned aircraft systems (UASs) can offer data resolutions
of a few centimeters at a catchment-scale and thus provide
a low-cost solution to bridge the gap between sparse manual
probing and low-resolution satellite data. In this study, we
present a series of snow depth measurements using differ-
ent UAS platforms throughout the winter in the Finnish sub-
arctic site Pallas, which has a heterogeneous landscape. We
discuss the different platforms, the methods utilized, difficul-
ties working in the harsh northern environment, and the UAS
snow depth results compared to in situ measurements. Gen-
erally, all UASs produced spatially representative estimates
of snow depth in open areas after reliable georeferencing
by using the structure from motion (SfM) photogrammetry
technique. However, significant differences were observed in
the accuracies produced by the different UASs compared to
manual snow depth measurements, with overall root mean
square errors (RMSEs) varying between 13.0 and 25.2 cm,
depending on the UAS. Additionally, a reduction in accu-
racy was observed when moving from an open mire area to
forest-covered areas. We demonstrate the potential of low-
cost UASs to efficiently map snow surface conditions, and
we give some recommendations on UAS platform selection
and operation in a harsh subarctic environment with variable
canopy cover.

1 Introduction

Knowledge of changes in snow accumulation, depth, and
melt is crucial for nature and society in northern and alpine
regions. In the Northern Hemisphere especially, snow is im-
portant to local ecology providing shelter and protection
from harsh winter conditions and supporting early sum-
mer hydrological conditions (soil moisture, discharge, etc.)
and a unique environment in north and mountainous areas
(Demiroglu et al., 2019; Boelman et al., 2019). Also, north-
ern communities, tourism, and industry are adapted and often
dependent on snow conditions as winter resources (transport,
leisure) but also as water storage for hydropower and other
needs. Currently, snow resources are threatened by global
warming, which will have many direct and indirect effects
on northern environments (Carey et al., 2010; Bring et al.,
2016). Any changes in the magnitude, timing, and variabil-
ity of snowfall; accumulation patterns; and melting will al-
ter, among other things, water availability and soil moisture
(Barnett et al., 2005; Kellomäki et al., 2010), which, in turn,
impacts flood prediction and warning, hydropower genera-
tion (reservoir inflow forecasting), water management, trans-
portation, local authority daily management activities, and
the tourism sector (Veijalainen et al., 2010).

Currently, snow depths are routinely monitored using
manual snow course measurements (Lundberg et al., 2010;
Stuefer et al., 2020), single or a network of multiple auto-
matic stations (Zhang et al., 2017), or coarse satellite im-
ages (Frei et al., 2012). However, multiple studies have high-
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lighted how measurements based on a few sampling loca-
tions do not provide a representative picture of the wider spa-
tial snow distribution (Grünewald and Lehning, 2015), and
thus we lack reliable measures for spatially representative
high-resolution snow depth information. Though technolo-
gies for manual sampling of snow depth exist (Sturm and
Holmgren, 2018), on a wider scale manual measurements
quickly become time-consuming and expensive. Modern re-
mote sensing techniques can provide a cost-effective option
for more spatially and temporally comprehensive snow depth
measurements.

The remote sensing of snow depth has traditionally uti-
lized satellites or manned aircraft (Nolin, 2010; Dietz et al.,
2012). Satellite-derived snow depth products can offer global
coverage, but the spatial resolution is low (Frei et al., 2012).
Manned aircraft (e.g., airborne laser scanning, ALS), on the
other hand, can provide better resolution with regional cov-
erage (Deems et al., 2013; Currier et al., 2019), but the costs
can be comparably high. Recently popularized uncrewed or
unmanned aircraft systems (UASs) can offer resolutions of
a few centimeters at a catchment-scale and thus provide a
low-cost solution to bridge the gap between sparse manual
probing and low-resolution satellite data.

Numerous studies have assessed the potential of using
UASs in snow depth mapping during recent years in various
locations including alpine (Vander Jagt et al., 2015; Bühler
et al., 2016; De Michele et al., 2016; Bühler et al., 2017;
Adams et al., 2018; Avanzi et al., 2018; Fernandes et al.,
2018; Redpath et al., 2018; Revuelto et al., 2021), alpine
and prairie (Harder et al., 2016, 2020), meadow and forest
(Lendzioch et al., 2016; Broxton and van Leeuwen, 2020),
arctic (Cimoli et al., 2017), and freshwater lake settings
(Gunn et al., 2021). All the mentioned studies utilize struc-
ture from motion (SfM) photogrammetry, a low-cost sur-
vey technique developed from machine vision and traditional
photogrammetry techniques, which has become widely pop-
ular for geoscience applications such as topographic map-
ping (Westoby et al., 2012). The general approach when uti-
lizing SfM photogrammetry in snow depth mapping is to pro-
duce at least two (snow-free and snow-covered) digital sur-
face models (DSMs) and then differentiate between the ac-
quired models to estimate the snow depth.

The majority of studies utilizing the UAS–SfM approach
use a single UAS and either present results between only
two surveys or are in relatively open areas in alpine, prairie,
and/or arctic settings, with only a few exceptions providing
results for forested areas (e.g., Lendzioch et al., 2016; Brox-
ton and van Leeuwen, 2020) or providing a comparison be-
tween different UASs (Revuelto et al., 2021). In this study,
we present a series of snow depth measurements with differ-
ent UAS platforms throughout the winter in the Finnish sub-
arctic. We discuss the different platforms, the utilized meth-
ods, the difficulties of working in a harsh northern environ-
ment, and the results and their accuracy compared to in situ
measurements. The accompanying paper (Meriö et al., 2023)

delves deeper into the insights provided by the gathered data
on local snow accumulation and melting patterns. To our
knowledge, we are providing the first series of snow depth
measurements which rely on the UAS–SfM approach in a
heterogeneous, subarctic, boreal, forest landscape and give a
comparison of multiple UASs in variable lighting conditions
and landscapes.

2 Data and methods

2.1 Study area

The study site (68.00◦ N, 24.21◦ E) is near the Pallas-
Yllästunturi National Park in northern Finland, some 160 km
north of the Arctic circle (Fig. 1a). The site consists of
mostly mountaintop tundra, lower-elevation forests, wet-
lands, streams, and lakes (Aurela et al., 2015). The study site
is part of the Pallas research catchment, which hosts multiple
hydrological and meteorological observation stations (Mart-
tila et al., 2021). The measurements were done within the
Pallaslompolo catchment (total area 4.87 km2; Fig. 1b), east
of the Lommoltunturi and Sammaltunturi fells. The catch-
ment ranges in altitude from 268 to 375 m a.s.l (above sea
level) and drains into a large lake, Pallasjärvi. The climate
is characterized as a subarctic climate with persistent snow
cover during the winter. The long-term (1981–2010) mean
annual temperature and precipitation in the area are −1.0 ◦C
and 521 mm, respectively (Pirinen et al., 2012). One-third of
the annual precipitation falls as snow, and the annual maxi-
mum snow depth, measured at the end of March, averages at
104 cm, while the mean annual snow water equivalent (SWE)
was 200 mm in the period 1967–2020 (Marttila et al., 2021).
Snow melting usually occurs during the second half of May
or the beginning of June, and the first permanent snow typ-
ically appears in mid-October. Three subplots were chosen
within the study site catchment to reduce the aerial mapping
area to a more manageable size (Fig. 1b). Each subplot rep-
resents different land cover types in the area. One is an open
treeless area with waterlogged peat soils, here referred to as
mire area (approx. 14.4 ha). The other land cover is a mostly
coniferous-forest-covered area (approx. 15.9 ha), and one is
a mix between the two (approx. 15.4 ha).

2.2 Equipment

Three quadcopters were utilized in mapping the subplots:
a DJI Mavic Pro, a DJI Phantom 4 Advanced, and a DJI
Phantom 4 RTK (Table 1). The Phantom 4 RTK represents
the recently popularized UAS type which utilizes two GNSS
(global navigation satellite system) receivers, one operating
as a base station and one as a rover. Using a RTK (real-
time kinematic) or PPK (post-processing kinematic) solu-
tion, positioning accuracy can achieve a level of a few cen-
timeters, compared to the accuracy of a few meters obtained
by the autonomously operating single-frequency GNSS re-
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Figure 1. (a) Location of the study site south of Lake Pallasjärvi and east of the Lommoltunturi and Sammaltunturi fells. The location of
(b) is highlighted by the white rectangle. (Hillshade courtesy of National Land Survey of Finland.) (b) Locations of the manual snow course
measurements and an automatic ultrasonic snow depth sensor, as well as outlines of the subplots (mire, mixed, and forest read from northwest
to southeast) and the eBee mapping area within the catchment. (Orthophoto courtesy of National Land Survey of Finland.)

ceiver found in consumer-grade UASs such as the DJI Mavic
Pro or the DJI Phantom 4 Advanced (e.g., Tomaštík et al.,
2019). Besides the quadcopters, a fixed-wing senseFly eBee
Plus RTK drone was utilized during the four field campaigns
to collect larger datasets encompassing either the subplots in
a single flight or the whole catchment area (Fig. 1b).

The DJI Mavic Pro quadcopter is a comparably small
UAS with a weight of less than 800 g and a folded size of
8.3× 8.3× 19.8 cm; it thus represents a very portable option
considering aerial mapping in areas that are difficult to tra-
verse, especially during the winter months. The Mavic Pro
has a comparably small 1/2.3 in. sensor with 12.3 megapix-
els and a 26 mm (35 mm equivalent) lens, with the focus be-
ing mostly on portability.

The DJI Phantom 4 Advanced and the DJI Phantom 4 RTK
quadcopters are roughly 19× 29× 29 cm in size and weigh
around 1.4 kg, and both have 1 in. sensors with 20 megapix-
els and a 24 mm (35 mm equivalent) lens. The DJI Phantom
4 quadcopters represent average-sized UASs when consid-
ering the portability in this context. Compared to the Mavic
Pro, the Phantom 4 quadcopters have an increased maximum
speed (65 vs. 72 km h−1), increased maximum flight time (27
vs. 30 min), and arguably better wind resistance. The larger
sensor size of the Phantoms also improves their light gath-
ering ability, which is generally linked to improved image
quality.

The senseFly eBee Plus RTK fixed-wing UAS has a
wingspan of 110 cm and a weight (including camera) of
around 1.1 kg. The large size greatly reduces the portability
of the eBee. However, being a fixed-wing UAS, the eBee has
a greatly improved flight time (59 min) and maximum speed
(110 km h−1) and consequently has a greatly improved areal

coverage when compared to the quadcopters. The eBee was
equipped with a senseFly S.O.D.A. with a 1 in. 20 megapixel
sensor and a 29 mm (35 mm equivalent) lens. As the eBee
Plus RTK fixed-wing UAS cannot ascend and descend ver-
tically, it requires a comparably flat and large clearing for
takeoff and landing when compared to the quadcopters.

External ground control points (GCPs) and an RTK GNSS
receiver to measure location are needed for rectifying the
gathered aerial imagery, especially with UASs which are not
equipped with internal RTK correction. In this study, a Trim-
ble R10 and a Topcon HiPer V RTK GNSS receiver were
utilized for measuring the GCP locations. The necessity of
marking and measuring the GCPs can be burdensome for the
field crew, especially during the polar nights, when the time
window for flights is short and the GCPs might have to be
crafted in the dark. Furthermore, carrying the extra equip-
ment severely reduces the portability of the UAS, although,
with a field crew of two or more people, it is somewhat eas-
ier to divide the load or use a sled, even when equipped with
skis. The RTK-equipped UASs also require an RTK base
station. However, as static equipment which can be placed
into a suitable location, the RTK system is much less work-
intensive, although the purchasing cost of it is many times
higher.

2.3 UAS data acquisition and field data collection

Eight UAS campaigns were carried out at the site between
June 2018 and June 2019 (Table 2). The utilized equipment
varied between different campaigns, depending on the avail-
ability of UASs and field crews. Of the eight campaigns, five,
from December 2018 to April 2019, were during the snowy
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Table 1. The general specifications of the utilized UASs.

UAS Mavic Pro Phantom 4 Adv. Phantom 4 RTK eBee Plus RTK

General portability High Average Average Low
Flight time (min) 27 30 30 59
Max speed (km h−1) 65 72 72 110
Camera CMOS sensor size 1/2.3 in. 1 in. 1 in. 1 in.
Effective megapixels 12.3 20 20 20
Focal length (mm, 35 mm equiv.) 26 24 24 29
Field of view (◦) 79 84 84 64
Ground resolution at 100 m (cm per pixel) 3.1 2.7 2.7 2.3

season. During the January campaign, only the mire subplot
was mapped with the DJI Mavic Pro, and the data were of
poor quality due to the camera lens mechanism freezing in
very low temperatures, which reached −30 ◦C. During the
22–25 April campaign, the data from eBee Plus RTK were
lost due to a likely electronic malfunction. The target ground
sampling distances (GSDs) for the UASs were 3.7 cm for
the DJI Mavic Pro, 3.0 cm for the DJI Phantom 4 Advanced,
3.0 cm for the DJI Phantom 4 RTK, and 4.5 cm for the eBee
Plus RTK. Slight variations in the target GSDs were inher-
ently required due to different sensors/focal lengths and dif-
ferent flight heights because the aim was to demonstrate typ-
ical use case scenarios, e.g., ability to capture a subplot (or
all subplots in the case of the eBee) with a single battery. The
targets for forward and side overlap were a minimum of 80 %
and 75 %, respectively.

With the non-RTK UAS, GCPs were utilized to rectify
the models. The number of GCPs varied slightly for differ-
ent sites and campaigns, as the low-light conditions during
the polar night and the peak snow depth later in the spring
limited the mobility of the field crew. During the snow-free
surveys, painted plywood targets were utilized as GCPs, and
during the snow-covered surveys, the targets were painted
straight onto the snow surface. In addition to the temporary
GCPs, six permanent GCPs were installed on top of ∼ 2 m
wooden posts and were tested in each subplot. On average,
13 temporary GCPs (8–17, median 13.5) and 6 permanent
GCPs (PGCPs) were utilized to rectify the non-RTK data
(Fig. 3) during the winter campaigns. The summer campaign
of June 2018 utilized 18–21 GCPs per subplot. For the RTK
UAS, a single GCP was used for correcting elevation bias.
Also, an average of 16 elevation checkpoints (6–38, median
14.5) were measured at random locations every time at each
plot to get a rough estimate of the external accuracy of the
generated DSMs compared to the RTK GNSS reference ele-
vation.

Besides the gathered UAS data, we also utilized airborne
laser scanning (ALS) data with a reported maximum verti-
cal standard error of 15 cm, collected by the National Land
Survey of Finland during the summer of 2018 as part of
the national survey campaign. The DEM based on ALS

data has a ground resolution of 1 m per pixel. Snow depth
reference data were collected from a snow course passing
through all the subplots, consisting of 46 fixed snow stake
measurement points, placed an average of 52 m apart (stan-
dard deviation 6.2 m), of which 35 were within the sub-
plots (Fig. 1b). The snow depth monitoring and∼ 50 m spac-
ing between measurements follows the Finnish Environment
Institute nationwide snow survey procedure, which is de-
signed to monitor differences in snow depth and water equiv-
alent in different land covers (Kuusisto, 1984; Lundberg and
Koivusalo, 2003). Snow depth reference data were also avail-
able through the use of an automatic ultrasonic snow depth
sensor (Campbell Scientific SR50-45H) with an accuracy of
±1 cm, located in the forest subplot at the highest elevation
of the study area and operated by the Finnish Meteorological
Institute.

2.4 Data processing and analysis

The acquired aerial data were processed using Agisoft Pho-
toscan/Metashape Professional v1.4.5./v.1.6., which employs
the SfM technique to produce orthomosaics and DSMs. The
SfM technique is described in detail by Westoby et al. (2012).
To better harmonize the data, each dataset was processed us-
ing high-quality and moderate depth filtering settings. The
produced orthomosaics and DSMs were further processed in
ESRI ArcGIS 10.6 (Fig. 2). Due to the poor sub-canopy pen-
etration of the SfM technique (Harder et al., 2020), masking
was used to omit data at the locations and in the immediate
vicinity of trees (Fig. 3). The three masks were generated us-
ing maximum likelihood supervised classification, which is
a probabilistic approach derived from Bayes’ theorem (Ah-
mad and Quegan, 2012). In the classification, each pixel is
assigned to one of the desired classes to which it has the
highest likelihood of belonging, based on the training sam-
ples. The supervised classification was based on the ortho-
mosaics from the 3 April 2019 survey that had snow-free
tree canopies, thus showing the high contrast between the
canopies and snowy ground. Further analysis revealed that
sometimes the SfM technique struggled with depth mapping
of deciduous and snow-covered trees, thus leading to artifi-
cially high snow depths immediately next to trees/masks. To
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Table 2. UASs utilized during different campaigns.

UAS campaign DJI Mavic Pro DJI Phantom 4 Adv. DJI Phantom 4 RTK eBee Plus RTK

12–15 June 2018 x
10–13 December 2018 x x x x
21–25 January 2019 xa

18–22 February 2019 x x x
1–5 April 2019 x x x
22–25 April 2019 x x xb

20–21 May 2019 x x
4–5 June 2019 x x

a Data were of poor quality. b Data were lost.

mitigate the errors, the masks were further buffered by 36 cm,
which was found to be a good compromise for removing ar-
tificially high values without losing too much data close to
the trees.

After manual cleanup of a few classification errors, the
masks were utilized for canopy removal before subtracting
the snow-free (bare-ground) DSM from each snow-covered
DSM, thus producing the DEMs of difference (DoDs) high-
lighting the snow depth. Finally, the DoDs (used interchange-
ably with snow depth map) were aggregated to 50 cm per
pixel resolution before further analysis. The aggregation al-
lowed us to smoothen some small-scale variability while re-
taining a reasonable resolution for the snow–vegetation inter-
action analysis discussed in the accompanying paper (Meriö
et al., 2023). The 50 cm per pixel resolution was decided as
a good middle ground following the findings of De Michele
et al. (2016), who demonstrated how the standard deviation
of UAS-derived snow depth increases with increasing reso-
lution but stabilizes at a ≤ 1 m pixel size.

To estimate the uncertainty of generated DSMs, the dif-
ference between UAS and RTK GNSS elevation 1z at each
checkpoint was calculated following Eq. (1):

1zt = DSMS,t − zCP,t , (1)

where t is the date of survey, DSMS is the snow surface eleva-
tion from the UAS survey, and zCP is the checkpoint elevation
measured with RTK GNSS. Considering error propagation
when differentiating between two DSMs (e.g., Brasington et
al., 2003), the precision of the DoDs highlighting the snow
depth was estimated following Eq. (2):

u=
√
σ(1zt )2+ σ(1zG)2, (2)

where σ(1zt ) is the standard deviation for the difference be-
tween UAS and RTK GNSS elevation 1z for each winter
survey and σ(1zG) is the standard deviation for the differ-
ence between UAS and RTK GNSS elevations for the snow-
free ground DSM. Since the DSMs are not free of bias (i.e.,
mean error), error propagation for mean errors highlighting
the trueness of DoDs were calculated following Eq. (3):

m= µ(1zt )−µ(1zG) , (3)

where µ (1zt ) is the mean error for the difference between
UAS and RTK GNSS elevation 1z for each winter survey
and µ (1zG) is the mean error for the difference between
UAS and RTK GNSS elevations for the snow-free ground
DSM. Snow depth for each pixel hsDSM was calculated fol-
lowing Eq. (4):

hsDSM,t = DSMS,t −DSMG, (4)

where DSMS is snow surface elevation from the UAS sur-
vey and DSMG is the snow-free ground elevation from
the UAS/ALS survey. The difference between UAS-derived
snow depth and manual snow course measurements1hs was
calculated following Eq. (5):

1hst = hsDSM,t − hsSL,t , (5)

where hsSL,t is the manual snow depth measurement.

3 Results

Figures 4 and 5 show the resulting orthomosaics and snow
depth maps for different subplots generated from the data
collected with the DJI Phantom 4 RTK on the dates of
12 December 2018 (DEC 12), 21 February 2019 (FEB 21),
3 April 2019 (APR 03), and 24 April 2019 (APR 24). Sim-
ilar maps were also produced for the other UAS data when
available (see Table 2).

3.1 Comparison to GNSS checkpoints

Figure 6a combines measurements from the FEB 21 and
APR 03 surveys using the DJI Phantom 4 RTK (P4RTK), DJI
Mavic Pro (Mavic), and eBee Plus RTK (eBee) to highlight
the effects of land cover on the difference between the DEM
and GNSS survey elevations as calculated following Eq. (1).
Separate boxplots for each subplot and date are provided in
the Supplement (see Fig. S1 in the Supplement), including
results for DJI Phantom 4 Advanced (P4A), which was only
utilized during the DEC 12 winter survey. There is a general
trend of increase in the differences between the DEM and
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Figure 2. Flowchart for the handling and analysis of the UAS datasets.

Figure 3. Above: the subplots and locations of the permanent and temporary ground control points utilized during the successful winter
measurement campaigns. Below: tree masks generated for each subplot.

GNSS survey elevations when moving from the mire sub-
plot to mixed and forest subplots, which is observable with
all the UASs. Based on Levene’s test (Levene, 1960), there
are statistically significant differences in sample variances at
a significance level of 0.05 with each UAS. When compar-
ing the UASs to each other, there are statistically significant
differences in the mire and forest subplots, where P4RTK
and eBee produce fairly similar data, but Mavic is clearly the
least accurate. In each case, P4RTK has the best error statis-
tics.

Figure 6b combines all subplots for the DEC 12, FEB 21,
and APR 03 surveys to highlight the effect of date (light-
ing conditions) on the uncertainty of UAS measurements
compared to checkpoints. There are no statistically signifi-
cant differences in sample variances for any UAS from the
DEC 12 low-light polar-night conditions and the FEB 22 and

APR 03 measurements, although there is a slight improve-
ment (∼ 1–2 cm) in mean absolute error (MAE) from DEC
12 to FEB 22 with each UAS. However, when the UASs are
compared to each other, P4RTK produced the most accurate
data in each case, and statistically significant differences in
variance can be observed in the DEC 12 and FEB 21 surveys,
where P4RTK and eBee are again fairly similar, but Mavic
performs poorly.

Table 3 highlights the precision of snow depth DoDs cal-
culated following Eq. (2). With P4RTK, the precision is most
stable in the mire subplot (in the < 4.5 cm range), whereas
there is slightly more variation in the mixed and forest sub-
plots, ranging from 3.98 to 7.18 cm. With Mavic, the preci-
sion is in each case lower than with P4RTK or eBee, and
there is a tendency for accuracies to decrease from the mire
subplot to the mixed and forest subplots. With eBee, the pre-
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Figure 4. Orthomosaics for different subplots produced from the DJI Phantom 4 RTK data obtained during the winter surveys.

cision is very similar to P4RTK in the mire subplot. However,
there is also a general tendency for precision to decrease to-
wards mixed and forest subplots with eBee, the exception
being the APR 03 dataset, during which eBee also provides
slightly better precision in the mire subplot when compared
to P4RTK. Table 4 highlights the trueness of snow depth
DoDs calculated following Eq. (3). Again, P4RTK provides
the best accuracy overall, although in a few instances Mavic
has a better trueness. With eBee, the trueness suffers from
large biases of ∼ 16.6 and ∼ 10.0 cm for the snow-free bare-

ground DSMs for the mire and mixed subplots, respectively
(see Table S1 in the Supplement).

3.2 Comparison to manual snow course measurements

Manual snow course measurements resulted in mean snow
depths and standard deviations of 36.8 and 4.8 cm for the
DEC 12 survey, 76.5 for the FEB 21 survey, 86.9 and 9.1 cm
for the APR 03 survey, and 35.8 and 20.6 cm for the APR 24
survey. A general trend of increasing snow depth variation in
the landscape was observed as winter progressed, indicated
by the standard deviations. During the APR 24 survey, the
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Figure 5. Snow depth maps for different subplots produced from the DJI Phantom 4 RTK data obtained during the winter surveys.

Table 3. DoD precision during different measurement periods and in study locations.

Mire Mixed Forest

P4RTK Mavic eBee P4RTK Mavic eBee P4RTK Mavic eBee

DEC 12 (cm) 4.18 7.76 4.53 6.54 13.19 7.87 4.16 11.59 9.20
FEB 21 (cm) 4.13 6.93 5.16 4.70 10.67 6.17 7.18 21.87 9.40
APR 03 (cm) 4.48 7.17 4.13 5.71 9.67 8.66 5.34 10.23 5.66
APR 24 (cm) 4.08 6.04 4.98 10.26 3.98 8.05
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Figure 6. (a) Difference between the DEM and GNSS survey elevations for each subplot from the FEB 21 and APR 03 surveys. (b) Difference
between the DEM and GNSS survey elevations for the DEC 12, FEB 21, and APR 03 surveys from all subplots. IQR signifies interquartile
range.

Table 4. DoD trueness during different measurement periods and in study locations.

Mire Mixed Forest

P4RTK Mavic eBee P4RTK Mavic eBee P4RTK Mavic eBee

DEC 12 (cm) 4.13 −3.73 −13.18 3.61 −2.64 −7.70 −0.06 −1.56 −4.12
FEB 21 (cm) −0.04 −5.57 −16.52 −0.37 −5.71 −8.24 −0.14 9.62 3.09
APR 03 (cm) 4.14 −3.28 −15.78 −1.53 −4.26 −6.80 −4.76 −0.89 −9.60
APR 24 (cm) 0.58 −7.48 −0.60 −1.27 −6.03 3.86

variation was high due to the spring melt and resulting flood-
ing already being especially pronounced in the mire area.
If the mire area is ignored, the mean snow depth and stan-
dard deviations were 46.2 and 10.5 cm for APR 24. Figure 7
shows examples of snow depth distributions, along with man-
ual snow course and single automatic ultrasonic snow depth
measurements during different surveys, obtained using the
P4RTK data. The histogram shapes are generally long-tailed
normal distributions. The biggest deviances from a normal
distribution are seen on the mire and mixed subplots during
the APR 24 spring melt.

Table 5 shows the statistics for differences between the
UAS-derived snow depths and the manual snow course mea-
surements calculated following Eq. (4). The data are pro-
vided for snow depth DoDs utilizing the UAS-derived snow-
free DEM and the ALS-derived snow-free DEM. It should
be noted that the values do not account for any potential sys-

tematic or random errors in the manual snow course mea-
surements. The snow depth measurements with P4RTK are
of practically equal accuracy regardless of whether UAS or
ALS data are used as the snow-free bare-ground model. With
Mavic and eBee, utilizing the ALS bare-ground model pro-
duced generally more accurate results. Mavic and eBee tend
to produce a higher number of outlier magnitude errors when
compared to P4RTK, which clearly generates the most accu-
rate data of the three, especially when UAS data are used as
a snow-free model.

Not including outliers, the greatest differences between the
snow course and UAS-derived snow depths were observed in
the mire subplot during the APR 24 survey. These differences
are most probably related to the spring melt and flooding that
were pronounced on the mire subplot (see Fig. 4), which re-
sulted in some of the snow course points being under a mix-
ture of muddy water and ice. In the manual snow course sur-
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Figure 7. Snow depth histograms for different subplots based on P4RTK data during the DEC 12, FEB 21, APR 03, and APR 24 surveys.
Vertical lines indicate the median snow depth for each subplot. The boxplots indicate the results from manual snow course measurements,
and the red dot indicates data from an automatic ultrasonic snow depth sensor located in the forest subplot.

Table 5. The difference between UAS-derived snow depths and manual snow course measurements for the combined winter dataset. Mean
error (ME), mean absolute error (MAE), standard deviation (SD), root mean square error (RMSE), minimum error (MIN), and maximum
error (MAX) are provided for snow depth DoDs utilizing the UAS-derived snow-free DEM and the ALS-derived snow-free DEM (indicated
by the -L suffix).

P4RTK P4RTK-L Mavic Mavic-L eBee eBee-L

n 140 140 140 140 105 105
ME (cm) 3.9 3.9 −1.4 7.4 −5.7 3.4
MAE (cm) 9.7 10.3 18.4 13.2 16.4 10.7
SD (cm) 12.4 13.1 25.1 19.2 22.6 13.6
RMSE (cm) 13.0 13.7 25.2 20.6 23.3 14.1
MIN (cm) −18.7 −22.3 −49.6 −24.0 −94.9 −30.0
MAX (cm) 54.8 57.0 104.0 102.0 43.0 52.7

vey, these points were marked as having zero snow depth.
However, the UAS approach, based on SfM photogramme-
try and differentiating between the DEMs, produces aver-
age snow depths of 23–35.6 cm for these points. Table 6
shows the statistics for differences between the UAS-derived
snow depths and manual snow course measurements when
the APR 24 survey data are removed from the dataset, i.e.,

when all UASs have an equal number of data points. The
removal of the APR 24 data, including the spring melt data
points from the mire subplot, further demonstrates the better
accuracy of P4RTK compared to the other UASs.

In the early snow season with low snow depths, no
clear correlation was observable on individual subplots/dates
when comparing manual snow depth measurements and the
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Table 6. Difference between UAS-derived snow depths and manual snow course measurements for the DEC 12–APR 03 dataset. Mean error
(ME), mean absolute error (MAE), standard deviation (SD), root mean square error (RMSE), minimum error (MIN), and maximum error
(MAX) are provided for snow depth DoDs utilizing the UAS-derived snow-free DEM and the ALS-derived snow-free DEM (indicated by
the -L suffix).

P4RTK P4RTK-L Mavic Mavic-L eBee eBee-L

n 105 105 105 105 105 105
ME (cm) 2.1 2.1 −2.7 6.0 −5.7 3.4
MAE (cm) 8.7 8.9 18.8 12.6 16.4 10.7
SD (cm) 10.5 10.7 26.1 19.6 22.6 13.6
RMSE (cm) 10.7 10.9 26.3 20.4 23.3 14.1
MIN (cm) −18.7 −22.3 −49.6 −24.0 −94.9 −30.0
MAX (cm) 33.7 32.0 104.0 102.0 43.0 52.7

UAS-derived snow depth pixels at the location of the manual
measurement (Table 7). This is likely due to the snow depth
being quite uniform in the early winter. Thus, the small vari-
ations in the snow depth are not captured well due to inher-
ent random errors in the UAS-based snow depth measure-
ments. A clear increase in correlation is observed when the
winter progresses and the snow depths increase and/or local
snow depth variability increases. If the flooding mire sub-
plot during APR24 is excluded, the correlation coefficient
for P4RTK would be as high as 0.86. When all subplots from
different field trips were combined, statistically significant
Pearson correlations were observed for each UAS at a sig-
nificance level of 0.05. The correlations between UAS and
field measurements were 0.89 for P4RTK, 0.64 for Mavic,
and 0.60 for eBee, when utilizing UAS data as a snow-free
bare-ground model. Correspondingly, the correlations were
0.87 for P4RTK, 0.74 for Mavic, and 0.81 for eBee when
utilizing ALS data for the snow-free model.

Figure 8a combines measurements from the DEC 12, FEB
21, and APR 03 surveys to highlight the effect of land cover,
and Fig. 8b combines all subplots to highlight the effect of
survey date on the difference between UAS-derived snow
depths and manual snow course measurements when UAS
data are used as the snow-free bare-ground model. Figure 9a
and b provide corresponding data for when ALS data are
used as the snow-free model. Separate boxplots for each sub-
plot and date are provided in the Supplement (Fig. S3).

When utilizing UAS data as a snow-free model, there are
statistically significant differences in sample variances with
respect to land cover (Fig. 8a) for each UAS, but there are
no significant differences concerning survey date (Fig. 8b).
A similar trend that was observed with the GNSS check-
points can also be seen, with accuracy decreasing when mov-
ing from mire to mixed–forest subplot. When comparing the
UASs to each other, there are statistically significant differ-
ences for each subplot and survey date with P4RTK always
producing the most accurate data and eBee producing the
second best, aside from the mixed subplot, where a large bias
was observed with eBee when comparing the DEM and DoD
data on GNSS checkpoints (Table 4).

When ALS data are used as a snow-free model, there are
similarly significant differences in sample variances to land
cover with each UAS (Fig. 9a) but also for survey date with
Mavic and eBee (Fig. 9b). Again, the accuracies decrease
with a move from mire to mixed–forest. With respect to sur-
vey date, Mavic performed poorly during the DEC 12 and
FEB 21 surveys, and eBee performed poorly during the FEB
21 survey. There is noticeable positive bias with all UASs
during the DEC 12 survey and a negative bias during the
APR 03 survey. To a degree, these biases are also seen in
comparison to checkpoints, especially in the case of the DEC
12 survey when all UASs had the tendency of overestimating
the snow surface elevation. When comparing the UASs to
each other, statistically significant differences in variances
between the UASs are observed only with the forest sub-
plot and DEC 12 survey. In both cases, Mavic clearly pro-
duces the least accurate data. In general, the utilization of
ALS data as a snow-free model clearly benefits Mavic and
eBee in all situations, whereas there is no practical differ-
ence with P4RTK, which again produces the most accurate
data in each case. However, with the ALS, the accuracies of
eBee and Mavic are in general much closer to P4RTK. Ta-
ble 8 shows the RMSEs for the data displayed in Figs. 8 and
9 for a comparison, with existing literature discussed in the
next section.

4 Discussion

4.1 Accuracy of UAS-based snow depth measurements
for different platforms

When considering the SfM approach and the resulting model
accuracy to detect snow depth, the biggest differences in
the specifications of the UAS and flight parameters used
in the study were between the camera sensors and focal
lengths, as well as the utilized flight height and georefer-
encing method. The flight heights had to be optimized to be
able to fly individual missions in 15–20 min with the mul-
ticopters to account for the reduced battery performance in
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Table 7. Correlation between UAS-derived snow depths and manual snow course measurements. Pearson correlation coefficients are provided
for all surveys utilizing the UAS-derived snow-free DEM and the ALS-derived snow-free DEM (indicated by the -L suffix).

P4RTK P4RTK-L Mavic Mavic-L eBee eBee-L

DEC 12 0.05 0.18 −0.20 −0.12 −0.16 0.00
FEB 22 0.39∗ 0.47∗ 0.12 0.18 0.31 0.52∗

APR 03 0.68∗ 0.59∗ 0.58∗ 0.70∗ 0.49∗ 0.60∗

APR 24 0.68∗ 0.59∗ 0.54∗ 0.61∗

∗ Statistically significant at the p < 0.05 level.

Figure 8. (a) Difference between the snow depth DoDs and manual snow course measurements for each subplot from the DEC 12, FEB
21, and APR 03 surveys utilizing the UAS-derived snow-free DEM. (b) Difference between the snow depth DoDs and manual snow course
measurements for the DEC 12, FEB 21, and APR 03 surveys from all subplots utilizing the UAS-derived snow-free DSM.

cold weather. This resulted in slight differences in the re-
sulting ground sample distances between the UASs. How-
ever, by far the greatest differences were in the georeferenc-
ing methods, with Mavic (and P4A) relying solely on GCPs
and P4RTK and eBee relying more on RTK correction to en-
sure high positional accuracy of the UAS, with a single GCP
utilized to mitigate possible elevation bias.

The accuracy of GCP-based georeferencing and the suit-
able number of GCPs have been discussed by several au-
thors (Tonkin and Midgley, 2016; Martínez-Carricando et al.,
2018; Sanz-Ablanedo et al., 2018; Yu et al., 2020). Generally,
such assessments are done in open-area locations, where the
planning and distribution of the GCP network is relatively
easy. In complex, forested environments with thick snow
cover, the distribution of GCPs is generally more challeng-
ing, considering the lack of mobility, time constraints, and
a lack of open areas with an unrestricted view of the sky.

Nevertheless, these kinds of studies can be used as a base-
line to assess the quality of GCP placement in this study.
The importance of uniform GCP distribution for high data
accuracy was highlighted by Tonkin and Midgley (2016),
although they also note that excess GCPs lead to diminish-
ing returns. Sanz-Ablanedo et al. (2018) demonstrated that a
planimetric RMSE accuracy similar to ±GSD was achieved
with approx. 2.5–3 GCPs per 100 photos. Vertical accuracy
improved towards 1.5× GSD when using more GCPs, with
the maximum in their tests being achieved with 4 GCPs per
100 photos. Martínez-Carricando et al. (2018) demonstrated
that with stratified GCP distribution, there was a clear im-
provement in vertical accuracy when moving from 0.25 to
1 GCP per hectare (RMSE from 30.8 to 5.2 cm), whereas
moving from 1 to 2 GCPs per hectare (RMSE 4.3 cm) yielded
diminishing returns. Yu et al. (2020) argued that for survey
areas of 7–39 ha, a minimum of 6 GCPs were required for an
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Figure 9. (a) Difference between the snow depth DoDs and manual snow course measurements for each subplot from the DEC 12, FEB
21, and APR 03 surveys utilizing the ALS-derived snow-free DEM. (b) Difference between the snow depth DoDs and manual snow line
measurements for the DEC 12, FEB 21, and APR 03 surveys from all subplots utilizing the ALS-derived snow-free DSM.

Table 8. Root mean square errors (RMSEs; in cm) for the difference between UAS-derived snow depths and manual snow course measure-
ments for the different subplots (DEC 12–APR 03 surveys combined) and different survey dates (subplots combined).

P4RTK P4RTK-L Mavic Mavic-L eBee eBee-L

Mire 7.2 6.6 17.2 8.4 17.4 8.6
Mixed 10.6 13.0 21.9 13.1 32.4 16.0
Forest 14.1 12.6 38.1 34.2 14.7 16.9
DEC 12 12.0 11.9 27.8 23.2 22.8 12.9
FEB 21 10.7 10.5 29.9 24.9 27.1 17.1
APR 03 9.1 10.3 20.8 10.0 19.5 11.5

accuracy of 10 cm, and more than 12 GCPs were required for
optimal results.

In recent years, multiple studies have also compared DSM
accuracies produced by GCP georeferencing and DSM ac-
curacies produced through RTK/PPK solutions (Benassi et
al., 2017; Forlani et al., 2018; Bolkas, 2019; Padró et al.,
2019; Tomaštík et al., 2019; Zhang et al., 2019). Tomaštík
et al. (2019) compared the PPK approach to georeferenc-
ing with 4 and 9 GCPs under two different canopy condi-
tions (study area approx. 270 ha) and concluded that the PPK
approach offered better or equal accuracy and was not influ-
enced by vegetation seasonal variation, unlike GCP georefer-
encing. Zhang et al. (2019) compared PPK to georeferencing
with 8 GCPs on cultivated land (study area approx. 1.7 ha)
before and after plowing and concluded that a PPK solution
produces the same accuracy as the GCP approach, but a sin-

gle GCP is necessary to correct possible vertical bias. Com-
paring the RTK approach to georeferencing with 12 GCPs
in an urban area (approx. 18 ha) with buildings, roads, car
parks, and meadows, Forlani et al. (2018) had similar results
showing how RTK can offer a similar accuracy when at least
1 GCP is utilized to correct vertical bias.

The three subplots in this study were between approx.
14.4–15.9 ha, and the average number of GCPs was 13 per
subplot (8–17 depending on the survey), resulting in an av-
erage of 5.1 GCPs per 100 photos and 0.87 GCP per hectare
or 7.38 GCPs per 100 photos and 1.27 GCP per hectare when
the 6 PGCPs are also included. Thus, the number of GCPs
utilized was within the range suggested by Sanz-Ablanedo
et al. (2018), Martínez-Carricando et al. (2018), and Yu et
al. (2020). Furthermore, there was no significant Kendall’s
rank correlation between the number of GCPs utilized and
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the accuracy (e.g., standard deviation or mean absolute er-
ror) of snow depth measurements with Mavic, which relied
solely on GCP georeferencing. Nevertheless, with regards
to accuracy, P4RTK utilizing a single GCP clearly outper-
formed Mavic utilizing all available GCPs and PGCPs, al-
though it should be noted that Mavic has a smaller sensor
size and had slightly lower (∼ 0.7 cm) GSD. More surpris-
ingly, the accuracy of P4A utilized during the DEC 12 sur-
veys was clearly worse compared to P4RTK and was more
in line with Mavic data (see Supplement), although the two
Phantoms have the same sensor size and focal length and
had practically the same GSD. This might indicate that RTK-
supported data acquisition outperforms the traditional GCP-
based method in these conditions even when only utilizing
a single GCP with the RTK. This is somewhat in line with
the results of Tomaštík et al. (2019), who reported that the
PPK approach was not influenced by seasonal variation in
vegetation, unlike the GCP georeferencing approach. How-
ever, it should also be noted that the DEC 12 measurements
were made during low-light polar-night conditions in which
a comparably short time difference between the subsequent
flights could significantly affect the amount of available light.
The eBee data show a clear negative bias in the mire subplot
and on some occasions positive bias in the forest subplot (see
Fig. S2 in the Supplement), possibly indicating small orienta-
tional errors in the datasets acquired for the whole catchment.
Thus, for large datasets, a single GCP might not be sufficient
for RTK-equipped UASs. A recent study by Rauhala (2023)
highlighted that a UAS survey in a 1 km2 area significantly
benefitted from the utilization of multiple GCPs even when
utilizing PPK correction.

Processing the non-RTK data with only PGCPs did not
provide sufficiently accurate data, as broad-scale systematic
errors were observed with a pattern sometimes referred to
as “bowing” or “doming” which can affect SfM-processed
nadir-only imagery (James and Robson, 2014). However,
solely using GCPs resulted in slightly reduced vertical ac-
curacy compared to utilizing both GCPs and PGCPs. The
PGCPs would have been particularly helpful in remedy-
ing potential vertical or horizontal offsets between different
models with further georeferencing done using, for exam-
ple, an iterative closest point (ICP) algorithm, which would
provide comparably stable control points regardless of the
snow depth. To be practical with the RTK–UAS workflow,
the PGCPs would have to be shaped in a way that discour-
ages the accumulation of snow on top of the PGCP to remove
the need for manual cleaning of accumulated snow.

Recently, Revuelto et al. (2021) did a comparison of dif-
ferent UASs in snow depth mapping, including two afford-
able multicopters (Parrot ANAFI and DJI Mavic Pro 2) and a
senseFly eBee Plus fixed-wing UAS, which was also utilized
in this study. They concluded that under same illumination
conditions, all the tested platforms provide equivalent snow
depth products in terms of accuracy. However, they noted that
all the snow depth maps utilized the same snow-free point

cloud (acquired by the eBee Plus) and thus are not fully inde-
pendent. In our case, statistically significant differences were
observed between the UASs in each subplot and survey date
when utilizing independent UAS-derived snow-free models.
When utilizing the non-independent ALS-derived snow-free
model, however, significant differences were only observed
in the forest subplot or during the low-light DEC 12 condi-
tions. This clearly highlights the importance of an accurate
snow-free model and how the snow-free model can be a bot-
tleneck with regards to snow depth map accuracy when op-
erating certain UASs (e.g., eBee or Mavic). It might be ben-
eficial to acquire a very accurate snow-free model with lidar
as a baseline for snow depth mapping, especially in a com-
plex, forested landscape. Another option would be to make
extra effort in acquiring a very high-resolution and high-
accuracy snow-free model with UAS–SfM utilizing profes-
sional UASs, even if the winter measurements would be per-
formed with a more portable platform. Especially in northern
locations, there generally are very long daily aerial survey
windows as the Sun never sets and the fieldwork is overall
less demanding.

Revuelto et al. (2021) also noted that in challenging light-
ing (overcast sky), all of the UASs failed to properly retrieve
the snow surface. Diffuse lighting during cloudy conditions
and homogeneous snow cover, especially immediately after
fresh snowfall, results in low contrast that can cause gaps
and large outliers in the generated point clouds (Harder et al.,
2016; Bühler et al., 2017). Some authors have also noted that
direct sunlight and for example patchy snow cover can lead to
similar issues due to overexposed pixels, especially if relying
on automatically adjusted exposure (Harder et al., 2016). In
our case, there were surprisingly no statistically significant
differences for any UAS between the low-light conditions
in December and sunny conditions in February and April
when utilizing independent UAS-derived snow-free models,
although a slight increase in accuracy is seen in the DEC
12 to FEB 21 survey. This could be explained by the po-
lar twilight (civil twilight) providing enough directional light
to create sufficient contrast during solar noon and clear-sky
conditions. Also, the low snow depths with less spatial vari-
ability during the early winter results in a feature-rich snow
surface due to the natural variability in the forest floor topog-
raphy and vegetation. Further steps were taken to adjust the
flight speed and camera parameters to allow a lower shutter
speed and only a slight increase in ISO value (max two stops
to ISO400) to keep the image noise tolerable.

However, we observed that regardless of the utilized snow-
free model, the accuracy was more dependent on land cover
type. This seems to be the general trend observed in other
studies utilizing a UAS–SfM approach in snow depth mea-
surements, although most studies report accuracy only in
open areas or do not separate between different vegetation
types, with reported RMSEs varying between∼ 6–58 cm de-
pending on the study (Vander Jagt et al., 2015; De Michele et
al., 2016; Harder et al., 2016; Bühler et al., 2017; Cimoli et
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al., 2017; Adams et al., 2018; Avanzi et al., 2018; Revuelto
et al., 2021). Bühler et al. (2016) report an RMSE of 7 cm
for areas with short grass and 30 cm for areas with brushes
and/or high grass, while Broxton and van Leeuwen (2020) re-
port an RMSE of∼ 10 cm in sparsely forested area and∼ 10–
20 cm in densely forested area. Harder et al. (2020) utilized
the UAS–SfM approach in mapping snow depths at study
sites classified by vegetation height to open (< 0.5 m), shrub-
covered, and tree-covered (> 2 m) areas, looking at two sites
each. They report an RMSE of 10–30 cm in open areas, 13–
19 cm in shrub areas, and 20–33 cm in tree areas with dense
needleleaf forest having a higher RMSE (33 cm) compared
to leaf-off deciduous trees (20 cm).

In our case, none of the GNSS checkpoints or snow stakes
were directly under canopy, yet there is a clear difference
between the accuracies obtained for open mire and mixed–
forest subplots. It is difficult to determine whether the dif-
ferent studies that include forested areas have reference data
points under canopy or between trees. Nevertheless, the gen-
eral trend seems to be for forest areas providing less accu-
rate snow depth data. Possible explanations for this may in-
clude reduced GNSS accuracy, understory vegetation, shad-
ows, lighting-related issues, and the reduced accuracy of SfM
procedure for more complex landscape.

Recent studies have also started to investigate a UAS–
lidar approach to snow depth mapping partly due to the
greater canopy penetration of lidar systems compared to
SfM. Harder et al. (2020) compared UAS–SfM and UAS–
lidar approaches and reported the UAS–lidar approach as
equally successful in penetrating deciduous and needleleaf
canopies, although the errors were larger (RMSE 13–17 cm)
in vegetated sites compared to open areas (9–10 cm). The
UAS–SfM approach had a wider variation in errors as dis-
cussed above. Jacobs et al. (2021) utilized a more moder-
ately priced UAS–lidar system, about a third of the price
of the system utilized by Harder et al. (2020), and report
RMSEs of 1.2 cm for open areas and 10.5 cm for mixed for-
est sites consisting of deciduous and coniferous trees. How-
ever, the system utilized by Jacobs et al. (2021) had a rela-
tively short battery life, and the total reported survey time of
2 h for the 9.8 ha survey was relatively high. Dharmadasa et
al. (2022) also utilized a UAS–lidar approach and report RM-
SEs of 4.3–22 cm for field sites, 7.9–12 cm for deciduous for-
est sites, and 19–22 cm for coniferous boreal forest sites. Fur-
thermore, Dharmadasa et al. (2022) argue that remote sens-
ing techniques alone are not able to provide comprehensive
snow depth distribution under a coniferous canopy despite
the increased point density provided by the UAS–lidar ap-
proach when compared to a traditional ALS approach. Re-
cent study by Štroner et al. (2023) highlighted that while
mapping snow-free forest sites, low-cost UAS–lidar (DJI
Zenmuse L1) can produce much better coverage under the
canopy but still has significantly lower vertical accuracy than
a high-quality UAS–SfM camera (DJI Zenmuse P1) that is
half the price.

4.2 Operational challenges and further considerations

UAS platforms and their use in general topographic map-
ping have been reviewed by Nex and Remendino (2014) and
Colomina and Molina (2014), whereas relevant camera sys-
tem and camera setting considerations have been reviewed by
Mosbrucker et al. (2017) and O’Connor et al. (2017), as well
as different challenges related to, for example, location and
weather by Duffy et al. (2018) and Kramar et al. (2022). Typ-
ical platform considerations, such as payload, flight speed,
and wind resistance, are relevant for snow depth mapping,
but there are also some special considerations to be made.
First, battery life may drop severely in sub-zero tempera-
tures. Secondly, as plowed roads may not be available, porta-
bility can become an issue depending on whether a snowmo-
bile or sled is available or if the crew has to rely on snow-
shoes or skis. Considering the selection of suitable camera
systems and camera settings for arctic and subarctic condi-
tions, the short days and low-light conditions during winters
in high latitudes require extra attention. An emphasis should
be placed on selecting a lens with a relatively large aperture
and a large sensor which allows a high enough ISO value
(i.e., sensor gain) to provide sufficient shutter speeds without
compromising the signal-to-noise ratio. The typically greater
dynamic range of large sensors is also important, since the
polar-night conditions have lower contrast over snow cover,
while low sun angles during early spring create heavy shad-
ows. However, a large sensor often increases the camera size
and weight, which in turn affects the battery life, UAS plat-
form size, and the portability of the system.

When operating in subarctic winter, weather-related phe-
nomena produce the clearest challenges in terms of preflight
preparations, operation, data quality, and battery life. In our
case, study site evaluation and preliminary flights were per-
formed during the spring preceding the study winter to find
the optimal flight parameters and suitable takeoff and landing
areas. Due to the remoteness of the site, the amount of time
and the field crew size required for the ground and aerial sur-
veys were also considered, with a target of completing each
survey within 1 week. The most notable changes were to the
size of the survey area in order to ensure it could be covered
in the available time with the required data quality. This was
needed because of the issues with the drone battery life, the
short daily aerial survey window due to limited daylight time
during midwinter, often unpredictable weather conditions,
and deep soft snow conditions slowing down the deployment
of GCPs. Unpredictable weather places unavoidable limita-
tions on all UAS operations. In our case, the planned sur-
veys were postponed several times during the winter due to
weather conditions, including snowfall, very low tempera-
tures, and high wind speeds.

During fieldwork, wind and temperature data from local
weather stations were used to find optimal time windows for
the surveys. However, partly because of the nearby fells, sud-
den wind gusts forced flight operations to be halted a few
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times. On one occasion, sudden gusts stopped the autopilot-
controlled UAS in its place during a mission and manual
“tacking” maneuvers were required to bring it back to the
takeoff and landing location. The field experience indicated
that the more robust drones (P4A, P4RTK, eBee) could be
operated at up to 10 m s−1 with higher wind/gust speeds,
whereas the lighter-weight Mavic could not be confidently
operated in such conditions.

Furthermore, the topography in the area caused rapid tem-
perature changes, especially in the open mire located in lower
elevations between the fells. The survey in January was un-
successful due to very low temperatures (−30 ◦C), which
caused freezing of the DJI Mavic lens system, leading to
unfocused aerial photographs. One potential cause of this
may be condensation and subsequent freezing of water in the
lens machinery caused by temperature changes while moving
from the warm storage area to a cold car and again to a warm
research station premise before outdoor flights in cold con-
ditions. One possible solution could be to use desiccant bags
to reduce moisture and use a more heavily insulated bag for
the storage of the UASs to help slow acclimation to a new
environment.

UAS manufacturer guidelines usually give general recom-
mendations on the operational temperature range of the UAS
batteries. In cold climates, the lower limit is naturally the
concern, and significant drops in capacity or even malfunc-
tions can be experienced in low, sub-zero temperatures (Ran-
quist et al., 2017). Some smart batteries can also have digital
warning indicators or even power cutoffs preventing takeoff
if the temperature is too low, thus requiring pre-heating. One
good option is to store the batteries in a heat box to retain
an optimal battery temperature and as much capacity as pos-
sible during fieldwork. The UAS powertrain in quadcopters
was observed to create enough heat to keep the drone oper-
ational in cold temperatures. However, there might be vari-
ability between different models of UASs. Consumer-grade
drones are usually certified to operate in above-zero temper-
atures with some exceptions to above −10 ◦C (Ranquist et
al., 2017). Real-world experience has shown that P4RTKs
rated as operating in temperatures between 0 and 40 ◦C can
be fully operated in under −10 ◦C temperatures.

Temperatures close to 0 ◦C also caused problems due to
moisture, especially for the fixed-wing systems. As high-
lighted by Revuelto et al. (2021), fixed-wing models that rely
on belly landing, such as eBee, can have issues with rugged
or wet surfaces. We only experienced issues with eBee dur-
ing the spring melt season, when a malfunction resulted in a
loss of data, possibly due to water getting into the electron-
ics during a landing on wet snow. Fixed-wing UASs with
VTOL (vertical takeoff and landing) capabilities, which have
recently become more widely available, may partly mitigate
the issues of sub-optimal landing areas while still retaining
the advantages of fixed-wing platform, such as longer flight
times and larger mapping area extent compared to multi-
copters.

There are several advantages to the UAS–lidar approach
over the UAS–SfM, including more accurate DEM extrac-
tion when flying over homogenous textures and the possibil-
ity of better penetration of the tree canopy. Compared to the
UAS–SfM approach, which uses passive RGB camera sen-
sors, UAS–lidar, as an active measurement technique, pro-
vides the possibility of nighttime operation, which becomes
very useful during the winter months in northern latitudes
when the day only lasts for a couple of hours. Furthermore,
the price of a professional grade UAS–lidar setup is con-
siderably higher than a professional grade UAS–SfM setup,
although prices have dropped noticeably over recent years.
Nonetheless, relatively cheap UASs relying on UAS–SfM,
such as DJI Mavic Pro, can do the job, especially in more
open areas and under good lighting conditions. A slightly
more expensive RTK-equipped UAS can be well worth the
extra costs as the need for GCPs are reduced and the data
quality is generally superior due to better sensor capabilities
and improved georeferencing.

Finally, some recommendations and observations can be
summarized:

– The obtained results indicate that UASs with RTK cor-
rection and a single GCP for bias correction can provide
sufficient accuracy for snow depth mapping with much
less fieldwork involved, thus improving efficiency and
safety.

– For considerably larger areas than the subplots
(< 20 ha), multiple GCPs would likely be beneficial
even with RTK-capable UASs.

– An accurate snow-free model is essential since any er-
rors will propagate to snow depth models.

– A snow-free baseline obtained with ALS can benefit
some UASs, especially in complex, forested landscapes.

– Polar twilight can provide enough (directional) light
during solar noon and in clear-sky conditions for suf-
ficient contrast required in UAS–SfM processing.

– Consumer-grade and professional UASs can be fully
operated in under −10 ◦C temperatures, but care should
be taken to keep batteries warm and to avoid quick tem-
perature changes moving outdoors.

5 Conclusions

Our analysis indicates that the measurement accuracy of
snow depth using the UAS–SfM approach in subarctic con-
ditions is associated with the (i) the UAS platform, (ii) land
cover type, and to a lesser degree (iii) light conditions (i.e.,
polar twilight vs. direct sunlight) during flights. Significant
differences between the UAS platforms were observed with
overall RMSEs varying between 13.0 to 25.2 cm, depend-
ing on the UAS. However, data from all platforms could be
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usable in further analysis and to produce spatially detailed
snow depth information, especially during the times in win-
ter when the snow depths relative to the uncertainty of snow
depths are high (i.e., high signal-to-noise ratio).

All the tested UAS platforms exhibited increased uncer-
tainty when operated in forest or mixed landscapes com-
pared to open mire areas, even though none of the GNSS
checkpoints or snow course measurement points were di-
rectly under canopy. A small increase in accuracy was ob-
served when the data collected during low-light polar-night
conditions were compared to data collected in brighter con-
ditions in the spring; these differences was generally not sta-
tistically significant, however. Of the tested platforms, eBee
Plus RTK and DJI Mavic Pro clearly benefitted accuracy-
wise from utilizing ALS data for the snow-free model. This
highlights the importance of an accurate snow-free model as
any large errors will propagate to all the snow depth maps.
The DJI Phantom 4 RTK did not see benefits from utilizing
ALS data and provided the best data quality in each situation.

The DJI Phantom 4 RTK provided the best overall accu-
racy (RMSE 13.0 cm) and correlation (r = 0.89) with the
manual snow course measurements. Recommendation can
be made for similar platforms utilizing RTK or PPK with
at least 1 GCP for snow depth mapping in areas of similar
size (< 20 ha). Our findings present the potential of the UAS–
SfM approach for measuring snow depth spatially and accu-
rately in harsh subarctic conditions and under the influence
of canopy structures. We propose that this technology should
be further explored and taken as part of regular snow moni-
toring schemes to help identify spatial snow cover changes,
snow accumulation patterns, and overall snow depths.
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