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Abstract. Improved modelling of snow emissivity is needed
to improve the assimilation of surface-sensitive atmospheric
sounding observations from satellites in polar regions for
numerical weather prediction (NWP). This paper evaluates
emissivity simulated with the Snow Microwave Radiative
Transfer (SMRT) model using observations of Arctic tun-
dra snow at frequencies between 89 and 243 GHz. Measure-
ments of snow correlation length, density and layer thick-
ness were used as input to SMRT, and an optimisation rou-
tine was used to assess the impact of each parameter on sim-
ulations of emissivity when compared to a set of Lamber-
tian emissivity spectra, retrieved from observations of tun-
dra snow from three flights of the Facility for Airborne At-
mospheric Measurements (FAAM) aircraft. Probability dis-
tributions returned by the optimisation routine demonstrate
parameter uncertainties and the sensitivity of simulations to
the different snow parameters. Results showed that SMRT
was capable of reproducing a range of observed emissivities
between 89 and 243 GHz. Varying correlation length alone
allowed SMRT to capture much of the variability in the emis-
sivity spectra; however, MAE (MAPE) decreased from 0.018
(3.0 %) to 0.0078 (1.2 %) overall when the thickness of the
snow layers was also varied. When all three parameters were
varied, simulations were similarly sensitive to both correla-
tion length and density, although the influence of density was
most evident when comparing spectra from snowpacks with
and without surface snow. Simulations were most sensitive
to surface snow and wind slab parameters, while sensitiv-
ity to depth hoar depended on the thickness and scattering
strength of the layers above, demonstrating the importance of
representing all three parameters for multi-layer snowpacks

when modelling emissivity spectra. This work demonstrates
the ability of SMRT to simulate snow emissivity at these fre-
quencies and is a key step in the progress towards modelling
emissivity for data assimilation in NWP.
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1 Introduction

Satellite microwave sounding observations in the Arctic en-
hance the skill of numerical weather prediction (NWP) fore-
casts for both high- and mid-latitude regions (Lawrence
et al., 2019; Duncan et al., 2021; Laroche and Poan, 2021).
The high spatial and temporal coverage of polar-orbiting
satellites makes them an important source of sounding data
over the high latitudes, where conventional observations
are limited. Instruments such as the Microwave Humidity
Sounder (MHS), the Advanced Microwave Sounding Unit
A (AMSU-A) and the Advanced Technology Microwave
Sounder (ATMS), as well as up-coming instruments, the Mi-
crowave Sounder (MWS) and Microwave Imager (MWI),
due to be launched on Metop – Second Generation (Metop-
SG) satellites in the mid-2020s (EUMETSAT, 2023a), mea-
sure key atmospheric sounding channels. Currently, how-

Published by Copernicus Publications on behalf of the European Geosciences Union.



4326 K. Wivell et al.: Evaluating SMRT emissivities at 89–243 GHz

ever, many surface-sensitive observations, i.e. channels with
weighting functions that peak in the lower troposphere, are
not assimilated in polar regions, particularly in winter, due
to the highly variable surface emissivity of snow and sea ice
(Geer et al., 2014). Snow emissivity depends on snowpack
microstructure and stratigraphy, which evolve over time due
to precipitation, wind redistribution and grain metamorpho-
sis (Grody, 2008). This seasonal evolution introduces uncer-
tainty into emissivity retrievals and modelling, particularly
given the sparse in situ snow data in these regions and the
influence of variability in snowpack layering and microstruc-
ture on scattering.

Accurate modelling of emission from snow-covered sur-
faces could improve the assimilation of surface-affected ra-
diances over current methods, where NWP systems rely on
emissivity estimates from brightness temperature (Tb) mea-
surements in window channels or from emissivity atlases
(Geer et al., 2014; Lawrence et al., 2019; Hirahara et al.,
2020). To achieve this, NWP models require both accurate
predictions of the physical snow properties which impact
surface emission for layered snowpacks and a reliable snow
microwave emissivity model driven by these physical prop-
erties, to be used by the radiative transfer forward operator
in an assimilation system. Improvements have been made
to the physical modelling of snow in land surface models,
such as the introduction of multi-layer snow schemes in the
Met Office JULES (Joint UK Land Environment Simulator;
Walters et al., 2019) and ECMWF H-TESSEL (Hydrology
Tiled ECMWF Scheme for Surface Exchanges over Land;
Arduini et al., 2019) models. Further improvements can be
made through better understanding and representation of the
snow parameters which are most critical to microwave emis-
sivity and the processes that influence them.

This paper focuses on the microwave emissivity modelling
aspect of microwave radiance assimilation for NWP. Previ-
ous studies (Harlow and Essery, 2012; Hirahara et al., 2020)
have assessed emissivity simulations from snow microwave
emission models such as the Microwave Emission Model of
Layered Snowpacks (MEMLS) and the multi-layer Helsinki
University of Technology (HUT) snow model. Hirahara et al.
(2020) demonstrated the positive impact of accurate mi-
crowave emissivity modelling in an integrated forecasting
system using the ECMWF Community Microwave Emission
Modelling platform (CMEM), which contains the multi-layer
HUT snow model. However, improvements were only seen
up to 20 GHz, highlighting the need for improved emissivity
modelling at higher frequencies. Harlow and Essery (2012)
used MEMLS to simulate emissivity spectra between 89 and
183 GHz, which were compared to area-averaged emissivity
spectra observed from an aircraft. They found that MEMLS
simulations were most sensitive to parameters such as corre-
lation length and thickness in the top-most layers of the snow
but found that MEMLS could not simulate all emissivity
spectra within measurement uncertainty without accounting
for surface roughness or Mie scattering. Harlow and Essery

(2012) were limited by a lack of quantitative measurements
of the microstructure; therefore, snow type profiles measured
in the field were related to correlation length bounds from the
literature (Wiesmann et al., 1998).

The Snow Microwave Radiative Transfer (SMRT; Pi-
card et al., 2018) model has been developed as a modular
active–passive microwave radiative transfer model for multi-
layer snow, offering flexibility in the choice of electromag-
netic and microstructure models. This paper aims to assess
SMRT’s ability to simulate snow microwave emissivities be-
tween 89 and 243 GHz. The MACSSIMIZE (Measurements
of Arctic Clouds, Snow and Sea Ice nearby the Marginal Ice
ZonE) field campaign in Trail Valley Creek (TVC), Canada,
in 2018 provided a dataset of physical snow properties ob-
served across 29 snow pits, as well as ground and airborne
microwave Tb measurements. The snow pit observations in-
clude quantitative measurements of microstructure in the
form of specific surface area (SSA), which improves on vi-
sual grain size estimate datasets from previous campaigns.
These observations were of tundra snow, which covers a large
proportion of the Arctic and is associated with relatively
shallow snowpacks composed of large-grained, low-density
depth hoar, overlain by a fine-grained high-density wind
slab and low-density fresh snow layers (Sturm et al., 1995).
SMRT simulations of Tb between 89 and 243 GHz for three-
layer snowpacks, driven by observed snow properties from
MACSSIMIZE, were evaluated in Sandells et al. (2023). Al-
though simulations gave reasonable agreement with ground
and airborne observations at 89 GHz, there was less agree-
ment at higher frequencies, with snow pit simulations and
airborne observations having statistically different distribu-
tions, even when accounting for the atmospheric contribu-
tion. A key challenge in the analysis was the spatial disparity
between point-based simulations and the larger spatial scale
of airborne observations.

This paper attempts to address the limitations of Sandells
et al. (2023), by using a Markov chain Monte Carlo (MCMC)
algorithm to randomly search over the full range of TVC
snow pit observations for sets of parameter values that, when
used as input to SMRT, produce simulated emissivities that
match a set of observed emissivity spectra. To do this, SMRT
was coupled to the Shuffled Complex Evolution Metropo-
lis (SCEM-UA; Vrugt et al., 2003) algorithm, based on the
method of Harlow and Essery (2012). Observed spectra be-
tween 89 and 243 GHz were generated by clustering approx-
imately 2000 airborne observations from MACSSIMIZE and
were deemed to be representative of variability in tundra
snow emissivity. The results provide a probability distribu-
tion for parameters of interest, which indicates the sensitivity
of emissivity simulations to different snow parameters. The
key aims of this paper are to assess the ability of SMRT to
simulate a range of emissivity spectra within the constraints
of observed snow parameters and to identify which param-
eters are most important for accurate modelling of surface
emissivity, as these parameters will need to be represented

The Cryosphere, 17, 4325–4341, 2023 https://doi.org/10.5194/tc-17-4325-2023



K. Wivell et al.: Evaluating SMRT emissivities at 89–243 GHz 4327

for emissivity modelling to be effective in an assimilation
system.

The paper is structured as follows: Sect. 2 introduces the
MACSSIMIZE campaign (Sect. 2.1), the airborne data, and
the method for retrieving observed emissivities (Sect. 2.2)
and ground-based data collected during the campaign
(Sect. 2.3), followed by descriptions of SMRT (Sect. 2.4),
the MCMC sampler SCEM-UA (Sect. 2.5) and the setup of
the retrievals (Sect. 2.6). Section 3 presents the results of
the MCMC retrievals, and the discussion and conclusions are
given in Sect. 4.

2 Data and methods

2.1 MACSSIMIZE campaign

The MACSSIMIZE field campaign took place in Trail Val-
ley Creek (TVC), NWT, Canada, in March 2018 as part of the
Year of Polar Prediction, an international, cross-disciplinary
programme of polar science studies coordinated by the Polar
Prediction Project of the World Meteorological Organization
(WMO). TVC consists of a mix of wind-blown open tundra
areas and valleys with snow drifts and shrub vegetation, typi-
cal of Arctic tundra regions. The stratigraphy at the bottom of
tundra snowpacks tends to be controlled by shrubs, underly-
ing topography and strong temperature gradients, while lay-
ers above this are influenced by wind-driven processes (Ben-
son and Sturm, 1993; Sturm and Benson, 2004; Rutter et al.,
2019).

Measurements focused on eight areas of interest (AOIs) as
described in Sandells et al. (2023), the locations of which are
shown in Fig. 1. The AOIs were chosen to capture the range
of topographies, aspects and vegetation characteristics of
TVC. Figure 1 also shows a map of broad topographic classi-
fications for TVC: flat upland plateau, flat valley bottom and
slopes (Rutter et al., 2019). Between 14–22 March, in situ
snowpack measurements on the ground were co-located with
flights of the Facility for Airborne Atmospheric Measure-
ments (FAAM) BAe-146 research aircraft. This paper uses
data from three flights (C087, C090 and C092) flown on 16,
20 and 22 March. The locations of snow pits where ground-
based measurements were made, along with example flight
tracks within the AOIs, are also shown in Fig. 1.

Precipitation and wind during the campaign caused
changes in surface snow conditions between flights. Snow-
fall between flights C087 and C090 introduced a low-density
fresh snow layer, which was evident in pits dug around this
time. Increased wind speed before the third flight then re-
distributed the surface snow, altering snowpack stratigraphy.
Freezing rain earlier in the season also introduced an ice layer
to most snowpacks. Figure 2 shows how air temperature, pre-
cipitation, wind speed and wind direction changed during the
campaign, as well as a wind rose demonstrating the prevail-

ing wind direction. The vertical lines show the time of each
flight.

2.2 Airborne data and emissivity retrievals

Airborne Tb measurements were made using the Microwave
Airborne Radiometer Scanning System (MARSS; McGrath
and Hewison, 2001) and the International Submillimetre Air-
borne Radiometer (ISMAR; Fox et al., 2017) on board the
FAAM aircraft. Both instruments are along-track scanning
radiometers containing dual-sideband heterodyne receivers
measuring between 89 and 664 GHz. The position of these
instruments on the side of the aircraft allows both upward
and downward observations to be made. On flights discussed
in this paper, instruments were configured to make only
downward-viewing observations during AOI overpasses to
increase the number of observations made over ground sites.
The zenith and calibration views were obtained in regions
outside the AOIs.
Tb measurements at 89, 157 and 183 GHz from MARSS

and 118 and 243 GHz from ISMAR allowed for the retrieval
of emissivity spectra. Frequencies above 243 GHz are not
considered because the high atmospheric opacity means that
satellite observations at higher frequencies have little surface
sensitivity, and emissivity retrievals can have large errors.
The emissivity retrieval is based on the methods described in
Harlow (2009), where observations of upwelling and down-
welling brightness temperature close to the surface are used
to determine both emissivity and effective surface tempera-
ture using the relationship

Tb,up,surf = εTs,eff+ (1− ε)Tb,down,surf, (1)

where Tb,up,surf and Tb,down,surf are surface upwelling and
downwelling brightness temperatures, Ts,eff is the effec-
tive surface temperature, and ε is emissivity. Tb,up,surf and
Tb,down,surf are determined from aircraft-level observations
by correcting for absorption and emission from the atmo-
spheric layer between the aircraft and the surface. An effec-
tive Lambertian value of Tb,down,surf was derived from air-
borne observations at multiple zenith angles (Harlow, 2009),
as a Lambertian surface assumption has been shown to bet-
ter represent snow surfaces at microwave frequencies over a
specular assumption (Guedj et al., 2010; Harlow and Essery,
2012; Bormann, 2022). Observations from multiple channels
centred on a gaseous absorption line (e.g. water vapour line
at 183 GHz or oxygen line at 118 GHz) share the same emis-
sivity and effective temperature but will have different values
of Tb,up,surf and Tb,down,surf. This means both ε and Ts,eff can
be determined. By assuming that Ts,eff is approximately inde-
pendent of frequency, Eq. (1) is used to calculate ε at window
channel frequencies. To ensure consistent viewing geometry,
Ts,eff at 183 GHz is used to calculate ε for the MARSS chan-
nels (89, 157 and 183 GHz) and Ts,eff at 118 GHz to calculate
ε for the ISMAR channels (118 and 243 GHz).
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Figure 1. Topographic classification of Trail Valley Creek, NWT, Canada, with locations of snow pits, areas of interest (AOIs) and an
example of flight tracks within the AOIs. The inset demonstrates the location of TVC in the Northwest Territories, Canada. Adapted from
Sandells et al. (2023).

Figure 2. (a) Hourly meteorological data from Environment Canada Trail Valley station (WMO ID 71683) during the MACSSIMIZE
campaign (Environment and Climate Change Canada, 2023). The dashed lines indicate flight times at the start of TVC overpasses for C087
on 16 March, C090 on 20 March and C092 on 22 March 2018. (b) Wind rose showing prevailing wind direction based on data in the third
graph of panel (a).
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Figure 3. Emissivity spectra retrieved from airborne measurements
(grey lines) and centroids of eight clusters (numbered 0–7) identi-
fied by k-means clustering.

MARSS and ISMAR scan patterns are not synchronised,
so observations from the two radiometers do not correspond
to exactly the same ground locations. Retrieved emissivi-
ties from the two instruments were mapped onto locations
of ISMAR observations by spatially averaging all observa-
tions where the beam centre location was within 50 m of each
ISMAR data point. This resulted in 1916 observed emis-
sivity spectra. An evaluation of the sensitivity of emissiv-
ity retrievals to errors in observed brightness temperatures
(of ±1 K) and of assumed parameters, such as temperature
and humidity of the atmospheric layer between the aircraft
and the surface, suggests that the retrieval error is approx-
imately 0.01 for frequencies between 89 and 157 GHz and
0.02 for frequencies between 183 and 243 GHz. The larger
error at higher frequencies is due to increased sensitivity to
the amount of water vapour in the atmospheric layer be-
low the aircraft. These values are used as observation er-
rors in the SCEM-UA retrievals (Sect. 2.5). These errors do
not include uncertainty due to frequency-dependent changes
in Ts,eff, which would have the greatest impact at 89 GHz,
increasing uncertainty by a maximum of 0.004. This corre-
sponds to a maximum error in Ts,eff of±3 K, based on differ-
ences between 118 and 183 GHz Ts,eff, and an average vari-
ability in observed snowpack temperature of 2.9 K. This is
not expected to have a significant impact on the SCEM-UA
retrievals.

Retrieved emissivities were grouped using k-means clus-
tering to give eight emissivity spectra, which are used as
observations in the SCEM-UA retrievals. The number of
clusters was chosen to represent variability in the retrieved
emissivity while providing distinct spectra from a significant
number of observations. Figure 3 shows the eight emissivity
spectra (coloured lines), which are the centroids of the eight
clusters and are referred to as observations throughout the
rest of the paper, and all the observed spectra used to gen-

erate them (grey lines). The range of spectral shapes reflects
the variability in snow properties observed during the three
flights. Clusters 0 and 2 were the only spectra where emissiv-
ity increased between 89 and 243 GHz, although all clusters
show a slight decrease in emissivity at 183 GHz. Emissivity
values ranged from 0.55 to 0.80, with the lowest emissivity
values associated with cluster 2 and the highest with cluster
7, which had a peak at 118 GHz. Tests were carried out to
determine if this peak was caused by the Lambertian surface
assumption in the emissivity retrieval; however, running the
retrieval for a specular surface produced a similar spectrum.
Given the steep change in emissivity, it may be difficult for
SMRT to simulate this spectra.

2.3 Snowpack measurements

Ground-based measurements of snow microstructure were
made in 29 snow pits across eight AOIs. The snow pit lo-
cations were aligned with the aircraft flight tracks, as shown
in Fig. 1. Vertical profile measurements of density (ρsnow in
kg m−3), specific surface area (SSA in m2 kg−1) and temper-
ature (K) were made at 3 cm vertical resolution in each of the
snow pits, using techniques described in Rutter et al. (2019).
In pits where two vertical profiles of density and SSA were
measured, the average of two samples at each vertical posi-
tion in the profile was used.

Individual layers within each snow pit were classified into
three microstructure types, surface snow, wind slab and depth
hoar, based on their properties and through visual inspection
(Rutter et al., 2019). Snow properties were averaged across
the main microstructure types to quantify the properties of
each snowpack layer. All of the snow pits had a depth hoar
layer, most contained wind slab and several also had a fresh
snow layer. Ice lenses were also present in most pits and
were included in simulations in Sandells et al. (2023), ei-
ther by splitting layers or by adding the ice lens between lay-
ers depending on where they occurred in the vertical profile.
However, because this resulted in four- or five-layer snow-
packs, this strategy would be too complex to introduce into
the MCMC methodology, which is already computationally
intense; therefore, ice lenses are not included in simulations
in this paper. The mean difference in simulated Tb of snow
pits from MACSSIMIZE with and without ice lenses was
1.88 K at 89 GHz, decreasing with frequency to 0.024 K at
243 GHz, so the impact of excluding ice lenses on emissivity
simulations is expected to be minimal. The snow pit SSA,
thickness, density and temperature observations for surface
snow (SS), wind slab (WS) and depth hoar (DH) were used
as input to SMRT, as described in the following sections.

2.4 SMRT

SMRT was used to generate emissivity simulations, using
sets of snow parameters generated during the MCMC re-
trieval as input (see Sect. 2.6.2) for two- and three-layer
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snowpacks based on the three main observed snow layers.
Three layers captured the main variations in snow profiles
and observed stratigraphy and matched the layers simulated
in Sandells et al. (2023). The underlying soil surface is as-
sumed to be flat, with a temperature of 258.15 K, as used in
Sandells et al. (2023) and based on King et al. (2018).

SMRT requires layer thickness, density, temperature and
a measure of grain size or microstructure depending on the
microstructure model chosen. For this paper, SMRT was con-
figured to use the discrete ordinate radiative transfer (DORT)
solver, the improved Born approximation (IBA) electromag-
netic model, and the exponential autocorrelation microstruc-
ture model. Although IBA is typically limited to lower fre-
quencies than those in this paper, Picard et al. (2022) sug-
gested that the applicability of IBA could be extended to
higher frequencies, and this was supported by good agree-
ment between SMRT simulations and observations of Tb at
higher frequencies in Sandells et al. (2023). The exponen-
tial correlation length (lex) was used as the microstructure
parameter and was derived using observed SSA and density
according to the modified Debye relationship (Debye et al.,
1957; Mätzler, 2002):

lex = αdb
4(1− ρsnow/ρi)

SSAρi
, (2)

where ρsnow is snow density, ρi is density of pure ice
(916.7 kg m−3) and αdb is the Debye modification parame-
ter. A value of 0.75 is used for αdb for surface snow and wind
slab, a value proposed by Mätzler (2002). For depth hoar, an
αdb value of 1.2 is used, as proposed by Leinss et al. (2020)
and discussed in Sandells et al. (2023).

SMRT does not directly simulate emissivity; therefore,
emissivity was retrieved by simulating upwelling brightness
temperature at the surface (Tbsmrt) for a viewing angle of 5◦,
with different values for atmospheric downwelling (Tbdown)
according to Eq. (3). This is preferable to simply dividing
Tbsmrt by the physical snowpack temperature, as snowpacks
are not isothermal, and microwave penetration depths vary.
This method is also used to derive emissivity in MEMLS
(Wiesmann and Mätzler, 1999).

ε = 1−
Tbsmrt(Tbdown = 100K)− Tbsmrt(Tbdown = 0K)

100K
(3)

2.5 SCEM-UA overview

SCEM-UA is a global optimisation routine, used to gener-
ate probability distributions of the parameters of a model
through random sampling using MCMC methods. SCEM-
UA evolves multiple parallel Markov chains, using the se-
quence evolution metropolis (SEM) algorithm, which de-
cides at each step in the Markov chain how likely a param-
eter value is to contribute to the posterior probability distri-
bution. SCEM-UA uses complex shuffling to share informa-
tion about the parameter space between chains to improve the

efficiency and adaptability of the search compared to other
MCMC samplers (Vrugt et al., 2003).

SCEM-UA requires an estimation of the physical limits
of parameters of interest (range of observed snow parame-
ters; Table 2), a set of observed values to match (observed
emissivity spectra; Fig. 3), an estimate of measurement error
(0.01 from 89 to 157 GHz and 0.02 from 183 to 243 GHz;
Sect. 2.2) and a model for which the parameters are being es-
timated (SMRT). SCEM-UA searches within parameter lim-
its for parameter sets that give model simulations that match
observed emissivity values within measurement uncertainty.
During this search, SCEM-UA maps the probability distribu-
tions of the parameters being searched. The returned poste-
rior parameter distributions give an indication of parameter
uncertainty associated with simulations and indicate the sen-
sitivity of simulations to different snow parameters.

2.6 SCEM-UA–SMRT retrievals

SCEM-UA was coupled to SMRT, and three experiments
were run to assess the sensitivity of simulations to the dif-
ferent snow parameters. The experiments were also split for
two- and three-layer snowpacks, whereby two-layer snow-
packs did not have a surface snow layer, to reflect the dif-
ferent stratigraphy observed during MACSSIMIZE. Table 1
provides an overview of the three experiments, including
the parameters being searched in each snowpack layer (top
panel) and the SCEM-UA setup for each experiment (bottom
panel). More details on how the experiments were split are
given in Sect. 2.6.1 and 2.6.2.

In each experiment, SCEM-UA was set up to run 10 par-
allel chains, with 50 initial samples per chain. The initial
samples are random values from a distribution between the
minimum and maximum of the observed parameter range.
The number of iterations per chain varied between 10 000
and 20 000, depending on the number of parameters and
snowpack layers allowed to vary in the retrieval and how
many iterations were needed for the chains to converge.
Convergence was assessed using a combination of the rank-
normalised R̂ convergence criteria (Vehtari et al., 2021)
and autocorrelation. The rank-normalised R̂ convergence di-
agnostic compares variance between chains V̂ to variance
within each chain W and is computed by

R̂ =
V̂

W
. (4)

When R̂ reaches 1.0, the between-chain and within-chain
variance are equal, and the chains have successfully con-
verged; however, a value of less than 1.01 is deemed suf-
ficient to indicate convergence. Samples taken before R̂ is
below 1.01 are removed from the beginning of the evolution,
and the number of iterations this takes is given by the burn-in
number in Table 1. Samples taken after the chains have con-
verged represent samples from the posterior distribution of
parameter sets, which are presented in Sect. 3.2. Each param-
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Table 1. Setup of three SCEM-UA–SMRT experiments. The top panel shows parameters varied in surface snow (SS), wind slab (WS) and
depth hoar (DH) for the two- and three-layer clusters. CL is correlation length, TH is thickness and D is density. The dashes denote that
surface snow was not present in two-layer snowpacks (see Sect. 2.6.1). The empty cell shows that depth hoar parameters were fixed for
three-layer clusters in the third experiment (see Sect. 2.6.2). The bottom panel shows the SCEM-UA parameter setup for each experiment.
The number of initial samples and iterations are per chain. Burn-in represents the number of samples removed before the chains converged
based on the R̂ diagnostic, as described in Sect. 2.6.

Experiment Correlation Correlation length and Correlation length,
length thickness thickness and density

Clusters 0, 1, 2, 4, 7 3, 5, 6 0, 1, 2, 4, 7 3, 5, 6 0, 1, 2, 4, 7 3, 5, 6

SS – CL – CL TH – CL TH D
WS CL CL CL TH CL TH CL TH D CL TH D
DH CL CL CL TH TH CL D

Chains 10 10 10
Initial samples 50 50 50
Iterations 10 000 20 000 20 000
Burn-in 2000 5000 12 000

eter set within the posterior distribution is then used to cal-
culate a spectrum using SMRT. The means and standard de-
viations of these spectra are presented in Sect. 3.1. Compar-
isons of simulated and observed emissivity spectra allowed
an assessment of SMRT’s ability to reproduce the emissivity
spectra within observed parameter limits, while the sensitiv-
ity of simulations to each parameter was assessed based on
the posterior parameter distributions.

2.6.1 Splitting retrievals by snowpack layers

Observed emissivity varied during the campaign due
to changes in meteorological conditions and subsequent
changes in snowpack stratigraphy and microstructure. Fig-
ure 4 shows the distribution of observed emissivity clusters
between the three flights and three main topographic clas-
sifications. Clusters 0, 2, 4 and 7 were observed most often
in flight C087, with 0 observed mostly in plateau and val-
ley regions and 4 and 7 dominating sloped regions. In flight
C090, the predominant clusters were 3 and 6, with 3 observed
mostly in plateau regions and 6 in sloped regions. None of
the clusters from C087 were observed in C090 except clus-
ter 2. The difference in observed emissivity between C087
and C090 was due to snowfall between the flights, which in-
troduced a low-density surface snow layer. Increased winds
between C090 and C092 redistributed the surface snow, re-
sulting in the greater variability in spectra observed in flight
C092.

To reflect these differences, the retrievals were split into
two groups. Retrievals for clusters 0, 1, 2, 4 and 7, which
were observed more often in C087, were run using a two-
layer snowpack (wind slab and depth hoar). Clusters 3, 5 and
6, which were observed more often during C090, were run
using a three-layer snowpack (surface snow, wind slab and
depth hoar) to reflect the addition of the surface snow layer.

Table 1 shows how the experiments were split for the two-
and three-layer clusters.

2.6.2 Splitting retrievals by snow parameters

Correlation length, layer thickness and density were cho-
sen as parameters that were expected to significantly impact
emissivity simulations. Correlation length represents grain
size and influences scattering, along with density, while layer
thickness and scattering strength influence the penetration
depth of microwaves. Changing penetration depth with fre-
quency results in variable spectral shapes due to variations
in microstructure with depth. Total snowpack depth also in-
fluences the sensitivity of microwave sensors to the substrate
below. In the first experiment, only correlation length was
varied; then correlation length and layer thickness in the sec-
ond; and correlation length, layer thickness and density in the
third. In the second experiment, depth hoar correlation length
was fixed for the three-layer clusters to improve efficiency.
This was chosen due to the low sensitivity to this parame-
ter identified in the first experiment. In the third experiment,
depth hoar thickness of the two-layer clusters and all depth
hoar parameters for the three-layer clusters were fixed. The
basis for this free-parameter reduction is discussed more in
Sect. 3.2. Table 1 outlines the parameters that were varied in
each snowpack layer for the three experiments.

The parameter limits within which SCEM-UA searches
during the retrieval were provided by observed snow param-
eter ranges across all of the snow pits (Table 2). Parameters
not included in the retrievals, as well as snowpack tempera-
ture, were fixed at the mean value from all the pits. During the
second experiment, the original upper limit of the wind slab
thickness range was found to be too large at 0.71 m, resulting
in chains failing to converge, and returned parameter values
falling at the lower end of the limits. The range was therefore
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Figure 4. Count of emissivity clusters observed over the three flights and topographic groups of TVC. The colours match the spectra
introduced in Fig. 3. The solid bars show clusters simulated as two-layer snowpacks (0, 1, 2, 4 and 7); the hatched bars and bold labels show
clusters simulated as three-layer snowpacks (3, 5 and 6).

restricted by removing outliers from pits dug in deeper snow
drifts that were end members of the snow depth distribution.
This gave an upper limit for wind slab thickness of 0.3 m.

3 Results

3.1 SMRT vs. observations

The mean SMRT-simulated emissivity spectra for parame-
ter sets retrieved after the chains had converged are shown
in Fig. 5 (standard deviation shown by error bars) for the
three experiments, along with observed emissivity spectra for
each cluster. Table 3 gives the mean absolute error (MAE)
and mean absolute percentage error (MAPE; MAE as a per-
centage of the mean observed emissivity across the spectra)
between the observed and mean simulated spectra for each
cluster in each experiment.

When only correlation length was varied by SCEM-UA in
the first experiment, only clusters 1 and 5 had mean simu-
lated emissivities which fell within the observation error at

all frequencies (green lines in Fig. 5). For clusters 3, 4, 6
and 7, SMRT reproduced the shape of the spectra reasonably
well; for example, both observed and simulated emissivity
decreased overall between 118 and 243 GHz for clusters 3,
6 and 7 and increased between 89 and 118 GHz for clusters
4 and 7. However, mean simulated emissivities fell outside
observation error at some frequencies (89 GHz for cluster 3,
157 GHz for cluster 4, 183 GHz for cluster 6 and 118 GHz
for cluster 7). For cluster 7, this relates to the peak in the
observed spectrum mentioned in Sect. 2.2. SMRT was not
able to simulate observed spectra of clusters 0 and 2 when
only correlation length was allowed to vary. The slope of the
simulated spectrum of cluster 0 was opposite to that of the
observed spectrum up to 183 GHz, and although the shape of
the cluster 2 spectrum was similar to observations, emissivity
values were too high, with an MAE of 0.063.

MAE (MAPE) averaged across all clusters and frequen-
cies decreased from 0.018 (3.0 %) to 0.0078 (1.2 %) when
layer thickness was also accounted for. Simulated emissivi-
ties were within the observation error at all frequencies for
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Table 2. Snow parameter means and ranges used in SCEM-UA for surface snow (SS), wind slab (WS) and depth hoar (DH).

Mean value Min value Max value

Correlation length (mm) SS 0.065 0.036 0.1
WS 0.092 0.048 0.18
DH 0.32 0.13 0.48

Thickness (m) SS 0.062 0.03 0.12
WS 0.12 0.0015 0.3
DH 0.21 0.09 0.42

Density (kg m−3) SS 94 38 250
WS 310 200 420
DH 260 200 350

Figure 5. SMRT-simulated mean and standard deviation of emissivity spectra from the three experiments compared with observed spectra
from Fig. 3 for each cluster. The shading denotes the observation error used in SCEM-UA (Sect. 2.2). CL is correlation length, TH is thickness
and D is density.

clusters 0, 1, 3, 4, 5 and 6, compared to only clusters 1 and
5 in the first experiment. The biggest improvement was for
clusters 0 and 2, where SMRT was not able to reproduce the
observed spectra with correlation length alone. Only clusters
2 and 7 had mean simulated emissivities which fell outside

the observation errors at 183 and 243 GHz for cluster 2 and
118 GHz for cluster 7. Clusters 2 and 7 also had the largest
MAE (MAPE) in the second experiment at 0.011 (1.94 %)
and 0.012 (1.62 %) respectively. The only case where the
standard deviation of the simulation did not overlap with the
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Table 3. Mean absolute error (MAE) and mean absolute percentage error (MAPE; %) between observed and mean simulated emissivity
spectra for each cluster in the three experiments. The bold text indicates the minimum for each cluster.

Correlation Correlation length and Correlation length,
length thickness thickness and density

MAE MAPE MAE MAPE MAE MAPE

0 0.025 3.87 0.0061 0.94 0.0052 0.80
1 0.0034 0.48 0.0041 0.58 0.0037 0.52
2 0.063 11.09 0.011 1.94 0.0069 1.21
3 0.015 2.48 0.0084 1.39 0.0056 0.93
4 0.0093 1.36 0.0055 0.80 0.0059 0.86
5 0.0079 1.22 0.0077 1.19 0.0057 0.88
6 0.011 1.69 0.0074 1.14 0.0084 1.29
7 0.013 1.75 0.012 1.62 0.013 1.75

Mean 0.018 3.00 0.0078 1.20 0.0068 1.00

observation error was cluster 7 at 118 GHz. Although mean
simulated emissivity at 118 GHz increased slightly when
layer thickness (and density in the third experiment) was ac-
counted for, this was still not enough to reproduce the peak
in the observed spectrum.

Overall MAE did not change much between the second
and third experiment when density was also varied. Most
clusters had simulated emissivities within the observation er-
ror at all frequencies, except cluster 6, where simulated emis-
sivity at 183 GHz was just outside the upper observation er-
ror, and cluster 7. Most changes in simulated emissivity in
the third experiment were seen at 243 GHz, indicating sen-
sitivity to density in the surface snow due to the shallower
penetration depth at this frequency. For clusters 0, 2, 3 and
5, simulated emissivities at 243 GHz were a better match to
observations in the third experiment, most notably for clus-
ter 2, where simulations at 183 and 243 GHz previously fell
outside the observation error (although the shape of the spec-
tra was a worse match for observations at lower frequencies).
For clusters 1, 4 and 7, there was slightly less agreement be-
tween simulations and observations. However, these changes
in emissivity were relatively small, and the standard devia-
tion of the simulations was larger at 243 GHz than in previous
experiments, shown by larger error bars in Fig. 5. This could
be due to 243 GHz being outside the limit of applicability
of the IBA electromagnetic model (see Sect. 2.4). Overall,
Fig. 5 suggests that SMRT is capable of simulating a variety
of emissivity spectra between 89 and 243 GHz and demon-
strates the importance of representing at least the correlation
length and thickness of different snow layers. In the last two
experiments, the MAE for most clusters was smaller than the
lower observation error of 0.01 (Sect. 2.5).

3.2 Parameter posterior distributions

The probability distributions for parameter sets retrieved by
SCEM-UA after chains had converged in each experiment

are shown in Figs. 6–8. Table 4 gives the retrieved mean
and standard deviation for these distributions. As described
in Sect. 2.6.1, the simulations for clusters 0, 1, 2, 4 and 7
were run as two-layer snowpacks and clusters 3, 5 and 6 as
three-layer snowpacks; hence, surface snow parameters are
only given for clusters 3, 5 and 6.

Figure 6 shows the distributions for correlation length in
the first experiment. Several clusters had narrow distributions
with a low standard deviation for surface snow (cluster 5)
and wind slab (clusters 1, 4, 6 and 7), indicating the sensi-
tivity of simulations to correlation length in these layers. In
comparison, depth hoar distributions for most clusters were
relatively broad and spanned most of the parameter range,
with higher standard deviation than the other layers (0.039 to
0.081 mm; Table 4), suggesting simulations were less sensi-
tive to depth hoar. Low sensitivity to depth hoar is expected
given the relatively shallow penetration depths at higher fre-
quencies and the need for depth hoar emissions to penetrate
the layers above. Given this low sensitivity, and the increased
number of parameters being searched in subsequent experi-
ments, depth hoar correlation length was fixed at the mean for
the three-layer clusters in the second and third experiments
(Sect. 2.6.2).

Several distributions in all three layers were at the up-
per limits of the parameter ranges, such as the surface snow
correlation length of clusters 3 and 6; wind slab correla-
tion length of clusters 0 and 2 (where SMRT was not able
to reproduce the observed spectra); and depth hoar correla-
tion length of clusters 0, 2, 3 and 4. This, along with the
inability of SMRT to reproduce observed emissivities at all
frequencies (Sect. 3.1), suggests that either the correlation
length ranges from observed snow parameters were not large
enough or varying the correlation length alone is not suffi-
cient to allow SMRT to simulate observations when other
parameters are fixed.

Figure 7 shows distributions from the correlation length
and thickness experiment. The correlation length distribu-
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Figure 6. Posterior parameter distributions for correlation length (mm) of surface snow, wind slab and depth hoar in the first experiment.
Two-layer clusters are shown by solid lines; three-layer clusters are shown by dashed lines. The x-axis limits represent the parameter ranges
from snow pit observations used to constrain the retrievals. The dots indicate the mean of each distribution.

tions for surface snow and wind slab did not change much
when thickness was also varied. The exceptions were the
wind slab correlation length distributions of clusters 0, 2 and
6. For cluster 2, wind slab correlation length was at the upper
limit in the first experiment but was spread across the param-
eter range in the second, suggesting a low sensitivity to the
wind slab layer for this cluster. This can be explained by wind
slab thickness for cluster 2 falling at the bottom of the param-
eter range (mean thickness of 0.0047 m), indicating a very
shallow or non-existent layer. Shallow wind slab resulted in
increased sensitivity to depth hoar, indicated by a narrow dis-
tribution for depth hoar correlation length with a standard
deviation of 0.014 mm, much lower than that of the other
depth hoar distributions. Greater sensitivity to large-grained
depth hoar (larger correlation lengths) caused increased scat-
tering and contributed to the low emissivities of the cluster 2
spectrum, which could not be simulated without representing
wind slab thickness.

With the exception of cluster 2, the relatively narrow wind
slab thickness distributions of clusters 0, 3, 4, 6 and 7 indi-
cate the sensitivity of simulations to wind slab thickness as
well as correlation length. Surface snow thickness distribu-
tions had similar standard deviations to wind slab (0.016 to
0.024 m); however, because the observed surface snow thick-
ness range was relatively small (0.03 to 0.12 m; Table 2), the
distributions spanned the parameter range. Sensitivity to the
thickness and correlation length of surface snow and wind
slab is expected, as the thickness and scattering strength of
layers near the top of the snowpack influence attenuation of
emission from lower layers, as seen for cluster 2. Unlike clus-
ter 2, parameter distributions suggested that cluster 7 was as-
sociated with a relatively deep wind slab layer (0.14 m) with
a relatively low correlation length (0.094 mm). Lower corre-
lation length relates to smaller snow grains, resulting in re-

duced scattering across a relatively deep layer, which reduced
penetration to depth hoar and resulted in higher emissivities
across the cluster 7 spectrum.

Depth hoar thickness distributions spanned the full param-
eter range for all clusters, including cluster 2, and had higher
standard deviations than the other layers (0.083 to 0.09 m),
again indicating the low sensitivity of simulations to depth
hoar thickness. Even for shallow thicknesses, the higher fre-
quencies are unlikely to penetrate through the depth hoar to
the bottom of the snowpack, meaning changes in thickness
of this layer are less important. Therefore, in the final experi-
ment, depth hoar thickness was fixed at the mean, in addition
to the correlation length, to reduce the number of parameters
being searched.

Figure 8 shows distributions for the correlation length,
thickness and density experiment. Wind slab parameter dis-
tributions were broader, with higher standard deviations (Ta-
ble 4) than in previous experiments for most clusters. This
is likely due to the complex interaction of snowpack mi-
crostructure parameters such as correlation length and den-
sity, whereby a range of combinations of density and cor-
relation length could result in similar scattering properties.
Simulations were therefore similarly sensitive to both cor-
relation length and density. Wind slab density distributions
were also relatively broad, with the standard deviation rang-
ing from 22 to 58 kg m−3, and as in the other experiments,
depth hoar distributions spanned the parameter ranges.

Surface snow correlation length and density distributions
had lower standard deviations than wind slab. For all three-
layer clusters, surface snow correlation lengths were at the
upper end of the parameter range, with mean retrieved values
between 0.088 and 0.096 mm, similar to the lowest wind slab
correlation lengths of clusters 6 and 7. These distributions
did not change much between the three experiments. Surface
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Figure 7. Posterior parameter distributions for correlation length (mm) and thickness (m) of surface snow, wind slab and depth hoar in the
second experiment. Two-layer clusters are shown by solid lines; three-layer clusters are shown by dashed lines. The x-axis limits represent
the parameter ranges from snow pit observations used to constrain the retrievals. The dots indicate the mean of each distribution.

snow density distributions were at the lower end of the range,
with mean retrieved density between 86 and 120 kg m−3 (Ta-
ble 4). Clusters with surface snow at the top of the snowpack
(3, 5 and 6) had lower emissivities at 183 and 243 GHz than
those with wind slab at the top of the snowpack (except clus-
ter 2). For example, clusters 6 (three-layer) and 7 (two-layer)
had a similar emissivity at 89 GHz (0.72 and 0.73) due to
similar wind slab scattering properties, but at 243 GHz the
emissivity of cluster 6 (0.56) was lower than cluster 7 (0.72).
Low density and relatively low correlation lengths in the sur-
face snow layer should result in less scattering and higher,
rather than lower, emissivity at the higher frequencies. An-
other explanation for the differences in emissivity caused by
surface snow is boundary effects caused by dielectric con-
trasts between layers of different density; this is discussed
further in Sect. 4.

4 Discussion and conclusions

The aims of this paper were to assess the potential for SMRT
to model snow surface radiative transfer for NWP and to
evaluate emissivity simulations between 89 and 243 GHz to

identify which parameters must be represented by a surface
model to achieve accurate emissivity simulations. SMRT was
coupled to the SCEM-UA MCMC algorithm to retrieve snow
parameters from a set of observed emissivity spectra and to
compare observed and SMRT-simulated emissivities. Physi-
cally realistic snow parameter ranges for correlation length,
layer thickness and density were derived from observations
from 29 snow pits in Trail Valley Creek. The results of the
SCEM-UA retrievals showed that SMRT is capable of sim-
ulating a range of observed emissivity spectra. Varying cor-
relation length allowed SMRT to capture much of the vari-
ability in observed emissivity; however, SMRT was not able
to reproduce the full range of emissivity spectra without also
varying the thickness of different snow layers. MAE (MAPE)
decreased from 0.018 (3.0 %) to 0.0078 (1.2 %) when thick-
ness was varied by SCEM-UA along with correlation length
compared to correlation length alone.

Correlation length is a measure of snowpack microstruc-
ture, which relates to grain size and therefore influences scat-
tering. The importance of representing heterogeneous pro-
files of grain size for modelling microwave brightness tem-
perature and emissivity has been shown in many studies
(e.g. Armstrong et al., 1993; Grody, 2008; Brucker et al.,
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Figure 8. Posterior parameter distributions for correlation length (mm), thickness (m) and density (kg m−3) of surface snow, wind slab
and depth hoar in the third experiment. Two-layer clusters are shown by solid lines; three-layer clusters are shown by dashed lines. The
x-axis limits represent the parameter ranges from snow pit observations used to constrain the retrievals. The dots indicate the mean of each
distribution. Depth hoar thickness was fixed for all clusters in the third experiment, so no distributions are shown.

2010; Harlow and Essery, 2012; Rutter et al., 2014). Under a
Rayleigh scattering assumption, scattering is determined by
the ratio of wavelength to grain size and increases with in-
creasing grain size (and increasing density). Smaller correla-
tion lengths correspond to smaller snow grains, less scatter-
ing and higher emissivity; for example, the high emissivities
of cluster 7 were attributed to a deep weakly scattering wind
slab layer with a low correlation length. Scattering also in-
creases with frequency, although this assumption is limited
at higher frequencies, particularly for coarse-grained snow
such as depth hoar, when the wavelength becomes compa-
rable to grain size. This should be considered when mod-
elling at 243 GHz, as even with extended frequency limits
(see Sect. 2.4; Picard et al., 2022; Sandells et al., 2023) the

IBA electromagnetic model may not be applicable at this fre-
quency.

Simulations in the third experiment were similarly sen-
sitive to correlation length and density due to the influ-
ence of both parameters on scattering. The impact of den-
sity was most obvious in the surface snow layer. The three-
layer clusters (3, 5 and 6) had lower emissivities at the
higher frequencies, which are more sensitive at the top of
the snowpack. Surface snow distributions indicated densities
as low as 86 kg m−3, which relates to the low-density surface
snow layer introduced by snowfall between flights C087 and
C090. Most of the observed snow pits had densities below
100 kg m−3. These values are similar to the fresh snow den-
sity used in the current JULES snow scheme of 109 kg m−3
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Table 4. Mean and standard deviation (SD) of probability distributions for correlation length (mm), thickness (m) and density (kg m−3) for
surface snow (SS), wind slab (WS) and depth hoar (DH) where they were present for each cluster in the three experiments. Dashes show
where parameters were fixed in retrievals and therefore no distributions were returned.

Experiment Correlation length Correlation length Thickness Correlation length Thickness Density
(mm) (mm) (m) (mm) (m) (kg m−3)

Cluster Snow layer Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD

0 WS 0.17 0.0042 0.13 0.011 0.045 0.011 0.13 0.024 0.039 0.013 310 39
DH 0.4 0.054 0.32 0.066 0.26 0.087 0.32 0.067 – – 280 40

1 WS 0.11 0.0035 0.11 0.0041 0.15 0.039 0.13 0.017 0.16 0.051 340 41
DH 0.23 0.05 0.29 0.094 0.26 0.087 0.3 0.095 – – 270 40

2 WS 0.17 0.00048 0.13 0.029 0.0047 0.0023 0.15 0.02 0.034 0.023 240 22
DH 0.43 0.039 0.24 0.014 0.27 0.083 0.3 0.066 – – 260 33

3 SS 0.096 0.0026 0.096 0.0028 0.081 0.022 0.091 0.0063 0.077 0.023 86 26
WS 0.17 0.0025 0.15 0.022 0.046 0.015 0.15 0.016 0.093 0.047 250 33
DH 0.39 0.061 – – 0.25 0.09 – – – – – –

4 WS 0.13 0.0037 0.12 0.0059 0.083 0.021 0.13 0.021 0.082 0.026 310 45
DH 0.39 0.059 0.29 0.083 0.26 0.088 0.29 0.082 – – 280 41

5 SS 0.083 0.0042 0.084 0.0047 0.072 0.024 0.088 0.0078 0.076 0.024 120 38
WS 0.15 0.0077 0.15 0.014 0.13 0.054 0.14 0.018 0.13 0.054 270 41
DH 0.34 0.081 – – 0.25 0.087 – – – – – –

6 SS 0.097 0.0024 0.096 0.0031 0.096 0.016 0.096 0.0033 0.096 0.016 97 23
WS 0.11 0.0066 0.091 0.016 0.11 0.019 0.094 0.02 0.13 0.04 300 58
DH 0.34 0.071 – – 0.26 0.086 – – – – – –

7 WS 0.093 0.0027 0.094 0.0028 0.14 0.012 0.088 0.0082 0.16 0.034 270 41
DH 0.32 0.059 0.38 0.066 0.26 0.084 0.38 0.064 – – 260 39

(Walters et al., 2019). Although the low density (and low cor-
relation lengths) of the surface snow indicates reduced scat-
tering, Sandells et al. (2023) suggested Tb differences be-
tween flights resulting from this low-density surface layer
were instead caused by high-density-driven dielectric con-
trast between layers. The difference in emissivity spectra of
clusters with and without surface snow highlights the impor-
tance of capturing different snowpack stratigraphies, and the
impact of both density and correlation length on the emis-
sivity spectra suggests that both parameters need to be rep-
resented for emissivity modelling. However, it is also impor-
tant to know the thickness of these layers due to the impact
of thickness on the penetration to deeper layers.

The distributions of parameter sets suggested that simula-
tions were most sensitive to wind slab parameters, and sur-
face snow where it was present, with less sensitivity to depth
hoar. Depth hoar is still needed for simulating the emissivity
of Arctic snowpacks, as depth hoar is a key feature of tun-
dra snow (Sturm et al., 1995). However, at higher frequen-
cies, as snowpack depth increases or the strength of scat-
tering in higher layers increases, sensitivity to deeper layers
of the snowpack decreases due to increased scattering and
absorption (Sturm et al., 1995; Brucker et al., 2010; Saberi
et al., 2017). In deeper snowpacks with substantial surface
snow or wind slab, using average parameter values for depth

hoar may be sufficient for modelling emissivity at these fre-
quencies; however, it is important to know both the thickness
and scattering strength of overlying layers, which control the
penetration to deeper snow. Cluster 2, for example, had the
greatest sensitivity to depth hoar due to shallower overlying
wind slab than the other clusters. The current JULES snow
scheme models three snowpack layers, and snow accumu-
lates to maximum thicknesses of 0.04 and 0.12 m in the top
two layers of the snowpack, with subsequent snow accumu-
lating in the bottom layer (Walters et al., 2019). Future work
should consider the suitability of existing snowpack model
configurations, such as that in JULES, for emissivity mod-
elling.

The high spatial and temporal variability in emissivity ob-
served during MACSSIMIZE, relating to changes in snow-
pack stratigraphy and microstructure, highlights the potential
for using modelled emissivities in place of a fixed emissivity
atlas. Snowpack depth and stratigraphy are influenced by me-
teorology, as seen in the impacts of snowfall and wind, and
by the interaction of snow with topography and vegetation
(Liston and Sturm, 1998; Winstral et al., 2002; Sturm and
Benson, 2004). Therefore, in order to model emissivity, snow
parameter estimation from a land surface model is needed.
When considering the scale of satellite footprints, e.g. 16 km
at nadir for MHS (EUMETSAT, 2023b) and 17 km for the
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89 and 183 GHz channels on the Microwave Sounder (MWS)
(EUMETSAT, 2023c), averaging the parameter values across
model grid boxes may be sufficient (e.g. Armstrong et al.,
1993), as discussed in relation to depth hoar at higher fre-
quencies. However, other methods could be utilised that
represent snow heterogeneity using a variability parameter,
which may be based on changes in topography, vegetation
or land cover fractions (e.g. Liston, 2004; Sturm and Wag-
ner, 2010; Derksen et al., 2012; Rutter et al., 2019; Meloche
et al., 2022), by taking the mean and variance from distribu-
tions of parameters, such as those produced in this paper.

This paper demonstrates the potential for SMRT to simu-
late a variety of emissivity spectra between 89 and 243 GHz
when supplied with snowpack stratigraphy information, such
as the thickness and scattering properties of snowpack layers.
Correlation length, layer thickness and density were all as-
sessed in the retrievals, and it was shown that, as a minimum,
variability in both correlation length and layer thickness, par-
ticularly for wind slab, needed to be captured in order to
match all the observed emissivity spectra. This is an impor-
tant step to improve the assimilation of satellite microwave
data in Arctic regions for NWP. Future work will aim to as-
sess the impact of SMRT emissivities on the simulation of
top of atmosphere brightness temperatures in an integrated
forecasting system. This system will require a physical sur-
face snow model that is able to simulate snowpack properties
required by SMRT, including grain size, density and layer
thickness, particularly in the top layers of the snowpack.
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