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Abstract. Satellite-based synthetic aperture radar (SAR)
sensors have the potential to provide the first global mea-
sure of snow water equivalent (SWE), with key advantages
compared to existing satellite observations (e.g., passive mi-
crowave sensors) such as high spatial resolution and capabil-
ity in mountainous areas. While recent studies have shown
some capability in challenging conditions, such as deep snow
and forested areas, there is still work to be done to under-
stand the limitations and benefits of these observations in
an assimilation system. In this study, we develop an observ-
ing system simulation experiment (OSSE) to characterize
the expected error levels of active microwave-based volume-
scattering SWE retrievals over a western Colorado domain.
We found that for a hypothetical SAR snow mission, the root
mean square error (RMSE) of SWE improves by about 20 %
in the mountainous environment if the retrieval algorithm can
estimate SWE up to 600 mm and the tree cover fraction up to
40 %. Results also demonstrate that the potential SWE re-
trievals have larger improvements in the tundra (43 %) snow
class, followed by boreal forest (22 %) and montane forest
(17 %). Even though active microwave sensors are known to
be limited by liquid water in the snowpack, they still reduced
errors by up to 6 %–16 % of domain-averaged SWE in the
melting period, suggesting that the SWE retrievals can add
value to meltwater estimations and hydrological applications.
Overall, this work provides a quantitative benchmark of the
utility of a potential snow mission concept in a mountainous
domain, helping to prioritize future algorithm development
and field validation activities.

1 Introduction

Global distribution of seasonal snow is a critical component
of the Earth’s water and energy cycles (Barnett et al., 2005;
Pulliainen et al., 2020; Sturm et al., 2017). Seasonal snow
covers up to 50× 106 km2 of the Northern Hemisphere in
winter, and about 17 % of the world’s population relies on
meltwater from seasonal snow that replenishes reservoir stor-
age and groundwater for natural and human systems (Bor-
mann et al., 2018; Li et al., 2017; Immerzeel et al., 2019).
However, spatially distributed information on snow water
equivalent (SWE; the amount of water stored in the snow-
pack) across the globe is limited, particularly in complex ter-
rain such as mountainous regions, where a large portion of
the snowpack is commonly distributed. In general, mountains
and remote regions lack in situ SWE networks across the
globe (Dozier et al., 2016). Even if there are relatively dense
ground measurement networks, the in situ observations have
limited spatial representativeness (e.g., automated snow pil-
low stations in the snow telemetry (SNOTEL) network repre-
sent a ∼ 3 m by 3 m area), providing limited information on
the spatial distribution of SWE, particularly in heterogeneous
terrain (Molotch and Bales, 2005).

Historically, a series of satellite-based passive microwave
radiometers have been used to develop spatially distributed
snow depth and SWE information (Cho et al., 2017; Derksen
et al., 2005; Foster et al., 2005; Vuyovich et al., 2014). How-
ever, the passive microwave satellite-based SWE retrievals
have a coarse spatial resolution (∼ 25 km) and large SWE
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uncertainties in various snow and land conditions, which
often limit their utility for water supply assessments and
operational weather prediction applications (Lettenmaier et
al., 2015; Carroll et al., 1999). The passive microwave re-
trieval algorithms do not perform well under a deep snow-
pack greater than approximately 200 mm SWE (the so-called
“saturation effect”) because the microwave radiation at a
higher frequency does not decrease with increasing SWE
(Derksen et al., 2010; Dong et al., 2005). Errors in SWE
retrievals generally increase with increasing forest density
(Cho et al., 2020; Foster et al., 2005; Vander Jagt et al.,
2013). Passive microwave radiation is also highly sensitive
to small amounts of liquid water content in the snowpack
(Kang et al., 2013; Walker and Goodison, 1993), hampering
accurate SWE retrievals under wet snow conditions. Through
data assimilation efforts such as the GlobSnow project (Pul-
liainen et al., 2020; Takala et al., 2011), improved SWE esti-
mates have been generated by integrating passive microwave
brightness temperature measurements and in situ observa-
tions; however, coverage over mountainous regions is still
lacking in these products due to large uncertainties over these
areas (Larue et al., 2017; Pulliainen et al., 2020). Therefore,
global coverage of SWE information is still elusive despite
the long legacy of passive microwave instruments.

Active microwave sensors, in particular using synthetic
aperture radar (SAR) approaches, have great potential to
measure SWE at higher spatial resolution and with improved
capabilities in deeper snowpack and forest cover (Lievens et
al., 2019; Rott et al., 2010; Tsang et al., 2022). SWE re-
trieval using X- and/or Ku-band radar is a viable approach
as a global satellite mission concept because these measure-
ments are sensitive to SWE through the volume-scattering
properties of dry snow. In recent decades, this approach
has been explored in the snow remote sensing community.
The Cold Regions Hydrology High-Resolution Observatory
(CoReH2O) mission concept, a dual-mode high-frequency
(X-band (9.6 GHz) and Ku-band (17.2 GHz)) SAR, was pro-
posed to the European Space Agency (ESA) in response to
the 2005 Earth Explorer Core Mission call. This mission was
selected by ESA for feasibility studies (Phase A) in 2009
but was not selected for further implementation (Rott et al.,
2010). In addition, as part of the NASA Snow and Cold
Land Processes (SCLP) mission (National Research Council,
2007; Yueh et al., 2009) and the Cold Land Processes Field
Experiment (CLPX) activities (Cline et al., 2009; Elder et al.,
2009; Tedesco et al., 2005), a high-frequency SAR and high-
frequency (K- and Ka-band) passive microwave radiometer
were explored. Recently, Environment and Climate Change
Canada (ECCC) in partnership with the Canadian Space
Agency (CSA) initiated a new Ku-band dual-frequency (13.5
and 17.2 GHz) SAR mission (Terrestrial Snow Mass Mis-
sion, TSMM) concept study (Derksen et al., 2019), and a X-
and Ku-band concept is being considered for the upcoming
NASA Earth System Explorers solicitation.

The series of radar mission development activities in re-
cent decades, which include multi-year field and airborne
campaigns, has played a major role in the considerable
progress achieved towards the use of radar remote sensing
techniques not only to estimate snow microstructure and
SWE but also to identify retrieval uncertainties in diverse
regions such as deep snow and forests (King et al., 2018;
Nagler et al., 2008; Rott et al., 2010; Rutter et al., 2019;
Zhu et al., 2018). Early results demonstrated accurate SWE
retrieval capability up to approximately 300 mm using X-
and Ku-band frequencies (Nagler et al., 2008; Rott et al.,
2010), based on limited observations. More recently, stud-
ies have shown sensitivity using these frequencies at snow
depths over 600 mm (Borah et al., 2022; Santi et al., 2022).
As a future direction of the algorithm development at the X-
and/or Ku-band, Tsang et al. (2022) mentioned that the co-
polarization X-band backscatter signal could be used for es-
timating deeper SWE (>300 mm) along with a multilayer al-
gorithm (King et al., 2018; Rutter et al., 2019). As a different
frequency approach, Lievens et al. (2019) show the capabil-
ity of C-band cross-polarization backscatters (5.4 GHz) from
Sentinel-1 for measuring deep snow depths (e.g., more than
2 m in Fig. 7 of Lievens et al., 2019). For dry snow, the empir-
ical change detection algorithm can retrieve snow depth up to
5 m deep at less than 1 km spatial resolution over mountain
ranges (Lievens et al., 2022).

For forest effects, Nagler et al. (2008) found that the pres-
ence of dormant herbaceous vegetation has a small influence
on the backscattering of the active microwave signals but
does not affect sensitivity to SWE. However, the backscatter
signal may be affected in coniferous forests based on simu-
lation studies. In the case of low fractional cover (<25 %)
in coniferous forests, simulations with a radiative transfer
model found that the snow backscatter dominated the radar
signal (Macelloni et al., 2001; Magagi et al., 2002). When the
forest fraction increases, the sensitivity of the backscatter to
SWE generally decreases. Tsang et al. (2022) demonstrated
that at Ku-band frequency (17.2 GHz; wavelength: 1.74 cm),
the wave can travel through the gaps in trees in straight lines.
The Ku-band waves could pass through the gaps like lidar
(light wave detection and ranging), which is considered able
to penetrate forest canopies. This suggests that the SWE re-
trievals in areas with a tree cover fraction (TCF) of up to 30 %
could be achievable with efforts to account for the three-
dimensional structure of the canopy for a more detailed and
accurate assessment of the impact of forest type and density
on the SWE sensitivity (Rott et al., 2011; Montomoli et al.,
2015). Considering that forested regions are a significant por-
tion of the global snow-covered extent (Rutter et al., 2009;
Kim et al., 2021), even slight advancements in retrieval al-
gorithms for improved handling of forest effects will directly
help extend valid coverage of the SWE measurements as a
global snow mission. A formal assessment of the utility of
hypothetical active microwave sensors for SWE estimation
under different observing conditions (e.g., deep snow, dense
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forests, and the presence of liquid water) is, therefore, needed
to establish the potential benefits of such future sensors and
to set priorities related to algorithm developments.

An observing system simulation experiment (OSSE;
Arnold and Dey, 1986; Masutani et al., 2010) is a modeling-
based and data-assimilation-based approach that is often
used to assess the utility of spaceborne observations from
proposed designs of new satellite missions before the instru-
ments are deployed. OSSEs enable the quantification of the
utility of spaceborne observations and help in the design and
configuration of future missions (Crow et al., 2005; De Lan-
noy et al., 2010; Garnaud et al., 2019; Kumar et al., 2014a;
Kwon et al., 2021; Nearing et al., 2012). Specifically for
SWE, De Lannoy et al. (2010) used an OSSE to explore
techniques for downscaling coarse-scale SWE products to
the underlying fine-scale model state variables within a data
assimilation system. More recently, Kwon et al. (2021) con-
ducted light detection and ranging (lidar) OSSE to quantify
the accuracy requirement of spaceborne lidar snow depth re-
trieval, which provides its beneficial impact on SWE and hy-
drologic variables within a land surface model. They found
that synthetic lidar observations provided utility in assimila-
tion processes when the realistic snow depth retrieval’s error
standard deviation was lower than 60 cm. Like in the cur-
rent study, Garnaud et al. (2019) used an OSSE to estimate
the potential value of the Ku-band radar mission concept
for the Environment and Climate Change Canada–Canadian
Space Agency (ECCC-CSA) Terrestrial Snow Mass Mis-
sion (TSMM). They used an OSSE to provide information
on the optimal mission configuration (i.e., resolution, revisit
time, and snow mass retrieval uncertainty) using a test bed in
southern Quebec, Canada. In the non-mountainous, forested
domain, this study found that bias in a baseline SWE simula-
tion was largely reduced by improving the revisit frequency
(e.g., 93 % with 1 d revisit time), and systematic errors were
also reduced by a higher revisit frequency as well as an in-
creased resolution (1 km rather than 2 or 10 km spatial reso-
lution).

The main objective of this study is to quantify the use-
fulness of X- and/or Ku-band volume-scattering SAR SWE
retrievals at a 1 km spatial resolution and approximately 7 d
repeat time for improving spatially distributed characteriza-
tion of snow conditions through an OSSE setup over a moun-
tainous region of western Colorado. Specifically, we focus on
the SWE retrieval utility over deep snow and forest-covered
regions. We introduce the study area and describe our OSSE
design, including the main steps, in Sects. 2 and 3, respec-
tively. The results of OSSE performances are reported in
Sect. 4. Lastly, we discuss implications and limitations and
provide concluding remarks in Sect. 5.

2 Study domain: western Colorado

The western Colorado region is selected as the OSSE do-
main and provides a representative continental mountain-
ous region (Fig. 1). The study area includes five seasonal
snow classes: tundra (7.1 %), boreal forest (14.3 %), mon-
tane forest (44.9 %), prairie (28.9 %), and ephemeral (4.7 %).
The seasonal snow classification is based on the 1 km new
seasonal snow classification developed by Sturm and Lis-
ton (2021). The elevation over the domain ranges from
1400 to 4000 m (41 % of the domain area is between 1400–
2500 m, 33 % between 2500–3000 m, and 26 % between
3000–4000 m), which is based on a 1 km elevation map de-
rived from the United States Geological Survey’s (USGS)
Shuttle Radar Topography Mission (SRTM) “Native” eleva-
tion data (Farr et al., 2007). The tree cover fraction (TCF; %)
ranges from 0 % to 80 % (49 % of the domain area with 10 %
or lower, 13 % with 10 %–20 %, 19 % with 20 %–40 %, 14 %
with 40 %–60 %, and 4.3 % with 60 % and higher TCFs). In-
dividual maps of each snow class with different TCF ranges
are also included in the Supplement (Fig. S1). The upscaled
1 km TCF map is derived from the 30 m resolution global
tree cover data developed by the University of Maryland
(Hansen et al., 2013) using a bilinear resampling approach.
This domain also includes previous field campaign exper-
iment locations such as those of the NASA–NOAA Cold
Land Processes Field Experiment (CLPX; 2001–2003) and
NASA SnowEx field campaign (2017, 2020, and 2021).

3 Observing system simulation experiment design

The OSSE performed in this study focuses on quantifying
the beneficial impacts of hypothetical X- and/or Ku-band ac-
tive microwave SWE observations with different levels of re-
trieval uncertainties at a 1 km spatial resolution. The OSSE
setup includes three main elements: (1) the nature run (NR),
(2) the open-loop (OL) simulation, and (3) data assimilation
(DA) simulations with synthetic observations (Fig. 2). NR is
the calibrated land surface model (LSM) simulation, which
is considered the “truth” in the OSSE framework (Sect. 3.2).
OL is an uncalibrated LSM simulation as the default configu-
ration (Sect. 3.3). NR and OL are designed at the same spatial
resolution (1 km). The DA scenarios are simulation results
that assimilate hypothetical synthetic observations with dif-
ferent error constraints with OL. Detailed information about
synthetic observations and DA is provided in Sect. 3.4 and
3.5, respectively. To develop realistic synthetic observations,
we apply a subsampling method to obtain a realistic active
satellite viewing area from hypothetical satellite-based radar
using the Trade-space Analysis Tool for designing Constella-
tions (TAT-C) simulator (Le Moigne et al., 2017). The study
period used in the analysis is the winter season from 1 Oc-
tober 2016 to 31 May 2017, which experienced moderate
snow conditions and provided sufficient differences between
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Figure 1. (a) The seasonal snow classification of Sturm and Liston (2021), (b) a tree cover fraction (%) map from the University of Maryland,
and (c) elevation (m) of the study area over western Colorado.

NR and OL SWE and thus made the OSSE setup effective
for quantifying improvement. A model time step of 15 min
was used, and daily averaged model outputs were saved for
analysis. For all experiments, relevant physical parameteri-
zation options of Noah with multi-parameterization (Noah-
MP) version 4.0.1 were used as listed in Table 1. Then we
developed 24 DA experiments from synthetic observations
with assumptions of uncertainty related to deep snow and
forest coverage. Detailed descriptions of how to apply those
limitations to DA experiments are given below.

3.1 NASA Land Information System and Noah-MP
land surface model

The OSSE simulations were conducted using the NASA
Land Information System (LIS; Kumar et al., 2006; Peters-
Lidard et al., 2007), which is a software framework for high-
performance land surface modeling and data assimilation ex-
periments. Within LIS, we employed Noah-MP LSM version
4.0.1 (Niu et al., 2011; Yang et al., 2011). Noah-MP was de-
veloped based on the original Noah LSM (Ek et al., 2003)
with augmented representations of biophysical and hydro-
logical processes. Noah-MP includes a multilayer snowpack
representation (up to three layers) to simulate the physical
processes of varying snow density over time, allowing patchy
snow cover to evolve as a function of snow depth and vege-
tation type. The model simulates snowpack liquid water re-
tention, refreezing of meltwater, and frost/sublimation, all of
which are important for the accurate characterization of snow
conditions. The model also accounts for snow age, grain size
growth, and the effect of impurities on snow evolution. Pre-
vious studies found that Noah-MP has superior performance
compared to the original Noah LSM and other LSMs for sim-
ulating SWE (Cho et al., 2022b; Kim et al., 2021; Minder et
al., 2016).

3.2 Nature run (synthetic truth)

We used the calibrated Noah-MP simulation at 0.01◦ spatial
resolution (∼ 1 km) described in Wrzesien et al. (2022) for
NR in this experiment. The meteorological forcing data for
the simulation comprised the North American Land Data As-
similation System phase 2 (NLDAS-2; Xia et al., 2012). In
that study, the optimization and uncertainty subsystem (Ku-
mar et al., 2012) within LIS was used to calibrate Noah-
MP SWE against estimates from the observation-based Uni-
versity of Arizona gridded snow dataset (UA; Zeng et al.,
2018). For the optimization, Wrzesien et al. (2022) used a
genetic algorithm to calibrate 23 model parameters related to
snow parameterizations that are hard-coded into the default
Noah-MP configuration, and an additional snowfall scaling
term was included to address precipitation biases in the me-
teorological forcing data (Enzminger et al., 2019; He et al.,
2019; Henn et al., 2018; Raleigh et al., 2015; Schmucki et al.,
2014). The calibration approach generated spatially varying
parameters, as compared to the spatially uniform values in
the default Noah-MP. When evaluated against both UA and
SNOw Data Assimilation System (SNODAS) estimates, the
calibrated simulation decreased the domain-averaged tempo-
ral root mean square error (RMSE) and bias for SWE and
snow depth, relative to the default Noah-MP configuration,
for the same western Colorado domain as that used here in
the OSSE. Further, the snowfall scaling term was shown to
be important for increasing the magnitude of snow accumu-
lation, especially in higher-elevation grid cells.
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Figure 2. Schematic diagram of the synthetic observing system simulation experiment (OSSE) setup of this study. The nature run (NR)
indicates synthetic-truth simulation, and open loop (OL) and data assimilation (DA) are model simulations without and with assimilation of
the synthetic snow water equivalent (SWE) retrievals, respectively, derived from NR.

Table 1. Relevant physical parameterization schemes of Noah-MP (version 4.0.1) used in the observing system simulation experiments
(OSSEs).

Physical process Option used References

Lower boundary condition of soil temperature Original Noah scheme –
Supercooled liquid water (or ice fraction) in frozen soil NY06 Niu and Yang (2006)
Frozen soil permeability NY06 Niu and Yang (2006)
Ground snow surface albedo Biosphere-Atmosphere Transfer Scheme Yang and Dickinson (1996)
Precipitation partitioning into rainfall and snowfall Jordan91 Jordan (1991)
Snow and soil temperature time scheme Semi-implicit –

3.3 Open-loop simulation

The model run without assimilation, called the open-loop
(OL) simulation, is conducted with meteorological bound-
ary conditions from Modern-Era Retrospective analysis for
Research and Applications (MERRA-2, version 2) forcing
data produced by NASA’s Global Modeling and Assimilation
Office (Gelaro et al., 2017). MERRA-2 forcing data, which
have a native spatial resolution of 0.5◦ latitude by 0.625◦

longitude (roughly 50 km), are downscaled to a 1 km grid
of the model setup within LIS. Note that the OL configu-
ration has two primary differences relative to the NR setup:
(1) the boundary conditions are different (MERRA-2 for OL
vs. NLDAS-2 for NR) and (2) OL uses the default configura-
tion of Noah-MP, whereas NR uses the calibrated, spatially
distributed parameters developed by Wrzesien et al. (2022).

3.4 Synthetic observations with TAT-C subsampling

We develop synthetic SWE observations by including factors
that represent uncertainties related to snow estimation over
deep snow and when vegetation is present. For deep snow,

four different hypothetical limits of retrieval algorithm are
considered: 200, 400, and 600 mm and no limit of SWE. The
influence of forest cover is examined by considering six sce-
narios that limit SWE detection at different levels of the for-
est fraction (0 %, 10 %, 20 %, 40 %, 60 %, and 80 %) based
on the 30 m University of Maryland global tree cover frac-
tion (TCF) data (Hansen et al., 2013). The 24 scenarios of
active microwave synthetic SWE observations are used in the
OSSE. For example, a DA run with a 20 % TCF limit means
that grids with a forest fraction >20 % are masked out from
DA, assuming that the hypothetical sensor cannot measure
SWE in those grids. Because active microwave sensors can-
not detect SWE if the snowpack contains liquid water (Mat-
zler, 1987; Rott et al., 2010), synthetic observations are only
assimilated when the snowpack does not include liquid water
content (LWC). That is, when LWC values from the OL run
are positive (>0) in certain grids and periods, correspond-
ing synthetic observations are not assimilated with the OL
run. Unbiased random errors with zero mean and 30 mm of
standard deviation expected as an error level of the SWE re-
trievals from previous findings (Rott et al., 2010; Garnaud et
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al., 2019) are applied to the synthetic observations. To sup-
port the impact of the standard deviation on SWE evaluation,
different DA scenarios with different ranges of standard de-
viations (10, 30, 50, and 100 mm) are compared in the Sup-
plement (Figs. S2 and S3).

To simulate the viewing extent of hypothetical X- and/or
Ku-band sensors, we use TAT-C (Le Moigne et al., 2017),
which is a NASA-developed software system specifically de-
signed for future distributed spacecraft missions (DSMs).
TAT-C allows for the exploration of a range of feasible de-
sign options (e.g., single vs. constellation, polar-orbiting vs.
geostationary, low-frequency vs. high-frequency overpasses)
to quantify measurable gains as a function of mission con-
figuration. In this study, the orbital configuration (e.g., Kep-
lerian elements) of a volume-scattering SAR mission is used
in the orbit and coverage module to simulate the nadir posi-
tion track. Then, the realistic spatial coverage and temporal
frequency are simulated by extending the ground track to a
given swath width (i.e., 250 km) in the cross-track direction.
In this study, the viewing extent simulation is expressed as a
daily binary map (so-called “cookie cutter”) marking the sur-
face as viewed (or not) at a 1 km spatial resolution. Examples
of TAT-C masked swath maps are provided in Fig. S4.

3.5 Data assimilation

For this OSSE work, the one-dimensional ensemble Kalman
filter method (Reichle et al., 2002) is used to assimilate
synthetic SWE observations into Noah-MP. The ensemble
Kalman filter method allows us to flexibly characterize the
model errors and to effectively handle non-linear dynam-
ics and temporal discontinuities of observations (Kumar et
al., 2015; Kwon et al., 2021; Lahmers et al., 2022; Cho et
al., 2022a). The ensemble Kalman filter method includes
forecast and update steps. In the forecast step, an ensem-
ble of SWE and snow depth is propagated by Noah-MP un-
til synthetic SWE observations become available. Each en-
semble member is generated by perturbing model initial con-
ditions, boundary conditions from a meteorological forcing,
and Noah-MP model prognostic variables based on the as-
sumption of a Gaussian distribution. The perturbation param-
eters used in this study are based on earlier DA works (Ta-
ble S1; Kumar et al., 2014b; Kwon et al., 2021). Noah-MP
OL was initialized by spinning up a simulation from 1 Oc-
tober 2012 to 31 September 2015. After that, a 20-member
ensemble run was additionally spun up from 1 October 2015
to 31 September 2016 to establish the initial conditions of the
ensemble. The OL and DA scenarios were simulated from 1
October 2016 to 31 May 2017.

3.6 Performance evaluation matrices

For evaluation, the root mean square error, RMSE, between
the DA (or OL) SWE and NR SWE over a period is quanti-

fied as follows:

RMSEDA =

√
1
n

∑n

t=1
(SWEDA,t −SWENR,t )

2. (1)

SWEDA and SWENR refer to DA (or OL) SWE and the NR
SWE, and t is a date. The DA RMSE improvement as com-
pared to baseline (OL) RMSE is calculated as follows:

improvement(%)= (RMSEDA−RMSEOL)/RMSEOL

· 100. (2)

4 Results

4.1 Evaluation of OSSE at a domain-averaged scale

4.1.1 The impact of deep-SWE limits

To assess the impact of SWE retrievals on regional snow-
pack characterization, the DA performance is quantified us-
ing domain-averaged SWE; see Fig. 3. This figure shows
domain-averaged SWE time series from NR (synthetic
truth), OL (baseline), and multiple DA scenarios with dif-
ferent deep-snow limits from shallow (200 mm), moderate
(400 mm), and deep (600 mm) SWE and no limit. The anal-
ysis also shows SWE from model integrations stratified over
different elevation ranges. Note that here we assume no limi-
tations due to forest coverage. For the entire domain, the peak
values of the domain-averaged SWE time series of NR and
OL are around 220 and 160 mm in early March, respectively.
The OL simulation underestimates SWE by 27 % as com-
pared to NR. The underestimations are partially reduced with
DA scenarios, except for the DA integration with a 200 mm
limit. The DA run with a shallow SWE limit (up to 200 mm;
blue line) has little impact on the domain-averaged SWE and
even contributes to a degradation near the peak SWE pe-
riod (February and March). However, the DA scenario with
a moderate SWE limit (up to 400 mm; cyan line) shows im-
provements relative to the OL SWE. This indicates that the
retrieval algorithm with an SWE range up to 400 mm would
add value to domain-averaged SWE time series in such a
mountainous region. The improvement was observed even
during the ablation period. As the deep-snow limits further
increase (up to 600 mm and no limit), domain-averaged SWE
estimates are also improved (see the pink and green lines).
The capability to characterize deep snow has a larger im-
pact on areas with higher elevations as those regions typi-
cally have deeper snowpacks. For mid-elevation and high-
elevation ranges, the DA SWEs with 600 mm and no lim-
its show improvements, whereas few improvements are ob-
tained in low-elevation ranges. This indicates that a large por-
tion of the SWE improvements for the entire domain is con-
tributed by the high-elevation regions. When comparing the
DA time series for mid-elevation and high-elevation regions,
smaller differences from NR (black line) during the melting
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period are observed in the high-elevation regions, likely be-
cause melt starts later in these areas. The gaps (biases) in the
SWE time series between the DA scenario with no limit and
NR may be due to the limited ability to detect wet snow and
the revisit frequency. Since the random errors added to NR
are centered on zero, the random errors may not contribute
to the biases found in the domain-averaged approach.

4.1.2 The impact of the sensor’s detection capability
over the forest fraction

To quantify the SWE characterization based on the sensor’s
capabilities over forest cover, domain-averaged SWE time
series from DA scenarios with simulated observations cap-
turing SWE in areas with bare ground (i.e., ability to detect
SWE in bare-ground areas only where TCF rounds off to
0 %) or TCF limits of up to 10 %, 20 %, 40 %, 60 %, and 80 %
(i.e., ability to detect SWE even in densely forested areas up
to 80 % TCF) are shown in Fig. 4. The domain-averaged NR
SWE (which is the synthetic truth) has a larger SWE than
the DA and OL SWE throughout the whole period, and the
differences are larger in the melting period than in the accu-
mulation period. During the accumulation period, there are
similar improvements in SWE (up to 25 %) among the DA
scenarios with different TCF limits as compared to OL, ex-
cept for TCF of 0 % which was similar to OL. The SWE dif-
ference between the DA scenarios slightly increases after the
large melting event in March. This tendency continues un-
til early May, when there are melting events. For areas with
low and middle elevations, there are small SWE differences
among most DA scenarios with different TCFs ranging from
10 % to 80 %. In areas with high elevations, there appear to
be larger SWE differences between the DA scenarios in April
and May than at lower elevations. The SWE improvements
gradually increase with the increasing detection capability of
TCFs. In other words, while the SWE retrieval capability in
denser forests has a lower impact on the domain-averaged
SWE performance in the low and middle elevations of this
domain where there are fewer forested areas, it has larger im-
pacts over high elevations. For areas with high elevations, the
DA SWEs with 10 %–40 % TCFs show improvements, while
no improvements are obtained in lower-elevation ranges, in-
dicating that a large portion of the SWE improvement for the
entire domain is from high-elevation regions.

4.1.3 Different performances between accumulation
and melting periods

Figure 5 provides a comprehensive comparison of RMSEs
and the percent improvement calculated by the time series of
domain-averaged SWE between all DA scenarios and the OL
simulation relative to NR. DA performances are different be-
tween accumulation and melting periods, where, generally,
the RMSEs between DA (or OL) and NR during the accu-
mulation period are smaller than those during the melting

period. While the RMSEs range from 16 mm (no limit for
deep SWE and an ability to detect SWE at up to 80 % TCF)
to 28 mm (200 mm SWE limit and 80 % TCF) for the accu-
mulation period, the RMSEs’ range for the melting period
is between 33 and 47 mm. Note that the baseline OL simu-
lation itself had a large difference between the two periods
(accumulation 24 mm and melting 44 mm). The percentages
of RMSE improvements calculated using Eq. (2) show rela-
tive improvements in DA scenarios from OL for a given pe-
riod. As shown in Fig. 3, the DA scenarios with a shallow
SWE limit (up to 200 mm) show little impact or degradation
for domain-averaged SWE estimations as compared to OL
for both periods. This implies that even though a hypotheti-
cal mission can provide a finer-spatial-resolution SWE prod-
uct (1 km) than existing passive microwave missions (e.g.,
25 km), we could not achieve the better SWE estimates un-
less the hypothetical mission has better retrieval algorithms
than that of passive microwave missions (e.g., 200 mm deep-
SWE limit and 20 % TCF). The DA scenarios with 400 and
600 mm and with no limits clearly show improvements for
both periods, and the level of the improvements varies by
TCF. For the accumulation period, the RMSEs were reduced
by around 15 % (and 23 %) with capabilities for up to the
400 mm (600 mm) limit and 10 % or larger TCFs. For the
melting period, the percent improvement is relatively small,
ranging from 1 % (400 mm limit and TCF 10 %) to 16 %
(600 mm limit and TCF 80 %). For the DA scenarios with-
out deep-snow limits, the improvements range from 26 % to
33 % and from 12 % to 26 % for the accumulation and melt-
ing periods, respectively. This indicates that the ability of
the active SWE retrievals to handle deep snow could help
in achieving better estimations of SWE.

4.2 Spatial evaluation of SWE performance

In this section, we evaluate the DA performance based on the
spatially distributed RMSE values. Figure 6 shows an exam-
ple of spatial maps showing the annual-mean SWE distribu-
tions from NR (Fig. 6a), OL (Fig. 6b), and a DA (Fig. 6e)
scenario, with no deep-SWE limit but TCF 40 %, along with
a map of the number of valid days used to calculate RMSE.
The annual-mean NR SWE map is noticeably different from
that of OL. The annual-mean DA SWE map shows similar
spatial patterns to OL and NR but different magnitudes re-
gionally. The two RMSE maps also show similar spatial pat-
terns but of regionally different magnitudes. For this DA run,
there are clear differences between the two maps over areas
with TCF <40 % such as a north-central region and some
southern parts of the study area (e.g., Rio Grande National
Forest). Figure 7 provides a spatial comparison of RMSE be-
tween DA scenarios with the four deep-SWE limits and NR.
With increasingly deep-SWE limits, the DA’s RMSEs de-
crease over mountainous regions where NR SWE is typically
high. While there are some degradations over areas where
SWEs are typically low (e.g., red color in Fig. 7b), the RMSE
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Figure 3. Domain-averaged SWE comparison between NR, OL, and DA experiments with different deep-snow limits (200, 400, and 600 mm
and no limit) for the entire domain and subareas with three different elevation ranges.

Figure 4. Domain-averaged SWE comparison between NR, OL, and DA experiments with different levels of detection capability in areas
with bare ground and tree cover fraction (TCF) limits of up to 10 %, 20 %, 40 %, 60 %, and 80 %. The areal proportions of the TCFs for three
elevation ranges are provided in Table S2.

difference maps between DA and OL demonstrate that RM-
SEs can be improved by more than 400 mm (areas with blue
color), highlighting the importance of SWE retrievals’ capa-
bility for deep snow in those mountainous environments.

To quantify the improvements of 24 DA experiments rela-
tive to the OL run, RMSE comparisons between DA experi-
ments and NR from all grid cells over the study domain are
provided in Fig. 8. The RMSE boxplot of OL (bottom) has
a range from 34 mm (lower quartile; Q1) to 112 mm (upper
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Figure 5. RMSEs between domain-averaged SWE estimations from the 24 DA experiments and that of the nature run (NR) and the percent-
ages of improvement as compared to the open-loop (OL) simulation.

Figure 6. The annual-mean SWE maps of the nature run (NR; a, d) and the open-loop (OL) simulation (b), as well as of a data assimilation
(DA) run with no deep-SWE limit but a TCF limit up to 40 % (e), as an example, and the RMSE maps of OL (c) and DA (f) against NR.
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Figure 7. (a) The RMSE maps between DA experiments with different deep-snow limits (200, 400, and 600 mm and no limit) against the
nature run (NR) and (b) the four DA experiments’ RMSE difference maps from OL’s RMSE. Note that the four DA scenarios are with no
tree cover fraction (TCF) limit (white color indicates areas with no DA occurrence such as lakes).

quartile; Q3) with a median of 67 mm (Q2). Each DA run
shows different ranges of the RMSEs as compared to OL.
For example, the DA run with a 200 mm SWE limit and a
TCF limit up to 20 % has slightly lower RMSEs (median:
63 mm) ranging from 28 mm (Q1) to 108 mm (Q3). For a
DA run with a better capability to detect deep SWE up to
600 mm and denser TCF up to 40 %, the median RMSE de-
creases by 67 to 50 mm. If the hypothetical sensors with an
ideal retrieval algorithm have a better capability to detect all
deep SWE values with TCF up to 80 %, the DA run has RM-
SEs ranging from 24 to 76 mm (median RMSE: 46 mm), a
reduction by about 21 mm compared to OL’s RMSEs.

To present the error improvements from each DA exper-
iment effectively, spatial-mean RMSEs and improvements
(%) of RMSEs for the 24 DA experiments relative to OL
RMSE are provided in Fig. 9. The RMSEs of DA experi-
ments with TCF 10 % are improved by 7 % (RMSE: 80 mm)
to 10 % (RMSE: 73 mm) depending on the degree of deep-
snow limits. The DA experiments with TCF 80 % can reduce
errors by up to 25 % (RMSE: 54 mm) if there is no limit with
deep SWE. The DA scenarios with TCF 40 % are capable
of achieving up to 20 % improvements in RMSE, suggesting
that it would be worth improving the retrieval algorithm to
detect SWE in regions with forest fractions up to 40 %. To
achieve around 20 % of the RMSE improvements, the SWE

retrievals may have to work with either 600 mm of deep SWE
with TCF 40 % or 400 mm of deep SWE with TCF 60 %.

4.3 OSSE performances by seasonal snow classes

The spatial-mean percentages of the RMSE improvement by
seasonal snow classification developed by Sturm and Liston
(2021) are presented in Fig. 10. The domain consists of four
seasonal snow classes (except ephemeral): tundra (7.1 %),
boreal forest (14.3 %), montane forest (44.9 %), and prairie
(28.9 %). Maps of each seasonal snow class with different
TCF ranges over the domain are provided in Fig. S1. Fig-
ure 10 reveals that the error improvements differ by snow
classification, and thus different priorities for the algorithm
development may be required by seasonal snow character-
istics. For example, in the tundra class, there are large dif-
ferences in performance between TCF 0 % and TCF 10 %,
but minimal changes are found beyond TCF 10 %, due to
the lack of trees in tundra environments. The ability to mea-
sure deep SWE is also important in this class because there
are larger improvements with increasing deep-snow thresh-
olds, whereas there are relatively small improvements with
different TCF levels. In boreal and montane forest classes,
there are large differences in performance between TCF 20 %
and TCF 40 %, suggesting that the capability of the SWE re-
trieval algorithm even up to TCF 40 % can provide consider-
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Figure 8. Boxplots of RMSE (mm) from all grid cells between the 24 DA experiments having different combinations of deep-snow and tree
cover fraction (TCF) detection limits and the nature run (NR) relative to the open-loop (OL) simulation. The vertical black lines in each
boxplot indicate the median value.

Figure 9. Domain-averaged values of temporal RMSEs and the im-
proved percentages (%) between the 24 DA experiments and the na-
ture run (NR) with different observational limitations for deep snow
and tree cover fraction (TCF), calculated relative to the open-loop
(OL) simulation.

able improvement in SWE estimates in both forest environ-
ments. In the prairie class, the largest differences in perfor-
mance are between the deep-snow limits of 200 and 400 mm,
but minimal changes are found beyond 400 mm. This is be-
cause the prairie class typically has a shallow snowpack.
Thus, a matured retrieval algorithm with active microwave
sensors detecting SWE up to 400 mm may be enough to ob-
tain accurate SWE measurements over the prairie snow class.
Overall, priorities to improve the capabilities of the retrieval
algorithm for deep snow or forest areas could differ by snow
class based on the mission’s goal.

5 Discussion and conclusion

Active microwave (radar) sensors have great potential to
measure SWE because of their sensitivity to the volume scat-
tering of dry snow, with enhanced capabilities in deep snow
and forest effects at higher resolutions (Lievens et al., 2019;
Tsang et al., 2022) relative to existing missions (e.g., pas-
sive microwave sensors). The OSSE results from this study
suggest that the radar snow mission may be able to reduce the
RMSE by 20 % in the mountainous regions if the retrieval al-
gorithm works in snowpack environments with up to 600 mm
of deep SWE with 40 % TCF. This means that algorithm
developments should focus on enhancing the retrieval skill
in both deep snowpack and moderate forest fractions. This
could be achievable based on previous and ongoing efforts
to demonstrate a sensitivity of X- and/or Ku-band signals to
deep SWE in a forested environment. Recent studies found
potential of X- and/or Ku-band backscatters to estimate SWE
by testing them in various snow environments. Borah et
al. (2022) showed a sensitivity of co-polarization backscat-
ters from airborne X- and Ku-band data to deep SWE more
than 650 mm when using a bi-continuous dense media ra-
diative transfer (DMRT) model. Santi et al. (2022) found
that the X-band backscattering coefficient from the COSMO-
SkyMed satellite can estimate deep SWE up to 800 mm using
a retrieval approach and machine learning methods. In prepa-
ration for ESA’s CoReH2O mission, Montomoli et al. (2015)
demonstrated, over a boreal forest site in northern Finland,
that the X- and Ku-band SWE retrieval can provide SWE
in a forested region with prior knowledge of TCF and tree
height if TCF is smaller than about 30 %. It is possible that
the SWE retrieval could be useful in areas with denser TCFs
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Figure 10. Spatial-mean improvement (%) of RMSEs between the 24 DA experiments with different levels of deep-snow and tree cover
fraction (TCF) detection limits and the nature run (NR) relative to the open-loop (OL) simulation for four seasonal snow classes, respectively.

if detailed canopy structure, canopy height, and forest types
are available and adequate corrections can be applied (Tsang
et al., 2022).

A radar-focused OSSE has been recently performed by
Garnaud et al. (2019) to assess the utility of hypothetical
snow observations in southern Quebec, Canada. As a part
of the ECCC-CSA TSMM concept study, they conducted a
Ku-band radar OSSE to quantify trade-offs between SWE
performance and sensor configurations and the retrieval al-
gorithm accuracy. There are several differences between the
current study and Garnaud et al. (2019) in terms of domain
characteristics, objectives, and conclusions. While Garnaud’s
work focused on lower-elevation (0–700 m elevation), forest-
dominant regions with shallow and moderate snowpack (e.g.,
80 mm of the peak SWE from the synthetic truth), this study
focuses on a mountainous domain in western Colorado, with
a wider range of high elevations (1000 to 4000 m) including
various seasonal snow types. This domain includes both shal-
low snow at lower elevations (peak SWE: 95 mm) and deep
snow at high elevations (peak SWE: 430 mm in Fig. 3), en-
abling us to quantify the utility of active microwave SWE
stratified over deep-snow limits as well as snow classes.
Both studies indicate that a SAR-based snow mission using
a volume-scattering retrieval approach can significantly im-
prove SWE estimates at various ranges of elevations, forest
cover, and snow depths. The major findings from both studies
complement one another. Garnaud et al. (2019) determined
the impact of different spatial resolutions (i.e., 1, 2, 10 km),
revisit frequencies (i.e., 1, 3, 5 d), and retrieval algorithm ac-
curacies. In this study, with achievable sensor configurations
(1 km spatial resolution, 7 d repeat time, and the realistic or-
bital configurations for a volume-scattering SAR mission de-
veloped using TAT-C), we demonstrated the impact of po-
tential limitations (e.g., deep snow and forest fractions) on
the SWE performance to help prioritize the algorithm devel-
opments. Also, we quantified the value of SWE assimilation

over complex mountainous terrain through improved SWE
retrievals of deep snow and snow in forested areas.

There are limitations to this study that may need to be con-
sidered in future research. First, the domain of this study (i.e.,
western Colorado) contains four seasonal snow classes and
wide elevation ranges, enabling us to represent mountain-
ous environments and quantify approximate performances in
other regions that have similar snow regimes and land sur-
face characteristics. However, we acknowledge that it is not
enough to extrapolate our findings to global coverage of a
future mission concept. Further OSSE investigations with
multiple domains with different snow climates, vegetation
characteristics, and terrain complexity (e.g., steep vs. flat ter-
rain) will complement current efforts. Secondly, we applied
a spatially constant error across the domain. While the er-
ror (30 mm standard deviation with zero mean) was based on
the expected uncertainty from previous studies (e.g., Rott et
al., 2010), spatially and temporally dynamic error character-
istics of the radar (e.g., multiplicative errors according to the
amount of SWE) in OSSEs could improve the performance
assessment. At the same time, radar uncertainty in snowpack
depends on the temporal evolution of snowpack and detailed
spatial features of land properties (e.g., snow microstructure,
tree structures, and canopy distribution within a grid). With
ongoing efforts from current and upcoming field campaigns
such as NASA SnowEx campaigns and airborne Cryosphere-
Observing SAR (CryoSAR; led by Richard Kelly at the Uni-
versity of Waterloo), radar snow error characteristics will be
better quantified in various environments, helping to develop
more realistic OSSEs. Thirdly, even though the OSSE of this
study considers realistic sensor configurations for a volume-
scattering SAR mission using the TAT-C software, there are
inherent geometrical limitations of SAR sensors (i.e., shad-
ow/overlay) which complicate the retrieval of surface prop-
erties in mountain regions such as the region of interest in
this study. To design the OSSE more accurately, the geo-
metrical observing gaps related to incidence angles of the
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SAR sensors and surface elevations should be accurately es-
timated. This may increase the number of masked grid cells
that would not have SWE retrievals from hypothetical satel-
lite observations. Lastly, the improvement of the SWE un-
certainties is inherently affected by the choice of land sur-
face models, meteorological boundary conditions, and spatial
and temporal domains. Future studies to quantify the impact
of these contributing sources on the performance assessment
will help maximize the suitability of the OSSE design.

In summary, we developed OSSEs that include character-
ization of expected error levels of SWE estimates and realis-
tic orbital configurations of anticipated sensors within NASA
LIS over a western Colorado domain. We found that ac-
tive microwave X- and/or Ku-band frequencies can improve
SWE estimation in a mountainous region over western Col-
orado. The active microwave sensors provided larger SWE
improvements in tundra (43 %) and boreal forest (22 %) snow
classes, and there are some improvements in the montane
forest (17 %) due to the sensor capability for deep snow-
pack. Active microwave sensors, known to have limitations
in relation to liquid water, can still reduce errors by up to
6 %–16 % of domain-averaged SWE even in the melting pe-
riod, depending on TCFs, suggesting that active microwave
SWE retrievals can add value for hydrological applications.
Overall, this work provides general quantification of the util-
ity of potential radar mission concepts for SWE in a moun-
tainous domain, helping to prioritize algorithm developments
and relevant upcoming field campaigns.

Code and data availability. The LIS outputs and configuration
files used in this study are available at http://www.hydroshare.
org/resource/1ad0d4b62c4440e9bb9267a7470d7b81 (Cho et al.,
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1, are available at the National Snow and Ice Data Cen-
ter (NSIDC) (https://doi.org/10.5067/99FTCYYYLAQ0, Liston
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global tree cover data are available at https://glad.umd.edu/Potapov/
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