



## Supplement of

## The stability of present-day Antarctic grounding lines – Part 2: Onset of irreversible retreat of Amundsen Sea glaciers under current climate on centennial timescales cannot be excluded

Ronja Reese et al.

Correspondence to: Ronja Reese (ronja.reese@northumbria.ac.uk)

The copyright of individual parts of the supplement might differ from the article licence.

| basin | mobs (Gt/yr) | $\delta T\left( {{\rm{K}}}  ight)$ | $m_{PICO}$ (Gt/yr) | $m_{B_1}$ (m/yr) | $m_{B_2}$ (m/yr) |  |  |  |
|-------|--------------|------------------------------------|--------------------|------------------|------------------|--|--|--|
| 1     | 75.2         | 0.17                               | 74.18              | 1.27             | -0.14            |  |  |  |
| 2     | 38.2         | -0.03                              | 38.72              | 2.68             | 0.44             |  |  |  |
| 3     | 17.1         | -0.24                              | 16.22              | 1.92             | 0.14             |  |  |  |
| 4     | 57.9         | -0.15                              | 55.32              | 2.63             | 0.55             |  |  |  |
| 5     | 6.8          | -0.51                              | 6.32               | 1.41             | -0.13            |  |  |  |
| 6     | 29.3         | -0.15                              | 30.53              | 1.76             | -1.46            |  |  |  |
| 7     | 79.2         | 0.07                               | 76.71              | 6.75             | 2.57             |  |  |  |
| 8     | 89.3         | -1.13                              | 88.52              | 8.89             | 1.39             |  |  |  |
| 9     | 24.4         | -0.39                              | 25.74              | 3.78             | 0.66             |  |  |  |
| 10    | 7.6          | -0.75                              | 7.51               | 2.05             | -1.45            |  |  |  |
| 11    | 7.4          | -0.15                              | 7.62               | 3.45             | 0.15             |  |  |  |
| 12    | 135.1        | 0.35                               | 137.83             | 1.50             | 0.02             |  |  |  |
| 13    | 167.0        | -1.10                              | 164.69             | 6.88             | 2.63             |  |  |  |
| 14    | 236.4        | -1.35                              | 236.45             | 19.61            | 11.09            |  |  |  |
| 15    | 68.5         | -2.00                              | 222.18             | 13.15            | 6.63             |  |  |  |
| 16    | 143.1        | -2.00                              | 171.91             | 11.97            | 5.91             |  |  |  |
| 17    | 6.5          | -1.23                              | 6.46               | 18.36            | 17.62            |  |  |  |
| 18    | 67.8         | -0.38                              | 65.97              | 2.69             | 0.64             |  |  |  |
| 19    | 4.7          | -0.15                              | 4.39               | 1.19             | -0.63            |  |  |  |

**Table S1.** Temperature corrections and melt rates for Antarctic basins with PICO parameters  $C = 2.0 \text{ Sym}^3 \text{kg}^{-1}$  and  $\gamma_T^{\star} = 5.0 \times 10^{-5} \text{ms}^{-1}$ .

| basin | mobs (Gt/yr) | $\delta T\left( {{\rm{K}}}  ight)$ | $m_{PICO}$ (Gt/yr) | $m_{B_1}$ (m/yr) | $m_{B_2}$ (m/yr) |
|-------|--------------|------------------------------------|--------------------|------------------|------------------|
| 1     | 75.2         | 0.52                               | 76.35              | 1.09             | -0.09            |
| 2     | 38.2         | 0.15                               | 39.31              | 2.59             | 0.49             |
| 3     | 17.1         | -0.09                              | 16.48              | 1.83             | 0.17             |
| 4     | 57.9         | 0.02                               | 57.98              | 2.63             | 0.58             |
| 5     | 6.8          | -0.48                              | 6.33               | 1.35             | -0.03            |
| 6     | 29.3         | 0.02                               | 28.02              | 1.42             | -1.03            |
| 7     | 79.2         | 0.27                               | 79.33              | 6.84             | 2.69             |
| 8     | 89.3         | -0.93                              | 88.41              | 8.47             | 1.96             |
| 9     | 24.4         | -0.32                              | 24.81              | 3.55             | 0.73             |
| 10    | 7.6          | -0.72                              | 7.30               | 1.80             | -0.99            |
| 11    | 7.4          | -0.11                              | 6.92               | 2.97             | 0.26             |
| 12    | 135.1        | 0.75                               | 132.34             | 1.38             | 0.04             |
| 13    | 167.0        | -0.85                              | 164.64             | 6.90             | 2.55             |
| 14    | 236.4        | -0.93                              | 234.56             | 19.59            | 10.96            |
| 15    | 68.5         | -2.00                              | 141.53             | 9.05             | 3.96             |
| 16    | 143.1        | -1.70                              | 144.18             | 10.63            | 4.79             |
| 17    | 6.5          | -0.98                              | 6.51               | 18.50            | 17.56            |
| 18    | 67.8         | -0.16                              | 66.52              | 2.66             | 0.69             |
| 19    | 4.7          | -0.10                              | 5.00               | 1.12             | -0.44            |

**Table S2.** Temperature corrections and melt rates for Antarctic basins with PICO parameters  $C = 1.0 \text{ Sym}^3 \text{kg}^{-1}$  and  $\gamma_T^{\star} = 4.0 \times 10^{-5} \text{ms}^{-1}$ .

| basin | $m_{obs}$ (Gt/yr) | $\delta T\left( {{\rm{K}}}  ight)$ | $m_{PICO}$ (Gt/yr) | $m_{B_1}$ (m/yr) | $m_{B_2}$ (m/yr) |  |  |  |
|-------|-------------------|------------------------------------|--------------------|------------------|------------------|--|--|--|
| 1     | 75.2              | 0.00                               | 78.07              | 1.38             | -0.10            |  |  |  |
| 2     | 38.2              | -0.08                              | 38.91              | 2.55             | 0.55             |  |  |  |
| 3     | 17.1              | -0.29                              | 16.27              | 1.84             | 0.24             |  |  |  |
| 4     | 57.9              | -0.18                              | 60.62              | 2.65             | 0.71             |  |  |  |
| 5     | 6.8               | -0.51                              | 5.68               | 1.26             | -0.11            |  |  |  |
| 6     | 29.3              | -0.25                              | 30.08              | 1.74             | -1.31            |  |  |  |
| 7     | 79.2              | 0.05                               | 77.65              | 5.98             | 2.75             |  |  |  |
| 8     | 89.3              | -1.10                              | 91.12              | 8.56             | 2.27             |  |  |  |
| 9     | 24.4              | -0.39                              | 24.37              | 3.36             | 0.84             |  |  |  |
| 10    | 7.6               | -0.75                              | 7.58               | 1.92             | -1.13            |  |  |  |
| 11    | 7.4               | -0.15                              | 7.21               | 3.05             | 0.28             |  |  |  |
| 12    | 135.1             | 0.12                               | 131.34             | 1.43             | 0.05             |  |  |  |
| 13    | 167.0             | -1.13                              | 170.38             | 6.45             | 3.05             |  |  |  |
| 14    | 236.4             | -1.30                              | 236.22             | 18.19            | 11.79            |  |  |  |
| 15    | 68.5              | -2.00                              | 232.13             | 12.34            | 7.28             |  |  |  |
| 16    | 143.1             | -2.00                              | 201.46             | 11.86            | 7.07             |  |  |  |
| 17    | 6.5               | -1.00                              | 6.57               | 18.65            | 18.21            |  |  |  |
| 18    | 67.8              | -0.43                              | 70.12              | 2.73             | 0.81             |  |  |  |
| 19    | 4.7               | -0.15                              | 4.99               | 1.24             | -0.58            |  |  |  |

**Table S3.** Temperature corrections and melt rates for Antarctic basins with PICO parameters  $C = 3.0 \text{ Sym}^3 \text{kg}^{-1}$  and  $\gamma_T^{\star} = 4.0 \times 10^{-5} \text{ms}^{-1}$ .

| basin | $m_{obs}$ (Gt/yr) | $\delta T\left( {{\rm{K}}}  ight)$ | $m_{PICO}$ (Gt/yr) | $m_{B_1}$ (m/yr) | $m_{B_2}$ (m/yr) |  |  |  |  |
|-------|-------------------|------------------------------------|--------------------|------------------|------------------|--|--|--|--|
| 1     | 75.2              | 0.07                               | 78.24              | 1.55             | -0.23            |  |  |  |  |
| 2     | 38.2              | -0.13                              | 36.77              | 2.78             | 0.28             |  |  |  |  |
| 3     | 17.1              | -0.31                              | 15.90              | 2.06             | 0.04             |  |  |  |  |
| 4     | 57.9              | -0.23                              | 57.59              | 2.93             | 0.52             |  |  |  |  |
| 5     | 6.8               | -0.53                              | 6.27               | 1.47             | -0.25            |  |  |  |  |
| 6     | 29.3              | -0.23                              | 31.20              | 2.12 -2.09       |                  |  |  |  |  |
| 7     | 79.2              | -0.03                              | 80.04              | 7.62 2.54        |                  |  |  |  |  |
| 8     | 89.3              | -1.27                              | 86.17              | 9.56             | 0.05             |  |  |  |  |
| 9     | 24.4              | -0.46                              | 24.31              | 3.96             | 0.22             |  |  |  |  |
| 10    | 7.6               | -0.78                              | 6.64               | 2.24             | -2.25            |  |  |  |  |
| 11    | 7.4               | -0.19                              | 7.95               | 4.09             | -0.18            |  |  |  |  |
| 12    | 135.1             | 0.17                               | 132.64             | 1.54             | -0.04            |  |  |  |  |
| 13    | 167.0             | -1.25                              | 163.64             | 7.21             | 2.46             |  |  |  |  |
| 14    | 236.4             | -1.68                              | 232.45             | 20.25            | 10.35            |  |  |  |  |
| 15    | 68.5              | -2.00                              | 320.98             | 18.77            | 9.65             |  |  |  |  |
| 16    | 143.1             | -2.00                              | 251.75             | 17.21            | 8.70             |  |  |  |  |
| 17    | 6.5               | -1.48                              | 6.56               | 18.64            | 17.87            |  |  |  |  |
| 18    | 67.8              | -0.48                              | 69.46              | 2.93             | 0.58             |  |  |  |  |
| 19    | 4.7               | -0.16                              | 4.99               | 1.50             | -0.89            |  |  |  |  |

**Table S4.** Temperature corrections and melt rates for Antarctic basins with PICO parameters  $C = 3.0 \text{ Sym}^3 \text{kg}^{-1}$  and  $\gamma_T^{\star} = 7.0 \times 10^{-5} \text{ms}^{-1}$ .

| basin | mobs (Gt/yr) | $\delta T\left( {{\rm{K}}}  ight)$ | $m_{PICO}$ (Gt/yr) | $m_{B_1}$ (m/yr) | $m_{B_2}$ (m/yr) |
|-------|--------------|------------------------------------|--------------------|------------------|------------------|
| 1     | 75.2         | 0.92                               | 76.70              | 1.27             | -0.17            |
| 2     | 38.2         | 0.10                               | 39.51              | 2.90             | 0.24             |
| 3     | 17.1         | -0.09                              | 16.72              | 2.09             | -0.03            |
| 4     | 57.9         | -0.03                              | 58.83              | 3.05             | 0.40             |
| 5     | 6.8          | -0.52                              | 6.64               | 1.54             | -0.25            |
| 6     | 29.3         | 0.15                               | 28.58              | 1.73             | -1.78            |
| 7     | 79.2         | 0.12                               | 77.25              | 8.58             | 1.82             |
| 8     | 89.3         | -1.13                              | 88.14              | 10.23            | -0.58            |
| 9     | 24.4         | -0.41                              | 25.36              | 4.42             | -0.05            |
| 10    | 7.6          | -0.75                              | 6.94               | 2.30             | -2.25            |
| 11    | 7.4          | -0.17                              | 7.26               | 4.09             | -0.51            |
| 12    | 135.1        | 1.07                               | 135.57             | 1.49             | -0.02            |
| 13    | 167.0        | -1.00                              | 169.15             | 8.31             | 1.83             |
| 14    | 236.4        | -1.40                              | 237.50             | 23.80            | 8.70             |
| 15    | 68.5         | -2.00                              | 202.88             | 14.58            | 4.76             |
| 16    | 143.1        | -1.85                              | 144.60             | 13.27            | 3.86             |
| 17    | 6.5          | -1.58                              | 6.63               | 18.90            | 16.82            |
| 18    | 67.8         | -0.21                              | 69.12              | 2.88             | 0.55             |
| 19    | 4.7          | -0.13                              | 4.73               | 1.23             | -0.66            |

**Table S5.** Temperature corrections and melt rates for Antarctic basins with PICO parameters  $C = 1.0 \text{ Sym}^3 \text{kg}^{-1}$  and  $\gamma_T^{\star} = 9.0 \times 10^{-5} \text{ms}^{-1}$ .

**Table S6.** Summary of ensemble indicators. RMSE stands for root-mean-square deviation in ice thickness (h) or ice stream velocities (v) to present-day observations. We further test for deviations in grounded and floating area, and the average distance to the observed grounding line position. We calculate the average rate of ice thickness change. The last dimension is the difference to observed sea-level trend. We lay a specific focus on the Amundsen region (ASE), Filchner-Ronne (FRIS) and Ross (RIS) ice shelves by additionally evaluating each indicator for these drainage basins individually.

| indicator                             | AIS1   | AIS2   | AIS3   | AIS4   | AIS5   | AIS6   | AIS7   | AIS8   | AIS9   | AIS10  | AIS11  | AIS12  | AIS13  | AIS14  | AIS15  | AIS16  | AIS17  | AIS18  | AIS19  | AIS20  | AIS21  |
|---------------------------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| RMSE(h)AIS (m)                        | 335.65 | 344.50 | 349.50 | 347.75 | 348.02 | 347.63 | 345.03 | 344.92 | 348.71 | 345.37 | 341.46 | 343.40 | 345.89 | 344.49 | 343.37 | 342.85 | 341.65 | 340.92 | 343.83 | 343.65 | 342.37 |
| RMSE(h)ASE (m)                        | 172.62 | 182.90 | 192.72 | 182.70 | 191.34 | 187.77 | 173.75 | 185.03 | 194.93 | 185.39 | 167.93 | 193.79 | 184.16 | 191.74 | 184.16 | 199.80 | 185.60 | 203.30 | 201.87 | 197.09 | 221.61 |
| RMSE(h) <sub>RIS</sub> (m)            | 268.56 | 276.04 | 286.65 | 281.10 | 275.89 | 286.01 | 268.20 | 268.99 | 271.40 | 265.43 | 264.46 | 267.27 | 263.32 | 263.58 | 256.77 | 262.12 | 257.55 | 257.86 | 261.68 | 257.62 | 256.24 |
| RMSE(h)FRIS (m)                       | 240.53 | 247.34 | 256.51 | 242.43 | 249.94 | 253.41 | 241.91 | 240.85 | 256.63 | 248.36 | 226.36 | 242.13 | 236.00 | 236.04 | 235.60 | 244.13 | 228.03 | 238.00 | 228.89 | 225.56 | 228.62 |
| RMSE(v)AIS (m/a)                      | 257.61 | 250.28 | 247.51 | 263.44 | 250.92 | 252.23 | 276.08 | 249.11 | 244.55 | 253.32 | 297.70 | 260.78 | 275.21 | 272.92 | 272.29 | 247.34 | 305.83 | 255.27 | 275.49 | 306.04 | 299.63 |
| RMSE(v) <sub>ASE</sub> (m/a)          | 74.84  | 68.47  | 69.46  | 67.66  | 68.52  | 65.51  | 80.71  | 72.32  | 68.32  | 75.41  | 100.74 | 72.72  | 94.67  | 87.11  | 85.68  | 77.92  | 122.60 | 95.78  | 98.00  | 127.17 | 147.09 |
| RMSE(v) <sub>RIS</sub> (m/a)          | 33.39  | 31.86  | 33.32  | 33.28  | 34.56  | 32.97  | 36.33  | 32.64  | 34.83  | 33.71  | 36.67  | 40.23  | 33.01  | 34.82  | 38.26  | 37.18  | 36.40  | 34.47  | 35.92  | 37.22  | 35.13  |
| RMSE(v)FRIS (m/a)                     | 24.19  | 23.49  | 22.60  | 23.34  | 22.83  | 22.46  | 23.67  | 23.35  | 22.82  | 24.33  | 25.19  | 23.91  | 23.58  | 23.69  | 25.19  | 23.67  | 24.78  | 24.57  | 24.39  | 24.67  | 25.36  |
| $\Delta A^g_{AIS}~({\rm km}^2)$       | 685440 | 693504 | 706880 | 695040 | 718016 | 707136 | 690368 | 713088 | 729664 | 722368 | 671296 | 726336 | 709376 | 721152 | 713600 | 731648 | 680128 | 727872 | 710464 | 698752 | 712704 |
| $\Delta A^g_{ASE}~({\rm km}^2)$       | 8512   | 8192   | 7104   | 7936   | 8128   | 7808   | 8704   | 9088   | 8256   | 9152   | 10112  | 10496  | 10112  | 11072  | 10432  | 11648  | 12800  | 15232  | 14976  | 15168  | 19072  |
| $\Delta A_{RIS}^g$ (km <sup>2</sup> ) | 128256 | 123904 | 125312 | 127552 | 134656 | 128256 | 125376 | 140096 | 135744 | 137728 | 132160 | 153024 | 144128 | 153856 | 143552 | 151360 | 130240 | 154368 | 155520 | 145856 | 155776 |
| $\Delta A^g_{FRIS}~({\rm km}^2)$      | 109056 | 114496 | 119808 | 106816 | 113664 | 116864 | 111744 | 106240 | 119616 | 116992 | 97664  | 105216 | 102400 | 102016 | 107136 | 109312 | 102016 | 106688 | 96256  | 98176  | 99648  |
| $\Delta A^f_{AIS}~({\rm km}^2)$       | 567296 | 578816 | 592192 | 576064 | 588544 | 587904 | 577600 | 582400 | 601280 | 592000 | 558592 | 600768 | 580928 | 598976 | 584896 | 605312 | 568384 | 602688 | 585472 | 570048 | 587584 |
| $\Delta A^f_{ASE}$ (km <sup>2</sup> ) | 8896   | 9792   | 9472   | 9408   | 13312  | 9664   | 10048  | 11200  | 13184  | 11264  | 11008  | 14976  | 12800  | 16704  | 12800  | 16320  | 13440  | 18176  | 17472  | 15552  | 21440  |
| $\Delta A^f_{RIS}  ({\rm km}^2)$      | 85760  | 81152  | 82432  | 84992  | 92288  | 85632  | 82880  | 97856  | 93248  | 95360  | 89664  | 111040 | 101888 | 112192 | 101184 | 109248 | 87680  | 112192 | 113920 | 103680 | 113728 |
| $\Delta A^f_{FRIS}~({\rm km}^2)$      | 97344  | 102656 | 107776 | 94976  | 101824 | 105088 | 99584  | 94272  | 107776 | 105216 | 85760  | 93376  | 90432  | 90368  | 94976  | 97536  | 89984  | 95104  | 84416  | 86336  | 87744  |
| $\Delta GL_{AIS}$ (km)                | 9.47   | 9.78   | 9.76   | 10.24  | 10.27  | 10.03  | 9.82   | 10.56  | 10.54  | 10.27  | 9.82   | 11.18  | 10.66  | 11.20  | 10.70  | 11.13  | 10.14  | 11.43  | 11.05  | 10.59  | 11.16  |
| $\Delta GL_{ASE}$ (km)                | 6.67   | 7.05   | 6.83   | 6.47   | 6.02   | 6.43   | 6.70   | 6.90   | 6.03   | 7.09   | 8.56   | 8.21   | 8.45   | 9.56   | 8.23   | 9.66   | 11.16  | 14.67  | 13.80  | 13.00  | 18.01  |
| $\Delta GL_{RIS}$ (km)                | 21.40  | 19.76  | 19.91  | 21.22  | 23.89  | 21.00  | 20.20  | 25.64  | 24.23  | 24.73  | 23.15  | 29.63  | 27.65  | 30.56  | 26.69  | 29.41  | 22.93  | 30.54  | 31.26  | 28.34  | 31.32  |
| $\Delta GL_{FRIS}$ (km)               | 12.47  | 13.63  | 13.36  | 14.91  | 13.84  | 13.55  | 13.22  | 15.01  | 14.38  | 12.49  | 12.92  | 14.93  | 14.23  | 13.95  | 14.50  | 14.74  | 13.96  | 14.32  | 13.12  | 13.01  | 13.67  |
| dhdt <sub>AIS</sub> (mm/a)            | 83.70  | 86.64  | 83.01  | 86.30  | 69.36  | 81.55  | 87.13  | 71.76  | 69.35  | 72.12  | 91.51  | 62.82  | 76.11  | 64.79  | 79.10  | 62.28  | 96.45  | 63.76  | 64.64  | 80.96  | 71.86  |
| dhdt <sub>ASE</sub> (mm/a)            | 95.57  | 99.81  | 93.98  | 91.59  | 71.98  | 105.42 | 97.27  | 76.76  | 67.36  | 89.45  | 124.36 | 77.03  | 101.71 | 89.79  | 102.01 | 86.84  | 143.86 | 70.09  | 82.65  | 125.65 | 139.86 |
| dhdt <sub>RIS</sub> (mm/a)            | 43.14  | 42.35  | 40.16  | 44.47  | 34.15  | 40.46  | 44.35  | 35.98  | 37.26  | 34.72  | 45.03  | 30.73  | 35.26  | 28.63  | 37.82  | 29.95  | 44.92  | 29.80  | 31.75  | 37.92  | 31.38  |
| dhdt <sub>FRIS</sub> (mm/a)           | 39.16  | 37.64  | 39.82  | 40.65  | 33.84  | 39.04  | 38.91  | 35.34  | 32.98  | 32.42  | 39.17  | 27.59  | 34.90  | 26.97  | 34.38  | 27.35  | 39.62  | 27.14  | 27.35  | 34.24  | 28.36  |
| $\Delta$ SLE (mm)                     | 6.25   | 5.71   | 6.22   | 6.17   | 8.10   | 6.73   | 5.96   | 7.39   | 7.96   | 8.13   | 5.16   | 8.88   | 7.45   | 7.50   | 6.47   | 9.00   | 2.79   | 7.65   | 8.57   | 5.67   | 6.93   |



**Figure S1.** Historic increase in (a) ocean temperatures and (b) salinities as input into PICO box 0. Basin 1 corresponds to Filchner-Ronne Ice Shelf, basin 12 to Ross Ice Shelf and basin 14 covers the Amundsen Sea. All basins are as in Reese et al. (2018).



**Figure S2.** PICO basal melt rates for the 'best' PICO parameters for the AIS5 configuration in (a) the historic control run, and (b) the presentday extended run, the 'max' PICO parameters in the AIS1 configuration in (c) the historic control run, and (d) the present-day extended run, and the 'min' PICO parameters in the AIS12 configuration in (e) the historic control run, and (f) the present-day extended run.



Figure S3. Grounding lines and ice thickness changes relative to BedMachine in ensemble members in 2015, zoomed into the West Antarctic Ice Sheet. Inset shows zoom location.



**Figure S4.** Long-term evolution for all AIS configurations, zoomed into the West Antarctic Ice Sheet (same region as in Fig. S3). The 2015 grounding line positions are shown in black. Over 10,000 years of constant present-day climate the grounding lines evolve to the positions shown in blue. The spatial map shows the rates of ice thickness changes after 10,000 years of constant present-day climate forcing.



**Figure S5.** Long-term evolution and reversibility for all AIS configurations, zoomed into the West Antarctic Ice Sheet (same region as in Fig. S3). The 2015 grounding line positions are shown in black. Over 10,000 years of constant present-day climate the grounding lines evolve to the positions shown in blue. When reversing the climate to historic conditions after 300, 500 or 1000 years, they evolve to the positions shown in pink, dark pink and purple, respectively. When reversing the climate to historic conditions after 10,000 years and continuing the runs for another 20,000 years, the grounding lines evolve to the positions shown in light blue. The spatial map shows the rates of ice thickness changes after 20,000 years of reversed forcing.



**Figure S6.** Evolution of the basal mass balance (only over floating regions), the surface mass balance, the grounding line flux and the flux across the calving front which is kept at its present-day location for all ensemble members over the 10,000 years of constant present-day climate conditions. Values are 25-year running means.



**Figure S7.** Testing the Filchner-Ronne Ice Shelf melt relationship for a different ocean simulation. Left panel: evolution of average ocean temperature and salinity at the depth of the continental shelf in front of the ice shelf in the ocean simulations of the Weddell Sea in Naughten et al. (2021) for the 1 percent CO2 increase scenario. Right panel: modelled and predicted melt rates using the fitted function from Appendix A1.

## References

5

- Adusumilli, S., Fricker, H. A., Medley, B., Padman, L., and Siegfried, M. R.: Interannual variations in meltwater input to the Southern Ocean from Antarctic ice shelves, Nature Geoscience, 13, 616–620, https://doi.org/10.1038/s41561-020-0616-z, 2020.
- Naughten, K. A., Rydt, J. D., Rosier, S. H. R., Jenkins, A., Holland, P. R., and Ridley, J. K.: Two-timescale response of a large Antarctic ice shelf to climate change, Nature Communications, 12, https://doi.org/10.1038/s41467-021-22259-0, 2021.
- Reese, R., Albrecht, T., Mengel, M., Asay-Davis, X., and Winkelmann, R.: Antarctic sub-shelf melt rates via PICO, The Cryosphere, 12, 1969–1985, https://doi.org/10.5194/tc-12-1969-2018, 2018.