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Abstract. In this study, a new method to assimilate freeboard
(FB) derived from satellite radar altimetry is presented with
the goal of improving the initial state of sea ice thickness
predictions in the Arctic. In order to quantify the improve-
ment in sea ice thickness gained by assimilating FB, we
compare three different model runs: one reference run (re-
fRun), one that assimilates only sea ice concentration (SIC)
(sicRun), and one that assimilates both SIC and FB (fbRun).
It is shown that estimates for both SIC and FB can be im-
proved by assimilation, but only fbRun improved the FB.
The resulting sea ice thickness is evaluated by comparing
sea ice draft measurements from the Beaufort Gyre Explo-
ration Project (BGEP) and sea ice thickness measurements
from 19 ice mass balance (IMB) buoys deployed during the
Multidisciplinary drifting Observatory for the Study of Arc-
tic Climate (MOSAIC) expedition. The sea ice thickness of
fbRun compares better than refRun and sicRun to the longer
BGEP observations more poorly to the shorter MOSAIiC ob-
servations. Further, the three model runs are compared to
the Alfred Wegener Institute (AWI) weekly CryoSat-2 sea
ice thickness, which is based on the same FB observations
as those that were assimilated in this study. It is shown
that the FB and sea ice thickness from fbRun are closer to
the AWI CryoSat-2 values than the ones from refRun or
sicRun. Finally, comparisons of the abovementioned obser-
vations and both the fbRun sea ice thickness and the AWI
weekly CryoSat-2 sea ice thickness were performed. At the
BGEDP locations, both fbRun and the AWI CryoSat-2 sea ice
thickness perform equally. The total root-mean-square error
(RMSE) at the BGEP locations equals 30 cm for both sea ice
thickness products. At the MOSAIC locations, fbRun’s sea

ice thickness performs significantly better, with a total 11 cm
lower RMSE.

1 Introduction

With declining sea ice in the Arctic, marine traffic is increas-
ing (Cao et al., 2022). This increases the demand for accu-
rate sea ice predictions to ensure safety on shipping routes.
Data assimilation is a commonly used tool to improve the ini-
tial state of sea ice predictions (Chen et al., 2017; Mu et al.,
2018; Fiedler et al., 2022). In data assimilation, models and
observations are combined using a number of approaches.
For all approaches, the variables that are assimilated need
to be observable and need to affect the model variable that
the assimilation aims to improve. Stroeve and Notz (2015)
list sea ice volume and ocean heat content as the two model
variables with the largest impact on Arctic sea ice forecast.
Ocean heat content is difficult to observe on an Arctic-wide
scale, but sea ice concentration (SIC) and sea ice thickness
can be observed from satellites (Kwok, 2010; Laxon et al.,
2013; Ivanova et al., 2014; OSI SAF, 2017; Hendricks et al.,
2021). While satellite-observed SIC has rather good accu-
racy and has been available since the late 1970s, satellite sea
ice thickness observations have only been available since the
early 2000s and come with large uncertainties (Laxon et al.,
2003; Kwok, 2010). Several studies have found that sea ice
thickness, in contrast to SIC, has a longer memory (Day
et al., 2014; Stroeve and Notz, 2015; Dirkson et al., 2017).
Longer memory here means that the change introduced by
initial sea ice thickness persists longer than the change in-
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troduced by SIC. This makes the sea ice thickness the more
suitable variable to assimilate when aiming for an improved
initial estimate of the Arctic sea ice, which also has an im-
pact on the skill of the forecast at longer timescales (Day
etal., 2014).

Arctic-wide sea ice observations can only be obtained
through remotely sensed data from satellites. However, for
sea ice thickness, it is possible to observe the portion of the
sea ice above the sea surface, which is referred to as free-
board (FB). The longest record of FB observations from a
satellite with a polar orbit can be obtained from the European
Space Agency (ESA) satellite CryoSat-2, which has been in
orbit since 2010 (Drinkwater et al., 2004). Using an advanced
radar altimeter, data from CryoSat-2 can be used to estimate
FB as the difference between the observed height of the sea
ice surface and the water level in leads between sea ice floes.
To derive sea ice thickness from FB, a number of assump-
tions need to be made, which will be discussed below. These
assumptions lead to a large uncertainty in the resulting sea
ice thickness estimate. Therefore, we propose a method that
assimilates FB directly, instead of using sea ice thickness de-
rived from FB.

Most existing sea ice thickness products use FB measure-
ments to calculate sea ice thickness assuming hydrostatic bal-
ance. The hydrostatic balance equation relates sea ice thick-
ness to FB, snow density, snow thickness, sea ice density and
seawater density. In this relation, FB is measured, and the
other parameters are derived from climatologies or empiri-
cal values derived from in situ observations (Ricker et al.,
2014; Kwok and Cunningham, 2015; Tilling et al., 2018).
The abovementioned uncertainties in satellite-derived sea ice
thickness largely originate from the uncertainty in these pa-
rameters (Alexandrov et al., 2010). According to Alexandrov
et al. (2010), sea ice density introduces the largest error when
calculating sea ice thickness from FB under the assumption
of hydrostatic balance. Sea ice density depends on the ice
age, where younger sea ice has a higher salinity due to more
brine being enclosed in it. Over time, brine is expelled into
the ocean below. During the melt season, salt is washed out
by meltwater (Cox and Weeks, 1974), making multi-year ice
(MY]) less saline and therefore less dense than first-year ice
(FYD). Enclosed gas is another parameter that makes sea ice
density estimates uncertain. FYI sea ice density uncertainty
is typically around 23.0kgm™3, and for MYI, the uncer-
tainty is around 35.7kgm~> (Alexandrov et al., 2010). This
high uncertainty originates from the difficulty of measuring
sea ice density and the limited availability of density mea-
surements. The density varies within the ice column depend-
ing on whether the ice is below or above sea level. On top
of that, the harsh environment adds extra challenges to per-
forming exact measurements (Timco and Frederking, 1996).
Despite the variation in sea ice density, most products use
fixed values of 917 kgm™> for FYI and 882 kg m~3 for MYI
(Sallila et al., 2019). The second-largest error contributor to
sea ice thickness, according to Alexandrov et al. (2010), is
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FB. Uncertainties in FB originate from uncertainties in the
sea surface height, the location of the backscattering hori-
zon, speckle noise (Ricker et al., 2014), the retracking of
the radar waveform (Landy et al., 2019), and uncertainties
in snow height and density used to calculate the reduction
in radar wave propagation speed in the snowpack (Mallett
et al., 2020). The uncertainty introduced by the snow thick-
ness has been extensively discussed (Kurtz and Farrell, 2011;
Kwok et al., 2011; Laxon et al., 2013; Kern et al., 2015; Gar-
nier et al., 2021). Historically, snow thickness has been de-
rived from the Warren et al. (1999) snow climatology (W99),
which was calculated from Russian drift stations for the pe-
riod 1954-1991. Most of the included measurements were
obtained on thick MYI. However, Kurtz and Farrell (2011)
showed that W99 is less reliable over FYI compared to MY,
and Laxon et al. (2013) proposed a method to differentiate
MYTI and FYI snow thickness and snow density from W99.
This method is now more commonly used in sea ice thick-
ness products than the pure W99 climatology (Sallila et al.,
2019). Another alternative to W99 is to use a snow model to
calculate the local snow thickness, depending on precipita-
tion. For example, Fiedler et al. (2022) showed results using
snow thickness from the Forecast Ocean Assimilation Model
(FOAM; Blockley et al., 2014), which is a global coupled sea
ice—ocean model, or Landy et al. (2022) used SnowModel-
LG (Liston et al., 2020).

W99 also includes a snow density climatology, which was
commonly used in the calculation of sea ice thickness until
2020 (Sallila et al., 2019). Mallett et al. (2020) found that ap-
proximating the snow density by a linear function improves
the sea ice thickness estimate by about 10 cm. Recent sea ice
thickness products, for example in Hendricks et al. (2021),
have started to use the proposed seasonal linear approxima-
tion of snow density, with good results. Seawater density
only varies very little throughout the Arctic. Most CryoSat-2
sea ice thickness products use a single value of 1024 kgm™3,
which is the density at the freezing point of Arctic surface
water. The influence of the uncertainty in this value on the hy-
drostatic balance equation is negligible (Kurtz et al., 2013).

The uncertainties in sea ice density, freeboard (FB), snow
density and seawater density all contribute to the overall error
in sea ice thickness calculated from FB. To account for these
errors, error estimates are used in data assimilation methods
such as Kalman filters. Kalman filters rely on knowledge of
the model uncertainties and observational uncertainties, as
well as the assumption that they are unbiased and Gaussian
distributed. Based on these assumptions, the Kalman filter
aims to derive the best estimate. The accuracy of the re-
sulting state estimate improves with better uncertainty esti-
mates. The errors in CryoSat-2-derived sea ice thickness not
only are due to the sources mentioned above, but also de-
pend on how FYI and MYT are defined. The sea ice density;
snow thickness; and, in some cases, snow density are calcu-
lated based on this ice type. The ice type is typically derived
from the Ocean and Sea Ice Satellite Application Facility

https://doi.org/10.5194/tc-17-3721-2023



I. Sievers et al.: Assimilating CryoSat-2 freeboard

(OSI SAF) ice type data (Sallila et al., 2019), which distin-
guish between FYI, MYI and ambiguous ice types (Aaboe
et al., 2021). Ye et al. (2023) assessed different sea ice type
products, including the OSI SAF ice type data product, and
compared them to the National Snow and Ice Data Cen-
ter (NSIDC) sea ice age data (Tschudi et al., 2020). They
found that the OSI SAF ice type data have for FYI a bias of
0.42x 10° to 0.6 x 10% km? and for MY1 a bias of —0.54 x 10°
to —0.35 x 10%km?. This comparison only considers FYI
and MYTI areas and compares them to satellite-obtained ice
age products. Ambiguous areas are not considered. In most
CryoSat-2 sea ice thickness products, a small transitioning
area with a linear transition from MYI to FYI is assumed
(Laxon et al., 2013; Tilling et al., 2018; Hendricks et al.,
2021). However, the ice-chart-based sea ice type data product
G10033 (Fetterer and Stewart, 2020) suggests large areas of
mixed ice types. These areas are notably larger and less ho-
mogeneous than the areas suggested by the linear transition
between MYI and FYI based on the OSI SAF sea ice type.
This means that sea ice density, snow thickness and snow
density errors are systematically underestimated or overesti-
mated in these areas of ambiguous ice type.

As the FB error estimate is part of the sea ice thickness
error estimate, it is fair to conclude that the FB error is better
constrained than the sea ice thickness error. This is not to say
that FB errors are unbiased. However, by choosing to assimi-
late FB, error contributions originating from snow thickness,
snow density, sea ice density and sea ice type when convert-
ing FB to sea ice thickness are eliminated. Consequently, it
follows that the FB data would be more suitable for assimila-
tion than the derived sea ice thickness, as a lower uncertainty
will increase the weight of the observed CryoSat-2 FB.

The challenge of this approach is that FB is not a sea ice
model state variable but a diagnostic variable. Even though
FB is not a state variable, it is related to sea ice thickness,
which is a state variable and can be calculated from FB un-
der the assumptions that a change in FB is caused only by
modeled sea ice thickness and modeled snow thickness and
that snow density and ice density are realistic.

In this study, we present an approach to assimilating FB
directly into the sea ice model CICE (Hunke et al., 2021a).
We aim to answer the following questions: does FB assimi-
lation have a significant impact on the modeled sea ice thick-
ness? And how does the modeled sea ice thickness after as-
similation of FB compare to sea ice thickness (SIT) from a
conventional CryoSat-2 sea ice thickness product? To trans-
form FB into the model state variable sea ice thickness, we
use parametrization and assumptions from the model and the
forcing data. The method is implemented into CICE, but it
should be applicable to any other model. This study mainly
focuses on CryoSat-2 measurements, but the approach pre-
sented could also be applied to ICESat FB data (Martino
et al., 2019) with small adjustments. Several studies have
mentioned approaches to assimilate FB (Vernieres et al.,
2016; Kaminski et al., 2018; Fiedler et al., 2022), but none
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has included a description of how the FB assimilation was
implemented. Kaminski et al. (2018) conducted a study us-
ing the quantitative network design approach to quantify how
beneficial it would be to assimilate radar FB, among other
variables. The study concludes that assimilation of radar FB
can improve sea ice volume simulations on the same order of
magnitude as sea ice thickness assimilation. The quantitative
network design approach builds upon error propagation and
the sea ice thickness errors used in the analysis, which origi-
nate from the Alfred Wegener Institute (AWI) CryoSat-2 sea
ice thickness products. As discussed above, this error esti-
mate includes no contribution from ice type data and might
be underestimated. To our knowledge, this is the first paper
presenting detailed descriptions of an assimilation method
using FB instead of sea ice thickness.

2 Methods and data

The following section presents all data sets, software and
methods used to derive the sea ice thickness data sets evalu-
ated in this study. The model setup is presented in Sect. 2.1,
the assimilation setup is presented in Sect. 2.2, the observa-
tional data are presented in Sect. 2.3 and 2.4, and Sect. 2.5
presents the observation data sets which are used for valida-
tion.

2.1 Model setup

The FB assimilation is implemented in a coupled sea ice
(CICE v6.2; Hunke et al., 2021a) and ocean model (NEMO
v4.0; Madec et al., 2017). The coupling is based on Smith
et al. (2021); however both NEMO and CICE have been up-
dated to more recent versions. NEMO is set up following
(Hordoir et al., 2022).

CICE is a multicategory sea ice model that consists of a
dynamical solver, an advection scheme and a thermodynamic
column physics model called Icepack. CICE and Icepack
(Hunke et al., 2021b) are developed independently but are
by default linked (Hunke et al., 2021b, a). The model is run
with five thickness categories with category bounds that fol-
low a World Meteorological Organization (WMO) standard
setup. The upper bounds for the five categories () are as fol-
lows:n=1,03m;n=2,07m;n=3,12m; n=4, 2m;
and n =5, 999 m. In the presented study, CICE was imple-
mented close to the default setup except that form drag cal-
culations, following Tsamados et al. (2014), were enabled.

The model domain is pan-Arctic, as shown by the red area
in Fig. 1 (large parts are covered by the blue and orange vi-
sualization). The lateral boundaries are located outside the
Arctic sea-ice-covered region such that sea ice boundary
conditions are not required. The lateral ocean boundaries
are forced with monthly GLORYS12 data, which consist
of salinity, temperature, and u and v velocities (Lellouche
et al., 2021). The ocean model includes tides, the tidal forc-
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Figure 1. The red area indicates the model domain (large parts are
covered by the blue and orange visualization) described in Sect. 2.1,
the blue area shows the OSI SAF SIC data coverage and the orange
lines give example coverage of 1 week of CryoSat-2 data (here from
3 March 2020). The zoomed-in area shows the location of the three
moorings described in Sect. 2.5, marked with corresponding letters,
and the gray and black track indicates the drift path of the ice mass
balance buoys also described in Sect. 2.5. The gray indicates the full
data set used in Fig. 8 and the black the subset used in Fig. 7.

ing at the open boundaries originates from the TPXO 7.2
harmonic tidal constituents (Egbert and Erofeeva, 2002), and
river runoff is based on a climatology from Dai and Tren-
berth (2002). The model is forced with 3-hourly ERAS atmo-
spheric forcing data, which consist of 2 m temperature, 2 m
specific humidity, 10 m wind, incoming shortwave and long-
wave radiation, total precipitation, snowfall, and air pres-
sure at sea level (Hersbach et al., 2017). The model runs
discussed in this study are restarted from the same initial
run, which runs from 1995 to 2020 and was initialized from
ORASS (Zuo et al., 2019) ocean temperature and salinity
fields. The years 2010-2020 of the initial run were used to
calculate the model background error discussed in Sect. 2.2.
The three other runs discussed in the following text are re-
fRun, sicRun and fbRun: refRun consists of the initial run
from 1 January 2018 to 31 December 2020; sicRun and
fobRun are started from the same restart file as refRun on
1 January 2018 but assimilate (i) SIC and (ii) SIC and FB
respectively. They both also cover the period 1 January 2018
to 31 December 2020. All model output discussed in the fol-
lowing sections is calculated based on daily means.

In order to be able to assimilate radar FB from CryoSat-2,
a new variable for radar FB needs to be introduced in CICE.
For this we combined Eq. (4) from Alexandrov et al. (2010)
with Eq. (12) from Tilling et al. (2018) as follows:

_ hi(pow — ;) — pshs
Pw

Here, h; is the modeled sea ice thickness from CICE, py is
the modeled surface water density from NEMO, Ay is the

FBr

— (hy(— —1)). (1)
CS
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modeled snow thickness from CICE, c is the speed of light
in vacuum (3 x 108 ms~!) and ¢, the speed of light in snow.
The variable cs is calculated following Eq. (2):

cs=c(1+0.51p) 1. )

Mallett et al. (2020) compared constant pg values to the sea-
sonal linear variation in pg derived by Warren et al. (1999)
and concluded that a seasonally varying pg can improve FB-
derived sea ice thickness estimates by up to 10 cm. The orig-
inal value used in CICE is constant and equals 330 kg m—>.
In this study it was substituted with the derived relation from
Mallett et al. (2020) following Eq. (3):

ps = 6.5 xt+4274.51, 3)

where 7 is time counted in months since October. The relation
in Eq. (3) is only used in the radar FB calculation for the as-
similation and nowhere else in the sea ice model. CICE uses
constant p; values, but for the radar FB calculation, a variable
sea ice density was needed, since p; has significant impact on
Eq. (1) (Alexandrov et al., 2010; Kern et al., 2015). Sea ice
density is dependent on the air bubbles enclosed in the sea
ice and on the brine content (Timco and Frederking, 1996).
Brine content in sea ice results from the brine rejection dur-
ing freeze-up and drains over time. If the brine channels are
not filled with water, they remain as air bubbles in the ice
(Timco and Frederking, 1996). CICE calculates the salinity
content in sea ice and the density of sea ice without account-
ing for a changing number of air pockets. To calculate the sea
ice density, we divide the sea ice volume in one grid cell into
fresh ice and brine, calculate the percentage of the fresh ice
and brine, and weight a fresh ice density (pjp) and the brine
density (pp) with this.

pi = aicep X pp + (1 —aicep) X pio “)

Here, aicey, is the amount of brine as a percentage of the total
ice volume. The variable pjp was set to 882 kg m ™~ following
Alexandrov et al. (2010) values for MYI sea ice density. In
the following text, FB stands for the radar FB.

2.2 Assimilation setup

Kalman-filter-based assimilation is a widely used technique
that employs an ensemble of model forecasts to estimate the
state of a system using available observations. The method
involves three main steps: a forecasting step, a filtering step
and a re-sampling step. The forecast is performed by the
model. During the filtering step, the ensemble members are
adjusted based on knowledge of the model background er-
ror, observation error, model states and observations to ob-
tain the best possible estimate of the system state. In the re-
sampling step, the best estimate from the filtering step is used
to update the ensemble members. This process is repeated it-
eratively in order to improve the accuracy of the state esti-
mate. For the filtering step, we use the Local Error Subspace

https://doi.org/10.5194/tc-17-3721-2023



I. Sievers et al.: Assimilating CryoSat-2 freeboard

ANVVAAAT W\
‘ Model
‘ Ensemble 2_2_1}_>‘ PDAF ,,, 222

Figure 2. General setup of the assimilation routine. The dark-blue
curve indicates the initial model run and the orange curve the assim-
ilated run, with the dashed orange arrow indicating the model state
at the assimilation time. The thick turquoise arrows indicate the 8 d
chosen around the assimilation date and the thin turquoise arrows
the 4 (or 3)d chosen = 2 months around the assimilation date (de-
scribed in Sect. 2.2.1). The numbers in the lower corners indicate in
which section of the paper the different elements are described.

—

Transform Kalman Filter (LESTKF) (Nerger et al., 2012),
which is included in the Parallel Data Assimilation Frame-
work (PDAF) (Nerger and Hiller, 2013). LESTKEF has, prior
to this study, successfully been used to assimilate SIC and
sea ice thickness, for example by Chen et al. (2017). In this
study, PDAF is used offline, which means that the assimi-
lation scheme runs independently of the ocean and sea ice
model. The consequence is that the ocean and sea ice model
needs to be restarted when the model and the assimilation
exchange information. PDAF was run separately for SIC and
FB. Figure 2 illustrates the data flow between the different
components. The numbers noted in the lower corner of each
component correspond to each of the following sections, de-
scribing which part of the assimilation is handled in which
program.

2.2.1 PDAF

PDAF inputs consist of the model state, model ensemble, ob-
servations and observation uncertainties in the model grid.
The spread of the ensemble is used to calculate the model
background error used in the filtering step. In this study, we
only run one model realization and calculate the model back-
ground error in the Kalman filter from a static ensemble,
similarly to the setups in BAL MFC (Nord et al., 2021) and
SAM?2 (Tranchant et al., 2006). Using a static ensemble has
the advantage of lower computational cost. To calculate the
model background error based on a static ensemble, a free
model run of the model used in the assimilation is needed.
In our case the free model ran from 1995 to 2020, but only
the years 2010-2020 were used to construct the static ensem-
ble as the earlier years were considered spinup. The justifi-
cation of using a static ensemble is based on the assumption
that the model error on a certain day in a year is reflected
by the interannual model variability of this same day. Know-
ing the biases of the model allows for the correction of this
assumption. In our case, the model overestimates the ice ex-
tent, which we found when comparing the 10-year initial run
to OSI SAF (Saldo, 2022) SIC observations. Thus, the back-
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ground error based on the same date in several years would
not result in a large enough spread to weight the observations
correctly. The ensemble used to calculate the model back-
ground error consists of 80 members, and it is constructed as
follows: each of the 10 years from the free run contributes
8d.

— In 8 years, a period of 8 consecutive days is chosen,
starting from the date 3 d prior the assimilation time step
and ending 4 d past it.

— In 2 years, a period of 3 consecutive days from the date
2 months prior to the assimilation time and a period of
4 consecutive days from 2 months past the assimilation
time are chosen.

After the ensemble members were chosen, they are averaged.
This average is then subtracted from each member, and the
resulting variation is added to the model state at the assim-
ilation date. These 80 ensemble members are then used to
calculate the model error. For the observation error, we use
the error estimates provided in the data sets.

2.2.2 Integration of increments

The physical model in Sect. 2.1 utilizes the Kalman filter in-
crement, which is the correction that adjusts the model state
to the optimal state based on observations and model states.
This increment is obtained as the difference between the
model state input to PDAF and the analyzed state. The model
state is corrected towards the analyzed state by subtracting
the increment from the model state. To ensure stability, the
increment is divided by the number of time steps (number of
model time steps in one assimilation time step), which results
in the fractal increment or the amount of change needed per
model time step (following Eq. 5). This fractal increment is
hereafter subtracted at each time step from the model value.
This method is called incremental analysis updating and was
introduced by Bloom et al. (1996). For SIC, this method is
straightforward, since the observations are also what we aim
to assimilate.
varg — neWice

inc=——— (%)
time,

FB needs to be converted into sea ice thickness, and if this
were to be done separately at each time step, the changing
sea ice density and snow thickness could potentially influ-
ence the resulting sea ice thickness. Similarly to SIC, the FB

increment is subtracted from the model state at #y. To convert
FB to sea ice thickness, Eq. (1) was rewritten as follows:

Pshs + pw (FBpew + corr)
Pw — Pi .

(6)

NEWjce =

The variable new;ce is now subtracted from the modeled sea
ice thickness and linearly spread following Eq. (5).
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At each time step, we have the fractional increment of
SIC and sea ice thickness to be subtracted from the model
state. The model used in this study is a multicategory model.
Therefore, the grid cell average increment must be spread
over the five model categories. To achieve this, Eq. (7) was
used. Here vargyq is the SIC at the current time step, vargq ()
is the SIC in n categories, inc is the SIC increment and » is
the thickness category.

inc
var(n) = vargg(n) — vargg(n)

(N
varpld

In the case where SIC and FB are negative after the assim-
ilation, they are rounded to 0. In cases where the SIC ends
up above 1, SIC is rounded to 1. FB is only assimilated if
SIC is above 80 % and if sea ice thickness is above 0.05 m.
These thresholds were chosen not only for stability, but also
because thin FB is not measured accurately (Wingham et al.,
2006; Ricker et al., 2014) and because FB is calculated from
the model’s ice volume per unit area of ice. In areas with
lower concentrations, this can lead to SIT and FB values that
are unrealistically high. To avoid overestimation of FB fol-
lowing this artifact, a high SIC threshold was chosen for the
FB assimilation.

2.3 CryoSat-2 radar altimetry freeboard and sea ice
thickness

The observed FB assimilated in this study is level-3 weekly
gridded CryoSat-2 radar FB downloaded from the Alfred
Wegener Institute (AWI) sea ice portal (version 2.4; Hen-
dricks et al., 2021). This comprises gridded, along-track data
on the EASE2-Grid with a 25 km resolution. The radar FB is
defined as the elevation of a retracked point above instan-
taneous sea surface height without snow range correction.
The data product is derived from the CryoSat-2 Baseline-E
data, the mean sea surface model DTU21 and the threshold
first-maximum retracker algorithm (TFMRA) (Ricker et al.,
2014).

With the onset of melt at the beginning of summer, melt
ponds are formed on the sea ice surface. The radar signa-
ture from melt ponds is comparable to the signature from
leads, which can result in ambiguous determination of the
sea surface height. This ambiguity results in a larger bias
in the FB measurements, and FB data are therefore only as-
similated from November to March, when we do not expect
melt ponds. The uncertainty in FB given in the AWI data set
ranges on average from 0 to 0.07 m in the chosen month. The
data set was bi-linearly interpolated to the model grid with
help of Climate Data Operators (CDO; Schulzweida, 2022).
An example of the FB data assimilated per assimilation time
step (1 week) is indicated by the orange lines in Fig. 1.

The data set also contains sea ice thickness derived by as-
suming hydrostatic balance, which is the method referred to
as the classical approach. In order to obtain sea ice thick-
ness from FB, hydrostatic balance is assumed, and sea ice
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thickness is calculated as described in Eq. (6). In the AWI
CryoSat-2 data set, the snow thickness from Warren et al.
(1999) snow climatology was applied over MY, and NSIDC
AMSR?2 snow depth (Hendricks et al., 2021) was applied
over FYI. The snow density is calculated following Eq. (3)
from Mallett et al. (2020), and the sea ice density is set to
916.7kgm™> for FYI and to 882.0kgm—3 for MYL MYI
and FYT are distinguished with the help of OSI SAF ice type
data. For a more detailed description of the data set, see Hen-
dricks et al. (2021).

2.4 OSI SAF data

Ocean and Sea Ice Satellite Application Facility (OSI SAF)
SIC is assimilated in this study. It is based on passive mi-
crowave measurements of the Special Sensor Microwave Im-
ager/Sounder (SSMIS), which is onboard a polar-orbiting
satellite. The OSI SAF algorithm combines SSMIS mi-
crowave measurements with numerical weather prediction
(NWP) model output from ECMWF in order to calculate
SIC. Passive microwave measurements are independent of
visible light, which makes this sensor type especially suitable
in polar regions. The data set used is the climate data record
(CDR) OSI-430-a, which is gridded on a 25 x 25km grid
once a day. The data can be downloaded from the Norwe-
gian Meteorological Institute FTP servers: ftp://osisaf.met.
no/reprocessed/ice/conc/v3p0 (last access: 12 January 2023).
The presented data set was chosen after examining the er-
ror estimates in the different data products. The comparison
showed that the CDR is the only data set that has no large er-
ror fluctuations over open-water areas. More details on the er-
ror estimate can be found in Saldo (2022). Studies have found
that the summer melt ponds lead to underestimated SIC in
satellite passive microwave measurements (Kern et al., 2016;
Ivanova et al., 2013; Rosel and Kaleschke, 2012). This is the
reason we decided to only assimilate SIC during the months
November to March.

For the assimilation, the data set was bi-linearly interpo-
lated onto the model grid using CDO (Schulzweida, 2022).
The resulting SIC data coverage assimilated is indicated by
the blue area in Fig. 1.

2.5 Validation data

Two in situ sea ice observation data sets are used for val-
idation. The Beaufort Gyre Exploration Project (BGEP)
upward-looking sonar (ULS) sea ice draft data set and 19 ice
mass balance (IMB) buoys deployed during the Multidisci-
plinary drifting Observatory for the Study of Arctic Climate
(MOSAIC) campaign measuring sea ice thickness. The ad-
vantage of these observations is that they are independent of
the assimilated data; however each observation has limita-
tions in terms of time and space.

The BGEP ULS sea ice draft data set can be down-
loaded from https://www?2.whoi.edu/site/beaufortgyre/data/
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mooring-data/ (last access: 28 June 2023). The ULS data
are obtained from three locations named moorings A, B
and D, marked with orange, turquoise and dark-blue dots in
Fig. 1. The data cover 2 years, from October 2018 to Novem-
ber 2020. The instruments are located 50-85 m below the wa-
ter surface and measure the ice draft with a frequency of 2's
over a 2 x 2m area. The signal is filtered and averaged over
10s intervals in order to correct for tilting errors. Tilting er-
ror refers to the error that results from the movement of the
ULS when ocean currents move the instrument and so influ-
ence the distance to the sea ice. The error is assumed to be
random; hence averaging the data will eliminate it. The sea
ice draft accuracy is £5 cm.

For the comparison of BGEP observations and model and
AWI data, the model and AWI draft was calculated as sea
ice thickness minus sea ice FB. To compare the BGEP data
with the three model runs, the daily average and standard de-
viation (SD) were calculated from the differences of all 10s
measurements and the model daily output. For the compari-
son, only the grid cell which would cover the respective buoy
was considered. Since the resulting daily mean and SD were
still too variable, they were further smoothened by a 7 d run-
ning mean. For the comparison of the fbRun, AWI and BGEP
draft, only weeks in which the AWI data cover the BGEP lo-
cations were considered. The model values are weekly means
of the respective buoy covering the grid cell.

To be able to compare sea ice in situ measurements from
more locations, the IMB buoy deployed during the MOSAiC
campaign are used (Lei et al., 2021). In contrast to the sta-
tionary measurements from the BGEP, the measurements
drift along the black trajectory in Fig. 1, from the center
of the Arctic towards Greenland. The IMB buoy includes a
thermistor string reaching from the snowpack top to the ice—
ocean interface at the bottom. A thermometer and a heating
element are located each 2 cm. The ice—snow, ice—water and
snow—air interfaces are measured by heating the thermistor
string up and measuring the thermal response. More informa-
tion on the instrument can be found in Jackson et al. (2013).
The IMB buoys measure the thickness of only one ice flow,
unlike the BGEP upward-looking sonar, and the data have a
temporal frequency of one measurement per day. To ensure
that the comparison between the buoys and the gridded AWI
sea ice thickness and model output is reliable, 19 IMB buoys
were considered. However, not all buoys were active at the
same time. All buoys were interpolated to the model grid by
the nearest-neighbor method.

For a comparison of the different model runs vs. the IMB
measurements, a minimum of eight active buoys per day
were chosen. The limit of eight buoys was chosen to account
for the spatial coverage of the active buoys and at the same
time secure a sufficient number of days in which at least eight
buoys were active.

For the IMB sea ice thickness vs. assimilated sea ice thick-
ness and the AWI sea ice thickness comparison, the IMB
buoy coverage of 1 week was projected onto the model grid,
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choosing the nearest neighbor. For the model data, only grid
points covered by the AWI data and the IMB buoys were
chosen, and weekly averages were calculated for all three
products. No threshold of a minimum number of active buoys
was chosen, as this would have limited the available data too
much.

3 Results
3.1 Freeboard and sea ice concentration RMSE

To verify that the assimilation improves the modeled FB and
SIC, the root-mean-square errors (RMSEs) between the as-
similated data sets and the model variables were computed
after each assimilation time step. The calculation of RMSE
includes all observed data points of the assimilation time
step. RMSE for FB is calculated on the available satellite
tracks (marked orange in Fig. 1), which change every week,
and the co-located model values. The same approach is used
for SIC (the blue area in Fig. 1) and the corresponding model
data.

The results are shown in the upper panels of Figs. 3 and 4,
and they are based on mean weekly model output data at
the location where the corresponding observations exist. The
lower panels in both figures show the difference between re-
fRun and sicRun or fbRun. Positive values indicate that the
assimilation has improved the SIC or FB, and negative values
indicate that the variable was degraded by the assimilation.
Degradation can occur when an assimilation variable disturbs
the physical balance of the model and during a period of free
run, when it is in the process of reestablishing its physical
balance.

The results (Fig. 3, upper panel) show that the reference
run (black) had the highest RMSE of all and that the RMSE
increased the most over the assimilation period. This indi-
cates that the assimilation improved the modeled sea ice con-
centration. The RMSE for the assimilated runs (sicRun in
turquoise and fbRun in orange) also increased over the as-
similation period but to a lesser extent than for the reference
run. The lower panel in Fig. 3 shows a steady increase in
the difference between the reference run and the assimilated
runs, reflecting the degree to which assimilation improved
sea ice concentration.

The increase in RMSE over the season is a result of the
chosen area for calculating RMSE and the definition of the
metric itself. RMSE weights larger errors more heavily than
smaller errors. The FB differences are only calculated over
areas with sea ice, while the SIC data include larger areas
that are seasonally either ice-free or ice-covered. For SIC,
the area with the largest error, which is weighted most, is the
ice edge at the Atlantic side, which increases over winter, ac-
counting for the observed seasonal increase in SIC RMSE
from November to March in Fig. 3. Other assimilation stud-
ies have chosen to calculate RMSE only over ice areas with
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sea ice concentration above 15 % (Chen et al., 2017), but to
be consistent, we chose to calculate RMSE over the entire
area.

The lower panel in Fig. 3 also shows negative values in
October for the last 2 years, indicating that the assimilated
runs agree less with the assimilated data compared to the ref-
erence run at the beginning of the assimilation period. The
RMSE difference in the lower panel falls below 0 at the be-
ginning of all assimilation periods after the initial one. As
noted earlier, this can occur if the physical balance of the
model is disturbed by assimilation.

The upper panel of Fig. 4 displays the RMSE of all FB
values assimilated at the corresponding time. The black line
represents refRun, while the turquoise line represents sicRun.
Both have almost equal FB RMSE throughout the assimila-
tion period, ranging between 7 and 14 cm. The black refRun
covers the turquoise sicRun in the upper panel. On the other
hand, the FB RMSE for fbRun shows a clear drop within
the first month of the assimilation period, reducing to about
5 to 6 cm. The lower panel in Fig. 4 shows that the RMSE
differences are all above 0, even at the beginning of a new
assimilation period in November.

It is expected that the SIC RMSE in Fig. 3 and the FB
RMSE in Fig. 4 show improvements, as the observation val-
ues are used within the assimilation scheme; however this
demonstrates that the assimilation works.

3.2 CryoSat-2 AWI sea ice thickness

To demonstrate that the sea ice thickness estimated through
the FB assimilation method provides comparable results to
other sea ice thickness products derived from CryoSat-2, the
sea ice thickness of fbRun was compared to the AWI sea ice
thickness. The AWI sea ice thickness was selected because it
is derived from the same FB values as the FB data assimilated
in fbRun. Any differences between the two data sets therefore
indicate the impact of the FB assimilation introduced here in
contrast to the method of directly converting FB to sea ice
thickness.

Table 1 presents the correlation coefficients and biases for
sea ice thickness and FB in refRun and fbRun compared
to the AWI data. All spatially coinciding data points of the
model runs and the AWI data were considered over the entire
period from 1 January 2018 to 31 December 2020. In gen-
eral, the lowest correlations and highest biases are found in
October, as no data had been assimilated yet and the assimi-
lation period started in November.

The sea ice thickness biases are negative for all months and
runs, indicating that the modeled sea ice thickness and FB are
thinner than the AWI data’s FB and sea ice thickness. The sea
ice thickness biases for both runs are smallest in January, and
the FB biases are smallest in January and February. Overall,
the FB biases are thinner than the SIT biases, which is no
surprise as FB is typically on the order of about 10 % of sea
ice thickness (Alexandrov et al., 2010).
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Comparing the correlation coefficients of refRun and
fbRun for both the FB and the sea ice thickness shows
that the difference between the FB correlation coefficients is
higher than the difference between the sea ice thickness cor-
relation coefficients. This indicates that the FB assimilation
brings the modeled FB closer to the assimilated FB data but
that the difference in deriving the SIT from the FB data also
impacts the resulting SIT.

Figure 5 displays bivariate and univariate kernel density
estimates (KDEs) for sea ice thickness (panels a and b) and
FB (panels ¢ and d) for fbRun (in orange) and refRun (in
blue) compared to the AWI data. The months of October and
December were displayed as they represent the lowest and
highest sea ice thickness correlation (see Table 1).

The KDE for both variables of fbRun changes from Oc-
tober to December, indicating higher correlation coefficients
and smaller biases in December, which is a result both of
thin and thick sea ice and of FB getting thicker. However,
the thicker FB and sea ice thickness values are still thinner
than the AWI data variables, while the thin FB and sea ice
thickness values are thicker than the AWI values. This could
be a result of the assimilation discarding negative FB values
in the model, while the AWI data set includes negative FB
values.

For the month following December (not displayed), the
center of the sea ice thickness KDE (at about 1 m in Fig. 5b)
falls, month by month, further below the black regression
line, while the thick sea ice thickness compared to refRun
shows similar improvements to the December plot. This indi-
cates that the decreasing correlation and increasing bias (Ta-
ble 1) originate from fbRun’s sea ice thickness and FB be-
coming thinner compared to the AWI data sets values, while
the thick sea ice compares equally well to the AWI sea ice
thickness.

3.3 Upward-looking sonar data

The BGEP upward-looking sonar sea ice draft is independent
of the satellite-derived FB data, and it is used for the compar-
ison of the modeled sea ice draft, which is calculated as de-
scribed in Sect. 2.5. The BGEP data are not available for the
complete period from 1 January 2018 to 31 December 2020;
hence only data from October 2018 to December 2020 are
used.

The BGEP ULS data, model data and AWI sea ice draft
data are provided at different spatial and temporal coverage
levels. To compare the different data sets, we split the com-
parison into two parts in order to account for these differ-
ences. In Fig. 6 the model drafts from all three model runs
are compared to the BGEP ULS drafts based on mean daily
differences, whereas, Fig. 7 compares the AWI draft and
the fbRun draft with the BGEP ULS drafts based on mean
weekly differences only at locations covered by the AWI
data.
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Figure 3. (a) Weekly SIC RMSE calculated at the observation data location, averaged over the corresponding assimilation time step. The
orange plot shows the fbRun RMSE, the black the refRun RMSE and the turquoise the sicRun RMSE. (b) The differences in the top-panel
RMSEs of refRun — fbRun in orange and refRun — sicRun in turquoise. The date format is year-month.
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Figure 4. (a) Weekly FB RMSE calculated at the observation data location, averaged over the corresponding assimilation time step. The
orange plot shows the fbRun RMSE, the black the refRun RMSE and the turquoise the sicRun RMSE. The black plot indicating refRun
covers the turquoise plot indicating sicRun most of the time. (b) The differences in the top-panel RMSEs of refRun — fbRun in orange and

refRun — sicRun in turquoise. The date format is year-month.

The differences between the BGEP upward-looking sonar
ice draft and the model sea ice draft are shown in Fig. 6.
The dashed line shows fbRun, the solid line refRun and the
solid line with circle markers sicRun. The gray-shaded areas

indicate the assimilation period.

For all three moorings, fbRun shows the values in closest
agreement with the observations throughout the entire period
displayed. This is also reflected by the lower RMSE listed
in Table 2. The runs refRun and the sicRun are almost in
perfect agreement except for on a few days, for example in
October 2019 at BGEP moorings A and D. The RMSE be-
tween the BGEP data and fbRun is with 0.41 m, 23 cm lower
than the RMSE of refRun and sicRun. Periods in summer,
when the observation SD is 0 m, indicate periods with no ice
present in the observations. Gaps indicate periods where no
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data are available. The BGEP observations are all ice-free in
summer 2019, while only fbRun at BGEP mooring A reaches
the point of being ice-free in late September continuing until
the beginning of November 2019.

Figure 7 shows the mean differences between the AWI sea
ice draft and the fbRun sea ice draft. To do so, the AWI data
set was interpolated to the model grid and only data points
covered by all three data sets (AWI CryoSat-2, fbRun and
BGEP) were considered. Instead of daily averages as shown
in Fig. 6, weekly averages were calculated, since the AWI sea
ice draft is provided in weekly time steps. The dashed lines in
Fig. 7 show the AWI data and the solid lines the fbRun data.
The gray background shows the assimilation period. Colors
are chosen per mooring according to Fig. 1. The resulting
differences between the fbRun and the AWI CryoSat-2 sea
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Table 1. Monthly mean correlation coefficient and mean bias between the weekly AWI sea ice thickness (SIT) and FB and the fbRun SIT
and FB for the entire assimilation period from 1 January 2018 to 31 December 2020. Only grid points covered by both the AWI FB data and

the model were considered.

October November December January February March April
Correlation coefficient SIT fbRun 0.56 0.81 0.83 0.81 0.78 0.75 0.72
Correlation coefficient SIT refRun 0.40 0.49 0.45 0.44 0.44 0.51 0.50
Bias SIT fbRun —0.52 —0.38 —0.17 —0.15 —-0.18 —-0.18 —-0.22
Bias SIT refRun —0.65 —0.56 —0.38 —0.23 —-026 —-0.28 —0.34
Correlation coefficient FB fbRun 0.30 0.68 0.79 0.76 0.78 0.78 0.74
Correlation coefficient FB refRun 0.06 0.09 —-0.2 0.2 0.05 0.16 0.19
Bias FB fbRun —0.03 —0.02 0.01 0.01 0 -0.01 -0.02
Bias FB refRun —0.04 —0.04 —0.02 —0.01 —-0.01 -0.02 -0.03

Table 2. RMSE calculated between the BGEP ULS draft measure-
ment and the model runs fbRun, sicRun and refRun and the MO-
SAIC IMB sea ice thickness and the model runs. The RMSE and
biases were calculated for all three mooring locations together, the
assimilation period marked gray in Fig. 6 and the free-run period.

BGEP ULS total MOSAIC IMB
RMSE fbRun 0.41m 0.20m
RMSE sicRun 0.64m 0.09 m
RMSE refRun 0.64 m 0.10m

Table 3. The mean RMSE of the weekly mean differences shown in
Fig. 7. The RMSE was calculated on average for each mooring and
both the fbRun ice draft and the AWI CryoSat-2 ice draft.

BGEP moorings A, B,D MOSAIC IMB

0.23m
0.34m

fbRun
AWI CryoSat-2

0.30m
0.30m

ice draft are shown in Fig. 7. Both the AWI sea ice draft and
the fbRun sea ice draft differ by about =50 to 90 cm from the
mooring data. There is no clear bias or seasonality in either
difference, and they do not always follow the same pattern,
except in winter 2019/20, when both data sets begin with a
negative bias and end with a positive bias with the exception
of a few weeks in the AWI CryoSat-2 draft at the end of the
assimilation period.

The RMSEs between the BGEP moorings’ sea ice draft,
the fbRun sea ice draft and AWI CryoSat-2 sea ice draft were
calculated. They are listed in Table 3. The RMSE:s of the data
products compared to the mooring data are both 0.3 m.

3.4 MOSAIC IMB data

The MOSAIC data cover a different spatial area than the
BGEP observations. Data are interpolated to daily and
weekly means respectively in order to have the same fre-
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quency as the data that they are being compared to. Details
are described in Sect. 2.5.

In Fig. 8, the daily sea ice thicknesses from the MO-
SAiC IMB buoys and the three model runs are plotted for
days when at least eight buoys were active. The shaded area
around each line indicates 1 SD of the respective displayed
data. The MOSAIiC IMB data set has the largest SD, and all
model runs lies within this SD for most of the observation
period, with the exception of fbRun’s sea ice thickness in Oc-
tober 2019, April 2020 and June 2020. Overall, the modeled,
assimilated and observed sea ice thicknesses grow over the
same period from October 2019 to April 2020, and all four
sea ice thicknesses also start to decline at about the same time
in June 2020. The observed sea ice thickness starts to be more
variable at the beginning of June 2020, which is not reflected
in the model data. The variability in the observation data is
most likely caused by the reduced number of buoys that are
active during this time and the sea ice being more mobile
as it starts to melt. Both the refRun and the sicRun sea ice
thicknesses compare better than fbRun to the MOSAIiC ob-
servation. This is also reflected in the RMSE calculated for
fbRun, sicRun and refRun in comparison to the MOSAIC sea
ice thickness in Table 3. A one-sided ¢ test was performed,
comparing the differences between the different model runs
and the MOSAIiC IMB sea ice thickness. The one-sided ¢ test
showed that sicRun’s and refRun’s sea ice thickness RMSE
was significantly lower than fbRun’s RMSE.

Figure 9 shows the weekly mean sea ice thickness from
the MOSAIiC IMB buoys and the three model runs. The av-
erage is calculated as described in Sect. 2.5. The dash-dotted
yellow line represents the AWI sea ice thickness, the dashed
turquoise line represents the fbRun sea ice thickness and the
solid black line represents the MOSAIC sea ice thickness.
The transparent shaded background in each corresponding
color indicates 1 SD. All three sea ice thicknesses increase
over the displayed period. The AWI sea ice thickness in-
creases the most from approximately 0.6 to 2.3 m with a
sharp drop in the last week of April. The MOSAIC data dis-
play less growth and start slightly thicker than both the fbRun
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Figure 5. The bivariate and univariate kernel density estimate (KDE) for sea ice thickness and FB for the model runs fbRun and refRun in
comparison to the AWI sea ice thickness and FB. Panels (a) and (b) show the sea ice thickness in October and December, and panels (c) and
(d) show the FB for October and December. The months October and December were chosen because October is the month with the lowest
sea ice thickness correlation between fbRun and AWI (as listed in Table 1). The correlation coefficients r are displayed in the lower-right
corner of each plot. The black line indicates r = 1, and the unit is meters.

and AWI sea ice thickness at around 0.8 m in October 2019
and reach around 1.8 m in April 2020.

When comparing the sea ice thickness for fbRun from
Figs. 8 and 9a, it is apparent that the fbRun sea ice thick-
ness follows a similar pattern. However, this is not the case
for the MOSAIC sea ice thickness. Comparing the sea ice
thickness for the MOSAiC IMB data from Figs. 8 and 9a, the
data in Fig. 9a appear to be more abundant. This difference is
caused by the number of buoys considered. The buoys con-
sidered in Fig. 9 depend on the sparse AWI data coverage,
while Fig. 8 considers at least eight buoys per day. This leads
to larger jumps from week to week of the MOSAIC sea ice
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thickness in Fig. 9 compared to Fig. 8. This is also evident
by the low SD at the beginning of March and in mid-April
2020 in Fig. 9.

Table 3 lists the RMSE calculated between the AWI and
the MOSAIC sea ice thickness and between fbRun and MO-
SAIC sea ice thickness. The RMSE calculated for the AWI
sea ice thickness is 11 cm greater than the RMSE calculated
for the fbRun sea ice thickness. A one-sided ¢ test was per-
formed to determine the statistical significance of the differ-
ence, which showed that the fbRun RMSE is significantly
smaller than the AWI RMSE.
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Figure 6. Daily mean sea ice draft differences and SD between BGEP observations and all three model runs. The shaded colored area shows
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mooring B and panel (¢) data from mooring D. The sites are marked in the corresponding colors in Fig. 1. The date format is year-month.
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In Fig. 9b, the radar FB for the refRun, fbRun and AWI
data are shown. The fbRun and AWI data FB in Fig. 9a and
the respective sea ice thicknesses in Fig. 9b do not entirely
follow the same pattern. The AWI FB starts out thinner than
fbRun’s FB, while the AWI sea ice thickness is thicker than
fbRun’s sea ice thickness throughout the entire displayed pe-
riod. This indicates that the difference is caused by the differ-
ence in snow thickness and sea ice density. The AWI data are
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the FB values that were assimilated, and the fbRun FB is ap-
proximately between refRun’s and AWI data values, showing
the effect of the assimilation. It is clear from Fig. 8 that re-
fRun and sicRun are closer to MOSAiC IMB data; however
Fig. 9 shows that the fbRun follows the evolution of the ob-
served radar FB better. This shows that the assimilation acts
as expected, but in this area there is a discrepancy between
the in situ observations from MOSAiIC IMB buoys and the
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Figure 8. Daily mean sea ice thickness averaged over all grid cells covered by at least eight active buoys per day. The solid black line
indicates the MOSAIC IMB-buoy-measured sea ice thickness, the dotted red line the refRun sea ice thickness, the dash-dotted blue line the
sicRun sea ice thickness and the dashed turquoise line the fbRun sea ice thickness. The shaded areas around each of the plots indicate 1 SD
of each daily averaged sea ice thickness data set. The date format is year-month.

remotely sensed AWI FB observations. The relation between
the FB from refRun and fbRun follows a similar pattern to the
sea ice thickness in Fig. 8, since the sea ice density, snowfall
and water density values are not significantly influenced by
the assimilation.

4 Discussion

To show the effect of the assimilation, the RMSE between the
assimilated SIC and FB observations and the modeled SIC
and FB was calculated for refRun, sicRun and fbRun. Fig-
ures 3 and 4 show that SIC and FB are improved as expected
in each winter season when satellite-derived FB and SIC are
assimilated. Further, the correlation coefficient between the
AWI FB data (which was assimilated) and the fbRun FB data
is higher than the correlation coefficient of the refRun and
the AWI FB data. Sea ice thickness correlations and biases
of fbRun in Table 1 also indicate a closer agreement with the
AWTI data when compared to refRun’s correlations and bi-
ases. This shows that the FB assimilation has an effect on the
modeled sea ice thickness.

The RMSE between the assimilated SIC and FB observa-
tions and the modeled SIC and FB was calculated for refRun,
sicRun and fbRun, as shown in Figs. 3 and 4. The results
show that assimilation of satellite-derived sea ice concentra-
tion and freeboard data has a positive effect on the model
performance, with improved sea ice concentration and free-
board values in each winter season. The sea ice thickness,
FB correlations and biases of fbRun in Table 1 suggest closer
agreement with the AWI data than with refRun’s correlations
and biases. This again shows that the FB assimilation has an
effect on the modeled sea ice thickness.

The comparisons to independent sea ice thickness obser-
vations indicate that the fbRun sea ice thickness is improved
in the Beaufort Sea but not in the central Arctic. In contrast,
refRun and sicRun perform significantly better in the central
Arctic. Notably, the in situ observations in the Beaufort Sea
cover more than 2 years, while those in the central Arctic
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only cover 9 months. The RMSE plots in Fig. 4 show that
refRun’s RMSE during the winter of 2019/20 is lower than
in the prior month. Moreover, the calculation of the mean
sea ice thickness difference between refRun and fbRun at
the location of the MOSAIC IMB data in October for other
years showed that 2019 was the year with the largest differ-
ences. This indicates that the sea ice thickness in this region
is highly variable and suggests that the better performance
of refRun and sicRun in winter 2019/20 might not be repre-
sentative of all years. The FB values in Fig. 9b could sug-
gest that the assimilated FB data cause the thinner ice for
the fbRun sea ice thickness in Fig. 8. The assimilation be-
gins in November, when fbRun’s sea ice thickness is already
thinner than refRun’s and sicRun’s sea ice thickness. Thus,
the thinner sea ice in Fig. 8 is a result of the assimilation in
the previous year. To be able to compare the year 2019 with
other years, the mean sea ice thickness differences between
refRun and fbRun were calculated at the location of the MO-
SAiC IMB data in October. The mean difference between
refRun and fbRun is 28 cm for October 2018, 50 cm for Oc-
tober 2019 and 2 cm for October 2020. The MOSAIC year is
clearly the one with the largest difference.

Considering refRun’s RMSE in other years, the interan-
nual variability in sea ice thickness in the examined region,
the fact that the observations in the Beaufort Sea span a sig-
nificantly longer time, and the fact that the BGEP ULS fbRun
RMSE is over 20 cm lower than the refRun RMSE and only
10 cm higher for the MOSAiC IMB locations, we argue that
fbRun’s sea ice thickness is overall improved in comparison
to sicRun’s and refRun’s sea ice thickness. Nevertheless, the
difference between the Beaufort Sea and the central Arctic in
the observations and the model runs underlines the need for
more long-term in situ observations.

Dirkson et al. (2017) and Day et al. (2014) show that SIC
has a shorter memory than sea ice thickness. The facts that
FB improves sea ice thickness, as shown in Fig. 6, and that
FB values are still improved after summer in all years (in
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Figure 9. (a) Weekly mean sea ice thickness averaged over all grid cells covered by the CryoSat-2 flight pass considered in the AWI data
set. The mean sea ice thickness is displayed with 1 SD for sea ice thickness from MOSAIC (solid black), AWI (dash-dotted yellow), fbRun
(dashed turquoise) and refRun (dotted dark blue). (b) Same as (a) but for radar freeboard and without MOSAIC observations. The dash-
dotted yellow line shows AWI radar FB, the dashed turquoise line fbRun radar FB and the dotted dark-blue line refRun radar FB. The date

format is year-month.

contrast to SIC), as shown in the lower panel of Fig. 4, sug-
gest that FB also keeps the memory as opposed to SIC.

The AWI sea ice thickness could be a typical CryoSat-
2 product that could be assimilated in order to improve the
modeled sea ice thickness. Based on the RMSEs in Table 2,
which show that the FB assimilation gives better values com-
pared to the MOSAIC data, and similar results in the Beau-
fort Sea, the method presented in this study shows the per-
spective of assimilating FB instead.

We discussed that the thinner fbRun sea ice thickness in
October in Figs. 9 and 8 is not caused by assimilating the
also thinner AWI FB, as the assimilation starts in November.
In contrast, the significantly larger increase in fbRun’s sea
ice thickness later in the year is a direct result of assimilating
thick FB: in the second half of the 2019/20 winter season,
the AWI sea ice thickness (Fig. 9a) was clearly thicker than
the MOSAIC sea ice thickness. While it is not as clear for
fbRun’s sea ice thickness in Fig. 9a, Fig. 8 clearly shows that
fbRun’s sea ice thickness is also thicker than the MOSAiC
sea ice thickness. The increase in fbRun’s sea ice thickness
during late February to early April 2020 (Fig. 8) follows the
increase in AWI FB (yellow line in Fig. 9b) starting at the
end of January 2020. Since the AWI FB is assimilated in
fbRun, this increase is caused by the assimilation. However,
this assimilation leads to sea ice that is too thick, as seen
in Fig. 8. This overestimation of sea ice thickness is likely
due to an overestimation of FB in the AWI data, as found by
King et al. (2018) in their field campaign in April. Other stud-
ies (Giles and Hvidegaard, 2006; Willatt et al., 2011; Ricker
etal., 2015) suggest similar biases in the radar backscattering
horizon for deep snow and high moisture content. Giles and
Hvidegaard (2006) and King et al. (2018) both conducted
field studies in March and April, months when the assimi-
lated AWI FB (Fig. 7b) is highest, near the final MOSAIiC
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location. The resulting overestimation of sea ice thickness in
the AWI data and the comparable thinner assimilated sea ice
thickness from fbRun comprise a good example of the ad-
vantage of assimilating FB instead of sea ice thickness.

The increase in biases and the decrease in correlations
shown in Table 1 exhibit a similar pattern to the FB and
sea ice thickness at the MOSAIC IMB locations discussed
above. This similar behavior could indicate that the pattern
displayed in Fig. 7 is not restricted to the observation area
and suggests that the FB assimilation could correct the error
introduced by the wrongly located scattering horizon in the
CryoSat-2 FB retrievals to some extent. However, the thick-
ness comparison of fbRun and AWI data to the BGEP data
set (Figs. 6 and 7) does not show the same seasonal pattern in
thickness as that discussed above for the MOSAIiC observa-
tion. This might indicate regional differences in the scattering
horizon or that the assimilation does not correct for the effect
everywhere in the same manner. Further studies are needed
to investigate this.

5 Conclusions

In this study, a method to assimilate FB is described, and
the results from a 3-year assimilation run are evaluated. The
presented method builds upon calculating an increment us-
ing modeled FB and then converting the changed FB into
the sea ice thickness. The method uses parameters from the
sea ice model for the sea ice density, snow density and snow
thickness instead of the prescribed values used in the AWI
sea ice thickness product, which it is compared to. First, it
was shown that the FB assimilation improves the modeled
FB (Fig. 4) and that the assimilation affects the sea ice thick-
ness (Table 1). Figure 6 shows that the sea ice thickness of
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the run assimilating FB is improved in the Beaufort Sea. The
comparison to MOSAIC IMB sea ice thickness data from
the central Arctic does not give the same results. Here re-
fRun and sicRun perform better, but we can show that the
poorer performance of the assimilation is to some extent due
to too thick FB being assimilated. CryoSat-2 FB is known
to have a thick bias in late winter due to uncertainties in the
backscattering horizon of the radar signal (Giles and Hvide-
gaard, 2006; Willatt et al., 2011; Ricker et al., 2015). The
seasonality of the biases and correlations listed in Table 1 as
well as the observation comparison in Fig. 9 indicates that
the assimilation has some skill in mitigating this bias. One of
the two main objectives was to determine if the FB assimila-
tion improves sea ice thickness. Even though fbRun is worse
compared to the MOSAiIC IMB observations than refRun, it
is in closer agreement with the longer observation record at
the BGEP locations.

To compare our method to sea ice thickness data from a
more classical approach, we have chosen the weekly sea ice
thickness product from the AWI sea ice portal (Hendricks
et al., 2021). This sea ice thickness is derived from the same
FB as that assimilated in fbRun. Overall, the AWI CryoSat-
2 sea ice thickness and FB is thicker than fbRun’s sea ice
thickness and FB (Table 1). When comparing the two sea
ice thicknesses to independent sea ice measurements from
the BGEP upward-looking sonar data, we can show that the
FB-assimilated sea ice thickness and AWI sea ice thickness
result in similar RMSEs. The comparison to sea ice thickness
observations from MOSAiC IMB buoys deployed during the
MOSAIC in the central Arctic results in significantly lower
RMSE for the sea ice thickness from the FB assimilation.

5.1 Outlook

The presented method builds upon modeling the most in-
fluential variables of Eq. (6). These are the snow thickness,
the snow density and the sea ice density (Alexandrov et al.,
2010). The snow density used in this study does not differ
from the snow density used in the AWI data product. The
results in Fig. 7 show that the modeled variables result in
similar results at the BGEP locations and better results in
the central Arctic compared to the empirical values used in
the AWI sea ice thickness product. Both the snow thickness
and the sea ice density differ, and no clear conclusion can
be drawn at this point as to whether the AWI values or the
model values are more correct. As the aim of this study was
to present the method on how to assimilate FB and a valida-
tion of the resulting sea ice thickness, a detailed discussion of
the model parameters and the resulting influence on the sea
ice thickness when compared to more traditional approaches
is not included. A study with a focus on this is currently in
preparation.
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