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Abstract. Assessing past distributions, variability and trends
in the mountain snow cover and its first-order drivers, tem-
perature and precipitation, is key for a wide range of stud-
ies and applications. In this study, we compare the re-
sults of various modeling systems (global and regional re-
analyses ERA5, ERA5-Land, ERA5-Crocus, CERRA-Land,
UERRA MESCAN-SURFEX and MTMSI and regional
climate model simulations CNRM-ALADIN and CNRM-
AROME driven by the global reanalysis ERA-Interim)
against observational references (in situ, gridded observa-
tional datasets and satellite observations) across the Euro-
pean Alps from 1950 to 2020. The comparisons are per-
formed in terms of monthly and seasonal snow cover vari-
ables (snow depth and snow cover duration) and their main
atmospherical drivers (near-surface temperature and precipi-
tation). We assess multi-annual averages of regional and sub-
regional mean values, their interannual variations, and trends
over various timescales, mainly for the winter period (from
November through April).

ERA5, ERA5-Crocus, MESCAN-SURFEX, CERRA-
Land and MTMSI offer a satisfying description of the
monthly snow evolution. However, a spatial comparison
against satellite observation indicates that all datasets over-
estimate the snow cover duration, especially the melt-out
date. CNRM-AROME and CNRM-ALADIN simulations
and ERA5-Land exhibit an overestimation of the snow ac-
cumulation during winter, increasing with elevations.

The analysis of the interannual variability and trends indi-
cates that modeling snow cover dynamics remains complex
across multiple scales and that none of the models evaluated
here fully succeed to reproduce this compared to observa-

tional reference datasets. Indeed, while most of the evalu-
ated model outputs perform well at representing the inter-
annual to multi-decadal winter temperature and precipita-
tion variability, they often fail to address the variability in
the snow depth and snow cover duration. We discuss sev-
eral artifacts potentially responsible for incorrect long-term
climate trends in several reanalysis products (ERA5 and
MESCAN-SURFEX), which we attribute primarily to the
heterogeneities of the observation datasets assimilated.

Nevertheless, many of the considered datasets in this study
exhibit past trends in line with the current state of knowledge.
Based on these datasets, over the last 50 years (1968–2017) at
a regional scale, the European Alps have experienced a win-
ter warming of 0.3 to 0.4 ◦C per decade, stronger at lower
elevations, and a small reduction in winter precipitation, ho-
mogeneous with elevation. The decline in the winter snow
depth and snow cover duration ranges from −7 % to −15 %
per decade and from −5 to −7 d per decade, respectively,
both showing a larger decrease at low and intermediate ele-
vations.

Overall, we show that no modeling strategy outperforms
all others within our sample and that upstream choices (hor-
izontal resolution, heterogeneity of the observations used for
data assimilation in reanalyses, coupling between surface and
atmosphere, level of complexity, configuration of the snow
scheme, etc.) have great consequences on the quality of the
datasets and their potential use. Despite their limitations, in
many cases they can be used to characterize the main features
of the mountain snow cover for a range of applications.
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1 Introduction

Emissions of greenhouse gases by industrial societies since
the 1850s have led to an increase in the global mean sur-
face temperature of 1.07 ◦C (0.8–1.3 ◦C) and 1.59 ◦C (1.34–
1.83 ◦C) over land (IPCC, 2021), inducing a series of mod-
ifications in the components of the Earth system. In moun-
tainous areas, composed of a large number of systems and
environments sensitive to climate change, the temperature
rise has already led to major impacts (Hock et al., 2019).
Observations from the past decades generally show a de-
crease in glacier mass, a temperature rise of the permafrost
and a general decline in the snow cover duration by 5 d per
decade on average at low elevations (Hock et al., 2019).
These changes already impact water resources and agricul-
ture in snow-dominated and glacier-fed river basins, as well
as alter the magnitude and location of natural hazards in
mountainous regions such as snow avalanches, floods and
landslides (Hock et al., 2019). While many physical changes
in mountain regions are already well understood in gen-
eral terms, some physical processes remain imperfectly char-
acterized such as the elevation-dependent climate changes
(Pepin et al., 2015, 2022), as well as numerous impacts on
a large variety of related domains, such as water resources,
ecosystems and natural hazards.

Reliable observational data on essential climate variables
(e.g., near-surface temperature, precipitation, snow cover
area, snow water storage) are critically needed to further in-
vestigate past changes, improve process understanding, and
characterize the present state of the different systems and en-
vironments under a changing climate. Yet due to multiple
constraints on the installation and maintenance of a dense
observational network related to the accessibility and the ex-
treme climate conditions, the historical and current in situ
coverage is sparse over mountainous regions, specifically at
high elevations, even in the European Alps, one of the most
extensively studied mountain ranges in the world. Multiple
approaches have been developed to complement the informa-
tion from sparse in situ observation networks and to gather
information about the past state of the climate system in
mountain regions.

Remote sensing data have the advantage of almost exhaus-
tive spatial coverage at a high resolution (down to a few tens
of meters of horizontal resolution). However, only a limited
number of climate variables can be derived from them, with
a short and generally partial temporal coverage that does not
allow the reconstruction of past changes over the last century.
MODIS (Justice et al., 1998), for example, provides records
from February 2000 onwards, a time period less than the con-
ventional 30 years required to define a climatology, let alone
a climate trend. Additionally, the quality of remote sensing
data is weakest in mountainous regions due to the complex
topography compared to flatlands (Largeron et al., 2020).

Reanalyses are generated using a numerical weather pre-
diction (NWP) model simulating the state of atmospheric and

surface variables, using observational constraints through
data assimilation. The aim of reanalyses is to provide infor-
mation about the state of the atmosphere and its interfaces
consistent with the observed chronology of meteorological
events. Over the last decade, a new series of global and re-
gional reanalyses have been released, taking advantage of
the rise in model performance and assimilation procedures,
providing high-resolution climate information. Among them,
ERA5 (Hersbach et al., 2020) and ERA5-Land (Muñoz-
Sabater et al., 2021) are global reanalyses recently pro-
duced by the ECMWF (European Centre for Medium-Range
Weather Forecasts) and are already extensively used in a
wide range of applications. UERRA MESCAN-SURFEX
and CERRA-Land are high-resolution regional reanalyses
resulting from a series of European projects (EURO4M,
UERRA, now implemented as part of the Copernicus Cli-
mate Change Service and named CERRA), taking advantage
of their high resolution and the use of a new surface analysis
system MESCAN (Soci et al., 2016) to provide a robust esti-
mation of surface variables over Europe. These new reanaly-
ses are promising tools but are still limited for some applica-
tions. Besides their high computational cost, they remain de-
pendent on model limitations and an assimilation system that
can lead to spurious trends due in particular to the spatiotem-
poral heterogeneity of assimilated observations (Thorne and
Vose, 2010; Vidal et al., 2010; Vernay et al., 2022).

Regional climate simulations forced by a larger-scale re-
analysis are continuous long-term simulations over a limited
area. They are, by design, constrained to follow the large-
scale chronology of meteorological episodes and avoid some
of the issues induced by the assimilation steps of regional
reanalyses but inherit biases from the atmospherical model.
Regional climate simulations driven by larger-scale reanaly-
ses are mostly used as a benchmarking tool to assess the re-
liability of climate simulations used for climate projections.
In Europe, climate simulations produced within the EURO-
CORDEX framework have been used in various applications
ranging from physical changes to climate change impacts
(Jacob et al., 2014; Beniston et al., 2018; Terzago et al., 2017;
Kotlarski et al., 2023). More recently, the EURO-CORDEX
Flagship Pilot Study “Convection” has lead to the produc-
tion of high-resolution regional climate simulations using cli-
mate models at kilometer scale over a domain that covers
the Alpine ridge (Coppola et al., 2020; Pichelli et al., 2021).
These simulations have demonstrated their potential for the
study of rare events such as high precipitation events (HPEs)
(Caillaud et al., 2021), as well as improved the representa-
tion of mountain variables such as temperature, precipitation
and snow cover over the Alps (Lüthi et al., 2019; Monteiro
et al., 2022). A recent review from Lundquist et al. (2019)
suggests that high-resolution climate simulation are now able
to produce a better estimate of meteorological variables over
mountainous areas than gridded datasets based on in situ ob-
servations, limited by the scarcity of in situ observations and
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some of their observation limitations, e.g., snow precipitation
wind-induced undercatch.

Several studies have focused on evaluating datasets and
reanalyses in various contexts with the aim of outlining their
adequate areas of use. Muñoz-Sabater et al. (2021) provide
an extensive comparison of ERA5 and ERA5-Land against
in situ observations for a set of surface variables (near-
surface air temperature, soil moisture, snow depth). Their
study highlights that besides a clear added value of ERA5-
Land against ERA5 in the western US considering the rep-
resentation of snow, their comparison over Scandinavia and
the northern part of the Alps leads to more nuanced results
which they attributed to the quality of ERA5 due to the vari-
able density of the assimilated observation network (too low
and/or unevenly distributed) in ERA5 in these regions. Isotta
et al. (2015) and Bandhauer et al. (2022) focus on precip-
itation characteristics over the European Alps from numer-
ous datasets (ERA5, MESCAN, EURO4M-APGD, E-OBS,
etc.). They report on a widespread overestimation of accu-
mulated precipitation and wet-day frequency of ERA5 and
UERRA against gridded observational datasets and show
that their local-scale performances depends on the density
of the rain gauge network. Li et al. (2022) provide an in-
tercomparison of snow depth from ERA5, ERA5-Land and
Weather Research and Forecasting (WRF) climate simula-
tions against remote sensing and observational datasets over
the Tianshan Mountains in China and find contrasting re-
sults. There, ERA5-Land is prone to lower errors (RMSE
and mean error, ME) compared to ERA5 at low and inter-
mediate elevations but shows larger biases at high elevations.
They both perform poorly regarding the annual evolution of
snow, with an overestimated accumulation phase for ERA5
and an underestimation of the melting rate for ERA5-Land.
Overall, the WRF climate simulation performs well at all el-
evations and gives the closer estimates of the annual cycle of
snow cover. Orsolini et al. (2019) study the ERA5 abilities to
represent snow characteristics (i.e., snow depth, snow cover
and snow duration) over the Tibetan Plateau (TP) and find
that ERA5 strongly overestimates the amount and duration
of snow cover over the TP which they relate to the lack of as-
similated observations in this region, as well as a strong over-
estimation of precipitation. Scherrer (2020) compares near-
surface temperature interannual variability and trends for a
set of reanalyses and gridded datasets (i.e., ERA5, MES-
CAN, E-OBS and COSMO-REA) against a gridded dataset
for Switzerland and finds that they all perform well at low
elevations but have increasing errors in terms of trends and
internal variability at high elevations. Kaiser-Weiss et al.
(2019) perform a broad evaluation over Europe of multiple
reanalyses (those from the UERRA project and COSMO-
REA) for wind, solar radiation, precipitation and tempera-
ture and find that the quality of the dataset for a given area
is for a large part determined by the number of assimilated
observations.

The above studies lead to nuanced results concerning
the ability of recent reanalyses, gridded observation-based
datasets and climate simulations to provide reliable long-
term information relevant to characterize mountain meteo-
rological conditions and the snow cover state. None of them
outperforms other datasets in every region and analyzed as-
pects of the climatology (i.e., mean values, seasonal pat-
terns, spatial patterns, interannual variability, trend), but they
hold promising potential to complement in situ observation
records. Multiple factors are involved and strongly depend
on the study area such as the quality of atmospheric forcing
driving the land surface model, the number and quality of
the assimilated observations, and the inherited biases from
the underlying model used (atmospherical model and land
surface model). Thus, it is clear that extensive studies are
needed to qualify the robustness of these emerging tools for
their appropriate use in a wide range of downstream scientific
applications.

The objective of the present study is to compare the per-
formance of different datasets from different modeling strate-
gies in the European Alps in order to better understand their
different characteristics and assess how to provide the best
possible estimate of the snow cover spatiotemporal variabil-
ity and trends and its first-order drivers: wintertime near-
surface temperature and precipitation. We investigate and
evaluate mean seasonal and annual values, spatial variability
and patterns, and interannual variability and trends over the
last decades. We take advantage of the recent study by Matiu
et al. (2021a) providing a consolidated dataset of in situ snow
depth observations in the European Alps. We also exploit two
gridded observational reference datasets: LAPrec (Frei and
Isotta, 2019) for the precipitation (specifically covering the
European Alps) and E-OBS for the near-surface temperature
(Cornes et al., 2018). By doing so, we aim to provide infor-
mation on the reliability of several commonly used and most
recent reanalyses as well as other modeling approaches in the
European Alps and provide estimates of climate trends in the
variables from these datasets.

2 Data and methods

2.1 Study domain

Our study domain is the European Alps (see Fig. 1a), us-
ing the boundaries of the Alpine Convention (Piva Aureliano,
2020). We carry out analyses over the whole region or for the
four subregions following the HISTALP division from Auer
et al. (2007). These four subregions correspond to four cli-
matically homogeneous areas: the western side (northwest
and southwest) influenced by the Atlantic and a Eurasian
continental regime on the eastern side. The north–south bor-
der distinguishes the warmer and drier Mediterranean side on
the south (southwest and southeast) and the wetter northern
part (northwest and northeast), blocking most of the western
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lows. This division into four main subregions based on tem-
perature, precipitation, air pressure, sunshine and cloudiness
was recently confirmed to be relevant by Matiu et al. (2021a)
based on snow depth in situ observations.

2.2 Variables of interest and indicators

Based on the availability of the variables across the datasets
used in this work (model output and observations; see be-
low), we focus on snow depth to evaluate their snow cover
component.

In order to compare the evaluated datasets against remote
sensing data from MODIS Terra (MOD10A1F) processed
by the National Snow and Ice Data Center (NSIDC) (Hall
and Riggs, 2020), three indicators are analyzed. Consecutive
snow cover duration (SCD) is defined as the longest consecu-
tive number of days in a hydrological year with a snow depth
value above a given threshold value. The snow onset date
(SOD) and the snow melt-out date (SMOD) characterize the
beginning and the ending dates of the corresponding time pe-
riod. In this study, the snow depth threshold is set at 1 cm,
motivated by the minimization of error metrics, described in
Sect. 2.4.3.

In the case of MODIS data, the normalized difference
snow index (NDSI) value was converted to a series of bi-
nary snow cover maps (absence or presence of snow) using a
threshold value NDSI > 0.2. This threshold corresponds to a
snow cover fraction of approximately 30 % (Salomonson and
Appel, 2004). These snow cover maps were used to compute
SCD, SOD and SMOD.

In addition to the state of the snow cover, we focus on
near-surface temperature (2 m temperature) and precipita-
tion amounts at the seasonal scale relevant to the winter
snow cover (average and cumulated values from November
to April, respectively).

2.3 Data

2.3.1 Reference datasets

In situ snow depth observation

The reference snow depth dataset is an ensemble of daily
in situ observations spanning the 1971–2019 period (Matiu
et al., 2021a). In this study, we used three different sub-
sets from the overall dataset, depending on the analysis.
Their locations and elevation distributions are displayed in
Fig. 1. Section 3.1 focuses on the reference characteristics of
the snow cover over the longest common time period from
which the evaluated datasets are available. In order to have
the largest spatial coverage to compute monthly to seasonal
mean snow depth over large regions, we keep all station data
that have at least 70 % valid daily values from November to
April for the 1985–2015 period (see Fig. 1b). Section 3.2
focuses on the snow cover seasonality, using the indicators
SCD, SOD and SMOD computed using continuous daily val-

ues of snow depth over the winter period, and compares it to
satellite observations from MODIS (record starting in 2000).
Most of the missing values happen in summer (for most of
the observation stations, no snow is present during this pe-
riod). In this section, we keep stations with more than 80 %
valid daily values over all years of the 2000–2015 period
(see Fig. 1c). Section 3.3 focuses on the interannual variabil-
ity and trends. This requires the most homogeneous possible
dataset along with a sufficiently long time period, so we only
keep stations with more than 90 % valid daily values from
November to April of the 1968–2017 period (see Fig. 1d).

MODIS remote sensing satellite observations

In order to address the spatial variability and the snow cover
seasonality, we used the MODIS Terra daily normalized dif-
ference snow index (NSDI) field over the 2000–2015 period.
These data from the MODIS Terra sensor have been treated
by the National Snow and Ice Data Center (NSIDC) (Hall
and Riggs, 2020), and they correspond to a daily gap-filled
product using an algorithm described in Hall et al. (2010). In
this study, MODIS NDSI data are used at their native hor-
izontal resolution (approximately 500 m) and regridded to
match different dataset resolutions (from 2.5 to 30 km) us-
ing a first-order conservative method.

Near-surface air temperature

The reference dataset of air temperature at 2 m is the E-OBS
v23.1 daily mean air temperature field (Cornes et al., 2018).
E-OBS is a gridded observational dataset available at 0.1◦

(12 km) horizontal resolution over the 1950–2020 period. It
is obtained by interpolating station data gathered from na-
tional meteorological services (NMSs) by the ECA&D ini-
tiative (Klein Tank et al., 2002; Klok and Klein Tank, 2009).
Uncertainties (due to climatological standard error values
and from the kriging procedure) are estimated using stochas-
tic simulations to produce en ensemble of 100 realizations
of each daily field, and then the spread is calculated using
the 95th and 5th percentiles. In Sect. 3.3, focusing on in-
terannual variability and trends, we used the homogenized
version v19.0HOM of E-OBS. It uses a restricted number of
observations, quality checked and homogenized following a
procedure described in Squintu et al. (2019). E-OBS temper-
ature values in high-mountain areas present limitations. They
are known to feature a high warm bias (that can reach up to
5 ◦C against the MeteoSwiss gridded dataset in Switzerland),
resulting from the scarcity of observations used in this region
at high elevations. Furthermore, the uncertainty values may
be underestimated, particularly in areas with low observation
density (Cornes et al., 2018).
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Figure 1. (a) Study domain with the DEM (digital elevation model) at 1 km resolution and contour of the Alpine Convention outline of the
Alps and the four subregions. (b) Location of observations used in Sect. 3.1 with their associated number per elevation band of 300 m width
for each region. (c) Same as (b) for the observations used in Sect. 3.2. (d) Same as (b) for the observations used in Sect. 3.3.

Precipitation

The reference for precipitation is LAPrec (Frei and Isotta,
2019), a gridded dataset of monthly precipitation at 5 km hor-
izontal resolution covering the European Alps and spanning
the 1901–2019 period. It relies on a statistical approach (re-
duced space optimal interpolation – RSOI) combining infor-
mation from a set of long-term observation stations used in
HISTALP (Auer et al., 2007) and from the high-resolution
gridded dataset EURO4M-APGD (Isotta et al., 2015). It is
specifically appropriate for long-term studies that need a high
temporal consistency while staying at a relatively large spa-
tial scale, therefore matching the scope of this study. The user
guide (Isotta et al., 2021) of this product provides an esti-
mation of the interpolation error (in terms of mean absolute
error – MAE and ME) at observation locations. The value
of the MAE is 18 mm per month (all stations and months
included) but is found to be larger in areas with a lower den-
sity of observations (i.e., generally at high elevations) and
in summer due to the larger proportion of convective precip-
itation events. Additionally, systematic error measurements
are not taken into account, such as the rain gauge undercatch
due to wind-induced deflections of hydrometeors, known to
be particularly strong at high elevations in winter (i.e., the
underestimation can occasionally exceed 40 %) (Isotta et al.,
2021; Kochendorfer et al., 2018, 2021).

2.3.2 Evaluated datasets

Reanalyses and climate simulations are evaluated in this
study against the references described above. We however
emphasize that these references are not immune to errors
and serve as a common reference dataset for the purpose
of this work. Figure 2 shows an overview of the evaluated
datasets, their configurations, their temporal availability and
their main components of interest for this study (i.e., land
surface model and complexity of their snow scheme).

2.3.3 Reanalyses

ERA5

ERA5 is the latest global reanalysis produced by the
ECMWF using the Cy41r2 of the Integrated Forecasting Sys-
tem (IFS). This reanalysis provides hourly atmospherical and
surface fields at a horizontal resolution of 31 km. Here we
use the latest release, at the time of writing, of the reanalysis
starting in 1959, while a previous version of the reanalysis
was produced, starting in 1950, and is used for ERA5-Land
and ERA5-Crocus (see below). A 4D-Var (variational) as-
similation framework including variational bias correction is
used for atmospherical fields, 2D optimal interpolation for
2 m temperature, relative humidity and snow (depth and den-
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Figure 2. Schematic description of the evaluated datasets. Each dataset is represented in a colored rectangle with a width adjusted to fit
its temporal coverage on the timeline. A one-way arrow indicates a driving element that is used inside another model in stand-alone mode
(e.g., global driving data for regional model, atmospherical field for offline LSM run). A two-way arrow indicates a coupling between a
driving element and another model. Dashed squares give specifications on their associated element.
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sity), and 1D optimal interpolation for soil and snow temper-
ature (Hersbach et al., 2020). The land surface model (LSM)
CHTESSEL integrates a single-explicit-layer snow model.
It is an energy and mass balance model that represents an
additional layer on top of the upper soil layer (Dutra et al.,
2010), with its own energy budget, taking into account heat
exchanges with the underlying soil and atmosphere above.
It has a comparable physics to the D95 snow cover model
(Douville et al., 1995) but accounts for more processes: the
representation of liquid water content (as a diagnostic) and
the compaction and thermal metamorphism in its snow den-
sity formulation (see Dutra et al., 2010, for more details). It
is worth noting that some issues affect the ERA5 reanaly-
sis snow depth data. Hersbach et al. (2020) note that above
1500 m in mountainous areas, snow depth can be unrealisti-
cally large due to the underestimation of melting within the
snow scheme parameterization.

ERA5-Crocus

ERA5-Crocus corresponds to driving the LSM SURFEX
(Masson et al., 2013) used in standalone mode along with
the detailed multilayer snowpack model Crocus (Vionnet
et al., 2012), using as input the meteorological fields from
the ERA5 reanalysis at 31 km horizontal resolution covering
the 1950–2020 period over the Northern Hemisphere. ERA5-
Crocus has been used in recent analyses of Northern Hemi-
sphere snow cover and snow cover trends, based on previous
work using ERA-Interim surface atmospheric fields as input
to Crocus simulations (Decharme et al., 2016; Derksen and
Mudryk, 2023).

ERA5-Land

ERA5-Land is a global reanalysis produced by the ECMWF
for the land component from 1950 onwards at a horizontal
resolution of 9 km. It uses the ERA5 atmospherical fields
downscaled at 9 km resolution using a linear interpolation
with an altitudinal correction for the air temperature, humid-
ity and pressure. The altitudinal correction is achieved using
a daily environmental lapse rate derived from ERA5 vertical
profiles (Dutra et al., 2020). We note that Dutra et al. (2020)
only show nuanced benefits of this altitudinal correction on
temperature over the western US, with even a strengthening
of a cold bias against station observations when ERA5 eleva-
tion is corrected towards higher elevation, the dominant sit-
uation over high mountain ranges. These downscaled atmo-
spherical fields are then used to force the LSM CHTESSEL
(using a similar configuration as the one used in the ERA5
reanalysis), producing hourly surface fields.

UERRA: MESCAN-SURFEX

UERRA was a European project focused on the development
of regional-scale atmospheric and land surface reanalyses.
Multiple datasets were produced within the framework of the

UERRA project. Here we used the MESCAN-SURFEX re-
analysis. It is a regional reanalysis covering Europe and span-
ning the 1961–2019 period. It provides analyzed near-surface
atmospherical and surface fields every 6 h at a horizontal res-
olution of 5.5 km and hourly forecast fields. It uses ERA-40
(Uppala et al., 2005) prior to 1979 and ERA-interim (Dee
et al., 2011) thereafter as lateral boundary conditions (global
forcing) to run the HARMONIE (HIRLAM–ALADIN Re-
gional Mesoscale Operational NWP In Europe) NWP sys-
tem at 11 km resolution (Ridal et al., 2016). An analysis is
done every 6 h using a 3D-Var assimilation for the upper at-
mosphere and CANARI (Taillefer, 2002) for the surface. The
analyzed atmospherical fields at 11 km horizontal resolution
are downscaled to 5.5 km and passed to the MESCAN system
(Bazile et al., 2017; Soci et al., 2016), producing an analysis
of the air temperature at 2 m, the humidity at 2 m and the
precipitation. These surface fields along with radiation and
wind fields from the atmospherical analysis are used to drive
the SURFEX LSM in standalone mode to produce surface
fields at 5.5 km grid spacing. For this study, precipitation and
air temperature correspond to the MESCAN analyzed fields,
and snow depth values are produced by the LSM SURFEX
used in standalone mode. In this configuration SURFEX uses
the intermediate complexity 12-layer snow scheme ISBA-
ES (Explicit Snow) (Boone and Etchevers, 2001; Decharme
et al., 2016).

MTMSI

The Mountain Tourism Meteorological and Snow Indica-
tors (MTMSI) correspond to a series of indicators gener-
ated at the pan-European scale based on a selection of grid
points from the UERRA MESCAN-SURFEX meteorologi-
cal reanalysis over a specific geometry (elevation bands ev-
ery 100 m of elevation within each mountainous NUTS3 –
Nomenclature of Territorial Units for Statistics – area) used
as inputs for the detailed snowpack model Crocus from 1961
to 2015. Temperature and precipitation fields are directly
derived from the MESCAN analysis, while snow depth is
produced by the snowpack model Crocus. See Morin et al.
(2021) for further details about this dataset.

CERRA-Land

CERRA-Land is the latest-generation regional reanalysis
covering Europe from 1984 onwards, produced as part of
the Copernicus Climate Change Service (Schimanke et al.,
2022). It provides near-surface atmospherical and surface an-
alyzed fields every 3 h at a horizontal resolution of 5.5 km.
Its setup is almost similar to UERRA MESCAN-SURFEX.
The main differences are the use of ERA5 as lateral bound-
ary conditions, the fact that the atmospherical model (HAR-
MONIE) runs natively at 5.5 km horizontal resolution and
that an analysis takes place every 3 h using a different set of
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observations (higher density in some areas, different quality
control).

2.3.4 Climate simulations

CNRM-ALADIN

The CNRM-ALADINv6 regional climate model (Nabat
et al., 2020) uses a 12.5 km horizontal grid spacing over a
large pan-European domain, 91 vertical levels and a 450 s in-
ternal time step. It is hydrostatic, which involves the param-
eterization of deep convection, using the PCMT (prognostic
condensates microphysics and transport) scheme (Guérémy,
2011). The coupling with the LSM SURFEX includes the
snow cover model ISBA-ES, using a 12-layer snowpack dis-
cretization scheme. Here, we used an evaluation run span-
ning the 1979–2018 period, using ERA-interim as its lateral
boundaries.

CNRM-AROME

This study relies on simulations carried out with CNRM-
AROME (cycle 41t1) at 2.5 km horizontal grid spacing (Cail-
laud et al., 2021; Monteiro et al., 2022). This version of the
model was the one used operationally for NWP at Météo-
France from 2015 to 2018 (Termonia et al., 2018). CNRM-
AROME includes a coupling with the LSM SURFEX, using
the single-layer D95 snow scheme (Douville et al., 1995).
Here, we used an evaluation run spanning the 1982–2018 pe-
riod that used the CNRM-ALADIN evaluation run, driven by
ERA-Interim, as lateral boundary conditions (Monteiro et al.,
2022).

2.4 Evaluation methods

2.4.1 Regional averaged analyses

In order to provide a common basis for the evaluation of
these diverse datasets, we aggregate the temperature, precip-
itation and snow cover data for relatively large areas (full Eu-
ropean Alps domain or subregions) and over elevation bands.

2.4.2 Elevation-band-based analyses

Figure 3a displays the relative frequency of the number of
grid points for a digital elevation model (DEM) at 100 m hor-
izontal resolution by elevation band and region. The DEM at
100 m is derived from the European Digital Elevation Model
(EU-DEM), version 1.1 (EEA, 2016), at 25 m horizontal res-
olution. Figure 3b shows the difference in the relative fre-
quency of the number of grid points for each dataset topog-
raphy compared to the DEM at 100 m. It highlights that the
elevation distribution over the subregions is substantially dif-
ferent for the various datasets investigated. Moreover, moun-
tainous regions are known to feature a large altitudinal gra-
dient concerning the variables of interest for this study, at

least for the snow cover state and near-surface air temper-
ature. Comparing multiple datasets at different resolutions
without taking into account this unequal repartition of grid
points per elevation band would inevitably induce strong sys-
tematic biases in the analysis results. Here, the analyses are
carried out using averages over 300 m width elevation bands,
meaning that for a given elevation band of elevation z, all
stations and/or grid points with an elevation ranging between
a z± 150 m elevation band are combined (usually through
averaging). This choice results from a trade-off between the
heterogeneity within an elevation band for a given region and
the inclusion of a maximum of grid points or observations
within.

For most of the analyses, we chose to focus on three ele-
vation bands, acting as a representation of three distinct en-
vironments: 600 m± 150 m for the valleys and low-elevation
hills, 1500 m± 150 m for the intermediate elevations near the
snow line, and 2400 m± 150 m for the high-mountain con-
ditions. Note that the results for the intermediate elevation
bands (i.e., between visualized elevation bands) are generally
consistent with the main patterns observed across the eleva-
tion bands analyzed and visualized.

Section 3.3 includes figures averaged over multiple ele-
vation bands at the scale of the entire Alps. To circumvent
biases induced by the large differences in the representation
of the hypsometry in the different datasets (Fig. 3b), the av-
erages over multiple elevation bands have been weighted by
the relative fraction of each elevation band using the DEM
at 100 m resolution as a common reference. This method en-
sures the same representativeness of each elevation band in
the average value, regardless of the horizontal resolution of
the dataset under consideration. We also exclude data below
450 m since snow has a very limited role at these elevations
and above 2550 m as our datasets used are generally not de-
signed to represent the conditions encountered at very high
elevations. Overall, this leads to the exclusion of less than
12 % of the total surface area based on the DEM at 100 m
resolution (see Fig. 3a).

2.4.3 Determination of the snow depth threshold

The computation of the snow cover duration (SCD), snow
onset date (SOD) and snow melt-out date (SMOD) requires
as a first step converting any snow data (e.g., snow depth,
snow water equivalent, NDSI) into binary data, indicating ei-
ther the presence or the absence of snow. As no consensus
exists for a snow depth threshold to determine the absence or
presence of snow at a given location, we choose the threshold
that maximizes the agreement of the snow cover detection
between MODIS (with an NDSI threshold set at 0.2 to corre-
spond to approximately 30 % of the snow-covered pixel; Sa-
lomonson and Appel, 2004) and in situ station observations
(with a varying threshold of snow depth), as well as mini-
mizing error metrics on the indicators used (SCD, SOD and
SMOD). The agreement metrics used are skill scores based
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Figure 3. (a) Relative frequency of the number of grid points for 300 m width elevation bands for each region using a digital elevation model
at 100 m horizontal resolution. (b) Differences in the frequency of the number of stations or grid points for 300 m width elevation bands for
each region and dataset.

on the confusion matrices calculated using daily values of
presence or absence of snow, considering in situ observations
as the truth:

– true positive rate (TPR) corresponding to the proportion
of the number of points flagged as the presence of snow
in the MODIS pixel and in the corresponding in situ
station

– true negative rate (TNR) corresponding to the propor-
tion of the number of points flagged as the absence of
snow in the MODIS pixel and in the corresponding in
situ station

– positive predictive value (PPV) or precision being the
proportion of the number of points correctly flagged as
the presence of snow in the MODIS pixel

– negative predictive value (NPV) being the proportion of
the number of points correctly flagged as the absence of
snow in the MODIS pixel

– accuracy corresponding to the proportion of the total
number of predictions that were correct (both presence
and absence of snow).

Then, differences for the different thresholds between
MODIS and station observations for our three indicators
(SCD, SOD, MOD) are quantified using mean absolute er-
ror (MAE) and mean error (ME) values.

The stations used in Sect. 3.2 and described in Fig. 1c have
been chosen because this subset covers all the elevations of
interest for this study with a satisfying spatial coverage. In
order to avoid altitudinal biases, stations that present eleva-
tion differences greater than 100 m with their corresponding

MODIS pixel have been removed, as well as stations be-
low 450 and above 2550 m (247 out of 941 stations have
been removed). In total 694 stations over the period from
1 April 2000 to 31 December 2015 have been used, provid-
ing 3 886 400 daily observations for the calculation of skill
scores and 15 seasons (2000–2001 to 2014–2015) for the
SCD, SOD, SMOD MAE and biases.

Figure 4a shows that the threshold that maximizes the
TNR, PPV and the accuracy while keeping a high scores of
TPR and NPV is 1 cm. This threshold is lower than the 10 to
15 cm optimum found by Gascoin et al. (2015) for the Pyre-
nees. Possible factors that could explain the differences are a
larger number of observations used in our study, covering a
larger area with a larger number of low-elevation sites and a
wider range of land cover. Giving a clear explanation of the
differences would require further sensitivity studies that are
beyond the scope of this study.

Figure 4b show the mean error metrics of the SCD, SMOD
and SOD between the set of in situ observations and the cor-
responding MODIS pixels for the 15 seasons (from 2000–
2001 to 2014–2015). On this graph, snow cover duration
from the in situ observations is calculated with a varying
threshold of snow depth to determine the absence or pres-
ence of snow (from 1 to 15 cm), while MODIS SCD is de-
fined using a constant threshold of NDSI set at 20 %. Solid
lines represent the mean error metrics of all locations and
seasons, and shaded areas around them are the standard de-
viation of these error metrics between elevation classes when
gathered by elevation bands of 300 m from 600 m± 150 m to
2400 m± 150 m.

SOD appears to be weakly sensitive to this threshold,
meaning that the beginning of the continuously snow-
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Figure 4. (a) Skill scores (true positive rate or recall – TPR, true
negative rate – TNR, positive predictive value – PPV, negative pre-
dictive value – NPV, and the accuracy), calculated using the daily
values of absence or presence of snow on the ground between in situ
stations and MODIS pixels at station locations for various values of
the threshold used to assess whether snow is present or not. See
text for more details. (b) Corresponding mean errors and mean ab-
solute errors for the SOD, SMOD and SCD indicators between the
set of in situ observations and the corresponding MODIS pixels for
the 15 seasons (from 2000–2001 to 2014–2015). Shaded areas rep-
resent the standard deviations between the elevation classes (from
600 m± 150 m to 2400 m± 150 m every 300 m).

covered season generally starts with immediately “high” val-
ues of snow depth. SMOD and SCD are more sensitive,
and error metrics grow continuously with the increase in the
threshold. The standard deviation is rather low for the 1 cm
threshold (i.e., less than 5 d for mean error and mean abso-
lute error), meaning that the detection performs rather simi-
larly at all elevations. This short sensitivity study leads us to
the choice of 1 cm for setting the snow depth threshold used
to determine the absence or presence of snow with an uncer-
tainty that can be large for a given station (i.e., on average
10 to 20 d) but well centered, as mean error values are close
to 0. This threshold was applied to all the datasets compared
with MODIS in Sect. 3.2, regardless of their horizontal reso-
lutions, which can be considered one of the limitations of the
method.

2.4.4 Time periods, statistics and trends analyses

The reference period for the analyses in Sect. 3.1 is the
longest common period available for all datasets: 1985–2015
(see Fig. 2). The method in Sect. 3.2 that focuses on snow
cover seasonality mainly against MODIS data is performed
over the 2000–2015 period. In these two sections, most val-
ues of the different variables are presented on average over
the time period, spatially averaged for a given elevation band,
over a subregion or the entire Alps.

The error metrics used are defined as follows:

– mean error (ME)=
∑N
i=1(xi−yi )
N

– mean absolute error (MAE)=
∑N
i=1|xi−yi |
N

– root mean square error (RMSE)=
√∑N

i=1(xi−yi )
2

N
=

√
1− r2σy

– correlation (Pearson linear correlation) rxy =∑
xiyi−Nxy√

(
∑
x2
i −Nx

2)
√
(
∑
y2
i −Ny

2)

with xi and yi being data x and y at time step i; σx and σy ,
respectively, the standard deviations of x and y; and N the
sample size. For convenience, ME, MAE and RMSE are nor-
malized by the mean values of the reference dataset for snow
depth and precipitation.

Section 3.3 compares trends for the different variables of
interest using seasonal mean winter values (November to
April) for the reference and the evaluated datasets. Trends
are calculated using the robust nonparametric Theil–Sen es-
timator, insensitive to the changing variance of the residu-
als (Sen, 1968), along with a Mann–Kendall test for signif-
icance assessment based on a p value threshold of 0.05. In
order to verify the robustness of the method, we tested the
use of the standard ordinary least squares regressions (OLSs)
and the generalized least squares (GLSs) with an autoregres-
sive component (AR(1)) to account for the effect of the in-
terannual variability on the calculated trends, known to lead
to an increase in the size of the confidence intervals (Ribes
et al., 2016) and thus affect the number of trends detected
as being significant. The resulting trends were of compara-
ble values for the three methods, but the OLS method leads
to the detection of more significant trends compared to the
GLS with AR(1) and the Theil–Sen methods which generally
share similar thresholds significance levels for our analyzed
time series.

3 Results

3.1 Reference characteristics of the snow cover in the
European Alps

This section presents a general evaluation of snow depth
characteristics, air temperature at 2 m and precipitation for
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each of the datasets by comparing them against the reference
datasets presented in Sect. 3.1 for the 1985–2015 period.
Comparisons are described at the scale of the entire Alps,
and there are not many differences in the results at the sub-
regional scale. Figures for the four subregions are however
provided in the Supplement.

3.1.1 Snow depth

Figure 5 shows an overview of the snow depth monthly time
series for the different datasets over the whole European
Alps. The corresponding values for the correlation, mean er-
rors (MEs) and mean absolute errors (MAEs) compared to
the reference calculated using the monthly values for the
snow season (November to April) are shown in Fig. 6. In
these two figures, three elevation bands are presented: 600 m
(from 450 to 750 m; low elevations), 1500 m (from 1350 to
1650 m; intermediate elevations) and 2400 m (from 2250 to
2550 m; high elevations).

At all elevations in Fig. 5, all datasets present similar in-
terannual variability, reflecting a satisfactory agreement con-
cerning the chronology of events (see Sect. 3.3 for a more in-
depth comparison of the interannual variability). This leads
to high correlation scores in Fig. 6, ranging from 0.67 to 0.96,
most of which are above 0.85. At low elevations in Fig. 6,
CNRM-ALADIN and ERA5 present the lower correlation
scores of 0.67 and 0.87, respectively, mostly explained by
a shifted timing of the snow accumulation and melting phase
than the reference. Their normalized mean errors are neg-
ative (−76 % for CNRM-ALADIN and −31 % for ERA5)
due to a snow cover that is too thin (see Fig. 5c), a behav-
ior that is also found for the other datasets with the excep-
tion of ERA5-Land that overestimates the amount of snow
with a normalized mean error of+29 %. At intermediate and
high elevations, climate simulations (CNRM-ALADIN and
CNRM-AROME) and ERA5-Land systematically overesti-
mate peak winter monthly snow depth values (see Figs. 5a, b
and 6), leading to a normalized mean error between 49 % and
84 % at intermediate elevations (77 % to 184 % at high ele-
vations). Figure 5a shows that at high elevations, snow depth
values never drop below a given value for some products
(0.2 and 0.3 m for CNRM-ALADIN and CNRM-AROME
and 1.8 m for ERA5-Land). MESCAN-SURFEX, MTMSI,
CERRA, ERA5 and ERA5-Crocus display the lowest mean
errors, with normalized MAE values rarely exceeding 30 %,
as well as correlation values always close to 0.9 for every
elevation bands.

Figure 7a, b and c show, in the form of boxplots for three
elevation bands, the distribution of the mean snow depth val-
ues from November to April for each dataset. Figure 7d, e
and f show the corresponding annual cycle. It confirms the
previous analysis and allows a more in-depth analysis of the
behavior of some datasets.

At all elevations, ERA5-Land overestimates the amount
of snow. In winter, snow depth values are about twice larger

than the reference values at low and high elevations and
around 50 % higher at intermediate elevations. It also leads to
a snowpack lasting too long until melt, particularly at inter-
mediate and high elevations, reaching its peak winter value
and with a beginning of the melting period 1 month later than
the reference.

CNRM-AROME also overestimates the snow depth and
the duration of the snow cover at intermediate and high ele-
vations. In this case, it is combined with a delayed accumula-
tion phase depicted by an underestimation of the snow depth
until it reaches its peak winter value. CNRM-ALADIN also
exhibits an overestimation of the snow depth at intermediate
and high elevations but with a reversed behavior concerning
the accumulation timing. It overestimates snow accumulation
at the beginning of the season with an earlier snow onset date
but starts melting the snowpack 1 month earlier than the ref-
erence, similar to what was found by Monteiro et al. (2022)
in the French Alps.

The amplitude and timing of the beginning, peak and
end of the season are close to the reference for MESCAN-
SURFEX, CERRA and MTMSI, with discrepancies con-
cerning the snow depth within 20 % during the season. It
is not surprising that only subtle differences can be seen
between these three datasets, as MTMSI is a selection of
MESCAN-SURFEX grid points (although with a different
snow cover model), and MESCAN-SURFEX and CERRA
reanalyses roughly share the same modeling systems.

The same conclusions for MESCAN-SURFEX, CERRA
and MTMSI can generally be reached for ERA5 and ERA5-
Crocus. They both present a satisfying average monthly
evolution of the snowpack over the Alps, with differences
against the reference that do not exceed 25 % and no strong
deviations concerning the timing of the accumulation, peak
and melting phase of the snow season. Neither of the two
outperform the other in terms of mean values, ERA5 show-
ing alternatively fewer and more differences than the ref-
erence compared to ERA5-Crocus. Nonetheless, Fig. 7d, e
and f show that the use of Crocus offline driven by the atmo-
spherical analysis of ERA5 improves slightly the monthly
evolution of snow depth, leading to values closer to the refer-
ence during the accumulation and melting time periods (this
is also seen for individual subregions; see Fig. A1 in Ap-
pendix A).

3.1.2 Snow driving variables: temperature and
precipitation

The following subsections are dedicated to the evaluation of
temperature and precipitation, following similar analyses to
snow depth. Because temperature and precipitation can be
considered the first-order driving variables influencing the
state of the snow cover, we also aim at identifying features
that could be related to the specific behavior of snow depth
described before. Figure 8 shows similar results to Fig. 7 but
for temperature and precipitation.
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Figure 5. Time series of monthly snow depth values for each dataset for three elevation bands for the available common period, 1985–2015,
over the entire European Alps domain. The reference OBS (in situ observations of snow depth) is the black line with circle markers. (a) Time
series for the elevation band 2400 m± 150 m, (b) time series for the elevation band 1500 m± 150 m and (c) time series for the elevation band
600 m± 150 m.

Air temperature at 2 m

At low elevations (Fig. 8c, f), most of the datasets do
not exhibit significant differences with respect to the refer-
ence (i.e., outside the uncertainty range of E-OBS, ±1 ◦C),
except climate simulations (CNRM-AROME and CNRM-
ALADIN), presenting similar patterns of deviations to the
reference. CNRM-AROME temperature values are 1 ◦C
higher than the reference during the winter, and CNRM-

ALADIN temperature values are 3 ◦C lower at most during
the spring season. These features, displayed here at the scale
of the European Alps, have already been identified in the
French Alps (Arnould et al., 2021; Monteiro et al., 2022).

Intermediate- and high-elevation bands in Fig. 8a, b, d and
e show more contrasting results. At intermediate elevations
CNRM-ALADIN and CNRM-AROME show larger discrep-
ancies compared to E-OBS, with similar patterns overall.
CNRM-AROME differences reach −1.8 ◦C during spring
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Figure 6. Mean values and scores of mean errors (MEs), mean absolute errors (MAEs) and correlations calculated using mean monthly
values from November to April over the 1985–2015 period for the entire Alps and compared to the reference (in situ observations dataset
for the snow depth, E-OBS for the temperature and LAPrec for the precipitation) for each dataset for three elevation bands (600 m±150 m,
1500 m± 150 m, 2400 m± 150 m). Scores are presented for snow depth, temperature and precipitation, and scores of MAE and bias are
normalized by the mean values of the reference (given in %) for snow depth and precipitation.

Figure 7. (a, b, c) Boxplot representing the spatial distribution of mean winter season (November to April) snow depth values over the
1985–2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m) over the entire European
Alps domain. (d, e, f) Annual cycle of the mean monthly snow depth values for the 1985–2015 period for each dataset for three elevation
bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
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and −5 ◦C for CNRM-ALADIN in February. For ERA5-
based products (ERA5, ERA5-Crocus and ERA5-Land),
negative temperature differences are found and range from
−2 to −3.5 ◦C from November to February, peaking in De-
cember and January. The strongest discrepancies are found
between ERA5-Land and the reference dataset. At this ele-
vation, for MESCAN-SURFEX, MTMSI and CERRA, neg-
ative temperature differences of 1 ◦C at most are also found
for the winter months but remain within the E-OBS un-
certainty range. At high elevations, there are larger differ-
ences for all datasets. Similar to low and intermediate ele-
vations, climate simulations (CNRM-ALADIN and CNRM-
AROME) exhibit negative deviations with respect to E-OBS.
The strongest differences are in winter, peaking from De-
cember through February with CNRM-ALADIN temper-
ature values being 7 ◦C lower than E-OBS and CNRM-
AROME 2.5 ◦C lower. ERA5-based products show larger
discrepancies compared to the intermediate elevation band,
showing negative temperature differences around−5 ◦C with
respect to E-OBS. At this elevation, MESCAN-SURFEX,
MTMSI and CERRA also display negative temperature dif-
ferences for the winter months, with MESCAN-SURFEX
differences from E-OBS of around −2 ◦C and CERRA dif-
ferences reaching −4 ◦C.

For the intermediate- and high-elevation comparisons, we
need to remain cognizant of the questionable reliability of E-
OBS at these elevations (see Sect. 2.3.1). The negative tem-
perature difference between all datasets and E-OBS could
indeed be due to a bias of E-OBS itself. Indeed Cornes et
al. (2018) show that E-OBS can exhibit higher temperature
values, up to 5 ◦C at high-elevation locations, compared to
the MeteoSwiss reference temperature dataset (Frei, 2014).
Nonetheless, part of these differences could also reflect a
genuine negative temperature bias in the evaluated dataset
as has already been shown in previous studies. Dutra et al.
(2020) showed that ERA5 and ERA5-Land present a median
negative temperature bias of −1 ◦C in winter in the western
US compared to a large number of in situ observations, in-
cluding the Rocky Mountains. Monteiro et al. (2022) showed
that over the French Alps, CNRM-AROME and CNRM-
ALADIN also exhibit a negative temperature bias in winter
at high elevations compared to the S2M reanalysis.

Precipitation

Figure 8l shows that at low elevations, rather small dif-
ferences can be seen between the datasets and the refer-
ence, ranging between ±25 % of the reference precipitation
amount over the winter period (November to April). The
boxplot in Fig. 8i confirms that the winter distribution of
the mean values at low elevations for the different datasets
stays close to the reference, with slightly higher precipita-
tion values for ERA5-derived datasets and climate simula-
tions (CNRM-AROME and CNRM-ALADIN). MESCAN-

SURFEX, CERRA and MTMSI values are close to the
LAPrec distribution and mean values (Fig. 8i, l).

At intermediate and high elevations, Fig. 8g, h, j and k
show that all datasets indicate a higher amount of precip-
itation than LAPrec, particularly during the winter season.
Apart from the climate simulations CNRM-AROME and
CNRM-ALADIN, differences in monthly values range be-
tween 10 % and 30 % at the beginning of winter (Novem-
ber) and slightly increase throughout the winter to peak
in March, ranging from 25 % to 50 % at most, with the
strongest discrepancies always found for ERA5-Land and
CERRA. Climate simulations strongly exceed LAPrec val-
ues by 50 % and 100 % for CNRM-AROME to 80 % and
150 % for CNRM-ALADIN at intermediate and high eleva-
tions, respectively, with the largest differences at the end of
winter (February to April). Figure 8g, h and i confirm that the
spread in winter precipitation values and difference from the
reference dataset increase with elevation.

Although winter precipitation differences are consistent
among regions (not shown here; see Fig. A3 in Appendix A)
and datasets, summer precipitation values display more con-
trasting results. Indeed, except for CNRM-AROME, most of
the datasets show an overestimation of summer precipitation
in the western part of the Alps at mid and high elevations,
while low elevations and the eastern part of the Alps only
show low and inconclusive differences. Note that the over-
estimation of summer precipitation for the HIRLAM model
(used to produced MESCAN-SURFEX, CERRA-Land and
MTMSI), ERA5 and CNRM-ALADIN has already been re-
ported in the literature (Isotta et al., 2015; Bandhauer et al.,
2022; Monteiro et al., 2022) and is attributed to their resolu-
tions and the parameterization of deep convection.

Overall, most of the datasets simulate winter precipitation
rather close to the reference, except for the climate simula-
tions CNRM-AROME and CNRM-ALADIN that strongly
overestimate it at intermediate and high elevations. Our re-
sults are in line with Bandhauer et al. (2022), who com-
pared ERA5, E-OBS and APGD over the European Alps do-
main. They found an overestimation of 15 %–20 % of ERA5
winter precipitation compared to the LAPrec dataset. How-
ever, the origin of the overestimation also identified for the
other datasets during the winter period may be in part due to
LAPrec deficiencies. Indeed, Isotta et al. (2021) indicate that
the LAPrec framework does not account for snowfall gauge
undercatch. Bandhauer et al. (2022) estimated the underes-
timation to be close to 30 % above 1500 m in winter, and
Vionnet et al. (2019) showed that a regional reanalysis as-
similating unshielded rain gauges can underestimates up to
50 % of snow mass accumulation over glaciers in the French
Alps. We therefore expect that, except climate simulations
CNRM-AROME and CNRM-ALADIN that lead to overesti-
mated precipitation amounts above 1500 m, the overestima-
tion found for the other datasets could rather be due to a more
realistic estimate of the winter precipitation than LAPrec.
Such results are also suggested from studies in North Amer-
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Figure 8. Panels (a), (b), (c), (g), (h) and (i) are boxplots representing the spatial distribution of mean winter (November to April) values
of temperature and precipitation over the 1985–2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m,
2400 m± 150 m) for the entire European Alps domain. Panels (d), (e), (f), (j), (k) and (l) are annual cycles of the mean monthly differences
in temperature and precipitation compared to the corresponding reference (E-OBS for temperature, LAPrec for precipitation) for the 1985–
2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m). For the temperature, the shaded
areas represent the uncertainties associated with E-OBS dataset.

ica (Wrzesien et al., 2019). We however mention that if our
results give confidence to monthly and seasonal mean winter
values of precipitation for most of the datasets, they do not
provides information on the temporal distribution of precip-
itation. For that point, it has for example been documented
in Bandhauer et al. (2022) that ERA5 strongly overestimates
the wet day frequency (up to a factor 2) over the Alps.

3.2 Timing of the snow cover duration against MODIS
observations

In this section, we investigate further the timing of the snow
season by comparing the evaluated datasets against remote
sensing data from Terra/MODIS MOD10A1F (MODIS in
the following) over the 2000–2015 period. The comparison
is carried out using indicators that can be defined using ei-
ther the snow depth or the normalized difference snow index
(NDSI): the snow cover duration (SCD), the snow onset date
(SOD) and the snow melt-out date (SMOD) (see Sect. 2.2
and 2.4.3 for further details). Figure 9a and b show maps and
boxplots of the mean error between the evaluated datasets
and MODIS. To this end, MODIS-based indicators were in-
terpolated using a first-order conservative regridding over
each dataset grid. This section does not include the MTMSI
dataset because of its peculiar geometry (elevation bands

over NUTS3 areas). We also exclude CNRM-ALADIN sim-
ulations because daily snow depth values are not available.

Figure 9a and b reveal positive differences across elevation
bands, regions and datasets compared to MODIS, indicating
a general overestimation of the snow season duration (SCD)
in the evaluated datasets. Looking at the boxplot differences
for the entire Alps (Fig. 9b) brings more details about the
elevational distribution of differences as well as their mag-
nitude. All datasets display differences from MODIS values,
which differ with elevation, peaking at intermediate eleva-
tions with median mean error (ME) ranging from 20 to 70 d.

The amplitude of the overestimation compared to MODIS
is the strongest and the most spatially extended for ERA5-
Land, exceeding 100 d in some locations (Fig. 9a) with me-
dian mean error ranging from 40 to 75 d (Fig. 9b). This con-
firms the issues with ERA5-Land snow cover data, consistent
with the general overestimation of snow depth values and the
spurious snow accumulation occurring above 2000 m, shown
in Sect. 3.1 and Figs. 5, 6 and 7.

ERA5 and ERA5-Crocus data show lower mean error val-
ues than ERA5-Land, with the largest differences in the west-
ern part of the Alps for ERA5. The median of the mean er-
ror values ranges from 20 to 50 d for ERA5 and 10 to 40 d
for ERA5-Crocus. While ERA5-Crocus does not show sub-
stantial improvements over ERA5 in terms of snow depth
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(see Sect. 3.1.1), it provides results closer to the reference
in terms of snow cover duration. MESCAN-SURFEX and
CERRA snow cover duration data show similar patterns with
either over- or underestimations compared to MODIS. In-
deed, Fig. 9a shows an underestimation of the SCD of 10 to
30 d (beyond 50 d at specific locations) over the inner-Alpine
ridge near the northwestern and southwestern boundary and
an overestimation elsewhere, ranging from 10 to 50 d. Their
distribution of mean error values are overall more centered
around 0 than the other datasets. MESCAN-SURFEX shows
the lowest differences overall, and we note that CERRA par-
ticularly overestimates the SCD in the western Italian Alps.

For CNRM-AROME, the map in Fig. 9a shows an ele-
vational pattern with a slight underestimation of the snow
cover duration in valleys and an overestimation elsewhere.
The boxplot in Fig. 9b confirms it, revealing biases centered
around 0 at low elevations and a generalized overestimation
above. This is in line with its snow depth underestimation at
low elevations and overestimation at intermediate and high
elevations described in Sect. 3.1.

Figure 10 provides information about the timing of the
snow season by displaying the mean values of the snow on-
set date (SOD) and snow melt-out date (SMOD) as the edges
of the bar plot, while the bar plot length corresponds to the
snow cover duration (SCD). The error bar represents the spa-
tial variability (using the standard deviation) of the SOD and
SMOD for each dataset and MODIS at its native resolution.

Combining the information of Figs. 9a and b and 10a, b
and c shows that the snow cover duration is overestimated
by all datasets, compared to MODIS, for all elevation bands.
From Fig. 10a, b and c, the size of the error bars informs us
about the spatial variability in the SOD and the SMOD. From
it, we can conclude that it is underestimated in all datasets
except for CNRM-AROME, but it may be partly related to
the lack of horizontal resolution in most of the datasets.

At low elevations (Fig. 10c), MESCAN-SURFEX,
CERRA and ERA5-Land provide SOD values close to
MODIS, but SMOD values are too late by up to 15 d,
i.e., 30 % longer SCD altogether. At this elevation ERA5-
Crocus SOD and SMOD are rather close to the MODIS val-
ues, while ERA5 SOD occurs 15 d later and CNRM-AROME
SOD 7 d earlier, despite a close overall SCD. We note that
in situ observations also provide values towards a later begin-
ning and longer lasting snow season compared with MODIS
estimates.

At intermediate elevations (Fig. 10b), all datasets over-
estimate the duration of the snow season from 30 to 100 d
at most, with an earlier SOD and a later SMOD com-
pared to the MODIS dataset. ERA5-Land and ERA5 re-
sults provide the longest SCD (around 170–200 d), while
MESCAN-SURFEX, CERRA, ERA5-Crocus and CNRM-
AROME provide SCD values, ranging from 135 to 150 d
closer to MODIS values (about 100 d). At this elevation, the
range of values of in situ observations of SOD and SMOD
are close to the range of values of MODIS, with an earlier

mean of SOD and later mean of SMOD for the in situ obser-
vations that may be due to the oversampling of sites with a
longer snow cover duration.

At high elevations (Fig. 10a), whereas all datasets indi-
cate a SOD value earlier than MODIS (around 15 d ear-
lier), MESCAN-SURFEX, CERRA, ERA and ERA5-Crocus
SMOD values are in agreement with MODIS values. ERA5-
Land and CNRM-AROME SMOD values are 15 to 30 d later
than MODIS-based estimates.

This comparison with MODIS indicators adds another per-
spective to Sect. 3.1: despite different behaviors concern-
ing snow depth values at the monthly or seasonal scale, all
datasets overestimate the duration of the snow season at all
elevations compared to MODIS-based information. This is
rather due to a late snow melt-out date rather than an earlier
snow onset date, with the largest discrepancies occurring at
intermediate elevations. This relates to the fact that the snow
melt-out date results from cumulated processes throughout
the winter season, making it more difficult to estimate than
other snow cover indicators.

3.3 Interannual variability and trends

In this section we analyze and compare the time variability
and past trends for the winter season (November to April) ob-
tained using our reference and evaluated datasets over multi-
ple time periods for most of the indicators addressed in this
study: the snow depth, the snow cover duration, the air tem-
perature at 2 m and total precipitation. For both the anomaly
and the trend analyses, we use a subset of in situ snow ob-
servation stations with less than 10 % missing values dur-
ing the 1968–2017 snow period (taking the daily values from
November to April) (see Fig. 1d and Sect. 2.3.1 for more de-
tails). For the same reason, we use the homogenized version
of E-OBS (v19.0HOM) for air temperature at 2 m.

Anomalies are computed using the 1985–2015 climatol-
ogy as reference (absolute differences for snow cover du-
ration and temperature, relative differences for precipita-
tion and snow depth). Taylor diagrams are calculated using
anomalies for the common available time period: 1985–2015
(also used in Sect. 3.1). Linear trends are estimated using
the Theil–Sen nonparametric estimator along with a Mann–
Kendall test for significance assessment based on a p value
threshold of 0.05.

3.3.1 Representation of the interannual variability in
the evaluated dataset

This subsection compares the representation of the interan-
nual variability between the different products and the refer-
ence datasets.

Figure 11 shows the time series of winter (November to
April) anomalies for temperature, precipitation, snow depth
and snow cover duration. For each variable and dataset, Tay-
lor diagrams based on winter anomaly time series for the
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Figure 9. Snow cover duration differences between the evaluated datasets and MODIS observations in the European Alps. Note that MODIS
products initially at 500 m horizontal resolution have been regridded over each dataset grid using a first-order conservative method. (a)
Map of the average differences (mean error) in the snow cover duration (SCD) over 15 seasons (2000–2001 to 2014–2015) for each dataset
compared to MODIS SCD. (b) Boxplot representing the spatial distribution of the average differences (mean error) of the SCD over 15
seasons (2000–2001 to 2014–2015) compared to MODIS SCD for each dataset for multiple elevation bands.

1985–2015 period are also displayed. In addition, Figs. B1,
B2, B3 and B4 in Appendix B display the anomalies at a
subregional scale.

Temperature anomalies in Fig. 11a show high correla-
tion values (always above 0.8) with respect to the refer-
ence dataset, with a standard deviation of anomalies close to
the standard deviation of the reference (0.8 to 1.0± 0.2 ◦C,
i.e., less than 20 % difference from the reference) mean-
ing that anomalies are of comparable amplitudes between
datasets. Climate simulations (CNRM-AROME and CNRM-
ALADIN) and ERA5-Land show the highest scores of corre-
lations. CNRM-AROME and CNRM-ALADIN slightly un-
derestimate the amplitude of the anomalies, while ERA5-
Land is closer to the reference in this respect or with a
slight overestimation. ERA5, MESCAN-SURFEX, MTMSI
and CERRA datasets show the lowest correlation values and
overestimate the amplitude of anomalies. Figure B1 in Ap-
pendix B shows that the anomalies follow comparable fluc-
tuations among subregions, indicating that most of the in-
terannual variability occurs at a larger spatial scale, affect-
ing the whole Alpine region similarly. In a comparison of
temperature anomaly errors between multiple datasets in-
cluding MESCAN-SURFEX, ERA5, E-OBS (v19.0HOM)
and COSMO-REA6 (a regional reanalysis at 6 km horizon-
tal resolution that does not assimilate near-surface tempera-
ture) against a set of homogenized in situ observations over
the Swiss Alps, Scherrer (2020) came to similar conclu-

sions: the lowest scores (higher mean errors in this case)
are found in winter and at elevations above 1000 m for
MESCAN-SURFEX and ERA5, whereas COSMO-REA6
does not present significant error differences between sum-
mer and winter and low and high elevations. The explana-
tions put forward are twofold: (i) the insufficient resolution
of ERA5 that does not allow us to capture the altitudinal gra-
dient of temperature anomalies that can be strong in winter
when there are interplays between synoptic flow and local
topography and (ii) the assimilation of near-surface tempera-
ture for MESCAN-SURFEX that seems to be problematic in
high-elevation regions. We note that in the eastern part of the
Alps (regions NE and SE in Fig. B1 in Appendix B), CERRA
provides better scores than MESCAN-SURFEX, and it may
be the result of a more selective assimilation procedure in this
region (i.e., the assimilation of fewer and/or higher-quality
observations).

Precipitation anomalies (Fig. 11b) show a good agreement
between datasets with all correlation values above 0.85 and
a rather close, albeit slightly underestimated standard devia-
tions of anomalies for all datasets. A graphical comparison of
the time series of anomalies in Fig. B2 in Appendix B shows
rather strong differences between subregions. Indeed, win-
ter precipitation anomalies appear to be weakly correlated
between subregions compared to the temperature anomalies,
implying that interannual variability in winter precipitation
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Figure 10. Bar plot whose edges represent the spatial mean over the Alps of the snow onset date (SOD) and the snow melt-out date (SMOD)
for 15 seasons (2000–2001 to 2014–2015) for three elevation bands (a – 2400 m± 150 m; b – 1500 m± 150 m; c – 600 m± 150 m) for each
dataset at their native resolution. The error bars surrounding the edges of each bar represent the standard deviation of the spatial distribution
of mean values of the SOD and the SMOD.

has a strong subregional component within the European
Alps.

Snow depth anomalies (Fig. 11c) show lower agreements
between datasets than temperature and precipitation anoma-
lies, with correlation values varying from 0.75 to 0.95, with
an amplitude of anomalies underestimated by all the datasets
compared to the in situ observation dataset. At every scale
(i.e., regional to subregional), snow depth exhibits a higher
variability than temperature or precipitation. The amplitudes
of anomalies of mean winter snow depth span ±100 %, with
peaks over ±200 % for the eastern regions in Fig. B3 in Ap-
pendix B. Comparing the amplitude and the correlation of
the anomalies with the reference dataset does not allow us to
identify a dataset which outperforms all others. However, we
note that ERA5 between 1950 and 1980 shows significantly
higher anomaly values along with a large increase in their
standard deviations specifically for the western region (north-
western and southwestern), a behavior specific to ERA5. It is
due to some low-elevation grid points (below 1000 m) show-
ing a strong decrease in their mean winter snow depth values
from 1980 onwards that may be in part an artifact induced by

the strong increase in the number of assimilated snow depth
observations after the 1980s.

Snow cover duration anomalies (Fig. 11d) also present a
lower agreement among the datasets than winter tempera-
ture and precipitation with correlation values between 0.7
and 0.95. The amplitudes of anomalies are also slightly un-
derestimated by most of the datasets as shown by the ratio
of the standard deviation between the datasets and the ref-
erence within the Taylor diagram in Fig. 11d. Figure B4 in
Appendix B confirms that no dataset outperforms the others
in terms of correlation scores, RMSE and ratio of the stan-
dard deviation, just as for snow depth, but ERA5 systemat-
ically shows the lowest scores. Correlation scores of ERA5
barely exceed 0.7 and drop to 0.6 for the northwestern re-
gion, indicating a low agreement concerning the fluctuations
in the anomalies. Additionally, ERA5 snow cover duration
anomalies also show the strong shift in the mean values of
anomalies from before 1980 to after that we relate to the
same causes as for the snow depth.
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Figure 11. Anomalies of mean winter (November to April) values in the European Alps for the whole available time period for each dataset
compared to the mean winter values of the 1985–2015 period (shaded area). On the right, Taylor diagrams calculated using the anomalies
of winter values for the 1985–2015 period (shaded area). The reference used is described in Sect. 2.3.1. Four variables are displayed:
(a) temperature, (b) precipitation, (c) snow depth and (d) snow cover duration.

3.3.2 Running window trend analysis

This section compares the long-term trends in the snow vari-
ables (snow depth and snow cover duration), temperature and
precipitation. Trends are calculated using the mean seasonal
values for the winter period (November to April) using the
Theil–Sen linear regression, and significance levels are as-
sessed using a Mann–Kendall test based on a p value thresh-
old of 0.05. As for Sect. 3.2, CNRM-ALADIN is not in-

cluded for the SCD indicators because daily fields of snow
depth values are not available.

Figures 12 and 13 display the trend values for the winter
values of temperature, precipitation, snow depth and snow
cover duration for each dataset, calculated using different
window time durations (10, 20, 30, 40, 50 and 60 years), with
a moving central year of the window by steps of 5 years. The
longest time period, with a duration of 60 years, is obtained
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for ERA5, ERA5-Land and ERA5-Crocus, spanning 1961–
2020, centered on 1990.

For all variables, trends computed with a 10-year window
length show large values, with strong fluctuations from one
time period to the next (shifted by 5 years). The increase in
the window length leads to an increasing number of trends
detected as being significant, a decrease in the trend values
and a progressive loss of these fluctuations. This is related to
the progressive smoothing of the effect of the shorter-scale
interannual variability, increasing the ratio signal over noise
and thus letting longer-scale variability and forced response
of the climate system become dominant in the value of the
trends.

Winter temperature trends (Fig. 12) calculated on win-
dow lengths of at least 30 years show a temperature in-
crease over the Alps, varying in their amplitudes from 0.1
to 0.8 ◦C per decade depending on the years and datasets
considered, with a generalized increasing warming over the
recent decades. The trend values are highest for the ERA5
and ERA5-Crocus datasets regardless of the window length
or the central year of the window used for calculation, with
30-year-long trends varying between 0.1–0.2 ◦C per decade
centered on 1975 (±15 years) to 0.8 ◦C per decade centered
on 2000 (±15 years), as well as 60-year-long trends between
0.2 and 0.5 ◦C per decade. Trends obtained from MESCAN-
SURFEX, CERRA and MTMSI are close to ERA5 and
ERA5-Crocus, and rather similar trend values are found for
climate simulations CNRM-AROME and CNRM-ALADIN,
as well as ERA5-Land for window lengths between 10
to 30 years. In a study comparing interannual variability
and trends in temperature over Switzerland from multiple
datasets against a set of homogenized in situ observations,
Scherrer (2020) shows that the homogenized version of E-
OBS provides the closest estimates of anomalies and trends
for the Swiss Alps, with winter trend values around 0.3 ◦C
per decade. Pepin et al. (2022) reviewed mountain tempera-
ture and precipitation trends worldwide and found values for
the temperature trends varying from 0.2 to 0.5 ◦C per decade
over the last decades for the European Alps. Winter tempera-
ture trends calculated here with E-OBS are in line with these
findings, with values close to 0.2–0.3 ◦C per decade on a 50-
to 60-year-long window length. This implies that the other
datasets (MESCAN-SURFEX, ERA5, ERA5-Land, ERA5-
Crocus) tend to slightly overestimate this trend.

Winter precipitation trends (Fig. 12) display small val-
ues with only a few trend values, compared to temperature
trends, computed as being significant, considering a window
length of 20 to 60 years. Calculated on 10-year-long time pe-
riods, trends can exhibit reversed signs from two consecutive
time periods with values varying from −25 % per decade to
+25 % per decade. Even trends calculated on a 30-year-long
window length show periods of slight increases and slight
decreases thereafter, with trend values lower than ±10 %
per decade. We note that MESCAN-SURFEX, CERRA and
MTMSI provide opposite trend values compared to the other

datasets regarding the sign of the trend for a 10-, 20- and 30-
year time period centered on the year 2005 (2000 to 2010
for the 20-year time period). This behavior may be due to
the impact of the assimilation through the heterogeneity in
the number and quality of the assimilated observation. Nev-
ertheless, it makes little sense to compute trend values over
such short time periods. Concerning the other datasets, they
are in broad agreement concerning the signs and amplitudes
of trends, in line with LAPrec taken as reference regardless
of the window length considered. Overall, long-term (i.e., on
a 40- to 60-year window length) winter precipitation trends
are small with changes between +5 % per decade and −5 %
per decade at most. Very few of these trend values are de-
tected as being significant to conclude a change in the winter
precipitation over the whole European Alps. Long-term sub-
regional trends (see Fig. C2 in Appendix C) show more con-
trasting results. Whereas the northern part only shows weak
and alternating-sign trend values always lower than 3 % per
decade, the southern part exhibits a winter drying trend over
the last decades, with trend values ranging from −4 % per
decade to −12 % per decade, consistent among the different
datasets. This decrease in winter precipitation in the south-
ern part of the European Alps is in line with previous stud-
ies, such as Masson and Frei (2016), who calculated trends
with EURO4M-APGD, a gridded precipitation dataset used
to construct the LAPrec dataset, and Ménégoz et al. (2020),
who used regional climate simulations driven by ERA-20C
(Poli et al., 2016).

Figure 13 displays a generalized decrease in the mean win-
ter (November to April) snow depth over the recent decades
ranging from −2 % per decade to −18 % per decade for
window lengths of 40 years and above, showing higher dis-
crepancies between datasets than temperature and precipi-
tation trends. Similarly to the time series of anomalies (see
Fig. 13), fluctuations for trends in consecutive shorter time
periods (10, 20 and 30 years) exhibit larger values, with fre-
quent reversed signs of the trend values. In such cases, trend
values for different datasets strongly diverge, with large dif-
ferences concerning the trend values and even cases of op-
posed signs. On window lengths longer than 30 years and
for the common available years, MESCAN-SURFEX and
ERA5 snow depth datasets show stronger trend values than
the reference in situ observation dataset, ranging from −5 %
per decade to −22 % per decade compared to +7 % per
decade to −16 % per decade. For longer window lengths,
ERA5-Land and ERA5-Crocus show trend values closer to
the trend values calculated using the observational dataset,
from −3 % per decade to −10 % per decade. It is interesting
that despite similar atmospherical forcings and a broad agree-
ment in trend values for temperature and precipitation, there
are such large differences between the three ERA5-based
datasets. Overall, the snow depth negative trend is already
widespread over window lengths of 30 years and generalized
for all datasets on window lengths from 40 to 60 years. For
40- to 60-year window lengths, trend values range from 0 %
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per decade to −18 % per decade but mostly around −5 %
per decade to −10 % per decade. These values are consis-
tent with the recent literature on this topic using “purely” ob-
servational datasets. Indeed, Fontrodona Bach et al. (2018)
found mean winter snow depth to have decreased from−5 %
per decade to −25 % per decade over the northern part of
the European Alps between 1951–2017 using the ECA&D
observational dataset. Matiu et al. (2021a), who gathered the
observational dataset used as the snow depth reference in this
study, have also computed trends and found them to vary on
average between −6 % per decade and −10 % per decade
over the 1971–2019 period for the European Alps stations
below 2000 m elevation.

Snow cover duration trends are in line with the mean win-
ter snow depth trends for long-term window length (40 years
and above), with a generalized decline over the last decades
ranging from −3 to −18 d per decade depending on the year
and dataset considered. Nevertheless, if short-term trends
calculated on a 10-year window length exhibit a similar be-
havior to snow depth, with large values and divergence be-
tween consecutive periods and between datasets for a given
period, the decreasing duration of the snow season has al-
ready been widespread since the 1980s on window lengths of
20 and 30 years. For longer window lengths (40 to 60 years),
all datasets except ERA5 are in broad agreement with the ref-
erence, showing a decline mostly comprised between−3 and
−8 d per decade, whereas ERA5 strongly overestimates it,
with a range of values more than twice the values of the other
datasets for the same period. This strong overestimation has
to be linked to the one also shown concerning the mean win-
ter snow depth and may be in part induced by heterogeneities
concerning the assimilation, strongly reducing the amount
and duration of snow (closer to the observation) for the
most recent decades. The long-term (last 50 years) decline
of around −6 d per decade provided by ERA5-Land, ERA5-
Crocus, MESCAN-SURFEX and the reference dataset is
largely in line with the literature on that topic. Indeed, this
rate lies within the likely range of decline reviewed in Hock
et al. (2019) of 0 to−10 d per decade, also close to the−8.9 d
per decade over the 1970–2015 period found by Klein et al.
(2016) over 11 stations in the Swiss Alps, the average −7 d
per decade simulated over Austria for the 1960–2019 period
by Olefs et al. (2020), and the range of −4.5 to −7.0 d per
decade found by Matiu et al. (2021a) in the 1971–2019 pe-
riod using a large set of in situ observations over the entire
Alps.

3.3.3 Elevation-dependent climate change (EDCC) and
spatial variability in the trends over the
1968–2017 period

The following analyses are dedicated to the spatial variabil-
ity in the trends: their elevational gradients and their spatial
distribution. Trends are calculated over the 1968–2017 pe-
riod using the available datasets for this time period: OBS

(i.e., in situ observations of snow depth for the mean win-
ter snow depth and snow cover duration: E-OBS v19.0HOM
for the winter temperature and LAPrec for the winter precip-
itation), ERA5, ERA5-Land, ERA5-Crocus and MESCAN-
SURFEX. The choice of a window length of 50 years relies
on the analyses presented in Sect. 3.3.2, showing that at least
40 years is the minimum time duration required to get a con-
sistent signal at the scale of the entire Alps.

Winter temperature trends in Figs. 14 and 15 show dif-
ferent spatial patterns depending on the dataset. E-OBS
v19.0HOM, here taken as the reference, displays a rather
smooth winter temperature trend field in Fig. 15 with most
of the trends detected as being significant (i.e., non-hatched
areas). Not surprisingly, the three ERA5 products show simi-
lar patterns with higher warming rates ranging from 0.5 to
1.0 ◦C per decade in the eastern half of the Alps, and all
were detected as being significant compared to the lower
trends (i.e., below 0.4 ◦C per decade) elsewhere. MESCAN-
SURFEX exhibits the highest warming rates, with stronger
values over the Alpine ridge, corresponding to higher-
elevation areas, which can also be noticed in the boxplot in
Fig. 14 through the strong elevational gradient. Given the am-
plitude of the elevational gradient simulated by MESCAN-
SURFEX above 1500 m (i.e., median shifted by 0.5 ◦C per
decade per 1000 m), as well as the fact that the other datasets
agree more on a slightly decreasing elevational gradient at
these elevations similar to what Rottler et al. (2019) found
over the Swiss Alps for the 1981–2017 period, MESCAN-
SURFEX behaviors may be considered spurious artifacts.

Winter precipitation trends are weak for all datasets ex-
cept for MESCAN-SURFEX. For the reference and the three
ERA5 products, spatial patterns are similar in Fig. 15, with
a widespread light decrease in precipitation, higher in the
western part of the Alps but still lower than 7 % (not de-
tected significant), and no elevational gradient in Fig. 14. The
MESCAN-SURFEX trend field in Fig. 15 shows larger val-
ues, exceeding ±15 % per decade with a patchy appearance
(i.e., alternating strong positive/negative values) and a strong
elevational gradient, both more reminiscent of artifacts than
a realistic pattern.

Snow variables (i.e., snow cover duration and mean win-
ter snow depth) present similar geographical patterns (see
Fig. 15). ERA5-Land and ERA5-Crocus expose a rather sim-
ilar decline in both variables: a bit stronger in the southern
and in the eastern parts of the Alps. The decrease is around
−10 % per decade and −7 d per decade, respectively, for the
mean winter snow depth and the snow cover duration, val-
ues that are close to the ones given as reference using the
set of in situ observations. As shown above in Sect. 3.3.2,
ERA5 displays spurious values, almost twice the reference
values, that we link to a heterogenous assimilation proce-
dures that have corrected an overly thick modeled snowpack
over the last decades, artificially reinforcing the decreasing
trend. MESCAN-SURFEX snow variable trend fields show
similar patterns to its precipitation trend field, with a patchy
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Figure 12. Winter (November–April) trend values for the whole European Alps calculated using Theil–Sen linear regression for two variables
(temperature and precipitation). The horizontal axis shows the central year used for the computation of the trend values. The vertical axis
provides the series of datasets used for various lengths of the window time periods (10, 20, 30, 40, 50 and 60 years) used for the computation
of the trend values. A black-framed square indicates a trend detected as being statistically significant (confidence interval at 95 % excludes
zero). Precipitation trends are expressed as relative (% per decade) decrease or increase compared to the mean of the period, while temperature
trends are provided as warming rate (◦C per decade).

field displaying a strong horizontal gradient, probably inher-
ited from the precipitation field. Concerning the elevational
gradient in Fig. 14, all datasets are in broad agreement for
both variables. They simulate a stronger relative decline of
the mean winter snow depth at low elevations, decreasing
with the altitude. Snow cover duration trends also present a
weak elevational gradient for all the datasets, with a stronger
decline at low and intermediate elevations and with a median
near −7 d per decade compared to the −5 d per decade at
high elevations for ERA5-Land, ERA5-Crocus, MESCAN-
SURFEX and the reference. The highest changes in snow
conditions at low and intermediate elevations (near the snow-
line) have already been documented in multiple studies. In-
deed, the Kuhn and Olefs (2020) review of EDCC over the
European Alps shows that the decline of both snow cover du-
ration and snow depth over the 1961–2018 period is linearly

related to elevations (i.e., with a stronger decline at low and
intermediate elevations).

4 Discussion

In this study, we have compared the results of various mod-
eling systems (global and regional reanalyses and regional
climate model simulations driven by a global reanalysis)
against observation references (in situ, kriged datasets and
satellite observation). The comparisons are performed in
terms of monthly and seasonal snow depth values, snow
cover duration, snow onset date, and snow melt-out date, ad-
dressing multi-annual averages of regional and subregional
mean values, their interannual variations, and trends over
various timescales. Here we discuss the main findings of
the study and draw implications for further use of these
datasets in various contexts. Remember that this study inves-
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Figure 13. Winter (November–April) trend values for the whole European Alps calculated using Theil–Sen linear regression for two variables
(snow depth and snow cover duration). The horizontal axis shows the central year used for the computation of the trend values. The vertical
axis provides the series of datasets used for various lengths of the window time period (10, 20, 30, 40, 50 and 60 years) used for the
computation of the trend values. A black-framed square indicates a trend detected as being statistically significant. Snow depth trends are
expressed as relative (% per decade) decrease or increase compared to the mean of the period, while snow cover duration trends are provided
in days per decade (d per decade).

tigates mean seasonal to monthly snow characteristics and
their main driving variables (temperature and precipitation)
at the scale of the European Alps and for four subregions.
The diversity of the datasets involved in this study and the
difficulties of carrying an unbiased point-scale (station vs.
grid points) comparison over mountainous terrain (i.e., due
to the scarcity of the observations and to the strong horizon-
tal gradients) led us to constrain the investigation to statistics
over large areas. Consequently, the study does not address the
characteristics of the datasets at local scale, and these may
differ from their large-scale characteristics.

4.1 Snow cover characteristics as seen by different
modeling systems

This subsection is dedicated to the discussion of the differ-
ent behaviors of the datasets concerning the snow conditions,

characterized by snow depth, snow cover duration, snow on-
set date and snow melt-out date.

Compared to the observational references, the worst per-
formances (lowest scores and strongest deviations from the
reference) concerning the representation of the snow charac-
teristics are obtained with ERA5-Land, CNRM-AROME and
CNRM-ALADIN. CNRM-AROME and ERA5-Land both
overestimate the snow depth, the snow season lasts too long
(about 1 month later than the other datasets), and there
are areas with spurious snow accumulation above 2000 m.
For CNRM-AROME, these issues have already been docu-
mented by Monteiro et al. (2022) over the French Alps; the
finding also applies at the scale of the European Alps. Mon-
teiro et al. (2022) attributed these issues to the deficiencies
of the snow scheme physics (i.e., missing processes that lead
to an underestimated melt), along with a biased surface en-
ergy balance related to both a misrepresentation of surface–
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Figure 14. Boxplot of the winter (November–April) trend values calculated over the 1968–2017 period (50 years) for each grid point of the
entire Alps (grid points included within the 450–2550 m elevation range) using Theil–Sen linear regression for four variables (temperature,
precipitation, snow depth and snow cover duration). For this length of the period, five datasets are available: observations (E-OBS v19.0HOM
for temperature, LAPrec for precipitation, and the set of in situ observations for snow depth and snow cover duration), MESCAN-SURFEX,
ERA5, ERA5-Land and ERA5-Crocus. Precipitation and snow depth trends are expressed as relative (% per decade) decrease or increase
compared to the mean of the period, while temperature and snow cover duration trends are provided as absolute rate. TheN number represents
the number of trends detected as being significant out of the total number of trends calculated.

atmosphere exchanges and the underestimation of upwelling
infrared radiation (due to the underestimation of nighttime
cloud cover). Muñoz-Sabater et al. (2021) evaluated snow
depth results of ERA5-Land and ERA5 against in situ snow
depth observations, mainly in the Rocky Mountains (west-
ern US). They do not report any snow accumulation issues
at high elevations, and for low and intermediate elevations,
ERA5-Land shows a lower mean absolute error compared to
ERA5. In their study, only 30 observation points were used
in the European Alps, and they show a higher mean abso-
lute error in ERA5-Land results compared to ERA5, in line
with our analyses. This was interpreted as an effect of the
dense SYNOP (surface synoptic) observation network incor-
porated in the snow assimilation system of ERA5, allow-
ing it to perform better than ERA5-Land over this region.
Compared to CNRM-AROME, at a regional to subregional
scale, no strong overestimation of precipitation was shown in
ERA5-Land, which could explain the spurious accumulation
of snow, but they have in common the use of a single-layer
snow scheme and a strong negative temperature difference in
winter.

The simplicity of these snow schemes, through the under-
estimation of melting processes, along with atmospherical
forcing leading to too much snow accumulation (likely over-
estimation of winter/spring precipitation) and weaker melt-
ing conditions (underestimation of winter/spring tempera-
tures and erroneous surface mass balance), could explain part
of the observed differences in snow depth values compared to
the reference observations. Despite the use of the same snow

scheme, it is likely that these errors are strongly reduced in
ERA5 thanks to the data assimilation of snow depth obser-
vations. Orsolini et al. (2019) showed that over the Tibetan
Plateau where no observations of snow depth are assimilated,
ERA5 strongly overestimates the snow cover and the snow
depth and attributes part of it to the overestimation of snow-
fall. These give us evidence that assimilation (snow depth but
also precipitation and near-surface temperature) potentially
strongly benefits the ERA5 results in the European Alps.
In ERA5-Crocus, the use of a detailed representation of the
snowpack within the Crocus snow model is intended to pro-
vide a better representation of the accumulation and melting
processes. ERA5 and ERA5-Crocus, potentially for different
reasons, provide snow depth values and simulate a seasonal-
ity of the snowpack closer to the reference snow cover than
ERA5-Land, although with a coarser horizontal resolution.

The combination of a strong negative temperature bias
in CNRM-ALADIN and its strong overestimation of win-
ter precipitation (already identified by Terzago et al., 2017,
and common to numerous regional climate models of EURO-
CORDEX) is a possible explanation for the overestimation
of snow accumulation at the beginning of the season for
intermediate- and high-elevation bands. While the negative
temperature bias should favor late melting, the opposite phe-
nomenon is observed, which points towards other problems
with the snow schemes and would require additional sensi-
tivity studies to precisely identify the causes.

The regional reanalyses MESCAN-SURFEX, CERRA
and MTMSI provide snow depth values and snow season-
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Figure 15. Maps of the winter (November–April) trend values calculated over the 1968–2017 period (50 years) for each grid point of the
entire Alps (grid points included for three elevation bands (±150 m) given on the y axis) using Theil–Sen linear regression for four variables
(temperature, precipitation, snow depth and snow cover duration). Non-hatched areas indicate trends detected as being statistically significant
(i.e., p value of the Mann–Kendall test below 0.05). Precipitation and snow depth trends are expressed as relative (% per decade) decrease or
increase compared to the mean of the period, while temperature and snow cover duration trends are provided as warming rate (d per decade).

ality closest to the reference. Although they do not assimi-
late snow depth values, it appears that their surface analysis
through the MESCAN system provides reliable snow cover
first-order atmospherical drivers (precipitation and temper-
ature) along with a fair representation of the snow physics
within ISBA-ES or Crocus.

Overall, our analysis finds that there are multiple combina-
tions of atmospheric and land surface modeling systems (Es-
sery et al., 2020; Menard et al., 2020) and their correspond-
ing data assimilation frameworks (or not), leading to various
snow cover datasets generated through numerical modeling.
The performance of these datasets vary, and none are found
to be totally irrelevant for the variables analyzed in this study.
However, no system is found to outperform all of the other

ones in all of the dimensions of the evaluation, which can
also be traced to the fact that none of the currently available
systems combine the “best” of all worlds (high resolution,
sufficiently sophisticated snow cover model well adapted to
the land surface model, surface data assimilation including
precipitation, snow cover data assimilation, etc.).

4.2 On the complexity of assessing differences between
modeling systems

In addition to the general discussion provided above, here
we insist that the comparison between all of the evalu-
ated datasets, and in particular the three ERA5 datasets and
CNRM-AROME, is not straightforward. Even if ERA5 and
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ERA5-Land have in common their land surface model and
snow scheme configuration, ERA5-Land does not simulate
the feedback from the surface to the atmosphere at its reso-
lution, while ERA5 is constrained by a large number of ob-
servations through its land data assimilation system. ERA-
Crocus is run in standalone mode too, but the configura-
tion of the land surface snow scheme is somewhat specific
(e.g., it considers a fully snow-covered surface even if only a
thin layer (i.e., 10 cm) of snow is presents). CNRM-AROME
shares a rather similar single-layer snow scheme to ERA5-
Land and ERA5 but simulates a coupling with near-surface
atmosphere without assimilating any observations. Finally,
CHTESSEL (for ERA5 and ERA5-Land) and SURFEX (for
CNRM-AROME, ERA5-Crocus) are two different land sur-
face models, based upon different ways of taking into ac-
count the presence of snow over the surface, particularly its
impact on energy balance calculations. This implies a wide
range of responses of the different snow schemes (notably ac-
cording to their complexities) for atmospheric forcings that
can be of very variable quality as underlined by Terzago et al.
(2020). Furthermore, even in the case of a similar configura-
tion of the model’s atmospheric components, different con-
figurations of the same snow scheme are generally possible
and can lead to large differences in the simulated snowpack
(Lafaysse et al., 2017; Napoly et al., 2020). Thus, a clear at-
tribution of the different factors conducive to the different
behaviors of the modeling systems turns out to be virtually
impossible in the absence of an extensive sensitivity study to
apportion the contribution of each possible factor, which is
beyond the scope of this study (and may remain an elusive
goal due to the complexity involved in disentangling such
complex modeling frameworks).

4.3 Representation of the interannual variability

The study of the interannual variability in the snow condi-
tions through two variables, the mean winter snow depth and
the annual snow cover duration, as well as their main driving
variables (near-surface temperature and precipitation), sheds
light on multiple aspects of the variability in the snow condi-
tions in the European Alps.

Near-surface winter temperature anomalies are rather ho-
mogenous among the different subregions with a small sub-
regional variability, meaning that most of the interannual
variability affects the whole Alpine region similarly. All
datasets reproduce correctly the anomalies compared to the
reference, and even if no strong discrepancies are found
between them, climate simulations (CNRM-AROME and
CNRM-ALADIN), CERRA-Land and ERA5-Land perform
better than ERA5, MTMSI and MESCAN-SURFEX.

Winter precipitation shows a strong subregional variabil-
ity, varying from ±50 % from one year to the next but rather
similarly inside a given subregion. This is coherent with past
classifications such as HISTALP (Auer et al., 2007), mak-
ing winter precipitation vary for a significant part indepen-

dently from one subregion to the others. On these anomalies,
datasets only show little discrepancies with LAPrec taken as
reference, and no dataset outperforms the others in every sub-
region.

Mean winter snow depth and snow cover duration show
the largest interannual variabilities across and within subre-
gions of the European Alps. Datasets show the lowest corre-
lation scores with the reference value, with a generalized un-
derestimation of the amplitude of the interannual variability.
In fact, both indicators are influenced by a large set of com-
ponents (temperature, precipitation, wind, radiation, etc.) and
result from the integration, over the course of the winter sea-
son, of many processes operating at multiple space scales and
timescales. These contribute to widening the discrepancies
concerning the snowpack characteristics between locations
nearby all throughout the winter periods and increase the in-
terannual variability at a very local scale. Additionally, the
accuracy of precipitation and temperature fields throughout
the snow season, as well as the snowpack modeling system,
is widely different across the datasets, and this ultimately
determines a large fraction of the quality of the simulated
snow depth time series. Overall, these analyses demonstrate
that the snowpack interannual variability is still challenging
to simulate, and as the interannual variability in precipita-
tion and air temperature is already rather well represented
according to our analysis, efforts might be directed towards
the improvement of the snow modeling framework.

4.4 Reliability of the trend values

The analysis of mean winter values at the scale of the en-
tire Alps assessed in Sect. 3.3.2 confirmed that detecting a
trend needs to be done cautiously. First of all, our analysis
confirms that trends analyzed over time periods that are too
short (typically, less than 30 years) are prone to large errors
and the influence of decadal climate variability. This is il-
lustrated in Fig. 13, which confirms that, in particular, snow
cover trends analyzed over the past 20 years only cannot be
considered representative of longer-term climate trends. As
a consequence, key data records, such as satellite observa-
tions, which only cover such a limited time span, should be
used with special care when they are used for trend analy-
sis because this could lead to erroneous results. Instead, our
study shows that there is potential to use satellite information
together with other sources of information (in situ, numerical
simulation and their combination) to overcome the time reso-
lution and target variables conundrum (Gascoin et al., 2022).

In addition to this reminder on some key safeguarding
principles related to the calculations of snow cover trends,
this analysis bears some relevance with respect to the sources
of variability and trends for snow cover variables in moun-
tain regions. Indeed, the different variables investigated are
affected at different timescales (i.e., from annual to multi-
decadal) by fluctuations that can alternatively favor particu-
lar climate conditions (e.g., warm and dry or cold and wet

The Cryosphere, 17, 3617–3660, 2023 https://doi.org/10.5194/tc-17-3617-2023



D. Monteiro and S. Morin: Snow cover, temperature and precipitation in the European Alps 3643

conditions). These oscillations of the climate system gener-
ally occur at a larger scale than the European Alps and can be
described through modes of variability. The two main modes
that affect the variables investigated here on the European
Alps are the North Atlantic Oscillation (NAO) and the At-
lantic Multi-decadal Oscillation (AMO or AMV) (Cassou
et al., 2021). They typically favor winter and in their pos-
itive phase warmer and wetter conditions for the NAO and
colder and wetter conditions for the AMO, implying a po-
tentially strong influence on the snowpack evolution (Scher-
rer and Appenzeller, 2006; Durand et al., 2009). However,
while a relationship between past decreases in spring pre-
cipitation in the southern Alps and the positive phase of the
AMO has been reported (Brugnara and Maugeri, 2019), as
well as winter precipitation in the western Italian Alps with
the NAO (Terzago et al., 2013), to our knowledge, only a few
studies have attempted to link snow conditions in the Euro-
pean Alps to large-scale modes of variability (NAO, AMO,
El Niño–Southern Oscillation – ENSO, etc.). Due to the low
amplitudes of these oscillations and the large number of su-
perimposed factors affecting the snowpack at different spa-
tiotemporal scales, no clear consensus has been found so far.
Overall, our analyses show that below 30- to 40-year time
lengths, many of the trends are not detected as being sig-
nificant and can fluctuate between strong negative or positive
values for consecutive time periods. Beyond 40-year window
lengths, the signal-to-noise ratio becomes larger and can lead
to the detection of meaningful and significant changes in the
mean values.

This study also brought to light artifacts affecting the
trends held by datasets incorporating information from ob-
servations. ERA5 (and to a lesser extent ERA5-Land) and
MESCAN-SURFEX winter temperature trends are system-
atically overestimated compared to the reference E-OBS and
past studies. Figures 14 and 15 show that in the case of
ERA5 products, warming is particularly overestimated in the
eastern part of the Alps, whereas MESCAN-SURFEX sim-
ulated a much stronger warming at high elevations, lead-
ing to a spurious elevation-dependent warming. Similarly,
MESCAN-SURFEX winter precipitation trend fields display
an unrealistic geographical distribution of values associated
with strongly overestimated amplitudes. These spurious pre-
cipitation trends are reflected in comparable snow depth and
snow cover duration trend fields and are also overestimated.
Finally, ERA5 snow depth and particularly snow cover dura-
tion trends are strongly overestimated (twice the amplitudes
of the reference).

These behaviors point at least in part to a common cause:
the assimilation of a varying (in quantity and in quality) num-
ber of observations over time that better correct model biases
in spaces and times where observations are dense. This leads
to a shift in the distribution of a variable, therefore inducing
artificial trends.

ERA5 and MESCAN-SURFEX are based on modeling
strategies that favor the maximization of the agreement be-

tween model and observations at the expense of temporal
consistency, which would better enable the product to be
used for trend assessment.

Users of these products should therefore be aware of the
limits of the quality of a dataset incorporating information
from observations. As reminded by Cornes et al. (2018),
Kaiser-Weiss et al. (2019), and Bandhauer et al. (2022), their
quality highly varies depending on the spatiotemporal scale
considered (i.e., their effective resolutions) and the areas con-
sidered, both of which are strongly affected by the density of
the observations used in the product. In addition, the use of
a heterogenous number of observations can lead to a differ-
ential correction of the products over time, inducing artificial
trends within it, as we see here for the Alps with MESCAN-
SURFEX winter precipitation trends or ERA5 snow vari-
ables.

5 Conclusions

In this study, we investigate the ability of various modeling
systems (global and regional reanalyses and regional climate
model simulations driven by a global reanalysis) to represent
past snow conditions and the main atmospherical drivers over
the European Alps, using observational references (in situ,
kriged datasets and satellite observation). The comparisons
are performed in terms of monthly and seasonal values, ad-
dressing multi-annual averages of regional and subregional
mean values, their interannual variations, and trends over var-
ious timescales.

The comparisons of the datasets over a common period of
30 years (1985–2015), in terms of the average of monthly
and seasonal values of the snow depth and snow cover du-
ration at a regional scale, shed light on a variety of behav-
iors that can lead to strong differences between the evaluated
and the reference datasets. ERA5, ERA5-Crocus, CERRA-
Land, UERRA MESCAN-SURFEX and MTMSI simulate a
monthly evolution of the snow rather close to the reference,
at a regional and subregional scale, with no dataset systemati-
cally outperforming the others. CNRM-AROME and ERA5-
Land are both found to overestimate the amount of snow and
its persistence throughout the snow season, a phenomenon
that increases with elevation, leading to spurious snow accu-
mulation above 2000 m. CNRM-ALADIN shows an overes-
timated accumulation of snow at the beginning of the season
and a total melt that occurs about 1 month earlier than the
reference dataset for elevations above 1500 m.

The spatial comparison against MODIS remote sensing
data supports what appears to be a common issue of all
datasets, namely the overestimation of the snow cover du-
ration above 1000 m, with stronger errors near the snow line
(around 1500 m) and concentrated on the melt-out date.
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The discrepancies concerning the past climatology of
snow conditions found between the reference and evalu-
ated datasets may have multiple sources, affecting each of
the datasets differently, and we can only hypothesize them
here. Indeed, setting a clear attribution of the different fac-
tors leading to the different behaviors of the modeling sys-
tems would required multiple extensive sensitivity stud-
ies addressing independently the impact of multiple error
sources. Among the various plausible factors, we suspect bi-
ases from the atmospherical forcings, limitations of land sur-
face data assimilation procedures for mountainous areas, and
the misrepresentation of surface–atmosphere exchange and
key snow processes (i.e., wind-transport, glacier accumula-
tion), along with potentially inadequate configurations of the
snow schemes leading to erroneous melt rate.

The study also addresses the representation of the interan-
nual variability by the different evaluated datasets and their
simulated trends over various timescales. Temperature and
precipitation interannual variabilities are found to be rather
well represented by most of the datasets. However, the sim-
ulation of the interannual variability in snow cover variables
appears to remain difficult for all datasets. Their lowest per-
formance may come from several causes related to the dif-
ficulty of representing the strong variance of the interannual
fluctuations and the local variability in the snow conditions.
This may be due partly to misrepresented processes related
to the problems mentioned above and to the specificity and
the complexity of the modeling of the snowpack. We mention
that snow variables are somehow specific, as they result from
a cumulative history all throughout the snow season. There-
fore, errors from atmospherical forcings, snow modeling, and
coupling between surface–atmosphere and assimilation also
cumulate over time.

The computation of trends over various timescales leads
us to reiterate some safeguarding principles on the matter. In-
deed, computing trends over timescales shorter than 30 years
results in the detection of noisy signals, strongly affected
by interannual to multi-decadal variability and often not
statistically robust. In addition, some datasets (MESCAN-
SURFEX and CERRA-Land for precipitation and snow vari-
ables and ERA5 for snow variables only) lead to spurious
trends (i.e., strongly overestimated amplitudes and incoher-
ent geographical patterns even for long-term trends), prob-
ably induced by spatiotemporal heterogeneities in their as-
similation procedures. These datasets should be used care-
fully for climate change applications as some of the simu-
lated variables may be affected by artifacts, impacting the
reliability of the resulting trends.

Overall, no dataset outperforms the other in terms of
the multiple aspects investigated here. Upstream modeling
choices have indeed great consequences on the downstream
uses of these datasets. Reanalyses (and datasets based upon
observation sources) hold the potential to partially fulfill the
gap of in situ observations in mountainous areas and provide
a consistent and reliable baseline of the key variables describ-

ing the evolution of climate conditions in mountainous areas.
Nonetheless, we find that the quality of these datasets is scale
and location dependent. As mentioned by Isotta et al. (2015),
Kaiser-Weiss et al. (2019), and Bandhauer et al. (2022), the
quality of the datasets incorporating observations (using as-
similation procedures or direct kriging method) is strongly
dependent upon the density of the observations used (and
their spatiotemporal homogeneity), and the effective resolu-
tion of these datasets is in fact generally lower than the pro-
vided grid resolution. In mountainous regions the scarcity of
observations remains a strong obstacle, and standard assimi-
lation techniques can lead to a deterioration in the quality of
simulated fields, as the spatial variability is high over moun-
tainous areas, and the influence of an observation should
be restrained to its domain of applicability (same elevation,
slope, aspect, etc.). Furthermore, observation-based products
(including reanalyses) necessarily result from a trade-off be-
tween reproducing a climatically relevant time evolution and
using the maximum number of available observations to pro-
duce the best possible description of the state of the atmo-
sphere and snow cover at any given time. Ultimately, this
type of dataset continues to rely on the density and quality
of the past observational network, which cannot be extended
retrospectively. Here we also evaluated the regional climate
simulations driven by a robust larger-scale (global) reanaly-
sis. Our results indicate that this can offer an alternative to
computationally intensive high-resolution reanalyses for cli-
mate studies. Indeed, they can simulate climatically homoge-
nous atmospherical and surface conditions (depending on the
quality of the driving, larger-scale reanalysis) and even pro-
vide an estimate of the modeling uncertainties if combined
with a set of simulations from different regional climate mod-
els, although they do not directly incorporate high-resolution
data through a data assimilation framework. However, our
study shows that for mountain regions several issues with
such models need to be tackled. In particular, be it for high-
resolution climate modeling or numerical weather prediction
models used for the production of reanalyses, investigations
into the behavior of the snow cover scheme (and their broader
relationship with the rest of the land surface models inter-
acting with the atmosphere) are crucially required. This will
hopefully enable us to address these issues in forthcoming
versions of these modeling systems.
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Appendix A: Reference characteristics of the snow
cover in the European Alps

Figure A1. For each subregion of the European Alps: boxplot representing the spatial distribution of mean winter season (November to April)
snow depth values over the 1985–2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
Annual cycle of the mean monthly snow depth values for the 1985–2015 period for each dataset for three elevation bands (600 m± 150 m,
1500 m± 150 m, 2400 m± 150 m).
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Figure A2. For each subregion of the European Alps: boxplot representing the spatial distribution of mean winter season (November to April)
temperature values over the 1985–2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
Annual cycle of the mean monthly error values of temperature for the 1985–2015 period for each dataset for three elevation bands
(600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
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Figure A3. For each subregion of the European Alps: boxplot representing the spatial distribution of mean winter season (November to April)
precipitation values over the 1985–2015 period for each dataset for three elevation bands (600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
Annual cycle of the mean monthly error values of precipitation for the 1985–2015 period for each dataset for three elevation bands
(600 m± 150 m, 1500 m± 150 m, 2400 m± 150 m).
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Appendix B: Interannual variability

Figure B1. Anomalies of mean winter (November to April) values of temperature in the European Alps for the whole available time period
for each dataset compared to the mean winter values of the 1985–2015 period (shaded area). On the right, Taylor diagrams calculated using
the anomalies of winter values of temperature for the 1985–2015 period (shaded area). The reference used is described in Sect. 2.3.1.
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Figure B2. Same as Fig. B1 but for precipitation.
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Figure B3. Same as Fig. B1 but for snow depth.
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Figure B4. Same as Fig. B1 but for snow cover duration (SCD).
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Appendix C: Trends

Figure C1. Winter trend values for each subregion of the European Alps calculated using Theil–Sen linear regression for the air temperature
at 2 m. The horizontal axis shows the central year used for the computation of the trend values. The vertical axis provides the series of
datasets used for various lengths of the window time period (10, 20, 30, 40, 50 and 60 years) used for the computation of the trend values.
A black-framed square indicates a trend detected as being statistically significant. Trends are provided as warming rate per decade (◦C per
decade).
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Figure C2. Winter trend values for each subregion of the European Alps calculated using Theil–Sen linear regression for the precipitation.
The horizontal axis shows the central year used for the computation of the trend values. The vertical axis provides the series of datasets used
for various lengths of the window time period (10, 20, 30, 40, 50 and 60 years) used for the computation of the trend values. A black-framed
square indicates a trend detected as being statistically significant. Trends are provided in relative rate per decade (% per decade).
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Figure C3. Winter trend values for each subregion of the European Alps calculated using Theil–Sen linear regression for the snow depth.
The horizontal axis shows the central year used for the computation of the trend values. The vertical axis provides the series of datasets used
for various lengths of the window time period (10, 20, 30, 40, 50 and 60 years) used for the computation of the trend values. A black-framed
square indicates a trend detected as being statistically significant. Trends are provided in relative rate per decade (% per decade).
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Figure C4. Winter trend values for each subregion of the European Alps calculated using Theil–Sen linear regression for the snow cover
duration. The horizontal axis shows the central year used for the computation of the trend values. The vertical axis provides the series of
datasets used for various lengths of the window time period (10, 20, 30, 40, 50 and 60 years) used for the computation of the trend values. A
black-framed square indicates a trend detected as being statistically significant. Trends are provided in days per decade (d per decade).
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Code and data availability. All computations were performed with
Python software version 3.9.13. The codes are available from a
repository (GitHub repository: https://github.com/meteodmonteir/
Source-code-for-Monteiro-and-Morin-2023, last access: 22 Au-
gust 2023; DOI: https://doi.org/10.5281/zenodo.8252180, Monteiro
and Morin, 2023) which includes scripts (in a notebook form) for
the following tasks: performing all data preprocessing, reading the
different data sources, statistical analyses and making figures.

For the snow depth in situ observation availability, please refer to
this article: https://doi.org/10.5194/tc-15-1343-2021 (Matiu et al.,
2021a) (DOI: https://doi.org/10.5281/zenodo.5109574, Matiu et al.,
2021b). LAPrec v1.1 dataset is available on the Copernicus Data
Store following this DOI: https://doi.org/10.24381/cds.6a6d1bc3
(Copernicus Climate Change Service, Climate Data Store, 2021).
E-OBS v19.0HOM and E-OBS v23.1 are available for down-
load following this URL: https://surfobs.climate.copernicus.eu/
dataaccess/access_eobs_months.php (Cornes et al., 2018). The
Remote sensing MODIS (MOD10A1F) dataset is available fol-
lowing this DOI: https://doi.org/10.5067/MODIS/MOD10A1F.061
(Hall and Riggs, 2020). CNRM-AROME (Caillaud et al., 2021)
and CNRM-ALADIN (Nabat et al., 2020) hindcast simula-
tions can be downloaded from the ESGF website (https://
esgf-node.ipsl.upmc.fr/projects/esgf-ipsl/, last access: 1 Febru-
ary 2023). The ERA5 dataset is available on the Copernicus Data
Store following this DOI: https://doi.org/10.24381/cds.adbb2d47
(Hersbach et al., 2023). The ERA5-Land dataset is avail-
able on the Copernicus Data Store following this DOI:
https://doi.org/10.24381/cds.e2161bac (Muñoz Sabater, 2019). The
MESCAN-SURFEX dataset is available on the Copernicus Data
Store following this DOI: https://doi.org/10.24381/cds.32b04ec5
(Copernicus Climate Change Service, Climate Data Store, 2019).
The MTMSI dataset is available on request to the corresponding
authors. ERA5-Crocus can be accessed upon request to the corre-
sponding author.
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