

Supplement of

Evaluation of snow depth retrievals from ICESat-2 using airborne laser-scanning data

César Deschamps-Berger et al.

Correspondence to: César Deschamps-Berger (cesar.deschamps-berger@csic.es)

The copyright of individual parts of the supplement might differ from the article licence.

Table S1. Statistics of the co-registration statistics between the external DEMs and the ICESat-2 snow-off DEM.

Digital Elevation Model (DEM)	Horizontal vector						
	Easting	Northing	Mean	Median	Mode	NMAD before	NMAD after
Airborne lidar (ASO) - 15 m	-0.18	0.44	1.28	0.76	0.20	1.28	1.28
Sat. Photogrammetry (Pléiades) - 15 m	-4.37	-3.56	3.9	3.95	4.15	1.96	1.47
Copernicus DEM - 30 m	0.50	-2.15	-1.93	-1.22	-0.80	2.83	2.82

Table S2. Statistics of the snow depth residuals for different snow-off Digital Elevation Models (DEMs) on 12 March 2019. The *ICESat-2-ASO* product is shown in detail on Figure 3. All residuals are shown in Figure 5 and S4.

Snow depth	Snow-off DEM source	ASO	NMAD	RMSE	Mean	Median	Number of
product name		snow depth	(m)	(m)	(m)	(m)	points
IS2-ASO	Airborne lidar (ASO) – 15 m	15 m	1.00	1.41	0.22	-0.00	5449
IS2-Pléiades	Sat. Photogrammetry (Pléiades) – 15 m	15 m	1.08	2.06	-0.80	-0.53	1294
IS2-Copernicus	Copernicus DEM – 30 m	15 m	3.00	5.89	-1.80	-0.53	5449

Table S3. Statistics of the co-registration statistics between the Pléiades and Copernicus DEMs to the ASO DEM at15 m. All these DEMs were previously co-registered to the ICESat-2 snow-off points.

	Horizontal vector						
Digital Elevation Model (DEM)	Easting	Northing	Mean	Median	Mode	NMAD before	NMAD after
Sat. Photogrammetry (Pléiades) – 3 m	-0.55	-0.44	1.56	1.29	1.15	1.15	1.11
Copernicus DEM – 30 m	0.72	-1.18	1.38	0.48	-0.65	2.79	2.67

Figure S1. Map of the mean annual snow cover duration in the upper Tuolumne basin calculated from a time series of MODIS images (MOD10A1).

Figure S2. Optimization of the kappa index to determine the photon count threshold defining snow-on and snow-off points based on MODIS snow cover area data.

Figure S3. Vertical uncertainty of the ATL06 elevation (*sigma_h_mean*) against along-track slope (dh_fit_dx). The along-track slope (dh_fit_dx) is directly provided in ATL06.

Figure S4. Same figure as Figure 5 but with snow depth derived from ICESat-2 and the ASO DEM (green, identical to Fig. 5) and ICESat-2 and the Copernicus DEM (purple). Note the different y-scale compared to Figure 5.

Figure S5. Same as Figure 5 but selecting ICESat-2 ATL06 snow-on points of the strong beams only.

Figure S6. Same as Figure 5 but selecting ICESat-2 ATL06 snow-on points of the weak beams only.

Figure S7. Same as Figure 5 but calculating the relative snow depth error (ICESat-2 derived snow depth minus ASO snow depth divided by ASO snow depth) rather than the absolute snow depth error (ICESat-2 derived snow depth minus ASO snow depth).

Figure S8. Distribution of the snow-off residual (ICESat-2 minus DEM) before (black line) and after coregistration (color) for the ASO DTM (left), the Pléiades DEM (middle) and the Copernicus DEM (right). The vertical lines show the median plus/minus the NMAD after coregistration.

Figure S9. Snow depth (colored boxes) and snow-off (white boxes) residuals for ICESat-2 – ASO (left) and ICESat-2 – Pléiades (right). Transparent boxplots show the data where less than 100 points were available.

Figure S10. Elevation difference of the snow-off DEMs, the difference between the Copernicus 30 DEM and the ASO DEM (a) and the Pléiades DEM and the ASO DEM (b). All DEMs were individually co-registered on the ICESat-2 snow-off points.

Figure S11. Surface without snow available in ATL06 since the start of the acquisition (blue) and the related linear regression (red). Each segment of ATL06 is assumed to cover a square of 15 m by 15 m. Segments are assumed to not overlap which is an acceptable assumption for the first years of acquisitions.