
The Cryosphere, 17, 2629–2643, 2023
https://doi.org/10.5194/tc-17-2629-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

How do tradeoffs in satellite spatial and temporal resolution impact
snow water equivalent reconstruction?
Edward H. Bair1,2, Jeff Dozier3, Karl Rittger4, Timbo Stillinger2, William Kleiber5, and Robert E. Davis6

1Civil Group, Leidos, Inc., Reston, VA 20190, USA
2Earth Research Institute, University of California, Santa Barbara, CA 93106, USA
3Bren School of Environmental Science and Management, University of California, Santa Barbara, CA 93106, USA
4Institute of Arctic and Alpine Research, University of Colorado, Boulder, CO 80309, USA
5Department of Applied Mathematics, University of Colorado, Boulder, CO 80309, USA
6Cold Regions Research and Engineering Laboratory, Hanover, NH 03755, USA

Correspondence: Edward H. Bair (baire@leidos.com)

Received: 23 November 2022 – Discussion started: 30 November 2022
Revised: 2 June 2023 – Accepted: 9 June 2023 – Published: 6 July 2023

Abstract. Given the tradeoffs between spatial and tempo-
ral resolution, questions about resolution optimality are fun-
damental to the study of global snow. Answers to these
questions will inform future scientific priorities and mis-
sion specifications. Heterogeneity of mountain snowpacks
drives a need for daily snow cover mapping at the slope scale
(≤ 30 m) that is unmet for a variety of scientific users, rang-
ing from hydrologists to the military to wildlife biologists.
But finer spatial resolution usually requires coarser tempo-
ral or spectral resolution. Thus, no single sensor can meet all
these needs. Recently, constellations of satellites and fusion
techniques have made noteworthy progress. The efficacy of
two such recent advances is examined: (1) a fused MODIS–
Landsat product with daily 30 m spatial resolution and (2) a
harmonized Landsat 8 and Sentinel 2A and B (HLS) prod-
uct with 3–4 d temporal and 30 m spatial resolution. State-
of-the-art spectral unmixing techniques are applied to sur-
face reflectance products from 1 and 2 to create snow cover
and albedo maps. Then an energy balance model was run
to reconstruct snow water equivalent (SWE). For validation,
lidar-based Airborne Snow Observatory SWE estimates were
used. Results show that reconstructed SWE forced with 30 m
resolution snow cover has lower bias, a measure of basin-
wide accuracy, than the baseline case using MODIS (463 m
cell size) but greater mean absolute error, a measure of per-
pixel accuracy. However, the differences in errors may be
within uncertainties from scaling artifacts, e.g., basin bound-
ary delineation. Other explanations are (1) the importance of

daily acquisitions and (2) the limitations of downscaled forc-
ings for reconstruction. Conclusions are as follows: (1) spec-
trally unmixed snow cover and snow albedo from MODIS
continue to provide accurate forcings for snow models and
(2) finer spatial and temporal resolution through sensor de-
sign, fusion techniques, and satellite constellations are the fu-
ture for Earth observations, but existing moderate-resolution
sensors still offer value.

1 Introduction

Mountain snowpacks are challenging for remote sensing be-
cause they change rapidly. Moderate-resolution sensors such
as MODIS and VIIRS image Earth daily but at resolutions
(463–750 m) that cannot resolve slope-scale features of in-
terest to a variety of scientific users ranging from hydrolo-
gists (Blöschl, 1999) to the military (Vuyovich et al., 2018)
to wildlife biologists (Conner et al., 2018). Finer-resolution
multispectral sensors such as Landsat 8 and 9 provide spatial
resolutions of 30 m but at 16 d revisits, during which time
the snow cover can change considerably. Because of cloud
cover, useable optical imagery with such infrequent revisits
can be months apart. Recognizing that no single satellite/in-
strument can provide fine spatial and temporal resolution,
constellations of satellites with coordinated overpass times
have emerged. Two examples are the Sentinel 2 A and B and
Landsat 8 and 9 pairs. For optical bands, the Sentinels image
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Earth every 5 d at 20 m, and Landsat 8 and 9 image Earth ev-
ery 8 d at 30 m. The harmonized Landsat 8 and 9 and Sentinel
2 (HLS) product (Claverie et al., 2018) improves the average
revisit time to 3–4 d at 30 m spatial resolution.

Effects of snow cover estimates at finer resolution have
been examined in a few studies, showing a wide range of
improvements in errors. In comparing snow cover depletion
curves from Landsat Multispectral Scanner (MSS; 80 m pix-
els; 16 d repeat) and Advanced Very High Resolution Ra-
diometer (AVHRR) imagery (1100 m pixels; daily repeat),
Baumgartner et al. (1987) found that AVHRR tended to
overestimate snow cover where it was patchier (lower ele-
vations) and underestimate snow cover where it was more
widespread (higher elevations) relative to MSS. They con-
cluded that AVHRR imagery could be used to fill in temporal
gaps in depletion curves generated from Landsat MSS. Luce
et al. (1998) compared a spatially explicit snow water equiv-
alent (SWE) model at 30 m with single and two point models
for a small basin in Idaho. The 30 m model showed signif-
icantly lower errors than the single and two point models.
Cline et al. (1998) examined the effect of upscaling the spa-
tial resolution of a DEM and snow cover in an energy balance
SWE model at a range of resolutions: 30, 90, 250, and 500 m.
Positive biases in the coarser-resolution estimates arising
solely from basin delineation artifacts were reported; thus
the authors advise using vector basin outlines (as was done
in Sect. 2.5). When these artifacts were corrected, the SWE
volumes at 90 m were overestimates, while those at coarser
resolutions were underestimates. Blöschl (1999) examined
scaling issues in snow hydrology and showed that pixel sizes
of a few meters are needed to accurately capture basin-scale
SWE. Turpin et al. (2000) examined snow cover maps de-
rived from AVHRR and Landsat TM (Thematic Mapper;
30 m resolution; 16 d repeat) and report discrepancies, also
finding that AVHRR failed to resolve patchy snow compared
to TM. Durand et al. (2008) were the first to create a fused
MODIS and Landsat product. For the coarse-resolution prod-
uct they used binary snow cover from MODIS (Hall et al.,
2002). For the fine-resolution product they used Landsat 7
ETM+ surface reflectance in a spectral unmixing algorithm
(Painter et al., 2003). The authors then used a linear program,
constrained to match the ETM+ fractional snow-covered
area (fsca) imagery while also matching the daily changes
in fsca observed by MODIS. Applying their linear program
to the upper Rio Grande, the authors found differences in
fsca between the ETM+ fsca, the MODIS fsca, and the fused
product. When run through a snow reconstruction model,
these differences equated to a 51 % reduction in mean abso-
lute error (MAE) and a 49 % reduction in bias for SWE using
the fused snow cover versus the ETM+ snow cover. Using
the same reconstruction model, Molotch and Margulis (2008)
report a 23 % MAE in SWE using ETM+ snow cover versus
a 50 % MAE in SWE using MODIS snow cover and 89 %
MAE using AVHRR snow cover. Rittger et al. (2013) ex-
amined spectrally unmixed snow cover from ETM+ (simi-

lar to the approach in Painter et al., 2009) and several ap-
proaches for mapping snow cover from MODIS, including
spectral mixture analysis (Painter et al., 2009). They found
that ETM+ mapped consistently more patchy snow cover
than the MODIS approaches, suggesting fewer false nega-
tives and thus a greater recall statistic. Winstral et al. (2014)
examined scale in a snow energy balance model at a range
of spatial resolutions and found that 100 m spatial resolution
is needed to accurately simulate snowmelt. Contrary to Cline
et al. (1998), Schlögl et al. (2016) report that SWE increases
with DEM resolution in two alpine basins. Similarly, Baba et
al. (2019) used an energy balance model with a DEM at 8–
1000 m and report good agreement with fine-resolution snow
cover maps up to 250 m but a loss in agreement at coarser
resolution likely due to excessive smoothing of topographic
effects. Rittger et al. (2021) used a random forest to fuse
spectrally unmixed snow cover from MODIS with Landsat 5
and 7 ETM+. The authors’ comparisons show sharper snow-
lines (transition from no snow to fully snow covered) in the
Landsat and fused imagery compared to MODIS, again indi-
cating that Landsat may have greater recall than MODIS in
this difficult to validate region. Bouamri et al. (2021) exam-
ined differences between snowmelt models with and without
solar radiation represented in the Atlas Mountains of Mo-
rocco. Although the models with solar radiation better sim-
ulated the snow cover used for validation, aggregating the
simulated snow cover from 100 to 500 m suppressed those
improvements. In summary, many studies have compared
coarse- and fine-resolution snow cover, but only three stud-
ies to our knowledge (Cline et al., 1998; Durand et al., 2008;
Molotch and Margulis, 2008) have examined the impact of
resolution on SWE reconstruction, all finding significant im-
provements from finer spatial resolution. Since those studies,
considerable advances have been made in SWE reconstruc-
tion techniques (Bair et al., 2016; Rittger et al., 2016) as well
as snow cover (Stillinger et al., 2023) and albedo mapping
(Bair et al., 2019), hence the justification for revisiting the
effects of spatial and temporal resolution.

2 Approach

Three daily snow cover estimates were used to force a SWE
reconstruction model at two spatial resolutions: a baseline at
463 m using MODIS with the Snow Property Inversion from
Remote Sensing (SPIReS; Sect. 2.1; Bair et al., 2021) and
two 30 m estimates, one from the Harmonized Landsat Sen-
tinel (HLS) surface reflectance product (also using SPIReS;
Sect. 2.2) and the other from Snow Covered Area and Grain
Size (SCAG)–Fusion (Sect. 2.3). The period covered is 1 Jan-
uary 2018 to 31 December 2020, limited by the intersection
of the availability of the SCAG–Fusion and the HLS. The
domain is the Tuolumne River basin above the Hetch Hetchy
Reservoir in the Sierra Nevada, USA, because of the avail-
ability of Airborne Snow Observatory (Painter et al., 2016)
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estimates of SWE for validation. This approach rests on the
hypothesis that (1) fsca and (2) snow albedo are the two most
important variables in SWE reconstruction (see Sect. 2.4).
The importance of fsca in SWE reconstructions can be traced
to several studies (e.g., Durand et al., 2008; Molotch and
Margulis, 2008). The importance of snow albedo in SWE re-
constructions is shown in Bair et al. (2019).

2.1 SPIReS–MODIS

The baseline case uses SPIReS to map snow cover from
MODIS at 463 m daily resolution, although the effective
pixel size can be up to 5× as large for off-nadir acquisitions
(Wolfe et al., 1998; Dozier et al., 2008). The MOD09GA
daily surface reflectances (Vermote and Wolfe, 2015) are un-
mixed into fsca and properties used to model albedo (grain
size and dust concentration). These estimates are then run
through a series of filters including persistence filters for
clouds and time-based smoothing and interpolation.

2.2 SPIReS–HLS

One daily 30 m snow cover product used also comes from
the SPIReS approach applied to the HLS. It is the first
snow mapping application, to our knowledge, of HLS data.
Thus, we describe the workflow in more detail than SPIReS–
MODIS. The Tuolumne River basin above Hetch Hetchy
Reservoir straddles two Sentinel tiles, so HLS version 1.4
multi-band hierarchical data format (HDF) files from both
tiles were downloaded (https://hls.gsfc.nasa.gov/, last ac-
cess: 23 November 2022). For calendar years 2018–2020,
four combinations of products were downloaded: two tiles
(11SKB,11SKC) and two products – S30 (Harmonized
Sentinel-2 MSI) and L30 (Harmonized Landsat-8 OLI). We
attempted to download the newer HLS version 2.0 from
NASA Earthdata Search, but as of this writing, the S30
product for those tiles only extends back to 23 Septem-
ber 2020 because of daily limits on the number of Sentinel-
2A and B scenes that can be downloaded by NASA from
ESA for reprocessing. Seven bands covering visible through
shortwave–infrared wavelengths were used from each sen-
sor: 1–4, 8A, and 11–12 for S30 and 1–7 for L30. Mean local
solar geometry was obtained from the accompanying header
files. The multi-band images were stacked, mosaicked, and
cropped to the basin to form a 1119× 1297× 7× 311 (de-
pending on the year) 4D data structure, with dimensions of
rows, columns, bands, and time. Each Landsat has a 16 d re-
visit, thereby providing imagery at 8 d intervals for each tile,
and each Sentinel has a 10 d revisit, providing imagery at 5 d
intervals. Thus, combined revisits ranged from around 1 to
10 d with a mean of 3.5 d (Fig. 1). Theoretical revisit times
estimated before Landsat 9 was launched (Li and Roy, 2017)
for a three-satellite constellation at this basin’s latitude shows
a mean of 3.8 d, with a minimum of less than 1 d and a max-
imum of 7.0 d. There are only four revisit times greater than

7 d shown in Fig. 1; all other observations lie within the the-
oretical revisit times.

Red–green–blue band imagery for each day was examined
visually. Days with clouds or incomplete spatial coverage
over the watershed (many images have large areas with no
data) were discarded. After filtering, 156 or about half of the
days were kept. The minimum, median, and maximum time
spacings between acquisitions after filtering were 1, 5, and
40 d. The SPIReS spectral unmixing approach was then ap-
plied to these filtered surface reflectances as described for
Landsat 8 OLI in Bair et al. (2021), yielding the variables
fsca, snow grain size, and dust concentration. A per-pixel
spline interpolation was applied to each of the variables in
the time dimension to make them continuous, covering all
days from 2018–2020.

2.3 SCAG–Fusion

A second daily 30 m snow cover product used was a
MODIS–Landsat fusion, created using two random forests
for classification and regression based on previous work
(Rittger et al., 2021) but retrained using Landsat 8 OLI data.
Standard cloud masks (Foga et al., 2017) were used to select
the 100 most cloud-free level 2 surface reflectance images
(USGS, 2021) for dates spanning March 2013 to March 2021
(Fig. 2). Winter months had fewer training data than sum-
mer months. Six scenes were manually removed after vi-
sual inspection of red–green–blue imagery. Because the ini-
tial filtering did not remove all clouds, a second cloud fil-
tering step with superpixels and Gabor filtering was used
(Stillinger, 2019). This second step removed all the clouds
but removed some snow cover as well. These filtered Land-
sat 8 surface reflectances along with MODIS MOD09GA
surface reflectances were unmixed into fsca and snow sur-
face properties that affect albedo (Painter et al., 2009, 2012).
This SCAG spectral unmixing differs from the SPIReS ap-
proach; it finds the best fit from an endmember library for
the snow-free parts of the pixel, whereas SPIReS uses an
empirical snow-free endmember. There are other differences
in the treatment of light-absorbing impurities, filtering, and
time–space smoothing (Rittger et al., 2020). For more details
and a recent comparison between SPIReS, SCAG, and other
snow mapping algorithms see Stillinger et al. (2023). Esti-
mates of fsca and snow surface properties that affect albedo,
i.e., grain size and visible albedo degradation, were used as
training data. Physiographic variables, including solar illu-
mination and land classification were used as predictors. The
two-step approach consists of an initial model that classi-
fies pixels into three cases: (1) 0 %, (2) 100 %, or (3) 1 %–
99 % fsca. For case 3, a second regression random forest was
used to estimate fsca on the 1 %–99 % interval. This two-
step classification–regression approach was found to be less
biased at predicting 100 % snow-covered pixels than using a
single-step random forest predicting 0 %–100 % fsca.
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Figure 1. Revisit times covering the Tuolumne River basin above Hetch Hetchy Reservoir for the HLS S30 and L30 combined.

Figure 2. Cumulative number of images over 8 years acquired from
Landsat 8. Lighter to darker lines indicate increasing cloud coverage
from 10 %–50 %. Numbers after the cloud cover percentage in the
legend correspond to the total number of images. Images with 12 %
or less cloud cover were selected.

2.4 Parallel energy balance

At an hourly time step, the Parallel Energy Balance model
ParBal (Bair et al., 2016, 2018; Rittger et al., 2016) down-
scales state and flux variables solving for the surface snow
energy balance. The computed melt is multiplied by the
fsca and summed backward from end-of-melt to peak SWE
for each pixel to estimate SWE on the ground throughout
the melt season. Evaluations of ParBal (Bair et al., 2016,
2018) forced with snow cover from the MODSCAG ap-
proach (Painter et al., 2009; Rittger et al., 2020) show a mean
absolute error (MAE) of 22 %–26 % using SWE from Air-
borne Snow Observatory (ASO) for validation. There are two

significant changes to ParBal here. (1) U and V wind compo-
nent forcings use the hourly MERRA-2 (GMAO, 2015) data
instead of N/GLDAS (Rodell et al., 2004; Xia et al., 2012).
Using U and V components with global forcings allows for
terrain-based wind downscaling using curvature and slope
(Liston et al., 2007), whereas GLDAS only provides wind
speed. (2) A new estimate of SWE on the ground, called hy-
brid SWE, leverages GLDAS SWE (the GLDAS NOAH 3 h
0.25◦ v2.1 model was used) and captures the accumulation
phase. Previously, ParBal estimates were limited to the ab-
lation phase only. The concept is to identify GLDAS pixels
with similar snow cover duration as the fine-scale fsca pixels,
find the peak SWE day from those GLDAS pixels, and then
scale the GLDAS estimates by the ParBal SWE estimate on
that peak day. This process is repeated for every fine-scale
pixel. The GLDAS SWE, SWEGLDAS, is extracted for the
domain, in this case a bounding box covering the Tuolumne
River basin above Hetch Hetchy Reservoir. Pixels with the
same snow cover duration are identified by the logical vector
t as

t =
(
SWEGLDAS,1t1 > 0, fsca1t1 > 0

)
&
(
SWEGLDAS,1t2 = 0, fsca1t2 = 0

)
SWE∗GLDAS = SWEGLDAS,t , (1)

where the asterisk denotes the selected pixels and fsca is from
the fine-scaled product, i.e., Sect. 2.1–2.2. The 1t1 and 1t2
indicate different time periods (days). Because there can be
multiple pixels with matching snow cover duration, the daily
mean of SWE∗GLDAS is taken. The maximum value of that
daily mean and its index imax are computed. A scaling coef-
ficient c is calculated as

c = SWEParBal,imax/max
(

SWE∗GLDAS

)
, (2)

where SWEParBal,imax is the value of the reconstructed SWE
from ParBal (Eq. 2 in Bair et al., 2016) at the time indexed
by imax and the overbar denotes an average. The following
case can arise:

c = 0, SWEParBal,imax = 0, (SWEGLDAS > 0)

& (fsca > 0) . (3)
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Figure 3. Hybrid SWE estimates for the accumulation season com-
bining reconstruction and GLDAS for an example pixel using the
SPIReS–HLS snow cover.

For example, this case can occur when ParBal models all the
mass loss via sublimation. For this case, SWEGLDAS is used
when fsca > 0. Otherwise, the hybrid SWE prior to the peak
is set at day i as

SWEhybrid,i = c×SWEGLDAS,i , i ≤ imax. (4)

This scaling can cause unrealistic daily increases and de-
creases in SWE; thus a smoothing spline is applied. This
hybrid SWE has yet to be evaluated throughout the accumu-
lation season, but comparisons with the reconstructed SWE
during the ASO acquisitions show negligible differences, in-
dicating at least the imax estimate is occurring roughly at the
right time of year since all of the ASO flights examined here
took place during the ablation season (with the exception of
13 April 2020; Sect. 3). Figure 3 shows this hybrid GLDAS
and reconstructed SWE for an example pixel in water year
(WY) 2019. ParBal was run with each of the snow cover forc-
ings, holding all other inputs constant.

2.5 Airborne Snow Observatory

ASO 50 m SWE estimates for the Tuolumne River basin
above the Hetch Hetchy Reservoir, which is the most sam-
pled basin by ASO, were downloaded from the National
Snow and Ice Data Center for 2018 and 2019 and from ASO
Inc. for 2020 (Table 1). The number of acquisitions per year
ranged from two (2018) to four (2019) with a total of nine.
The accuracy of ASO measurements at the basin scale can-
not be estimated directly from data, since there is no bet-
ter method for validation, but since 2021, ASO has provided
basin-wide uncertainty estimates in their reports available on
their website (https://www.airbornesnowobservatories.com,

Table 1. Tuolumne River basin above Hetch Hetchy Reservoir SWE
estimates for 2018–2020 for the Airborne Snow Observatory.

Year Name Mean SWE, mm

2018
23 Apr 418
28 May 127

2019

17 Apr 1095
3 May 840
13 Jun 441
5 Jul 111

2020
13 Apr 293
7 May 191
21 May 128

last access: 23 November 2022), mostly based on uncertainty
in modeled density, with a small uncertainty in depth. The re-
ported mean basin-wide uncertainty in SWE for ASO flights
for the entire Tuolumne River basin for 2021 and 2022 is
±4%, so we assume similar errors in 2018–2020 and use
that uncertainty estimate.

2.6 Analysis

The ASO images were resampled from a cell size of 50 to
2000 m (4 times the MODIS resolution) and 120 m (4 times
the Landsat resolution), using a mean-preserving technique
with a weighted resampling covering the image (mapresize;
MathWorks, 2022). The ASO images were kept in their na-
tive UTM 11N projection. The upscaled cell sizes account for
geolocational and sensor-to-sensor uncertainty of 1–2 pix-
els for MODIS and Landsat–Sentinel-2 (Tan et al., 2006;
Storey et al., 2016). The ASO dates in Table 1 were ex-
tracted for each of the three SWE reconstructions. Then,
the matched baseline SPIReS–MODIS images were upscaled
from 463 to 2000 m and reprojected from a sinusoidal pro-
jection to UTM 11N. The matched MODIS–Landsat fusion
and SPIReS–HLS images were upscaled from 30 to 120 m
but kept in their native UTM 11N projection. Vectors of the
Tuolumne River basin above Hetch Hetchy Reservoir were
obtained from ASO Inc. These vectors were then converted
into coarse-resolution masks of the basin. Waterbodies and
other areas with no data either in the ASO images or in the
SWE reconstructions were removed from the masks. Areas
outside of the masks were then set to null values. These com-
mon masks were applied to the upscaled SWE reconstruc-
tion and ASO images such that areas outside the masks were
set to null values. The upscaled ASO images were compared
with the upscaled SWE reconstruction images. The following
error statistics were computed for a given date: bias as a mea-
sure of basin-wide error, relative bias normalized by ASO
mean SWE, mean absolute error (MAE) as an unweighted
measure of per-pixel error, and relative MAE normalized by
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ASO mean SWE:

bias =
1
N

N∑
j=1

SWEParBal,j −SWEASO,j , (5)

relativebias =
1
N

∑N
j=1SWEParBal,j −SWEASO,j

1
N

∑N
j=1SWEASO,j

, (6)

meanabsoluteerror =
1
N

N∑
j=1

∣∣SWEParBal,j −SWEASO,j

∣∣, (7)

relativemeanabsoluteerror =

1
N

N∑
j=1

∣∣SWEParBal,j −SWEASO,j

∣∣
1
N

N∑
j=1

SWEASO,j

, (8)

where N the total number of pixels and j is an individual
pixel. Mean values of the four error statistics were also aver-
aged by year. MAE is used instead of root mean squared er-
ror because it evenly weights errors, which is preferred when
comparing modeled values (Willmott and Matsuura, 2005),
i.e., ParBal to ASO, neither of which directly measure SWE.

2.7 Snow albedo errors

Errors in snow albedo directly impact the accuracy of recon-
structed SWE (Bair et al., 2019). However, for the spectral
unmixing approaches used here, the albedo errors are low,
evaluated using terrain-corrected measurements from Mam-
moth Mountain (e.g., Bair et al., 2022), only 23 km from
Mount Lyell, the highest point in the Tuolumne River basin.
For example, from water years 2017–2019, the root mean
squared error (RMSE) for MODIS–SPIReS, calculated us-
ing the best value for a 3× 3 neighborhood around the val-
idation site, is 2.3 % with no bias (Table 2). These albedo
errors are similar to the accuracy of the hemispherical di-
rectional reflectance factor (HDRF) surface reflectance prod-
ucts, evaluated over dark targets (Vermote et al., 2016; Bair
et al., 2022). These improvements in remotely sensed snow
albedo over previous assessments, showing RMSE values of
4.6 % to 4.8 % with 0.7 %–1.3 % bias for MODIS (Bair et al.,
2019, 2021), come from improved cloud snow discrimination
filters and adjustments to thresholds such as the minimum
grain size for dirty snow (Sect. III-J of Bair et al., 2021).

We are not dismissing errors in albedo, as these remotely
sensed snow albedo errors can lead to 5 %–11 % MAE for
reconstructed SWE (Bair et al., 2019), but without indepen-
dent measurements of spatially distributed albedo, we lack
validation data for further error evaluation.

3 Results and discussion

Basin-wide mean SWE errors are shown in Fig. 5a–c and
in Table 3. The lower mean MAE, by 10 %–14 % (bold

Table 2. Snow albedo from SPIReS–MODIS validated with terrain-
corrected snow albedo from the CUES site on Mammoth Mountain
(Bair et al., 2015) taken using an adjustable arm to keep the ra-
diometers 1 m above the snow surface (Bair et al., 2022). A best
of 3× 3 pixel neighborhood was used to account for geolocational
uncertainty.

Water year Bias, % RMSE, %

2017 −0.8 2.2
2018 −0.3 2.4
2019 1.0 2.4

Mean 0.0 2.3

Figure 4. Semivariance of terrain slope of the Tuolumne River basin
above Hetch Hetchy. The slope of the semivariance (not the terrain
slope itself) shows a flattening around 500 m or about the MODIS
pixel size.

in Table 3) from SPIReS–MODIS, is perhaps the most in-
triguing result, contradicting the result of previous studies
(Sect. 1) which find that finer-spatial-resolution estimates of
snow cover reduce SWE errors. The reduction of 4 %–5 %
relative bias from the two 30 m snow cover forcings com-
pared to MODIS agrees with the previous findings, although
the magnitudes of the reductions are smaller than in previous
studies (e.g., Durand et al., 2008). To test if the lower MAEs
from MODIS are resolution artifacts, the SPIReS–HLS and
SCAG–Fusion products were also upscaled to 2000 m cell
sizes instead of 120 m. For mean values over all water years
for these upscaled comparisons (Table A1), SPIReS–MODIS
still had the lowest relative MAE, but the SCAG–Fusion rel-
ative bias dropped to 3 %, while the SPIReS–HLS relative
bias increased to 9 %, equal to SPIReS–MODIS. These re-
sults suggest that the evaluations are sensitive to the upscaled
pixel size, meaning that the differences in errors across the
three SWE reconstructions may be within uncertainty bounds
introduced by upscaling artifacts such as basin delineation.
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Figure 5. Basin-wide SWE values by date for the three SWE reconstructions (a–c) compared to Airborne Snow Observatory estimates.
Assumed uncertainty in the ASO measurements is ±4% (Sect. 2.5) and is shaded in gray.

Table 3. Error statistics by year for the three SWE reconstructions. Mean values for all years are shown in bold. More detailed errors by date
are given in the Appendix.

Name Year Bias, mm Relative bias, % MAE, mm Relative MAE, %

SPIReS–MODIS

2018 9 3 87 32
2019 26 4 168 26
2020 43 21 95 47
Mean 26 9 117 35

SPIReS–HLS

2018 27 10 135 49
2019 −24 −4 201 32
2020 12 6 111 54
Mean 5 4 149 45

SCAG–Fusion

2018 13 5 122 44
2019 −89 −14 264 42
2020 50 24 123 60
Mean −9 5 170 49

For example, in the UTM 11N projection, the shapefile ob-
tained from ASO Inc. for the Tuolumne River basin above
Hetch Hetchy Reservoir has an area of 1175 km2; a raster of
the basin at 120 m has an area of 1153 km2 (−1.8%), while
a raster at 2000 m has an area of 1132 km2 (−3.6%). Even
when using vector basin outlines, as suggested by Cline et
al. (1998), these artifacts are inherent in the discretization of
geospatial data and cannot be eliminated.

Another explanation for the poorer MAE performance
from SPIReS–MODIS is that some spatial variation in to-
pography is lost with the coarser resolution. To test this hy-
pothesis, a semivariogram of the terrain slope is examined,
as in Baba et al. (2019). The semivariogram shows a flat-
tening around 500 m, indicating that variation in topography,
which can manifest in topographically driven variables such
as direct solar illumination, is poorly captured at MODIS and
coarser spatial scales. This semivariogram analysis confirms
the above hypothesis. Further, downscaling coarse-scale re-

analysis products (Winstral et al., 2014), e.g., the down-
welling radiation from Clouds and the Earth’s Radiant En-
ergy System (Rutan et al., 2015) at 1◦ spatial resolution, has
inherent limitations, often due to clouds (Lapo et al., 2017).
Important to note is that ParBal does not use precipitation
as a forcing and thus does not suffer from well-known bi-
ases and downscaling issues (Raleigh et al., 2015; Pflug et
al., 2021).

Alternatively, the lower MAE may indicate the importance
of daily imaging from MODIS compared to the HLS snow
cover, which had median gaps of 5 d between revisits after
filtering for clouds. In contrast, the SCAG–Fusion used daily
MODIS snow cover in the prediction and training steps indi-
cating it suffers from errors not related to revisit time.

An example of the SWE modeled by ASO on 4 May 2019
and the three reconstructions is shown in Fig. 6. The spatial
distribution of the SWE from ASO matches well with all the
reconstructions. Differences between the reconstructions can
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Figure 6. SWE in the Tuolumne River basin above Hetch Hetchy Reservoir for 4 May 2019 modeled by the Airborne Snow Observatory
(a) along with reconstructions from SPIReS–MODIS (b), SPIReS–HLS (c), and SCAG–Fusion (d).

Figure 7. SWE errors by date for the three SWE reconstructions. The relative bias is shown in (a) and the relative MAE in (b).

be seen around Mount Lyell, at the southernmost part of the
basin. The ASO SWE shows high variability here, ranging
from a few hundred millimeters of SWE to over 2000 mm,
while the reconstructions model consistently higher amounts
of SWE. The overestimates here are likely related to false-
positive classifications for snow. Especially late in the sum-
mer, when melt rates are high, these false positives can lead
to substantial overestimates of SWE during reconstruction
(Slater et al., 2013). A close examination of the mostly snow-
free areas in gray shows that only the SPIReS–HLS recon-
structions replicate the small patches of thin snow in this
area, likely because the SPIReS–HLS snow cover was not
smoothed to the same degree as SPIReS–MODIS or SCAG–
Fusion, which both use heavy smoothing to reduce noise and
smearing from MODIS.

Errors are further examined by date (Fig. 7 and Table A2).
Except for 13 April 2020, the bias across all the products
is between −20 % and 20 % (Fig. 7a). Figure 8 shows a
snow pillow (weighing gauge, California Department of Wa-

ter Resources station code DAN, elevation 2987 m) and that
the ASO flight on 13 April 2020 is the only flight in this
study that occurred prior to peak SWE. Overestimates of
SWE prior to its peak are a limitation of SWE reconstruc-
tion. The hybrid SWE method (Sect. 2.4) extends SWE esti-
mates throughout the year, but the high biases found on this
date are not surprising because snowmelt occurred prior to
the flight and snow accumulation occurred after the flight.
Note the missing data from DAN after 3 May 2018 in Fig. 8,
but the CUES snow pillow, which is nearby and at a similar
elevation (2940 m), shows clear ablation during May 2018.

Examination of the per-pixel MAE (Fig. 7b) shows that
the SPIReS–HLS product has the most consistent values,
with the two approaches that used MODIS data (SPIReS–
MODIS and SCAG–Fusion) showing more variability, per-
haps again due to the smoothing needed for the relatively
noisy MODIS data or the fact that SCAG–Fusion was trained
using more data outside the test period (March 2013 to De-
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Figure 8. Snow pillow DAN in the Tuolumne River basin showing
daily SWE. The X markers show the dates of ASO flights. Circled
is the 13 April 2020 ASO flight, which is the only flight that oc-
curred prior to peak SWE. The pillow was not reported from 3 May
to 21 November 2018, but a nearby snow pillow shows consistent
ablation in May 2018.

cember 2017 and January 2021 to March 2022) than within
it (January 2018 to January 2021).

Stillinger et al. (2023) show that errors in snow cover map-
ping depend on canopy cover, which has to do with how
much areal snow is viewable at the pixel scale by a sensor,
which affects the accuracy of the SWE reconstructions (Bair
et al., 2016). Thus, we examine errors in the SWE recon-
structions, binned by canopy cover fraction, for each snow
cover forcing. The bin centered at 5 % (range: 0 % to 9.9 %)
canopy cover (containing 46 %–60 % of pixels in the basin;
Table A3) shows (Fig. 9ab) relatively unbiased errors with
MAE values close to the means (Table 3), but SWE biases
become positive with increasing canopy cover for SPIReS–
MODIS yet negative for SCAG–Fusion and for SPIReS–
HLS (except for the highest canopy fractions which contain
only 5 % of the basin’s pixel; Table A3).

The bias and MAE with increasing canopy cover for
SPIReS–HLS and SCAG–Fusion SWE reconstructions are
similar to errors in fsca from Landsat 8 (Fig. 4c; Stillinger
et al., 2023). These fsca biases have similar shapes to the
SWE biases indicating these fsca errors cause the SWE er-
rors. Conversely, SPIReS–MODIS shows unbiased fsca with
increasing canopy cover (Fig. 5d; Stillinger et al., 2023), in-
dicating some other source of error in the SPIReS–MODIS
SWE reconstructions.

In summary, the answer to the question posed by the ti-
tle of this study is that basin-wide SWE is marginally more
accurate with finer spatial resolution. Specifically, the bias –
arguably the most important error statistic for water resource
management – was 4 %–5 % lower using the finer-resolution
snow cover forcings. However, the results are mixed relative
to previous studies. For example, Durand et al. (2008) and

Molotch and Margulis (2008) report both lower MAE and
bias with a 30 m Landsat ETM+ snow cover forcing com-
pared to snow cover from MODIS and AVHRR. The expla-
nation for why some previous studies showed more signifi-
cant improvements going from moderate- to high-resolution
forcings may be the snow mapping algorithms used. An ac-
curate technique for dealing with mixed pixels is particularly
important for moderate-resolution sensors since for midlat-
itude mountains most pixels are mixed at 500 m (Selkowitz
et al., 2014). In Durand et al. (2008) and Molotch and Mar-
gulis (2008), the finer-resolution Landsat ETM+ snow cover
used a spectral unmixing technique (Painter et al., 2003), but
the MODIS snow cover was based on the normalized snow
difference technique, which only uses two bands versus all
available for spectral unmixing and is shown to have higher
MAE and bias (Stillinger et al., 2023). In Cline et al. (1998),
the only other study to specifically examine spatial scale with
SWE reconstruction, a spectral mixture technique was used
on 30 m Landsat ETM+ to produce snow cover estimates
(Rosenthal and Dozier, 1996). In that study, the coarsened
results produced basin-wide SWE above and below the con-
trol simulation used as validation, suggesting that coarsening
components of the energy balance did not show a clear trend
in error. The snow cover used in that study is shown to have
low bias and other measures of error from [0–1] fsca (Rosen-
thal and Dozier, 1996), thus reducing errors from mixed pix-
els. Increased spatial and temporal resolution through sen-
sor design, fusion techniques, and satellite constellations is
the future of Earth observations, but this study shows how a
moderate-resolution sensor such as MODIS still offers value
for snow mapping and modeling.

4 Conclusions

Optimal-resolution questions are fundamental to the global
study of snow and will inform future scientific priorities
and mission specifications. Increasing spatial and temporal
resolution mark remote sensing achievements with the im-
plicit assumption that finer resolution provides greater ac-
curacy. To test this assumption for snow hydrology, an en-
ergy balance SWE reconstruction model was run at two dif-
ferent spatial resolutions using three different snow cover
forcings. Contrary to previous work, the baseline case us-
ing SPIReS–MODIS, a daily 463 m product, showed a lower
MAE – a measure of per-pixel accuracy – compared to
SCAG–Fusion and SPIReS–HLS, both with 30 m spatial res-
olution. SPIReS–HLS showed the lowest bias; however, the
differences in the errors between all three products may be
within the uncertainty caused by scaling artifacts such as
basin boundary delineation. The improved bias with increas-
ing spatial resolution, arguably the most important measure
for water management, is a promising result; however, the
increased MAE with finer spatial resolution suggests that the
daily acquisitions from MODIS with finer temporal resolu-
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Figure 9. SWE errors for all dates for the three SWE reconstructions binned by canopy cover percent. Labeled are the bin centers. The
relative bias is shown in (a) and the relative MAE in (b).

tion provide additional accuracy and/or that there are down-
scaling limitations with relatively coarse reanalysis data, e.g.,
105 m (1◦) downscaled to 30 m. Improvements such as the in-
clusion of Landsat 9 and version 2.0 of the HLS data may
improve some of the errors. Future satellite missions that
leverage existing and planned constellations such as Land-
sat Next will improve revisit times, as gaps between observa-
tions are still an issue for the HLS data. In summary, conclu-
sions are as follows: (1) spectrally unmixed snow cover and
snow albedo from MODIS continue to provide accurate forc-
ings for snow models and (2) increased spatial and tempo-
ral resolution through sensor design, fusion techniques, and
satellite constellations are the future of Earth observations,
but existing moderate-resolution sensors still offer value.
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Appendix A

Table A1. Error statistics by date for the three SWE reconstructions but with all pixels upscaled to 2000 m. The SPIRES–MODIS rows are
identical to those in Table 2 and are shown for comparison. Mean values for all years are shown in bold.

Name Year Bias, mm Relative bias, % MAE, mm Relative MAE, %

SPIReS–MODIS

2018 9 3 87 32
2019 26 4 168 26
2020 43 21 95 47
Mean 26 9 117 35

SPIReS–HLS

2018 40 15 140 52
2019 −6 −1 194 31
2020 26 13 100 50
Mean 20 9 145 44

SCAG–Fusion

2018 1 0 90 33
2019 −108 −17 221 35
2020 52 26 97 48
Mean −18 3 136 39

Table A2. Error statistics by date for the three SWE reconstructions.

Name Date Bias, mm Bias, % MAE, mm MAE, %

SPIReS–MODIS

23 Apr 2018 38 9 107 25
28 May 2018 −20 −16 68 53
17 Apr 2019 79 7 228 21
03 May 2019 111 13 223 26
13 Jun 2019 −66 −15 150 33
05 Jul 2019 −22 −19 70 61
13 Apr 2020 137 47 150 51
07 May 2020 13 7 76 40
21 May 2020 −21 −17 59 48

SPIReS–HLS

23 Apr 2018 51 12 225 53
28 May 2018 3 3 46 36
17 Apr 2019 −32 −3 336 30
03 May 2019 28 3 284 33
13 Jun 2019 −79 −18 142 32
05 Jul 2019 −10 −9 41 36
13 Apr 2020 84 28 175 59
07 May 2020 −14 −7 95 49
21 May 2020 −33 −26 63 49

SCAG–Fusion

23 Apr 2018 15 4 164 39
28 May 2018 10 8 80 63
17 Apr 2019 −169 −15 419 38
03 May 2019 −70 −8 338 40
13 Jun 2019 −105 −24 216 49
05 Jul 2019 −13 −11 81 72
13 Apr 2020 131 44 185 62
07 May 2020 23 12 111 58
21 May 2020 −3 −2 74 57
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Table A3. Error statistics by canopy cover, for all dates, for the three SWE reconstructions.

Name Canopy cover, % Pixels, number Pixels, % Bias, mm Bias, % MAE, mm MAE, %

SPIReS–MODIS

5 131 46 7 1 155 29
15 76 27 68 20 111 32
25 38 13 57 23 81 33
35 25 9 23 11 62 28
45 8 3 8 4 36 18
55 0 0

> 60 0 0

SPIReS–HLS

5 48230 60 27 6 167 36
15 8737 11 −45 −13 143 41
25 6553 8 −59 −17 137 41
35 6969 9 −64 −20 132 42
45 5760 7 −59 −21 133 47
55 2869 4 52 19 152 55

> 60 962 1 73 29 165 65

SCAG–Fusion

5 48230 60 11 2 212 45
15 8737 11 −74 −21 156 45
25 6553 8 −67 −20 148 44
35 6969 9 −63 −20 141 45
45 5760 7 −70 −24 137 48
55 2869 4 −60 −22 136 50

> 60 962 1 −41 −16 135 53

Code availability. The codes for ParBal and SPIReS are available
on Zenodo: https://doi.org/10.5281/zenodo.8106305 (Bair, 2023c);
https://doi.org/10.5281/zenodo.8106303 (Bair, 2023d). The code
for SCAG products is not available.

Data availability. All data are in accessible repositories. SPIReS–
MODIS: the snow cover is part of a daily Western US product
covering WY 2001–2021 (https://doi.org/10.21424/R4H05T, Bair
and Stillinger, 2022). The corresponding reconstructed SWE is
in a Dryad Repository (https://doi.org/10.25349/D9TK7H, Bair,
2023a). SPIReS–HLS: the snow cover and reconstructions are in a
Dryad repository (https://doi.org/10.25349/D9PW47, Bair, 2023b).
SCAG–Fusion: the snow cover and reconstructions are in a Dryad
repository (https://doi.org/10.25349/D9PW47, Bair, 2023b).
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