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Abstract. The hydrological cycle is strongly influenced by
the accumulation and melting of seasonal snow. For this rea-
son, mountains are often claimed to be the “water towers” of
the world. In this context, a key variable is the snow water
equivalent (SWE). However, the complex processes of snow
accumulation, redistribution, and ablation make its quantifi-
cation and prediction very challenging. In this work, we ex-
plore the use of multi-source data to reconstruct SWE at a
high spatial resolution (HR) of 25m. To this purpose, we
propose a novel approach based on (i) in situ snow depth
or SWE observations, temperature data and synthetic aper-
ture radar (SAR) images to determine the pixel state, i.e.,
whether it is undergoing an SWE increase (accumulation) or
decrease (ablation), (ii) a daily HR time series of snow cover
area (SCA) maps derived by high- and low-resolution mul-
tispectral optical satellite images to define the days of snow
presence, and (iii) a degree-day model driven by in situ tem-
perature to determine the potential melting. Given the typi-
cal high spatial heterogeneity of snow in mountainous areas,
the use of HR images represents an important novelty that
allows us to sample its distribution more adequately, thus re-
sulting in highly detailed spatialized information. The pro-
posed SWE reconstruction approach also foresees a novel
SCA time series regularization technique that models impos-
sible transitions based on the pixel state, i.e., the erroneous
change in the pixel class from snow to snow-free when it
is expected to be in accumulation or equilibrium and, vice
versa, from snow-free to snow when it is expected to be in ab-
lation or equilibrium. Furthermore, it reconstructs the SWE

for the entire hydrological season, including late snowfall.
The approach does not require spatialized precipitation in-
formation as input, which is usually affected by uncertainty.
The method provided good results in two different test catch-
ments: the South Fork of the San Joaquin River, California,
and the Schnals catchment, Italy. It obtained good agree-
ment when evaluated against HR spatialized reference maps
(showing an average bias of —22 mm, a root mean square er-
ror — RMSE — of 212 mm, and a correlation of 0.74), against
a daily dataset at coarser resolution (showing an average bias
of —44 mm, an RMSE of 127 mm, and a correlation of 0.66),
and against manual measurements (showing an average bias
of —5mm, an RMSE of 191 mm, and a correlation of 0.35).
The main sources of error are discussed to provide insights
into the main advantages and disadvantages of the method
that may be of interest for several hydrological and ecologi-
cal applications.

1 Introduction

Seasonal snow accumulation and melt are crucial for the hy-
drological cycle and the total water supply. Mountains are
claimed to be the “water towers” of the world given the large
impact of snow on local and global water resources (Im-
merzeel et al., 2020). The contribution of snow-dominated
catchments to streamflow ranges from 40 % of total flow to
sometimes more than 95 %, depending on the region (Viviroli
et al., 2003). Therefore, it is essential to estimate the amount
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of water stored during winter to forecast river discharge and
to correctly plan human activities such as agriculture irriga-
tion, drinking water supply, and hydropower production (De-
Walle and Rango, 2008; Beniston et al., 2018). In mountain
regions, the snow distribution is highly variable in space and
time due to redistribution processes (Balk and Elder, 2000),
thus limiting the effectiveness of available in situ measure-
ments. Especially in remote areas, continuous and spatialized
observations are rare (Rees, 2005). Hence, remote sensing
(RS) represents a valuable tool for snow hydrology.

A correct spatial characterization of snow properties re-
quires both knowledge about the extent of the snow cover,
i.e., the snow cover area (SCA), and appropriate snowpack
information. A key variable is the snow water equivalent
(SWE), i.e., the total amount of water stored in the snow-
pack released upon complete melting. Although a long list
of SCA detection methods that exploit multispectral optical
satellites is available in the literature (e.g., Dietz et al., 2012;
Dong, 2018), we do not have operational methods to directly
map SWE with high spatial resolution (HR). Direct SWE ob-
servations are limited to point measurements by manual sam-
pling, snow scales, and/or snow pillows (Archer and Stewart,
1995; Melgysund et al., 2007) or have a limited spatial foot-
print (~ 500 m) such as cosmic-ray neutron probes (Schattan
etal., 2019). Spatialized snow depth (SD) information can be
provided by differential lidar altimetry (Painter et al., 2016)
or stereo photogrammetry (Deschamps-Berger et al., 2020).
However, these methods can be applied only to limited ar-
eas and with a low temporal sampling. Moreover, the deriva-
tion of SWE from SD requires additional a priori informa-
tion to infer the snow density (Helfricht et al., 2018). Phys-
ically based snow models represent a valid alternative (e.g.,
Lehning et al., 2006; Vionnet et al., 2012; Endrizzi et al.,
2014) that can provide HR SWE information for large areas.
Nonetheless, their accuracy is strongly limited by the uncer-
tainty in the input data (Engel et al., 2017; Giinther et al.,
2019) and by the gravitational and wind-induced snow re-
distribution processes (Jost et al., 2007; Mott et al., 2018).
One of the main challenges is to obtain an accurate precipi-
tation field given the strong spatial variability of the variable
related to orography, a generally scarce sampling density of
the phenomenon that strongly influences the interpolation re-
sults, and possible inaccuracies in the measurements caused,
for example, by undercatching (e.g., Prein and Gobiet, 2017).

Passive and active microwave sensors can potentially pro-
vide information about the snowpack. In particular, the first
ones are used to retrieve long time series of SWE by exploit-
ing the correlation between brightness temperature and SWE
(Pulliainen et al., 2020). However, the observations are lim-
ited by a spatial resolution of 25 km and are not suitable for
mountain regions. Active microwave sensors, such as syn-
thetic aperture radars (SARs), were investigated for HR re-
trieval of SWE (Ulaby et al., 1981; Shi et al., 1994; Baghdadi
et al., 1997; Rott et al., 2010) and differential SWE (Guner-
iussen et al., 2001; Leinss et al., 2015). Despite the bet-
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ter spatial resolution, active microwave sensors suffer from
the complexity of nonlinear effects introduced in the total
backscattering, such as snow layering, surface roughness,
snow density, and grain type and size, which in turn are all
affected by the complex snow metamorphism and change in
time. Furthermore, all of these techniques work only in dry
snow conditions, whereas the scarce penetration of the elec-
tromagnetic signal in wet conditions invalidates their appli-
cability to monitor the evolution of the SWE during the melt-
ing season. For more details on SWE retrieval using SAR ac-
quisitions, several review articles are available (e.g., Tsang
et al., 2022).

Despite recent developments, SAR is still far from pro-
viding unambiguous information on SWE in all conditions.
However, it represents a promising tool to monitor the melt-
ing phases of the snowpack, i.e., the moistening, ripening,
and runoff phases or, in other words, the presence and evolu-
tion of liquid water inside the snowpack (Marin et al., 2020).
If the snow regime presents distinct ablation and accumula-
tion periods, the onset of runoff (i.e., when the SWE reaches
its maximum) derived by SAR adds value to the snow deple-
tion curve (SDC) when combined with optical data. The SDC
is a function that describes the relationship between SCA and
SD or SWE (Cline et al., 1998). Thus, time series of SCA can
be used to provide an indirect measurement of SWE (Yang
et al., 2022). SWE is a function of the duration of the snow
cover, which intrinsically considers the energy exchanges re-
sponsible for the melting process (Durand et al., 2008). For
example, shallow snowpacks and high melt rates are associ-
ated with an SDC having a high derivative, while deep snow-
packs and low melt rates are characterized by a longer curve
(e.g., Pimentel et al., 2015, 2017). Consequently, spatial ac-
cumulation and ablation variabilities, which are related to the
topography of the study area (Anderton et al., 2002), result
in different persistence of the snowpack (Luce et al., 1998).
Therefore, knowing the SDC and the SWE maximum at the
end of the accumulation for a catchment allows deriving the
evolution of SWE during melting. This intuitive idea opens
the possibility of assimilating SCA and SDC information
into physically based snow models to correct SWE evolution
and improve simulations (Arsenault and Houser, 2018).

Similarly, SDC can be exploited in combination with dis-
tributed snowmelt models to reconstruct SWE time series in
reanalysis (Martinec and Rango, 1981; Molotch and Mar-
gulis, 2008; Rittger et al., 2016). Unlike the methods that
require known precipitation and meteorological forces to re-
distribute the snowpack during the accumulation, SWE re-
construction builds the SWE time series backward from the
last day of snow presence. To this purpose, these approaches
exploit the estimation of the potential melt energy and the
knowledge about the presence of snow cover, thus simpli-
fying the solution of the problem. The SWE reconstruction
approaches showed good performances over large basins and
even mountain ranges (Bair et al., 2016). Nevertheless, the
accuracy of the results depends on a robust estimation of

https://doi.org/10.5194/tc-17-2387-2023



V. Premier et al.: Use of multi-source high-resolution satellite data for SWE reconstruction

both the potential melting and SCA. For the first one, sev-
eral methods were proposed that range from a simple yet ro-
bust degree-day (DD) model (Martinec and Rango, 1981) to
a complete radiation energy computation that also takes into
account the snow albedo (Bair et al., 2016). To estimate SCA,
many works presented in the literature exploit low-resolution
(LR) multispectral satellite images, since their large swath
allows a high repetition time, i.e., with a daily or sub-daily
acquisition. This mitigates cloud obstruction issues and in-
volves a proper SCA sampling. However, LR images do not
provide sufficient spatial detail on the variability of the snow
cover evolution in the mountains, which is on the order of a
few dozen meters. Moreover, the use of LR images results in
a nonlinear combination of the different contributions of the
elements within the pixel, and this may induce large errors
in the snow classification approaches, especially in complex
terrains. On the other hand, the use of HR snow maps intro-
duces important benefits in both determining SWE and fore-
casting streamflow (Molotch and Margulis, 2008; Li et al.,
2019). Landsat products were used to retrieve SCA in many
papers in the literature (e.g., Molotch et al., 2004; Molotch
and Bales, 2005, 2006). However, a Landsat satellite acquires
an image every 16d (at the Equator). With the introduction
of the Copernicus Sentinel-2 (S2) mission, HR images are
made available with an improved temporal resolution of 5d
(at the Equator). This opens up new opportunities to monitor
heterogeneous snow conditions in the mountains. Unfortu-
nately, due to cloud coverage, useful acquisitions are reduced
by 50 % in the Alps (Parajka and Bloschl, 2006). Therefore,
even if the Landsat images are exploited together with the
S2 images, only a few acquisitions are available per month.
Recently, we proposed an approach to the reconstruction of
daily HR snow cover maps. The approach performs a gap-
filling and a downscaling of the snow cover fraction (SCF)
maps derived at LR based on the idea that the melting and
accumulation patterns repeat interannually (Premier et al.,
2021; Revuelto et al., 2021). Therefore, by observing par-
tial HR or LR acquisitions it is possible to reconstruct a daily
HR snow cover.

This work explores the use of multi-source satellite data to
reconstruct HR daily SWE time series at a spatial resolution
of 25m. To achieve such detail, we propose as main novel-
ties the use of a daily HR SCA time series together with accu-
rate information on the melting phase from SAR data. To this
purpose, we also introduce the concept of the snow state of
a pixel, which represents the direction of the change in SWE
for that pixel: that is, accumulation (SWE increase), ablation
(SWE decrease), or equilibrium (constant SWE). This allows
reconstructing SWE without the need for spatialized precip-
itation data. Indeed, the method redistributes the amount of
melting by exploiting the information about the state rather
than quantifying the precipitation input. Moreover, the state
allows us to set up a novel regularization of the SCA time
series. In the paper, we also present a critical analysis of the
main sources of error to provide insights into the main advan-
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tages and disadvantages of the method that may be of great
interest for several hydrological and ecological applications.
We explore the applicability of the method to two mountain-
ous catchments: (i) the South Fork of the San Joaquin River
(SFSJR), located in the Sierra Nevada — California (USA),
and (ii) the Schnals catchment, located in the Alps — South
Tyrol (Italy).

The paper is structured into five sections. Section 2
presents the different steps of the proposed approach to re-
construct the daily HR SWE. The two test sites consid-
ered for experimental validation and the related dataset are
presented in Sect. 3. The results obtained are illustrated in
Sect. 4. In Sect. 5, we discuss the main sources of errors of
the method and the novel SCA regularization. Finally, Sect. 6
draws the conclusions of the work and gives indications for
further exploitation of the proposed approach.

2 Proposed approach to HR SWE reconstruction

The presented approach is made up of three main parts:
(1) identification of the state, (ii) characterization of the snow
season from the regularized SCA time series, and (iii) calcu-
lation of the SWE. The details will be illustrated in the fol-
lowing three subsections. As depicted in Fig. 1, the method
starts with the identification of the state, i.e., accumulation,
ablation or equilibrium (see Sect. 2.1). The state information
is used first in this step to both regularize the SCA time series
taking into account impossible transitions and correctly de-
termine the beginning and end of the season (see Sect. 2.2).
With impossible transitions, we indicate an erroneous change
in the pixel class from snow to snow-free when the state is ac-
cumulation or equilibrium and, vice versa, the change from
snow-free to snow when the state is ablation or equilibrium.
The regularized time series of SCA is then used with the po-
tential melting to reconstruct the daily HR SWE maps (see
Sect. 2.3). The state information is used again in this step
(i) to redistribute the total amount of SWE calculated for
the melting in the accumulation period and (ii) to include
late snowfall that occurs after the peak of accumulation in
the reconstruction. Both cases are generally omitted in state-
of-the-art SWE reconstruction methods (e.g., Martinec and
Rango, 1981; Molotch and Margulis, 2008).

2.1 Identification of the state

Three states are introduced to describe possible SWE
changes within a pixel, i.e., ASWE between two times  — 1
and . As illustrated in Table 1, the states are (i) accumu-
lation, which represents an increase in SWE (ASWE > 0),
(ii) ablation, which represents a reduction in SWE (ASWE <
0), and (iii) equilibrium, which represents a stable SWE
(ASWE = 0).

There are several phenomena that cause an SWE varia-
tion, such as snowfall, melting, sublimation, human activi-
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Figure 1. Workflow of the proposed approach showing the three main steps: (i) state identification, (ii) characterization of snow season from
SCA, and (iii) SWE reconstruction. The inputs are (i) SWE or SD from automatic weather stations (AWSs), (ii) SAR backscattering time
series, (iii) a daily HR SCA time series, and (iv) daily spatialized potential melting maps derived from AWSs. As output, we obtain the daily

HR SWE maps.

Table 1. Definition of the three possible states: accumulation, ab-
lation, and equilibrium. The possible class transitions at pixel level
associated with the state are described.

Class transition

State ASWE Description
t—1 t

Accumulation -0 = O Snow on bare ground
O U Snow on snow

. nowpack disappearance

O [ Snowpack disappi

Ablation <0 R
O O Snowpack reduction
U O Stable snowpack

Equilibrium =0 ‘

d = [ Bare ground

Legend: (1 = snow [ = snow-free

ties, and redistribution due to wind or gravitational transport,
e.g., avalanches. However, we refer mainly to snowfall if in
accumulation and to melting if in ablation. Indeed, we pro-
pose estimating the SWE to be added to the reconstruction
by considering a quantity proportional to the snow depth or
SWE daily increment. Thus, in an ideal case, we include only
fresh snow as the main driver. Similarly, the amount of SWE
to be subtracted is calculated using a DD model, and there-
fore it only represents melting. Trivially, SWE remains con-
stant when in equilibrium. Note that the state is defined on a
daily scale, which corresponds to the temporal resolution of
the exploited HR SCA time series. In this work, the diurnal
fluctuations in meteorological forces are not considered.
The state varies pixel-wise due to the topography and me-
teorology of the study area. However, it is difficult to ex-
trapolate this information with the necessary spatial detail.
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In the following paragraphs, we propose simplified strategies
for the accumulation and ablation determination. If none of
them are identified, the state is equilibrium.

2.1.1 Accumulation identification

The accumulation identification can be retrieved from a net-
work of automatic weather stations (AWSs) that provide
continuous information about the occurrence and elevation
of snowfall events: for example, direct SWE measurements
or indirect precipitation and SD measurements. Continuous
SWE measurements are unfortunately scarcely available. By
means of pluviometers and temperature observations, it is
possible to split precipitation between liquid and solid and
identify the state accordingly. However, these stations are
rarely installed at high elevations. SD sensors are more suit-
able for our purpose, but their observations are often affected
by wind and gravitational transport, leading to deposition or
removal that can be falsely interpreted as accumulation or
ablation. Hence, even if the AWSs are generally situated in
locations undisturbed by wind action, it is more convenient
to dispose of a large number of AWSs that need to be filtered
to exclude possible sensor errors or wind and/or gravitational
redistribution. In fact, a station is usually representative of a
limited area whose extension is highly variable depending on
the complexity of the terrain. In the case of a well-monitored
area with stations distributed with elevation, it is possible
to divide the catchment into different elevation belts where
the snowfall events can be considered nearly homogeneous.
However, in many basins, this might be far from reality. As a
common configuration for snow monitoring, we have a sin-
gle station located at a high point of the catchment, which is
informative enough to identify the accumulation events but
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not their extent. Furthermore, it has been shown in the liter-
ature that estimating the snowfall limit can be very challeng-
ing (e.g., Fehlmann et al., 2018).

Therefore, the method can be adapted based on the avail-
ability of in situ observations. In this study, we made use of
SWE and snow depth measurements, since they were avail-
able in our analyzed basins. To consider snowfall to be oc-
curring, the increase in SWE or SD should be greater than
a certain threshold SDy,in/SWEnin that is fixed at 2 cm for
SD according to the values found in the literature (Engel
et al., 2017), resulting in a value of 2mm for SWE when
considering the typical density of fresh snow (100 kgm™3).
Unfortunately, the basins are poorly monitored in terms of
these variables, and consequently the snowfall limit cannot
be estimated in an appropriate manner. Hence, we consider
snowfall to be occurring throughout the snow-covered area
of the catchment. We acknowledge that this assumption may
result in less accurate SWE estimation, especially in the case
of mixed states. For example, snowfall can be observed at
high elevations, together with rain on snow at low elevations,
causing snowmelt. However, we assume that the effect of
these events on the total SWE balance is small enough to
be considered negligible, as we will discuss in Sect. 5.2.

In summary, when the AWSs show an increment greater
than a defined threshold, we identify the state as accumula-
tion.

2.1.2 Ablation identification

The ablation can be identified by using a snowmelt model.
We consider the simple temperature index model here, which
is an empirical model that makes use of air temperature as a
proxy for the melting (Ohmura, 2001). When the temperature
exceeds a fixed threshold, we expect the pixel to melt. How-
ever, this is a simplified approach that does not consider all
the components that contribute to snowmelt. More complex
formulations include estimates of radiation, sensible heat, la-
tent heat, and ground heat fluxes (e.g., Ismail et al., 2023).
Moreover, temperature observations may be sparse, thus af-
fecting the accuracy of the spatialization.

Multi-temporal SAR observations derived from Sentinel-1
(S1) can detect the presence of a melting snowpack, as ex-
plained by Marin et al. (2020). The authors investigated the
relationship between the SAR backscattering and the three
melting phases, i.e., the moistening, ripening, and runoff
phase. In detail, they showed that if the SAR backscatter-
ing presents a decrease of at least 2 dB, the snowpack gets
moistened (Nagler and Rott, 2000). Initially, at the beginning
of the moistening phase this decrease affects only the after-
noon measurements. When it also affects the morning mea-
surements, the ripening phase starts. Finally, the backscatter-
ing increases as soon as the SWE starts to decrease, which
corresponds to the beginning of the runoff phase. This mo-
ment represents the first contribution of the snowpack to the
release of water. Empirical experiments at five selected test
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sites showed that the melting phases were identified with an
RMSE of 6d for the moistening phase, 4d for the ripening
phase, and 7 d for the runoff phase.

The multi-temporal analysis of the SAR backscattering
represents a novel way to identify ongoing melting in a spa-
tialized manner. The runoff onset (frp) represents the time
when the snowpack is isothermal. In this way, information
about the cold content of the snowpack is incorporated into
the DD model excluding incorrect early melting. However,
the methodology presented by Marin et al. (2020) may fail
in areas such as forests. As shown by Darychuk et al. (2023),
the characteristic “U-shaped” signature of the backscatter-
ing signal is less evident in mature forest, also depending on
canopy structure, composition, and density. The signal can
be noisier due to the scattered contribution by the canopy.
Hence, we propose applying the method only for pixels that
present clear U-shaped backscattering, which can be also
present for forested areas. To this purpose, we apply a multi-
temporal analysis to the different available S-1 tracks. First,
we identify if a drop of at least 2 dB is present in the time se-
ries. Second, the minimum is selected after this drop. When
more tracks are available, we set the first minimum as the be-
ginning of the runoff. Therefore, we propose considering a
pixel to be in ablation for the entire period ranging from the
backscattering minimum to the disappearance of the snow
cover identified by optically derived time series. For the pix-
els that do not present the characteristic U shape, we rely on
the DD model for the identification of the melting state.

In summary, we propose identifying the state of ablation
for a specific date and a single pixel if the following condi-
tions are met: (i) there is no accumulation on the date in ques-
tion, and (ii) the SAR backscattering shows an increase after
a relevant drop of at least 2 dB, indicating that the minimum
value corresponding to fro has been reached, and (iii) the
degree day (as shown in Eq. 2) is greater than 0.

2.2 Characterization of the snow season from
regularized SCA time series

A necessary input for the proposed SWE retrieval is a daily
HR SCA time series or, in other words, the date of snow ap-
pearance tsa and disappearance tsp. As mentioned in the In-
troduction, such a product is not available directly from re-
motely sensed images due to limitations in the revisit time
and cloud obstruction. Therefore, it is necessary to recon-
struct it. Among the various methods present in the litera-
ture, we use the approach proposed by Premier et al. (2021),
which merges information coming from a sparse long HR
time series and a continuous daily LR time series acquired
in the period of interest. Gap-filling and downscaling steps
are performed by applying a set of hierarchical rules based
on historical analyses and topographical features. The main
idea behind the approach is that snow patterns persist over
time and follow a regular distribution that is strongly depen-
dent on the topography and meteorology of the area of in-
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terest (Mendoza et al., 2020). We refer the reader to Premier
et al. (2021) for details.

Despite the generally accurate results of the abovemen-
tioned approach (the overall accuracy is empirically esti-
mated to be around 92 %), the HR SCA output is still affected
by possible inconsistencies. Errors may arise either from the
classification algorithm applied to the multispectral input im-
ages or from the reconstruction approach. In detail, we can
highlight the presence of two main sources of errors: (i) an
underestimation of snow presence in forested areas when the
snow falls below the canopy and is thus not visible from the
satellite point of view (i.e., snow on the ground) and (ii) the
missed identification of snow patches at the end of the sea-
son. The first error source is due to the fact that the clas-
sification methods used for snow retrieval for both HR and
LR images rely only on the spectral information measured
inside the resolution cell of the sensor without a dedicated
module for inferring the presence of snow when hidden by
the canopy. This affects the detection of snow on the ground,
particularly for HR images, since the low-resolution cell is
likely to contain a majority fraction of the canopy, especially
over very dense forests. This problem is instead mitigated
for LR pixels that are likely to contain not only forested ar-
eas but also open fields where the snow is visible, increasing
in this way the possibility of detecting the snow presence.
Therefore, it is possible to observe local decreases in SCA
mainly in correspondence with an HR acquisition. The sec-
ond error involves mostly LR images whose spatial detail is
not enough to detect mixed pixels with low SCFE. This is an
error that persists over time since LR acquisitions are more
frequent than HR acquisitions, while a local increase in SCA
is shown in correspondence with an HR acquisition.

The state concept introduced in Sect. 2.1 can be used to
regularize the SCA. According to Table 1, only transitions of
the pixel class that are coherent with the state are allowed.
When in accumulation the pixel can only turn from snow-
free to snow if snow falls on bare ground, or it can continue
to be snow if snow falls on already deposited snow. Similarly,
when in ablation the pixel can only turn from snow to snow-
free if the snow cover disappears, or it can remain snow if the
snow cover partially melts. Finally, when in equilibrium the
pixel continues to be snow or snow-free depending on the sit-
uation. Therefore, we can define the impossible transitions:
(1) a pixel cannot turn from snow to snow-free from ¢ — 1 to
t if in accumulation or equilibrium, and (ii) a pixel cannot
turn from snow-free to snow from ¢ — 1 to ¢ if in ablation or
equilibrium.

When facing a wrong transition, we do not know a priori
whether the correct label is the one at # — 1 or the one at 7. To
derive the correct interpretation, we consider an appropriate
time window and compute the most frequent label according
to the majority rule. The time window is chosen differently
in the case in which we are facing a recent or an old date of
snow appearance fs . In detail, for a given pixel, we consider
the following.
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— A recent date of snow appearance when t —tsa < 10d.
In this period, we often observe missed detection of
snow under the canopy, especially by HR sensors. Un-
der this condition, we do not expect fast changes, since
the temperatures are likely to be low, and thus the po-
tential melting is low (see Eq. 1). Consequently, we pro-
pose considering a daily time window of +5 d from ¢ to
check what is the most persistent label of the considered
pixel (Parajka and Bloschl, 2006).

— An old date of snow appearance when t —tsp > 10d.
If the final melting has already started, changes may
be quick, and the most common situation is the missed
detection of mixed pixels as snow patches. We observe
that in this period HR sensors detect snow patches that
are completely omitted by LR sensors. In this case
(i) the dates after ¢ are not informative since the snow
patches disappear quickly, and (ii) daily SCA may not
be informative when derived from LR. For this reason,
we consider only the last up to five dates when an HR
was originally acquired in a time window between fsa
and ¢.

Once we determine the state and whether we are handling
a recent or old fs4, we can compute the most frequent la-
bel in the considered time window and apply the following
correction (see Algorithm 1). The correction is performed by
advancing forward in time; i.e., we assume that the previ-
ous labels are always coherent with the previous states. If we
are in accumulation or equilibrium, a transition from snow to
snow-free is not allowed. If the pixel is labeled snow in t — 1,
then it means that, for the sake of coherence, it turned into
snow in fg5. We also know the date of the most recent abla-
tion fa5tAB, 1.€., the last chance that the pixel had to become
snow-free. Therefore, we compute the most frequent label
accordingly with the majority rule described in the previous
paragraph, which varies depending on whether the snowfall
is old or recent. If (i) the most frequent label is snow, 7 is re-
placed with snow; (ii) if the most frequent label is snow-free,
all times starting from fyAB (O fSA, flastAB < fsa)uptor—1
are replaced with snow-free.

Analogously, the transition from snow-free to snow is not
allowed in ablation or equilibrium. If the pixel is labeled as
snow-free at t — 1, it means that, for the sake of coherence,
it turned to snow-free at tsp. We also know the date of the
most recent accumulation fj,5tAC, 1.€., the last chance that the
pixel had to become snow. Hence, we compute the most fre-
quent label accordingly with the majority rule, and if it re-
sults in (i) the most frequent label being snow-free, ¢ is re-
placed with snow-free; (ii) if the most frequent label is snow,
all times starting from fjy5iac (OF SD, flastaC < fsp) up to 7 —1
are replaced with snow.
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Algorithm 1 Regularization of the snow cover maps with the state.

if Accumulation or Equilibrium then

# Transition snow to snow-free is not allowed!

ift —tga < 10 days then
else

end

if most frequent label is snow then

‘ set t as snow

else

set [tiasea gt — 1] as snow-free

end
if Ablation or Equilibrium then

# Transition snow-free to snow is not allowed!

ift —tga < 10 days then
else

end
if most frequent label is snow then

‘ set [tiastacst — 1] as snow

else

set t — 1 as snow-free

end

EO0000O0m
1

ten -1

# The pixel is snow fromtg4 < — 1. Between g4 and ¢ — 1 all states are possible.

# tiast 4 g *= most recent ablation date, i.e. last chance to get snow-free. lf t150 45 < tsa then tjpeeap =tsa
| Recenttgq: check ¢+ 5 days and compute the most frequent label

| Old ¢s.4: check last up to 5 HR from ¢s5 4 to ¢ and compute the most frequent label

O @ E @&
tsp t

# The pixel is snow-free from tgp <t — 1. Between fgp and £ — 1 all states are possible.

# tiast Ao = Most recent accumulation date, i.e. last chance to get snow. If tj,,40 < tsp then {1,540 = tsp.
| Recenttg4: check ¢+ 5 days and compute the most frequent label

| Old ¢s.4: check last up to 5 HR from ¢s54 to ¢ and compute the most frequent label

I:IEII-EIDEII;I

£ t=1 g

[ o v g o [ o |

[ 1t

*

2.3 HR SWE reconstruction

Once the state is defined as described in Sect. 2.1 and the
daily HR SCA time series is regularized coherently with the
state as described in Sect. 2.2, we can apply the proposed ap-
proach to HR SWE reconstruction. As illustrated in Fig. 2,
this operation requires calculating the total amount of melt-
ing and redistributing it during the snow season according to
the preservation of mass and the state. To this purpose, we
estimate the daily potential melting with the DD model. For

https://doi.org/10.5194/tc-17-2387-2023

a generic time interval [# — 1; ¢], the potential melting M;_1 ;
is estimated through the following equation:

M;_1; [mm] =g [mm°C~'d™']

-DD;_1, [°Cd]if f > tro, (D
where a is the so-called DD factor and varies depending on
the area and the snow period. Note that potential melting is

considered only after the runoff onset as detected by S1 data.
We used a value of @ =4.5mm °C~! d~! for the SFSJR and

The Cryosphere, 17, 2387-2407, 2023



2394

a=5.2mm°C~"d~! for the Schnals catchment. The coef-
ficient is calibrated by considering the measured SWE and
temperature at the AWSs (if available) and also taking into
account the range of values derived in previous literature
(Hock, 2003). DD;_;; is the DD given by the cumulative
sum of the hourly temperatures exceeding a certain thresh-
old:

t
DD, i, = Z Tpif T > 7. )

t—1

The threshold temperature T is set to 0°C.

The DD is first calculated for each station and then spa-
tially interpolated using a three-dimensional universal krig-
ing routine with linear variogram and elevation as external
drift (Murphy et al., 2020). The choice arises from the re-
sults of a leave-one-out (LOO) cross-validation (see Sect. S2
in the Supplement). The variogram parameters are automat-
ically calculated at each time step using a “soft” L1 norm
minimization scheme. The number of averaging bins is set
to six (default value). The kriging is performed on the daily
DD values instead of on the raw hourly temperature values
to reduce computational times.

We can determine the total amount of melting My by
summing all daily M;_ ; for all those days in ablation within
the time range [fsa; tsp]. It is worth noting that a single pixel
may have more than one snow period, and hence we can have
more than a couple of rsp—tsp values. Mo, which has to be
equal to the total accumulation Ay, is then calculated as fol-
lows:

[N}
At =Mio= Y _ M,y if ablation for . 3)
t=tsA
Consequently, it is possible to reallocate the total accumula-
tion on days that are in accumulation:

A;_1,s = ki—1,1 Avor if accumulation for ¢, “4)

where k;_1; is a coefficient that represents the amount of
snowfall. If we have a network made by S AWSs with mea-
sured SWE (or similarly, SD), k is set proportional to the
observed snowfall:

S5 (SWE; —SWE'_))
212 s=1S(SWE] —SWE]_))

ki—1, =

if accumulation for t. (®)]

Note that the number of days in accumulation varies for each
pixel, and consequently, the coefficient is a function of time
and space. Thus, it is possible to determine the final output,
i.e., a daily HR SWE time series, by applying the following
rules pixel-wise.

0 if snow — free

SWE(r) = SWE(t — 1) ?f equilibrium ©)
SWE(t — 1) — M;_1, if ablation
SWE(t — 1)+ A;—1;  if accumulation
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It may happen that during ablation temperatures are low and
the term M;_1 ; is equal to O, thus coinciding with the equi-
librium state.

It is worth stressing the fact that although sublimation,
redistribution, and gravitational transport are not explicitly
taken into account in Eq. (6), their consequences are implic-
itly observed as a longer persistence of snow on the ground
that is detectable through the use of an accurate SCA time
series. Moreover, by providing an approximation of the accu-
mulation events, we also consider late snowfall that can occur
during the main melting season and that is a major source of
error in state-of-the-art methods (Slater et al., 2013a).

3 Study areas and dataset description

To assess the performance of the proposed method, we con-
sider two different test areas. The first one is the South
Fork of the San Joaquin River (SFSJR) located in Califor-
nia, USA, in the Sierra Nevada. For this test site, we con-
sidered three hydrological seasons that spanned from 1 Oc-
tober 2018 to 30 September 2021. The considered basin
has an area of around 970km? and a mean elevation of
3070 m, ranging from a minimum elevation of 1930m to
a maximum elevation of 4150 m. The percentage of for-
est area in this catchment is around 32 % (Shimada et al.,
2014). SWE maps with a resolution of 50 m are made avail-
able by the Airborne Snow Observatory (ASO). ASO cou-
ples an imaging spectrometer, a laser scanner, and a phys-
ical model that provides an estimate of the snow density
to derive accurate SWE maps (Painter et al., 2016). The
product presents an uncertainty derived from both the snow
depth retrieval (< 0.02m at a resolution of 50 m) and the
snow density modeling (13—30 kg m~3). This dataset repre-
sents our main reference for this study, given its high spa-
tial detail comparable with the proposed output. However,
we also consider an additional dataset at ~ 500 m resolu-
tion, i.e., the western United States daily snow reanalysis
(WUS-SR) product (Fang et al., 2022). A snow pillow for
continuous SWE measurements and an AWS providing air
temperature are available at the Volcanic Knob (VLC) sta-
tion, located at an elevation of around 3050 m. Unfortunately,
this is the only station within the catchment. For this rea-
son, as explained in Sect. 2.1, we assumed that the accumu-
lation occurs across the entire snow-covered area. However,
we also considered six other snow pillows and 10 stations
with continuous temperature measurements within a radius
of approximately 15km from the catchment (see Fig. 3a).
These data were downloaded from the United States De-
partment of Agriculture (USDA) Natural Resources Con-
servation Service (NRCS) Snowpack Telemetry (SNOTEL)
network (see https://www.wcc.nrcs.usda.gov/snow/, last ac-
cess: 1 July 2022) and from the California Data Exchange
Center (CDEC) (see https://cdec.water.ca.gov/, last access:
1 July 2022).

https://doi.org/10.5194/tc-17-2387-2023


https://www.wcc.nrcs.usda.gov/snow/
https://cdec.water.ca.gov/

V. Premier et al.: Use of multi-source high-resolution satellite data for SWE reconstruction 2395

Computation of the total mass SWE temporal reallocation
Ator = Mot (Eq.3) (Eq. 6)
w
=
(Y
s I Potential melting estimation
(Eq.1) Accumulation
estimation
(Eq.4)

Ap-1t =ke-1t Ator

tsa

Figure 2. Illustration of the reconstruction and temporal reallocation of the SWE for a given pixel. Starting from the left side of the figure,
the state is identified for each day of the snow season (delimited by 754 and tgp), and the potential melting is estimated according to Eq. (1).
Incorrect melting events prior to the runoff onset are excluded. The sum of all the potential melting on the different days represents the total
amount of SWE for that pixel. This is redistributed during the accumulation day using Eq. (4). For this illustrative example, a constant k is

considered. As one can notice, the reconstructed SWE can represent accumulation (even as late spring snowfall), ablation, and equilibrium
conditions.
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Figure 3. Overview of the two test sites: (a) South Fork of the San Joaquin River, California, USA, and (b) Schnals catchment, South Tyrol,
Italy. Background image © Google Maps 2022.
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The second catchment is the Schnals (Senales in Italian —
for brevity we will report the German name only) located in
the Vinschgau (Venosta) Valley in South Tyrol (Italy) in the
Alps. For this catchment, we analyzed two hydrological sea-
sons spanning from 1 October 2019 to 30 September 2021.
The considered area has an extent of approximately 220 km?
and a mean elevation of 2370 m, ranging from a minimum of
590 m up to a maximum of 3550 m. The percentage of for-
est area is around 25 % for this catchment (Shimada et al.,
2014). Manual SWE measurements are available for the hy-
drological season 2020/2021 (collected by the Avalanche
Center of the Bolzano Province — Lawinenwarndienst,
see https://lawinen.report/weather/snow-profiles, last access:
1 July 2022; and by Eurac Research, Institute for Earth Ob-
servation). Furthermore, we considered the operating tem-
perature and SD sensors of the province of Bozen (see https:
//data.civis.bz.it/it/dataset/misure-meteo-e-idrografiche, last
access: 1 July 2022). An overview of the Schnals catchment
and the location of available measurements is provided in
Fig. 3b.

The HR daily SCA time series is derived using the method
proposed by Premier et al. (2021). The input data used
for the reconstruction are the S2, Landsat-8, and MODIS
data. The method requires as input a long time series of
HR images. Therefore, we downloaded a total of about
400 scenes for SFSJR and 700 scenes for Schnals from
https://earthexplorer.usgs.gov (last access: 1 July 2022).
The following steps are applied to opportunely prepro-
cess the data: (i) conversion from digital number to top-of-
the-atmosphere (ToA) reflectance values, (ii) cloud mask-
ing through the algorithm s2cloudless available at https:
//github.com/sentinel-hub/sentinel2-cloud-detector (last ac-
cess: 1 July 2022) (Zupanc, 2017), (iii) SCF detec-
tion through an unsupervised statistical learning approach
(Barella et al., 2022) (RMSE of 22.82 and an MBE of 6.95),
and (iv) binarization of the classification results (SCF >
10 %). Daily MODIS data are needed for the analyzed hydro-
logical seasons. The ready-to-use MOD10 version 6.1 data
are distributed by the National Snow and Ice Data Center (see
https://nsidc.org/data/MOD10A1, last access: 1 July 2022)
(Hall and Riggs, 2021). The normalized difference snow in-
dex (NDSI) values are converted to SCF by using the algo-
rithm proposed by Salomonson and Appel (2004). The out-
put is a daily SCA time series with a spatial resolution of
25 m.

The S1 data are downloaded from https://search.asf.
alaska.edu/ (last access: 1 July 2022) and preprocessed
(i.e., precise orbit application, thermal noise removal, bor-
der noise removal, beta naught calibration, tile assembly,
co-registration, multi-temporal filtering, terrain correction,
geo-coding, and sigma naught calibration). These steps are
performed using SNAP (Sentinel Application Platform) and
some custom tools. The images are also resampled at 25 m
using the same spatial grid as for the SCA maps. Three tracks
are available for each test site, i.e., tracks 64, 137, and 144
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Figure 4. Time series of the total SWE for the SFSJR over the three
analyzed seasons. Continuous lines represent the proposed time se-
ries, dashed lines the WUS-SR dataset, and crosses the ASO refer-
ence.

for the SFSJR and tracks 15, 117, and 168 for Schnals, with a
total number of around 480 and 350 downloaded images, re-
spectively. For this work, we considered the VV polarization
only, which is more suitable for runoff onset identification
(Marin et al., 2020). The temporal resolution of each sepa-
rated track is 6 d. For this reason, the backscattering is inter-
polated daily, and a multi-temporal analysis is carried out for
the three tracks separately. If at least one track shows a drop
of at least 2 dB in the signal (Nagler and Rott, 2000) with re-
spect to a moving average of the previous 12d, we look for
the minimum after the drop, and for this moment onward the
pixel is considered to be in ablation.

4 Experimental results

In this section, we present the results obtained for SFSJR and
Schnals.

4.1 South Fork of the San Joaquin River

The proposed SWE maps are aggregated at a resolution of
50 m and compared to the corresponding ASO maps, for a to-
tal of 12 dates. Furthermore, we also compare the results with
the daily western United States snow reanalysis (WUS—-SR)
dataset at 500 m provided by Fang et al. (2022). The results
of the intercomparison with ASO are reported in Table 2. The
analysis shows a good correlation between the two products,
with an average correlation coefficient of 0.740. The aver-
age bias is —22mm, the average percent bias (PBIAS) is
—19 %, and the average RMSE is 212 mm. Our SWE maps
underestimate the SWE compared to ASO for the first two
seasons, 2018/2019 and 2019/2020, while overestimating it
for 2020/2021, which was the driest season with SWE be-
low average (see Sect. S1 and Fig. S1 in the Supplement).
A possible explanation is that a drier season leads to earlier
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Table 2. Results of the intercomparison between the proposed SWE and ASO maps for the SFSJIR. Bias, RMSE, and correlation are calculated

pixel-wise, while SWE is calculated for the whole basin.

Date Bias PBIAS RMSE Correlation SWE ASO SWE proposed

[mm] [%]  [mm] (-] [mm] [mm]
17 Mar 2019 —82 —11 315 0.73 778 699
2 May 2019 -33 =5 299 0.84 679 647
9 Jun 2019 -7 -1 268 0.88 511 504
4 Jul 2019 -37 —24 185 0.86 177 143
14 Jul 2019 —41 —58 164 0.80 106 67
15 Apr 2020 =71 -21 242 0.63 389 321
5 May 2020 —53 —26 224 0.67 250 199
23 May 2020  —91 —112 235 0.65 166 78
8 Jun 2020 —18 —58 161 0.66 48 30
26 Feb 2021 12 6 125 0.67 186 198
31 Mar 2021 81 29 168 0.73 191 271
3 May 2021 74 50 160 0.80 72 145

Table 3. Results of the intercomparison between the proposed SWE
and WUS-SR for the SFSJR. Bias, RMSE, and correlation are cal-
culated pixel-wise. The proposed SWE was aggregated to 500 m
resolution.

Season Bias PBIAS RMSE Correlation

[mm] [%] [mm] [-]
2018/2019 —51 22 174 0.73
2019/2020 —51 —40 108 0.63
2020/2021 —31 -25 100 0.63

melting. As the DD method does not consider seasonality
in the DD factor a, it is possible that we overestimate the
potential melting during the first phase of the season when
melting rates are lower due to less energy radiation input
(Musselman et al., 2017; Ismail et al., 2023). Additionally,
the five SWE maps from the first season, 2018/2019, show
decreasing RMSE values from midwinter to late-summer ac-
quisitions. Larger errors during the midwinter season (around
the maximum SWE) are probably due to error propagation
(Slater et al., 2013b; Rittger et al., 2016).

Similarly, Table 3 presents the results of the compari-
son between the proposed SWE dataset and the WUS-SR
dataset, for which metrics are computed pixel-wise by aggre-
gating the proposed SWE at a 500 m resolution. An average
value is then computed for the entire season. The comparison
reveals a systematic negative bias, which may be attributed to
the different modeling of snow under the canopy. The corre-
lation between the proposed and WUS-SR datasets is lower
than that between the proposed and ASO datasets. For further
comparison, Sect. S3 includes additional analyses of the pro-
posed approach, WUS-SR, and ASO at a 500 m resolution.
The analysis shows that the WUS—SR dataset also correlates
worse with ASO. However, the three time series show a con-
sistent behavior.

https://doi.org/10.5194/tc-17-2387-2023

Good agreement is also confirmed when comparing the to-
tal amount of SWE estimated through the three approaches
in the catchment. Figure 4 shows the time series of the total
SWE for the three hydrological seasons. In the plot, it is pos-
sible to appreciate the large SWE variability that can occur
for different seasons and that is well represented by all three
time series. The first hydrological season 2018/2019 shows
the highest amount of SWE, while the others are drier. For
reference, the SWE regime for the catchment is reported in
Fig. S1.

The VLC monitoring site, which is located within the an-
alyzed area, is also used to evaluate the obtained results, and
it shows good agreement between the proposed time series
and the in situ measurements (refer to Fig. 5). Note that the
WUS-SR presents a delay in detecting the tsp, probably due
to the coarser resolution, i.e., 500 m, despite a similar trend.
It is worth noting that the first year, 2018/2019, is also used
to set up the DD factor a that is then kept constant for the
other seasons. The found value is in accordance with num-
bers present in the literature (Hock, 2003; Ismail et al., 2023).
The validity of the chosen value is also confirmed by the
good agreement of the results for the next two seasons. How-
ever, adelay in detecting fro is observed in season 2018/2019
that results in a smaller SWE peak.

We also propose here a more detailed analysis on a spe-
cific date. To keep this analysis concise, we propose consid-
ering a date during the full melting season, a period of par-
ticular interest from a hydrological perspective. The consid-
ered date is 9 June 2019. For the analysis on the other dates
and the intercomparison with the WUS-SR dataset, please
refer to Sect. S3. Figure 6 reports the proposed SWE map,
the ASO SWE map, and the bias map calculated as the pixel-
wise difference between the proposed and the reference ASO
map at 50 m. In general, it is possible to notice good agree-
ment between the two maps. The proposed method is capa-
ble of reproducing spatial patterns similar to those detected
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Figure 5. SWE obtained by the proposed approach (pink continuous line) is compared against the measured SWE (in blue), the WUS-
SR SWE (pink dashed line), and ASO SWE (black crosses) at the Volcanic Knob test site for the hydrological seasons (a) 2018/2019,
(b) 2019/2020, and (c) 2020/2021. To extract SWE at the considered location, the original spatial resolution of each dataset is maintained.

by ASO. This finding demonstrates that the use of HR input
data achieves unique spatial detail, which represents one of
the main advantages of the proposed method. Upon closer
inspection of a specific area, this similarity can be better ap-
preciated. Nevertheless, it is possible to notice a tendency of
the proposed SWE maps to underestimate SWE, especially
in some areas exposed to the north. This could be attributed
to either (i) an error introduced by the DD model, which
only considers temperature and may not account for radiation
differences associated with different aspects (Ismail et al.,
2023), or (ii) an error in the snow depth retrieval or snow
density modeling introduced in the ASO maps.

Figure 7a displays the mean SWE values for different
elevation, slope, and aspect ranges. The most significant
changes are observed when analyzing the different elevation
ranges. The trend is quite consistent, with an increase in SWE
as elevation increases up to approximately 3500 ma.s.l.,
while the trend is reversed for higher elevations. These ar-
eas generally have very steep slopes, resulting in a marked
tendency for snow to be subject to gravitational transport.
The two SWE maps only differ for elevations higher than
about 4100 ma.s.l., where the proposed SWE starts to in-
crease again, while the ASO continues to decrease. The slope
analysis shows larger differences, especially when consider-
ing steep slopes. The proposed method underestimates SWE
compared to ASO. We generally expect lower SWE for these
steeper slopes that promote gravitational transport. The as-
pect analysis correctly indicates a larger amount of SWE for
north-facing areas. As mentioned earlier, we can observe an
underestimation of the SWE for north-facing slopes when
comparing our maps with the ASO. Conversely, we would
expect an overestimation of the SWE for the north-facing ar-
eas, as the DD method does not consider radiation effects.
However, we never observe this overestimation when con-
sidering this and other available reference dates presented in
Sect. S3.

Figure 7b shows the dispersion graph for the proposed
method and ASO. In general, a strong correlation can be
observed, albeit with significant dispersion, which is also
confirmed by the computed correlation and RMSE value re-
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ported in Table 2. However, the majority of the points are
clustered around the diagonal line.

Figure 8b shows the time series for the 2018/2019 sea-
son for three points along a selected transect. A zoom of
the transect is shown in Fig. 8a (see Fig. 6 for their location
in the basin). It is interesting to notice that the three points
differ in terms of forest coverage. While the low- and high-
elevation points are not directly located in the canopy, this is
not the case for the mid-elevation point. The proposed SWE
presents an expected behavior, i.e., longer snow persistence
and increasing SWE for higher elevation. However, the mid-
elevation point shows a later runoff onset with respect to the
other points, which is probably due to the fact that the timing
detected by S1 is less reliable in that area. This might intro-
duce an underestimation of SWE for that pixel. However, de-
spite some differences that can be due to the different spatial
resolution between the two products, an increasing SWE for
increasing elevation is also seen for the WUS-SR dataset.
On the other hand, the ASO shows a higher SWE for the
mid-elevation point. Note that even though we use ASO as
a main reference, there may be inconsistencies present, such
as possible inaccurate estimation of the snow density by the
model. Interestingly, the figure also correctly shows a vari-
ability in the three proposed SWE time series. Notwithstand-
ing the fact that the stations are used to identify the accumu-
lation state, the SWE time series does not necessarily present
the same shape everywhere as for the station (see Figs. 8 and
5). The final result is influenced not only by the persistence
of the snow, but also by the potential melting, which varies
depending on the elevation. This is calculated using kriging
with external drift.

4.2 Schnals catchment

For the Schnals valley, spatialized SWE data to be used as a
reference are unfortunately not available. However, manual
SWE measurements for the hydrological season 2020/2021
were collected along spatial transects. The location of the
measurements is shown in Fig. 3b. The results show a bias of
—5mm, an RMSE of 191 mm, and a correlation of 0.35. Fig-
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Figure 6. Proposed SWE map (a), ASO SWE map (b), and bias map calculated as the difference between the proposed and ASO SWE (c)
for 9 June 2019 for the SFSJR. A zoom is shown under the corresponding maps. A transect is shown with three green dots in the northern

area of the catchment.
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Figure 7. Mean SWE value for different elevation, slope, and aspect belts (a). The proposed SWE (in orange) is evaluated against ASO (in
blue) for 9 June 2019 for the SFSJR. (b) Dispersion graph for the same date.

ure 9 shows the proposed reconstructed SWE plotted against
the manual measurements. Despite generally good agree-
ment, we observe some significant differences and a worse
performance compared to the analysis performed for the Cal-
ifornian catchment. However, the reference dataset is insuffi-
ciently informative and represents only a few points that may
not be entirely representative of the intra-pixel variability, es-
pecially in complex terrains. As shown by the SWE measure-
ments acquired in Schnalstal by Warscher et al. (2021), high
spatial heterogeneity of the SWE can be encountered when
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considering a pixel with a size of 25 m. This results in inher-
ent difficulties in appropriately evaluating the output.

Figure 10 shows the map of the maximum SWE for the
two analyzed hydrological seasons. From these highly de-
tailed maps, it is possible to see that the season 2020/2021
is characterized by a higher amount of SWE. However, the
2 years show similar patterns that are consistent with the mor-
phology of the study area. In detail, we can notice that there
is a higher amount of SWE, especially in the eastern part
of the catchment, that corresponds to the glacierized area of
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Figure 9. Proposed SWE (x axis) against observed SWE (y axis)
for the season 2020/2021 in the Schnals catchment (see Fig. 3b).

the Roteck—Monte Rosso mountain. We found a longer per-
sistence of snow for these north-exposed slopes and conse-
quently a larger amount of reconstructed SWE.

Due to the absence of an appropriate dataset for the SWE
intercomparison in the Schnals valley, we carry out a qual-
itative analysis of the correlation between SWE and river-
ine discharge. To achieve this, we analyze (i) the discharge
measured at Schnalserbach—Gerstgras, (ii) the SWE varia-
tions that are associated with runoff (i.e., only when they are
associated with a decrease in SWE) for the corresponding
subcatchment, and (iii) the precipitation measured at Ver-
nagt. Refer to Fig. 3b for the location of the outlet point
and pluviometer. Figure 11 shows good agreement in terms
of both timing and quantity between snow-generated runoff
and discharge, confirming that the catchment is snowmelt-
dominated. The discharge starts increasing in correspon-
dence with the snowmelt, and it starts decreasing when the
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snowmelt is reduced for both periods. The first year shows
a delay, while the response is more direct for the second
season. More than differences in terms of precipitation, we
ascribe this situation to a different snowmelt rate. Indeed,
the season 2019/2020 shows an earlier, weaker, and longer
distributed snowmelt period, interrupted by periods with low
SWE output (such as the end of March—beginning of April,
beginning of May, and middle of June). This situation may
favor ground infiltration with a predominance of subsurface
runoff with respect to surface runoff, contributing slowly
to the discharge. On the other hand, the 2020/2021 season
shows a long and high-intensity SWE release (end of May—
end of June) that may cause a sudden saturation of the soil,
with predominant surface runoff contributing more directly
to the discharge. This hypothesis may also be confirmed by
recent literature, showing that when snowmelt is earlier, it
is also less intense, and the runoff response could be re-
duced, with strong implications for future climate change im-
pacts (Musselman et al., 2017). However, other contributions
should also be considered, such as the storage of water in the
two reservoirs present in the territory. While a proper anal-
ysis requires a complete hydrological study and a hydraulic
characterization of the watershed properties, we believe that
this simplified analysis demonstrates the potential of the pre-
sented results in a real application.

5 Discussion

The results indicate that the proposed method is capable of
reproducing the SWE with high geometrical detail and in
an accurate way. Particularly good agreement with respect
to other datasets is achieved when considering the results
on a catchment scale. The method demonstrates good per-
formance in reproducing the expected SWE behavior when
analyzing the topography of the study area. However, when
considering a reference with comparable spatial resolution,
significant differences are observed. In this section, we dis-
cuss the main sources of errors and weaknesses that may af-
fect the results and provide a simplified sensitivity analysis of
the parameters that play a role in the proposed approach. Fur-
thermore, we also provide a detailed discussion of the effec-
tiveness of the novel SCA regularization introduced through
the state definition.

5.1 Sensitivity analysis

The potential sources of errors in the method are represented
by (i) a wrong state identification, (ii) the incorrect identifi-
cation of g4 and tsp, which in turn depends on the accuracy
of both the SCA time series and the state, and (iii) the use
of a DD model for the potential melting estimation; this in
turn depends on the quality of air temperature recordings,
the interpolation routines, and the simplified assumption of
the method itself, which does not take into account different

https://doi.org/10.5194/tc-17-2387-2023



V. Premier et al.: Use of multi-source high-resolution satellite data for SWE reconstruction

10.85 10.90 10.95 11.00
1 X 1 1

46.75
46.75

46.70

T T T T T T
10.75 10.80 10.85 10.90 10.95 11.00

(a)

o
k7 SWE max [mm]
+ [l no data

46.65
I
A4
1=}
1=}
15}

2401

10.75 10.80 10.85 10.90 10.95 11.00
I 1 L X 1 1

46,75
46.75

46.70

T T T T T T
10.75 10.80 10.85 10.90 10.95 11.00

(b)

Figure 10. Maximum of SWE for the Schnals catchment for the hydrological seasons (a) 2019/2020 and (b) 2020/2021.
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energy inputs due to either topographical features or differ-
ent periods of the year. Since the input data are subject to
several degrees of preprocessing, it is difficult to perform a
complete sensitivity analysis of the method. This has been
partially covered by other works (e.g., Slater et al., 2013b;
Ismail et al., 2023). Here, we present a simplified sensitivity
analysis of the parameters that play a role in the proposed ap-
proach. For the sake of clarity, we investigate how the most
important parameters affect the final SWE reconstruction by
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Table 4. Optimal parameter values for the pixel with the Volcanic
Knob station.

Parameter  Unit Value

a mm°C~ld=! 48

SWEin mm 2

tsp d 27 Jun 2019
ISA d 22 Nov 2018
RO d 22 Apr 2019

considering the pixel where the station Volcanic Knob pro-
vides continuous SWE measurements in the Sierra Nevada
catchment. These parameters are (i) the DD factor a, (ii) the
SWE threshold SWE, used to identify the states, (iii) the
time of snow disappearance (fsp), (iv) the time of snow ap-
pearance (fsa ), and (v) the time of the runoff onset detected
by S1 (tro). We vary each of these parameters separately,
keeping the others constant and equal to the optimal case (see
Table 4). The test is carried out for the 2018/2019 season. Al-
though this analysis is not exhaustive, it gives an overview of
the most important sources of error.

In Fig. 12a a varies from 3 to 6 by steps of
0.2mm°C~!d~!. Tt is possible to notice that the error in-
creases linearly when a moves away from the optimal value,
which is 4.5mm°C~1d!, as set for the SWE reconstruc-
tion.

In Fig. 12b the SWE threshold varies from 0 to 20 by
steps of 1 mm. As expected, the higher the threshold, the
greater the error. Indeed, for thresholds that are too large, the
method does not detect accumulation states. A snow thresh-
old of 2 mm, as used in this work, is acceptable.

In Fig. 12c tsp varies in a range of +15d with respect
to the optimal day. Both underestimating and overestimat-
ing tgp introduces important errors in the reconstruction. In-
deed, at the end of the melting season the temperature is high
and consequently the potential melting. A difference of £5d

The Cryosphere, 17, 2387-2407, 2023
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Figure 12. Sensitivity analysis of (a) the DD factor (a), (b) the SWE
threshold (SWE,in), (¢) the time of snow disappearance (fsp),
(d) the time of snow appearance (fg ), and (e) the time of the runoff
onset detected by S1 (frp). One parameter is varied while the oth-
ers are kept constant and equal to the optimal value as reported in
Table 4.

(which corresponds to the repetition time of S2) already in-
troduces an RMSE of approximately 50 mm.

In Fig. 12d tga varies in a range of +15d with respect to
the optimal day. The shift of 755 does not strongly affect the
RMSE as rsp does. For negative shifts, the RMSE is con-
stant since no SWE is added to the reconstruction. Indeed,
for these days, we find that the coefficient k (see Eq. 4) is 0
since it is calculated from the AWSs. In other words, it means
that the accumulation is not really happening before at least
one station detects an increase in SWE. This might introduce
an error if some pixels are in accumulation before the sta-
tion reports it, but it does not affect the maximum amount of
SWE for those pixels, which is determined only by the days
in ablation.

In Fig. 12e fro varies in a range of £15d with respect
to the optimal day. Furthermore, the shift of fro does not
strongly affect the RMSE as does fsp. The RMSE for neg-
ative shifts remains constant after a certain point, since for
those days Eq. (1) returns zero potential melting due to neg-
ative temperatures. This means that anticipating the melting
phase is less critical than postponing it, since the tempera-
tures and consequently the potential melting are lower.

In general, we can summarize by stating that changes in
a and tsp are expected to strongly affect the results. The DD
factor a cannot be considered a constant parameter and has to
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Figure 13. SCA time series in the SFSJR for the hydrological sea-
sons (a) 2018/2019, (b) 2019/2020, and (c) 2020/2021. Original in-
put version (in blue) and regularized version (in orange). The gray
background color corresponds to an accumulation state.

vary in space and time to minimize the SWE reconstruction
error, as pointed out by many researchers (e.g., Ismail et al.,
2023). On the other hand, given the high temperature and po-
tential melting values at the end of the ablation, an incorrect
estimate of zgp can significantly impact the reconstruction of
the SWE peak, resulting in either an overestimation or under-
estimation. Therefore, the introduction of an accurate daily
HR time series can greatly benefit the SWE reconstruction.

5.2 SCA regularization

Figures 13 and 14 show the SCA before and after regulariza-
tion for the SFSJR and Schnals catchments, respectively. As
explained in Sect. 2.2, the raw reconstructed SCA presents
two issues: (i) strong decreasing peaks in correspondence
with HR acquisitions at the beginning of the season, in-
dicating an underestimation of SCA in forested areas, and
(i1) small increasing peaks in correspondence with HR ac-
quisitions in the late melting phase, indicating the presence
of snow patches that are not visible in LR images. In con-
trast, the regularized SCA is more stable, and the spurious
oscillations, especially during the coldest winter period, are
corrected. The effectiveness of the correction is also visible
when looking at the regularized image. Figure 15 represents
a common situation in which atmospherically corrupted and
mixed pixels are classified erroneously. The proposed cor-
rection improves snow detection, especially in these compli-
cated cases.
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An underestimation of SCA is observed in May 2019 for
the SFSJR catchment (see Fig. 13a). A careful examina-
tion of the conditions that led to the flattening of the SCA
during the late snowfall reveals that the stations indicate a
long period as accumulation (from 16 to 29 May), whereas
the peak starts decreasing in the original SCA time series
from 21 May. By applying the rule for a recent snowfall
(see Sect. 2.2 and Algorithm 1), the majority of the pixels
are labeled as snow-free. In other words, the peak lasts only
a few days, so the label snow does not persist for a long
time. This implies a replacement with snow-free backward
until the day of the last ablation. It is possible that the AWSs
present some sensor errors, but this could also be the case of
a mixed state inside the catchment. In other words, the AWSs
detect snowfall, but this is most likely occurring at high el-
evations, while the SCA decreases due to ongoing melting
or rain on snow, especially in the lower-elevation belts of
the catchment. Indeed, the SCA decrease from ~ 100 % to
~ 80 % means that low elevations become snow-free. How-
ever, we expect such ephemeral snowfall not to significantly
affect the total amount of SWE, as shown in Sect. 4.1.

On the other hand, an evident case in which an overesti-
mation of the SCA is introduced is in the season 2020/2021
in May—June for the SFSJR (see Fig. 13c). This overestima-
tion is caused by the fact that the AWSs do not indicate an
accumulation in correspondence with the peaks that occur in
the late melting phase. Therefore, the label is corrected ac-
cording to the majority rule in ablation in the case of old
snowfall. Most of the pixels were snow in previous HR ac-
quisitions, leading to the propagation of the class backward
and the consequent overestimation of the SCA. This could be
a reason for an overestimation of the SWE as shown in the
“Experimental results” section (see Sect. 4.1).
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It is evident that the effectiveness of the SCA regulariza-
tion is strongly influenced by the reliability of the state iden-
tification. At the current state, the main limitation of the pro-
posed method is represented by the accumulation identifica-
tion, which is not provided at a pixel level. Future research
should focus on this point and exploit remote sensing obser-
vations rather than sparse AWS information. For example, a
possible indicator of ongoing accumulation is represented by
an SCA increase. However, small variations may be due to
errors. Furthermore, snowfall on already snow-covered areas
cannot be identified. A possible alternative is represented by
the use of SAR data. Recent works have shown that backscat-
tering seems to be sensitive to the presence of fresh snow,
showing an increase in the backscattering in correspondence
with snowfall (e.g., Tsang et al., 2022; Lievens et al., 2022).
However, the poor temporal resolution may strongly affect
the accumulation rather then the ablation, since snowfall is
expected to be a more rapid phenomenon.

6 Conclusions

In this work, we explored the use of multi-source satellite
data to reconstruct HR daily SWE time series at a spatial
resolution of 25 m. The proposed approach involves the fol-
lowing steps: (i) determining the state (i.e., accumulation, ab-
lation, or equilibrium) using in situ SD / SWE and tempera-
ture observations, as well as S1 multi-temporal backscatter-
ing data, (ii) identifying the dates of snow appearance and
disappearance from a daily HR snow cover time series de-
rived by fusing high- and low-resolution optical sensors, and
(iii) estimating the potential melting from in situ temperature
observations using a DD model. We proposed a novel regu-
larization of the SCA time series that considers the state in-
formation. The regularization corrects impossible transitions,
i.e., erroneous changes in the pixel class from snow to snow-
free when in accumulation or equilibrium and, vice versa,
from snow-free to snow when in ablation and equilibrium.
Finally, the SWE is added or removed from the reconstruc-
tion according to the state, with the amount determined by
the potential melting calculated using the DD model.

The proposed novel state concept is utilized throughout
the different steps of the method, resulting in an SWE recon-
struction that incorporates the accumulation phase and po-
tential late snowfall. Furthermore, spatialized precipitation
data, which can be unreliable for complex terrains, are not
required as the method redistributes the amount of melting
by leveraging state information rather than quantifying pre-
cipitation input. The state also enables the implementation
of a new regularization of the SCA time series. Additionally,
the use of a daily HR SCA time series in combination with
melting phase information from SAR data is introduced as a
further innovation.

The method was tested in two mountainous catchments:
(i) the SFSIJR, located in the Sierra Nevada — California
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(b) original snow cover map, and (c) regularized snow cover map.

(USA), and (ii) the Schnals catchment, located in the Alps —
South Tyrol (Italy). The results obtained demonstrated the ef-
fectiveness of the proposed approach in estimating HR SWE.
For the first catchment, the results were evaluated against
ASO SWE at 50 m, showing an average bias of —22 mm, an
RMSE of 212 mm, and a correlation of 0.74. When evaluated
against the daily WUS-SR dataset at 500 m resolution, they
showed a bias of —44 mm, an RMSE of 127 mm, and a corre-
lation of 0.66. For the second site, the results were evaluated
against manual measurements, showing a bias of —5 mm, an
RMSE of 191 mm, and a correlation of 0.35. The obtained
results were extensively discussed, considering possible hy-
drological applications of such a dataset. In this sense, we
showed that the results are very promising since they (i) are
able to capture the typical spatial variability of an HR map,
(ii) show spatial patterns that are consistent with a reference
with comparable spatial resolution, as well as with the topog-
raphy of the study area, (iii) provide consistent trends when
considering the basin scale, (iv) reproduce the variability of
different hydrological seasons, and (v) require limited mete-
orological and ground snow observations.

The main sources of error are discussed to provide insights
into the main advantages and disadvantages of the method
that may be of great interest for several hydrological and eco-
logical applications. It was found that the main sources of
errors arise from the potential melting calculation and from
the time of snow disappearance. To address potential melt-
ing errors, we presented a method that incorporates spatial-
ized information from S1 to determine when the snowpack is
subject to runoff and prevent false early melting. Secondly,
we introduced the use of HR SCA for SWE reconstruction,
which is more adequate to sample the SCA variations due to
the complex topography of mountainous catchments. Tech-
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nological limitations are still present, such as the necessity of
merging LR and HR sensors given the absence of daily opti-
cal HR acquisitions, the absence of an appropriate observa-
tion to determine the accumulation state pixel-wise, and the
scarce temporal resolution of SAR acquisitions. Although
the proposed approach attempts to overcome all these lim-
itations, we expect that further improvements will also be
introduced by future satellite missions, such as Copernicus
LSTM and ROSE-L, which will acquire new important in-
formation for SWE retrieval. This will not only improve the
proposed method but also enable the development of near-
real-time predictors of SWE for large hydrological and eco-
logical applications.
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available upon request to the authors. All the raw input
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