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Abstract. Predicting avalanche activity from meteorological
and snow cover simulations is critical in mountainous areas
to support operational forecasting. Several numerical and sta-
tistical methods have tried to address this issue. However, it
remains unclear how combining snow physics, mechanical
analysis of snow profiles and observed avalanche data im-
proves avalanche activity prediction. This study combines
extensive snow cover and snow stability simulations with
observed avalanche occurrences within a random forest ap-
proach to predict avalanche situations at a spatial resolution
corresponding to elevations and aspects of avalanche paths in
a given mountain range. We develop a rigorous leave-one-out
evaluation procedure including an independent evaluation
set, confusion matrices and receiver operating characteristic
curves. In a region of the French Alps (Haute-Maurienne)
and over the period 1960–2018, we show the added value
within the machine learning model of considering advanced
snow cover modelling and mechanical stability indices in-
stead of using only simple meteorological and bulk informa-
tion. Specifically, using mechanically based stability indices
and their time derivatives in addition to simple snow and me-
teorological variables increases the probability of avalanche
situation detection from around 65 % to 76 %. However, due
to the scarcity of avalanche events and the possible misclas-
sification of non-avalanche situations in the training dataset,
the predicted avalanche situations that are really observed
remains low, around 3.3 %. These scores illustrate the diffi-
culty of predicting avalanche occurrence with a high spatio-
temporal resolution, even with the current data and modelling

tools. Yet, our study opens perspectives to improve modelling
tools supporting operational avalanche forecasting.

1 Introduction

Avalanches are a significant issue in mountain areas where
they threaten recreationists and infrastructures (Wilhelm
et al., 2001; Stethem et al., 2003). The mapping (Keylock
et al., 1999; Eckert et al., 2010b) and forecasting (Schweizer
et al., 2020) of avalanche hazard and related risks are there-
fore important challenges for local authorities (Bründl and
Margreth, 2021; Eckert and Giacona, 2022). Most of the
countries facing such hazards rely on operational services
for avalanche hazard forecasting (LaChapelle, 1977; Morin
et al., 2020) and hazard mapping (Eckert et al., 2018). In this
work, we focus on the issue of forecasting (estimation of the
outcomes of unseen data) of daily avalanche activity from
simulated meteorological and snow data. Indeed, inferring
the relation between avalanche activity and given weather
and snow conditions is one of the essential components of
operational avalanche hazard forecasting (prediction in the
future based on predicted snow and weather conditions).

Prediction of avalanche activity is mainly based on the
knowledge of the snowpack evolution and of the mechani-
cal processes leading to avalanches (e.g. LaChapelle, 1977;
Morin et al., 2020). Information on the snowpack evolution
can be collected through field observations and measure-
ments (e.g. Coléou and Morin, 2018) and numerical simu-
lations (e.g. Bartelt and Lehning, 2002; Vionnet et al., 2012).
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These data typically include a detailed description of the
snowpack stratigraphy with vertical profiles of snow proper-
ties (Fierz et al., 2009). Several methods allow for identify-
ing avalanche-prone situations from these profiles. Detection
of weak layers based on mechanical and expert rules, such
as the so-called lemon technique (Schweizer and Jamieson,
2007), comprises one qualitative approach. Numerical com-
putation of stability indices based on mechanical theories
constitutes an automated method to quantify the snowpack
stability (Roch, 1966; Föhn, 1987; Lehning et al., 2004;
Schweizer et al., 2006; Viallon-Galinier et al., 2021). These
approaches rely on the knowledge of mechanical processes
involved in avalanche release (Schweizer, 2017; Viallon-
Galinier et al., 2021). Numerical models, which are currently
used as an aid to decision-making for avalanche forecasters,
generally combine mechanical stability indices and expert
rules to provide information on snowpack stability (Morin
et al., 2020; Schweizer et al., 2006; Giraud et al., 2002;
Viallon-Galinier et al., 2021).

Machine learning techniques can approach the complex
link between simple snow cover variables and avalanche
occurrence. These methods allow taking advantage of the
knowledge of past avalanche activity to determine objec-
tive delimitation of avalanche-prone conditions within the
space defined by their potential drivers. The first attempt
to use machine learning techniques in the avalanche com-
munity was performed using linear methods by Bois et al.
(1974). In the next decade, several attempts were made to
use nearest neighbours for local avalanche danger forecast-
ing (e.g. Navarre et al., 1987; Buser, 1989). Classification
trees quickly became another common choice, as it is con-
ceptually close to decision processes used by forecasters (e.g.
Kronholm et al., 2006; Hendrikx et al., 2014). The first use
of random forests was performed by Mitterer and Schweizer
(2013). This method became popular in the community (e.g.
Sielenou et al., 2021; Pérez-Guillén et al., 2022; Mayer et al.,
2022). Other techniques have also been tested, such as sup-
port vector machine (e.g. Pozdnoukhov et al., 2011; Choubin
et al., 2019; Sielenou et al., 2021), and more advanced tech-
niques appeared in the last few years such as convolutional
neural networks (e.g. Singh and Ganju, 2008; Dekanová
et al., 2018).

Most existing studies used meteorological variables as in-
put or simple bulk variables such as snow depth to feed the
machine learning model. The first machine learning mod-
els (Navarre et al., 1987; Buser, 1989) mainly relied on
meteorological observations, simple snow observations and
avalanche records. The use of modelled snow information
was therefore developed to complement or replace obser-
vations (e.g. Schirmer et al., 2009; Sielenou et al., 2021),
and expert analyses were introduced to provide appropri-
ate variables (Schweizer and Föhn, 1996). However, most
of the commonly used variables are only surrogates for the
true drivers of avalanche processes. By contrast, studies us-
ing mechanically based variables closely related to the pro-

cesses involved in avalanche formation (e.g. Viallon-Galinier
et al., 2021) are less frequent in machine learning approaches
(e.g. Schweizer and Föhn, 1996; Mayer et al., 2022). How-
ever, these variables could increase the interpretability of the
algorithm results and bring complementary non-linear infor-
mation readily oriented toward the prediction of avalanche
activity. Hence, they may reduce the complexity of statistical
tools to implement (simpler statistical relations and a smaller
number of variables to consider) compared to a model that
directly uses the snow model output and improve the overall
predictive power.

Existing statistical prediction approaches are difficult to
compare. Different spatial extensions are considered from
large mountain ranges (e.g. Kronholm et al., 2006; Sielenou
et al., 2021) to avalanche paths (e.g. Choubin et al., 2019).
In the literature, different measures of avalanche activity are
also considered from binary classes (e.g. Kronholm et al.,
2006; Hendrikx et al., 2014) to ordinal multi-classes (e.g.
Mosavi et al., 2020; Sielenou et al., 2021). Yet, the most im-
portant difficulty for the comparison is that existing studies
do not share a common evaluation process which includes a
relevant segmentation of the training and evaluation datasets
and common performance metrics. This absence of a homo-
geneous methodology for evaluating machine learning ap-
proaches within the snow and avalanche community limits
the comparison between studies.

On this basis, this paper aims to determine whether com-
bining machine learning on avalanche data and mechanical
stability analysis of snow profiles helps predict avalanche ac-
tivity. In particular, we compare the prediction score of the
model trained either only on meteorological and simple snow
variables as input or also on variables related to the snow-
pack stability and derived from the full snowpack stratig-
raphy. We use random forest techniques to relate meteoro-
logical, modelled snowpack information and mechanically
based stability indices to observed avalanche occurrences.
We also employ time derivatives of mechanical indices to
account for short-time persistence of avalanche-prone condi-
tions in certain cases. We eventually present a rigorous leave-
one-out evaluation procedure of broad interest for evaluating
avalanche prediction efficiency that includes an independent
evaluation set, confusion matrices, receiver operating char-
acteristic (ROC) curves and additional scores derived from
the confusion matrix. The study area is located in Haute-
Maurienne in the French Alps where extensive avalanche
data and snow cover reanalyses over 58 years (1960–2018)
are available.

2 Material and methods

2.1 Study area

We selected an area belonging to the Haute-Maurienne mas-
sif in the northern French Alps, consisting of the three district
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Figure 1. Studied area. General situation on the left and contour of
avalanche paths surveyed each day (EPA) in blue for the three dis-
trict municipalities of our studied area (delimited with orange lines).
Only the avalanches that flow below a certain threshold (blue line at
the bottom of each avalanche path) are systematically reported.

municipalities of Bessans, Bonneval sur Arc and Lanslevil-
lard (Fig. 1). This area is frequently studied for avalanche-
related issues (e.g. Ancey et al., 2004; Eckert et al., 2009;
Favier et al., 2014; Kern et al., 2021; Zgheib et al., 2020)
because it is prone to intense avalanche activity. The area
is characterized by a relatively high elevation ranging from
1400 to 3700 m, and its avalanche activity does not yet seem
to be reduced by adverse climate warming effects (Lavi-
gne et al., 2015; Zgheib et al., 2022). Located in the east-
ern French Alps next to the Italian border, the area experi-
ences extreme snowfall events known as “easterly return”,
which drive most of the avalanche activity (Eckert et al.,
2010a; Le Roux et al., 2021). We considered data on the win-
ters between 1960 and 2018. When referring to the winter
season, we consider days between 15 October and 15 May.
These dates are consistent with the dates of production of
avalanche bulletins in France and were already selected as
suitable bounds in other studies (e.g. Sielenou et al., 2021).

2.2 Avalanche observations

Our proxy of avalanche activity relies on the Enquête Perma-
nente sur les Avalanches (EPA). EPA reports all avalanches in
approximately 3000 pre-defined paths over French mountain
ranges (Bourova et al., 2016). About 110 of these are located
in the studied area and are shown in Fig. 1. Each avalanche
record indicates the period during which the avalanche is
likely to have released and some additional information, such
as the elevation and the aspect of the starting zone. EPA was

initially designed to capture large natural avalanche events
in exposed areas and was extensively used for hazard map-
ping (Bourova et al., 2016). Hence, only avalanches whose
runout reaches a certain pre-identified runout threshold (de-
fined for each avalanche path, with a threshold elevation,
e.g. a road or the valley floor; see Fig. 1) are systemati-
cally recorded. The avalanche activity derived from EPA de-
pends on this specific sampling procedure. Moreover, it re-
lies on human-based observations and inevitably contains
some uncertainties. However, EPA remains one of the longest
avalanche activity records. The selected area is character-
ized by a dense observation network covering a large variety
of avalanche paths. Besides, the steep topography of Haute-
Maurienne reduces the effect of the observation threshold as
most avalanches flow far downslope, close to the valley floor.
Further discussion on EPA strengths and weaknesses is out
of the scope of the paper and can be found in Jomelli et al.
(2007) and Eckert et al. (2013).

One of the drawbacks of this data for the current study is
the uncertainty of the date of some avalanche events, which
can be large for remote paths or during low-visibility pe-
riods (28.6 % of the reports have an uncertainty above 1 d
and 23.6 % above 3 d, as estimated by the observers). To
associate meteorological and snow conditions to each ob-
served avalanche, we remove observations with an uncer-
tainty (length of the period during which the avalanche could
have occurred) of more than 3 d on the release date from the
dataset. When the uncertainty is larger than 1 d, the last day
of the period is defined as the day of the avalanche event.
For instance, if an observer reports that an avalanche has oc-
curred between 21 and 23 January in a given path, we con-
sider that the uncertainty of the report is 3 d (<= 3 d), and we
arbitrarily consider that the avalanche occurred on 23 Jan-
uary. Moreover, the aspect and the elevation of the starting
zone were not reported in a few cases (representing less than
5 % of the total number of events) because the starting point
was not visible from the observation point or due to a lack
of time for the observation. In these cases, the starting zone
was defined by the average elevation and aspect of the typi-
cal release area defined for each avalanche path. We applied
this definition of release day and zone to the 2779 observed
avalanches in the studied domain.

We grouped these observations into eight aspect sectors
(from north to north-west) and three elevation bands (centred
at 1800, 2400 and 3000 m). This choice defines the spatial
resolution of our model. All observations are represented in
this geometry in Fig. 2. When considering all avalanche and
non-avalanche situations, the avalanche situations represent
1.1 % of the overall dataset. This is called the base rate and
acts as a reference for further comparisons.

2.3 Simulated snowpack

The SAFRAN–SURFEX/ISBA–Crocus model chain (Du-
rand et al., 1999; Lafaysse et al., 2013) was used to simu-
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late the snow and meteorological conditions in the Haute-
Maurienne massif. SAFRAN provides meteorological infor-
mation adapting numerical weather prediction on a gridded
domain to the area of interest and assimilates observed me-
teorological data (Durand et al., 2009). We used the pub-
licly available reanalysis (Vernay et al., 2020). This mod-
elling scheme assumes that meteorological conditions de-
pend only on elevation and aspect. The SURFEX/ISBA–
Crocus model is a one-dimensional snowpack model rep-
resenting snowpack evolution with a multi-layered scheme
based on physical evolution laws (Brun et al., 1989; Vionnet
et al., 2012). It uses as an input the meteorological data from
the SAFRAN model, and it is coupled to the soil scheme
ISBA-DIF (Decharme et al., 2011) to represent energy and
mass exchange at the bottom of the snowpack. According
to the spatial resolution of the avalanche observations, snow
conditions are computed for eight aspects and three eleva-
tion levels (1800, 2400 and 3000 m). The temporal resolu-
tions of the meteorological and snow conditions considered
here were 1 and 3 h, respectively.

These simulations retrieve meteorological and bulk snow
conditions but also the full snowpack stratigraphy. Hence an
additional step is required to take advantage of this informa-
tion, which is here done through the computation of stability
indices as presented right after.

2.4 Stability indices

Nine stability indices have been selected based on their ap-
plicability with our snow cover model: five for dry-snow
avalanches and four for wet-snow avalanches. In addition,
we computed time derivatives of these indices. We also in-
troduce the snow depth as an indicator of the amount of snow
that can be involved in a potential avalanche.

2.4.1 Dry-snow indices

For dry snow, three indices are related to failure initia-
tion, namely natural strength : stress ratio (Sn; Föhn, 1987),
skier strength : stress ratio (Sa; Föhn, 1987) and external
strength : stress ratio (Sr; Reuter et al., 2015). These indices
compare shear strength to shear stress for a given layer in-
terface, where the stress originates from the weight of the
overlying layers (Sn and Sa) and/or of an external load (skier,
for instance) at the top of the snowpack (Sa and Sr) (Viallon-
Galinier et al., 2021). Moreover, we selected two formula-
tions of critical crack length for representing crack propa-
gation (Viallon-Galinier et al., 2021): the original formula-
tion by Heierli et al. (2008) and van Herwijnen et al. (2016)
and the alternative approach by Gaume et al. (2017). Both
approaches require a slab modulus, determined from den-
sity according to Scapozza (2004), and fracture energy es-
timated from strength. Details on these indices are available
in Viallon-Galinier et al. (2022).

These indices were computed for each layer. For each time
step, based on the values of each index, we identified five
weak layers (one per index). We defined a weak layer as a
layer characterized by a local minimum of the considered sta-
bility index (excluding the top and the bottom layers). This
approach allows identifying the five weakest layers, with five
complementary ways of estimating the weakness (five sta-
bility indices). It has the advantage of providing a constant
number of variables (25 variables: 5 stability indices on 5
weak layers) for further statistical analysis.

2.4.2 Wet-snow indices

To characterize the conditions prone to wet-snow avalanches,
we used the mean liquid water content in the whole snow-
pack (Mitterer et al., 2013, 2016) and the thicknesses of hu-
mid snow layers. For the latter index, we considered a snow
layer as humid as soon as its liquid water content exceeded
either 0, 1 and 3 % in volume. These three indices are de-
noted Ih0, Ih1 and Ih3.

2.4.3 Time derivatives

Stability indices at a given time may not be sufficient to rep-
resent the avalanche activity. The time evolution of snow
properties is supposed to be represented by snow cover mod-
els. However, considering snowpack properties only at a
given date and disregarding its past evolution does not in-
dicate whether the snowpack is becoming more prone to
avalanches or is in a stabilization phase. For instance, low
values of a stability index may indicate an avalanche-prone
situation. However, if these values are preceded by even
lower ones, the possible avalanche should already have oc-
curred when the stability was minimal, or even before, but
not after. Yet, few stability indices include the time di-
mension in the literature. To our knowledge, only Conway
and Wilbour (1999) (also used by Reuter et al., 2022) and
MEPRA natural risk (Giraud et al., 2002; Viallon-Galinier
et al., 2021) include explicit time dependence. Here, we used
time derivatives of the previously defined stability indices.
We defined the time derivative of stability index f on a given
weak layer as (f (t)− f (t − dt))/dt with several time inter-
vals dt (6, 24, 48, 72, 120 and 240 h). The derivatives repre-
sent 150 variables for dry-snow indices and 24 variables for
wet-snow indices. Time derivatives on snow depth were used
as a straightforward indicator of stability for dry-snow condi-
tions (accumulation of new snow) and wet-snow conditions
(settling and melting).

2.5 Learning procedure

Random forests were used to relate snow and meteorologi-
cal conditions to avalanche activity in the presented spatial
resolution.
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Figure 2. Number of avalanche situations recorded in our study area
over the full time period at the presented spatial resolution, i.e. per
elevation band (1800, 2400 and 3000 m) and aspect (eight from N
to NW).

2.5.1 Avalanche activity

Avalanche activity was based on EPA records in the selected
area. For each day, aspect and elevation band, we classified
avalanche and non-avalanche situations. A given day on a
given aspect sector and elevation band was considered an
avalanche situation if at least one avalanche was reported
for that day (after filtering of observations and attribution of
dates, as explained in Sect. 2.2). All other situations were
non-avalanche situations. The number of avalanche situa-
tions observed by elevation and aspect range is shown in
Fig. 2.

2.5.2 General overview of input variables

For each elevation and aspect selected, input variables used
are summarized in Table 1.

These variables gather information from the meteorolog-
ical model SAFRAN (Meteo), the SURFEX–ISBA/Crocus
(simple snow) model, stability indices (stability) computed
on the basis of modelled snowpack and derivatives of these
variables (derivatives) as described in Sect. 2.4. Hereafter,
if no special mention is added, all these variables (all) were
used but for studying variable importance; subsets of this list
are also used.

2.5.3 Machine learning algorithm

To relate snow and meteorological conditions to avalanche
activity as defined above, we used random forest (RF) tech-
niques (Breiman, 2001; Hastie et al., 2009). Random forest
is an ensemble method used for classification. Each decision
tree in the ensemble is built from a random subset of the data.
This technique allows going beyond the limitations of single
decision trees but without dramatically increasing the algo-
rithm complexity and with similar introspection capabilities.
Once trained, each tree of the random forest predicts a class
for the input data. Aggregating all trees allow us to define a
probability for each class as the portion of trees predicting
the given class.

Random forest classifiers require two hyperparameters:
the number of trees and the tree depth. Here, we let the trees
fully grow until there is only one element in each leaf, as usu-
ally done (Hastie et al., 2009). An optimization on our full
dataset showed that 3000 trees were sufficient (more trees
did not improve the results) so that this value was selected
for the whole study.

We use two classes, namely avalanche and non-avalanche
situations, that are highly unbalanced (mean of 1.1 % of
avalanche situations in the winter season depending on el-
evation and aspect; see Fig. 2). Machine learning techniques,
if not handled with care, do not perform well on unbalanced
data (e.g. Hastie et al., 2009; Sielenou et al., 2021). They
are designed to optimize the overall classification accuracy
or a similar score. Their results thus tend to be biased to-
wards the majority class (Chawla et al., 2004; Sielenou et al.,
2021), here the non-avalanche situations. The most common
techniques to limit this effect are oversampling of the mi-
nority classes, undersampling of the majority classes or ded-
icated learning algorithms. We here used a combination of
these techniques. We only considered situations of the winter
season characterized by a simulated snow depth larger than
10 cm. This first selection led to the undersampling of the
majority class. Note that we chose this conservative threshold
to remove very obvious non-avalanche situations from the
dataset (no snow in the starting zone means no avalanche).
We do not expect this threshold to be optimal, as this is the
goal of the training phase of the machine learning algorithm.
However, this first step was not sufficient to fully balance
the dataset. We therefore used an adaptation of the RF clas-
sifier to deal with unbalanced data (Chen et al., 2004): each
tree of the forest is trained on a subset of the data randomly
drawn; the probability law for drawing is adapted so that the
probability of drawing non-avalanche or avalanche situations
is identical. This second step acts as an oversampling of the
minority class.
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Table 1. Variables used to predict avalanche activity using machine learning.

Category Sub-category Name Time Number of
intervals variables

Meteo Snowfall Snowfall accumulation (mm) 24 and 72 h 2
Rainfall Rainfall accumulation (mm) 24 and 72 h 2
Temperature Min, max, mean values (K) 24 and 72 h 6
Wind Max and mean wind speed (km h−1) 24 and 72 h 4

Projected mean direction on N–S axis and E–W
axis

24 and 72 h 4

Simple snow Snow depth Snow depth (m) – 1
Depth of new snow Depth (m) of snow fallen since (see intervals) 24, 72, 120 h 3

Stability Dry snow Stability indices (Sn, Sa, Sk , ac, ag) for the five
identified weak layers and depths of each weak
layer

– 25

Depth of the corresponding weak layers (m) – 5
Wet snow Maximum mean liquid water content 24 h 1

Maximum height of wet snow with thresholds of
0, 1 and 3 % of liquid water to consider layer as
wet (m)

24h 3

Snow depth Snow depth – 1

Derivatives Dry-snow indices All dry-snow indices 6, 24, 48, 72, 120, 240 h 150
Wet-snow indices All wet-snow indices 6, 24, 48, 72, 120, 240 h 24
Snow depth variation Snow depth variation (m) 24, 72, 120 h 3

2.6 Evaluation methods

2.6.1 Evaluation process

We evaluated the model performance with a leave-one-year-
out (LOYO) approach. The snowpack completely melts in
summer, and new snowfall in autumn occurs on bare ground.
Therefore, there is no memory between winter seasons, and
they are exchangeable. This is not the case between succes-
sive days during the winter season, with highly correlated
snowpack characteristics. A simple leave one out (i.e. leave
1 d out) would yield better scores but would be less relevant.
For each of the 58 seasons between 1960 and 2018, an evalu-
ation set is composed of one winter season and a learning set
of the remaining 57 seasons. This leads to 58 sets of trained
random forests, each one being evaluated on 1 year. In a sin-
gle winter season, there are not enough avalanche situations
to be statistically relevant. Therefore, the confusion matrix of
58 evaluation years was aggregated to compute scores with
all information available. This leave-one-year-out approach
is used for all evaluations presented.

We also quantified the statistical uncertainty related to the
sample size. As we used 58 years of evaluation data com-
puted separately, we were able to define an uncertainty by
bootstrapping evaluation years used to compute the consid-
ered score. In practice, 1000 independent draws of 58 years
(with replacement) were randomly produced, and the scores

were computed on each draw. The 20th and 80th percentiles
were used to quantify the uncertainty of the produced scores.

2.6.2 Scores

The random forest model produces the probability of being
an avalanche situation, defined as a situation with at least one
avalanche event, given the snow and meteorological condi-
tions. We selected a threshold (t) on this probability to dis-
criminate between avalanche and non-avalanche situations.
It is possible to construct a confusion matrix (as presented
in Table 2) based on this threshold. We derived three scores
from the confusion matrix. The true positive rate (TPR) or re-
call is the ratio between correctly predicted avalanche situa-
tions divided by the number of observed avalanche situations.
This score is also called probability of detection (POD). It
quantifies how many avalanche situations have been cor-
rectly predicted. The false positive rate (FPR), also called
false alarm ratio (FAR), is the ratio between the number of
false positives (non-avalanche situations that are identified as
avalanche situations) and the total number of non-avalanche
situations. It corresponds to the probability that a false alarm
will be raised. These two complementary indicators are inter-
esting but do not fully characterize the performance of a bi-
nary classifier in the case that the two classes are unbalanced
(which is the case here). We used a third score to represent
how many predicted avalanche situations are really observed
as such. This score is called precision and is defined as the ra-
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Table 2. Confusion matrix: observed and predicted avalanche situ-
ations (“avalanche”) and non-avalanche ones (“non-avalanche”).

Predicted

Avalanche Non-avalanche

Observed
Avalanche AA AN
Non-avalanche NA NN

Table 3. Scores derived from the confusion matrix.

Name Expression

True positive rate (TPR) or recall AA
AA+AN

False positive rate (FPR) NA
NA+NN

Precision AA
AA+NA

Specificity 1 − FPR
Balanced precision AA

AA+NA·(AA+AN)/(NA+NN)

tio between correctly predicted avalanche situations and the
number of predicted avalanche situations. We also mention
the specificity (1−FPR), to be compared with the true pos-
itive rate. Finally, we also compute the balanced precision,
which is the precision we would have considering balanced
positive and negative classes (avalanche and non-avalanche
situations). The definition of these scores is summarized in
Table 3.

2.6.3 Score presentation

These scores can be computed for any threshold t on the
avalanche situation probability. The impact of this threshold
on the overall scores can be represented with two graphs:
the receiver operating characteristic (ROC) curve and the
precision-recall graph. The ROC curve shows the true posi-
tive rate as a function of the false positive rate for all possible
thresholds between 0 and 1. When the threshold is equal to
0, all situations are considered avalanche situations (the true
positive rate is 1, and the false positive rate is close to 1).
When the threshold is 1, all situations are considered non-
avalanche situations (the true positive rate is 0, and the false
positive rate is close to 0). A perfect classifier would have
a threshold value for which the true positive rate is 1, and
the false positive rate is 0. Random classification is usually
associated with the diagonal in the ROC diagram. A stan-
dard measure derived from this curve is the area between the
first bisector and the ROC curve (the area under the curve
or AUC) (Bradley, 1997). The AUC quantifies how good the
model is compared to a random classifier. We used the AUC
value to compare different classifier configurations. In addi-
tion, recall is also plotted as a function of precision to cap-
ture the model capacity to identify avalanche situations (pre-
cision) while limiting the number of false positives (recall).

In this graph, the optimal point would be (1,1), i.e. a 100 %
precision and a 100 % recall.

2.6.4 Importance of variables

The importance of variables was estimated through the sep-
arative power of each variable in the trees by computing the
normalized mean decrease in impurity (also called Gini im-
portance) on nodes where the given variable is used to sep-
arate the data in two groups (Breiman, 2001). A variable
importance of 0 means that the variable could be removed
without reducing model performance, and a high value de-
notes a high separative capacity (between avalanche and non-
avalanche situations) of the variable. If two variables con-
tain similar information, each variable will be picked ran-
domly in the tree construction, and these variables will con-
sequently share out the importance of the common informa-
tion (Breiman, 2001). This first approach is commonly used
with random forest but only provides a first rough insight into
variable importance. We thus use a more robust discrimina-
tion of the importance of variables by using different subsets
of variables (see subsets in Table 1). The performance differ-
ence between more independent groups gives an idea of the
importance of the variables present in each group.

3 Results

3.1 Overview of random forest output

The trained random forest model provides the probability of
being an avalanche situation for each day, aspect and eleva-
tion. Figure 3 provides an overview of the output for a spe-
cific season (1998–1999), elevation (2400 m) and two aspects
(NW and SE). We observe a high variability of the output be-
tween days. The time series differs between aspects, which
gives a rough idea of the interest of the selected spatial scale.
When considering the observations, most peaks of the ran-
dom forest output correspond to observed avalanche activity.
The random forest thus provides, in this example, a relevant
image of the expected avalanche activity. There are also false
positives (such as late March in NW aspect) or false neg-
atives (such as early February in SE). This first overview is
insufficient for an evaluation of the performance of the model
that must be conducted over longer periods, all aspects and
elevations.

3.2 Model performance

The ROC curve of the model trained with all input vari-
ables at our spatial resolution and evaluated independently
on each winter season since 1958 is shown in Fig. 4a. Fortu-
nately, the model is far better than a random classifier (ROC
curve above the first diagonal), but it also remains far from
an optimal classifier (no points close to (0, 1)). The uncer-
tainty around the ROC curve is very low, which indicates
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Figure 3. Random forest model output (trained with all variables) for winter 1998–1999 at 2400 m for aspects (a) NW and (b) SE. The grey
bars represent the days in which avalanches were observed in the selected aspect and elevation range. The base rate of avalanche situations
in the full dataset is 0.011. Dates represent the beginning of months.

Figure 4. (a) ROC curve of the model trained with all input vari-
ables at our spatial resolution and evaluated independently on each
winter season since 1958. The optimal point (threshold value of
0.01) is represented by a red dot. (b) Precision and recall (Table 3)
curve. Shading represents the uncertainty based on the 20th and
80th percentile of the bootstrap on evaluation years (see methods
section).

that a sufficient number of data is available to constrain the
model and to ensure that the evaluation is not sensitive to the
choice of the winter season. The optimal threshold, defined
as the threshold which leads to the ROC point closest to (0,
1), is here 0.01. In other words, a situation is considered an
avalanche situation when the model probability is larger than
0.01. For this threshold, we provide the corresponding con-
fusion matrix in Table 4, classifying situations between ob-
served and predicted avalanche and non-avalanche situations
in all elevation and aspect bands. The corresponding scores
are 75.3 % for the true positive rate or recall, 23.6 % for the
false positive rate, and 3.3 % for precision. The balanced pre-
cision is 76.2 %. These scores mean that about three-quarters
of the observed avalanche situations were correctly identi-
fied, but avalanches were actually observed only on 3.3 %

Table 4. Confusion matrix for the evaluation dataset: observed
and predicted avalanche situations (“avalanche”) and non-avalanche
ones (“non-avalanche”) summed over elevation and aspect ranges.
A threshold value of 0.01 is used; i.e. predicted probabilities over
0.01 are considered to identify avalanche situations. The corre-
sponding recall is 75.3 %, the false positive rate is 23.6 % and the
precision is 3.3 %.

Predicted

Avalanche Non-avalanche

Observed
Avalanche 1895 623
Non-avalanche 55 005 178 357

of the situations when avalanches were predicted. The recall
(75.3 %) and sensitivity (complementary of the false posi-
tive rate, here 76.4 %) are similar, indicating similar perfor-
mances on observed avalanche and non-avalanche situations.
An alternative point of view is to consider precision and re-
call rather than true and false positive rates (Fig. 4b). The
maximal precision that can be reached with our model is
around 30 % but with a very low value of recall (below 5 %).
With higher values of recall, the precision ranges between
2 % and 10 %.

3.3 Variable importance

As described in Sect. 2.6.4, the predictive power of the input
variables can be estimated in two ways.

First, we computed the feature importance of all variables
and aggregated (summed) them by groups, as defined in Ta-
ble 1 (Fig. 5). The most important variables are related to
snow depth (Fig. 5) and, in particular, the new snow amounts
or snow depth variations. Variables related to dry-snow sta-
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Figure 5. Feature importance (Gini importance) on the trained
dataset, aggregated (summed) by groups of variables. The number
of variables in each group is reported on the right.

bility appear to also be of large importance (13.6 %) but with
much more variables in the corresponding group: 25 dry-
snow stability indices, whereas there are only four variables
in the new snow depth group. The depths of weak layers are
also of importance (3.6 %). Derivatives of dry-snow indices
decrease in importance with each time step, whereas for wet-
snow indices, the importance is more pronounced for a time
step of 72 h. Temperature and wind are also important, even
described with few involved variables. By contrast, snowfall
and rainfall (in 24 h) are variables with low importance. The
variability between years is limited (not shown), giving con-
fidence in the robustness of these results. However, absolute
values have to be taken with care, as this analysis method
is strictly valid only when the different variables are inde-
pendent, which is far from the case we have here. We thus
provide this analysis to check the main results according to
previous knowledge and because of the popularity of this
method, but the detailed results are of limited interest due
to the presented limitations of this method in our study case.

Second, we studied the importance of variable groups by
removing the data related to different groups of variables
before learning and observing changes in evaluation scores.
Specifically, we selected six subsets of the presented vari-
ables (see Table 1): the meteorological variables only (Me-
teo), bulk variables only (simple snow), stability variables
without derivatives (stability), stability variables and deriva-
tives (stability + derivatives), and all variables (all). The
ROC curves for all these subsets are presented in Fig. 6. The
associated scores for the optimal threshold are reported in
Table 5. These thresholds are coherent with the base rate of
our dataset. The ROC curve of the model trained only on
meteorological variables is very close to the first bisector
(area under the curve, AUC= 0.09; Fig. 6). In other words,

Figure 6. ROC curves of the model trained with different sets of
variables. Shading represents the uncertainty by bootstrap on eval-
uation years (see methods section). Labels of subsets of variables
correspond to those of Table 1. Scores associated with the optimal
points (nearest to (0,1)) are reported in Table 5.

this model is almost not much better than a random classi-
fier. Using the simple snow variables (snow depth and new
snow depth) allows for a first improvement in scores with
an AUC of 0.19. Using the stability variables also allows for
an AUC of 0.19, and combining it with the associated 174
time derivatives increases the AUC to 0.32. This result high-
lights the importance of a time dimension in avalanche activ-
ity forecasting. The AUC of 0.32 for stability and derivatives
is close to the value (AUC= 0.33) obtained by using all vari-
ables. Moreover, the uncertainty linked to inter-annual vari-
ability is larger than the difference between the two latter
approaches. This means that using all stability indices and
their derivatives contains all relevant information available
(in the context of the variables tested in this study) for dis-
criminating between avalanche and non-avalanche situations.
The other scores (false positive rate, FPR; recall; precision;
see Table 3) present similar trends between groups compared
to AUC. Some differences are nevertheless observed with for
instance a higher recall but a higher FPR for stability and
derivatives compared to all variables, which highlights that
the selection of an optimal classifier is always a question of
compromise between these two scores.

4 Discussion

4.1 Machine learning for predicting avalanche activity

The model performance in the studied area decomposed into
eight aspects and three elevation bands is summarized with
the confusion matrix shown in Table 4. Values of recall
(75.3 %), false positive rate (23.6 %) or precision (3.3 %)
may seem quite low compared to current literature. Hen-
drikx et al. (2005) and Kronholm et al. (2006) obtained an
accuracy for separation of around 85 % with regression trees
and meteorological variables or simple snow variables (snow
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Table 5. Predictive performance of the model trained with different sets of variables. The scores include the area under the ROC curve (AUC),
false positive rate (FPR), recall and precision. We also report the associated optimal threshold used to compute these scores (associated with
the point of the ROC curve nearest to the optimal one). Subsets of variables correspond to those of Table 1.

Subset AUC FPR (%) Recall (%) Precision (%) Threshold

Meteo 0.009 49.9 51.7 1.1 0.025
Simple snow 0.195 32.9 65.3 2.1 0.001
Stability 0.188 38.1 65.9 1.8 0.01
Stability and 0.321 26.5 76.7 3.0 0.01
derivatives
All 0.334 23.6 75.3 3.3 0.01

depth or simple melting model). The accuracy of our model
is 76.5 %, but this metric may not be the most informative
when classes are highly unbalanced, as in our problem be-
cause it mainly gathers information on non-avalanche situa-
tions. Sielenou et al. (2021) reported scores above 95 % for
accuracy but did not exploit other metrics. Hendrikx et al.
(2014) reported a recall (focusing on observed avalanche sit-
uations) of 76 % to 79 %, close to our value of 75.3 %. Some
studies, such as Pérez-Guillén et al. (2022) and Mayer et al.
(2022), did similar work using different targets (manually
predicted avalanche hazard or measured stability) with ac-
curacy also in comparable ranges (72 % to 88 %). Precision
is highly influenced by the base rate (proportion of avalanche
situations). Here, avalanche and non-avalanche situations are
highly unbalanced. We nevertheless consider that the bal-
ance is representative of avalanche activity in the considered
area. Moreover, low values of precision (around 3 % for our
model) are not uncommon for such difficult problems in re-
lated but different contexts (e.g. Rubin et al., 2012). Eventu-
ally, to compare our results to some studies with a balanced
dataset, the balanced precision should be considered, which
is 76.1 %.

However, it remains difficult to compare scores to other
studies due to differences in evaluation methods and reported
scores. All studies used different methods for defining a
training and an evaluation dataset. In this study, we used a
robust and conservative method, consisting of isolating win-
ter seasons for evaluation. Indeed, with the snow melting
between seasons, we get rid of the snowpack memory and
provide a robust separation between training and evaluation
datasets, leading to trustworthy evaluation results with our
method. Moreover, we discard all the situations where the
snow depth is less than 10 cm in the release zone and situ-
ations outside the winter period where avalanche release is
very unlikely. Consequently, our evaluation does not include
the most obvious non-avalanche situations. It is thus more
strict than Sielenou et al. (2021), for instance, who used the
random forest out-of-bag method with oversampling of the
minority class. It resembles the methodology of Hendrikx
et al. (2014) who selected 2 independent years for evalu-
ation. Our method may be used for future benchmarks to

compare competing methods on a robust and homogeneous
basis. In addition, the scores reported are not homogeneous
between studies either. Some of them focus on global accu-
racy (e.g. Kronholm et al., 2006; Pérez-Guillén et al., 2022);
others on accuracy per class (e.g. Sielenou et al., 2021); and
a few propose other metrics such as recall, precision, or F1
score (harmonic mean of precision and recall) (e.g. Hendrikx
et al., 2014). The choice of the score depends on the goal of
each study and must be adapted to it. However, using only
a few values for summarizing the model performances limits
the information available. These differences in the evaluation
processes – both separation between evaluation and train sets
and computed scores – limit the possibility of model compar-
ison.

Our model predicts the probability that at least one
avalanche occurs on a given day within a spatial unit cor-
responding to one elevation band (centred at 1800, 2400 and
3000 m) and one aspect (among eight aspects). This spatial
resolution enables us to capture the spatial distribution of the
expected avalanche activity in one region. This latter infor-
mation is crucial to evaluate and to describe the avalanche
danger at regional scales (Morin et al., 2020). This prediction
goal is more demanding than a prediction at larger scales,
as generally used in previous studies. For instance, if one
avalanche occurs one day, it not only implies that we have
an avalanche situation but also implies to know in which as-
pect and elevation sector the avalanche occurred to be con-
sidered a success. An avalanche predicted in another eleva-
tion or aspect will be considered one false negative (in the
elevation–aspect it really occurred in) and one false posi-
tive (in the elevation–aspect it was predicted in). It inevitably
leads to lower performances for similar models but provides
more precise information about the spatial distribution of the
avalanche hazard (Statham et al., 2018). Indeed most stud-
ies considered avalanche activity at the scale of mountain
ranges of some thousands of km2 (e.g. Kronholm et al., 2006;
Hendrikx et al., 2014; Sielenou et al., 2021; Pérez-Guillén
et al., 2022). These approaches have the advantage of us-
ing machine learning to also aggregate information at larger
scales but provide a less geographically precise indicator of
avalanche activity. More local approaches have the advan-
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tage of providing a relation between snow and meteorolog-
ical conditions and observed or expected avalanche activity,
whereas aggregated approaches are closer to the final hazard
assessment scale.

4.2 Added value of physical modelling of snow cover,
stability analysis and time derivatives for
predicting avalanche activity

We tested different input variables to train our model: me-
teorological variables, simple snow variables (mainly snow
depth), stability indices and derivatives. We evaluated the
added value of the different groups of variables with two dif-
ferent methods (described in Sect. 2.6.4). Meteorological in-
formation only was insufficient to predict avalanche activity
with our method (Fig. 6). Contrarily to many other studies
(e.g. Buser, 1989; Mayer et al., 2022), we did not use ob-
served meteorological information but large-scale modelled
information (Durand et al., 2009). Thus, the meteorological
information is uncertain and nearly identical for all aspects
and elevations, while underlying snowpacks are generally
significantly different. Therefore, we did not expect a good
prediction at a high spatio-temporal resolution with only me-
teorological information.

Most of the developed models used, at the least, some ba-
sic output of snow cover models or observed snow evolu-
tion such as snow depth (e.g. Hendrikx et al., 2014). In our
study, snow depth and new snow depth appeared as an essen-
tial variable in both methods used to estimate variable im-
portance: its Gini importance is high (Fig. 5), and adding
it to the input variables improves the model performance a
lot (Fig. 6). This result is consistent with current literature
identifying snow depth as the first statistical predictor for
avalanche activity (e.g. Schweizer et al., 2003; Castebrunet
et al., 2012; Sielenou et al., 2021). Some studies used more
advanced diagnostics from snow cover models (e.g. Gassner
and Brabec, 2002; Pérez-Guillén et al., 2022; Mayer et al.,
2022) or computed expert-aggregated variables similarly to
what snow cover models do from temperature and precipita-
tion (e.g. Kronholm et al., 2006). Snow modelling with phys-
ical models for taking into account snowpack history thus ap-
pears to be of high interest for automatic avalanche activity
prediction.

The novelty of our model is to add a wide range of stabil-
ity indices to reduce the complex information of snow cover
models with the help of knowledge of physical processes and
combine it with a time-dependent analysis with the use of
time derivatives of stability indices. The combination of sta-
bility indices and derivatives is crucial in our random for-
est model (Fig. 5). The time dimension has been identified
as critical information. Since the first statistical forecasts,
differences between time steps, for instance on temperature
(e.g. Obled and Good, 1980; Navarre et al., 1987), have been
used. Conway and Wilbour (1999) have also developed a
stability index that explicitly uses time derivatives. We here

show that the use of time derivatives, especially in a statis-
tical system that is not able to simultaneously treat different
time steps, allows for an improvement of the prediction of
avalanche activity. More generally, we showed that the intro-
duction of stability indices and time derivatives could help
identify avalanche-prone situations with machine learning
models. This group of variables also gathers a great deal of
information, as it nearly replaces the information from other
variables. Indeed, our results are quite similar when using
only stability indices and their derivatives versus using all
variables (Fig. 6). This result indicates that stability indices
combined with time derivatives are a relevant way to summa-
rize the information of meteorological and snow cover mod-
els for the prediction of avalanche-prone conditions, which is
a new way of validating the interest of such stability indices.

Computing feature importance can drive the selection of
relevant input variables, but correlations between variables
can affect the computed importance. Re-training the full
model with a subset of input variables provides a robust esti-
mation of their effective added value. In particular, the anal-
ysis of feature importance allows for selecting the right time
steps for derivative computations in the wide range of possi-
bilities included (last column of Table 1). The most important
derivatives are the short-time ones (6 to 72 h) for dry snow
and 72 h for wet snow (Fig. 5). This result is consistent with
the knowledge of involved processes (van Herwijnen et al.,
2018), whereas it has never been demonstrated so far with a
statistical approach. The spontaneous release in dry snow oc-
curs during or immediately after snowfall, whereas wet-snow
problems are more linked to the progressive wetting of the
snowpack due to solar radiations (timescales of 1 to several
days) or rain (e.g. Reuter et al., 2022). Variable importance
allows for selecting the most relevant variables, which may
be kept for further work, especially on stability variables and
derivatives, which our results prove to be of interest (Fig. 6).

4.3 Other advantages and disadvantages of our
approach

We used EPA as the ground truth of avalanche activity. This
dataset is unique in its spatial and temporal extension but
mainly focuses on large avalanches often reaching valley
floors. In consequence, the high-elevation avalanche activ-
ity and smaller avalanches are not reported, which leads to
a limited number of avalanche situations in the dataset. Yet,
for the spatio-temporal domain selected in this study (Haute-
Maurienne, 1960–2018), the number of avalanche events re-
ported in EPA remains large enough (2518 avalanche situa-
tions). The local topography with steep slopes and the repar-
tition of the recorded avalanche paths allow for a reasonable
screenshot of the avalanche activity. However, the scarcity of
reported avalanche events might become a problem in other
regions, as our balancing methods may become insufficient.
Observation may not be possible every day (e.g. poor visibil-
ity or remote sites), and only avalanches are reported (i.e. no
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information on the observation that no avalanche occurred).
This means that the dataset does not allow us to clearly de-
fine non-avalanche situations: some situations may be identi-
fied as non-avalanche situations, while an avalanche occurred
but was not reported. The data also suffer from uncertainty
on the dates of avalanches. This may reduce the obtained
score. Other data sources may be used to complement the
avalanche observation dataset, such as observations from ski
resorts (e.g. Giard et al., 2018) or satellite avalanche detec-
tion (e.g. Karas et al., 2022), but no other data source has the
temporal extension of EPA, except archival data that require
in-depth investigations, which cannot always be undertaken
(Giacona et al., 2017, 2021).

Moreover, we here trained the model with the Haute-
Maurienne data. Some climatological or terrain features may
lead to a predicted avalanche activity specific to the Haute-
Maurienne area, especially with a higher sensitivity of certain
aspects or elevations (e.g. during easterly returns). Hence, the
model may not be transferable directly to other areas without
a new calibration. Finally, this study presents a binary classi-
fication, as there is rarely more than one avalanche per day,
and spatial unit (aspect–elevation), which limits the defini-
tion of several classes of avalanche activity. In the future,
such machine learning techniques may benefit from the use
of other sources of data to complement EPA data and identify
more avalanches, such as remote sensing (e.g. Karas et al.,
2022), infrasound (Mayer et al., 2020) or seismic detection
(van Herwijnen and Schweizer, 2011).

In this study, we chose to treat all avalanche types in a
single learning process, including dry and wet avalanches.
Some previous studies separated different avalanche activi-
ties by pre-defined time periods (e.g. Obled and Good, 1980)
or by type of avalanches, restricting the avalanches to dry or
wet avalanches (e.g. Mayer et al., 2022; Pérez-Guillén et al.,
2022). If we assume that decision trees (or here, random for-
est) can capture dry-avalanche activity on one the hand and
wet-avalanche activity on the other hand and if we provide
information to discriminate between situations, such as liq-
uid water content or the height of wet snow in this study,
then a decision tree (or an ensemble of them) will be able to
be optimized on the overall avalanche activity by introduc-
ing a split in the overall tree to distinguish between dry and
wet situations, if relevant. Some other studies also mix dry
and wet avalanches, such as the MEPRA French operational
avalanche activity indicator (Giraud et al., 2002). Moreover,
the observation dataset does not always allow us to infer the
processes that led to the avalanche, and some situations may
remain uncertain in the case of a mix of dry and wet snow
in the snowpack. For the forecasters, complementary infor-
mation may be provided with additional tools to identify the
processes or situations involved, such as the avalanche prob-
lem types suggested by Reuter et al. (2022).

The impact of using physically based indices of snow
stability as predictors of avalanche activity instead of sim-
pler variables was studied through a specific statistical tool,

namely random forests. This method is popular due to its
simple background (decision trees, Breiman et al., 1984),
which allows for in-depth analysis and interpretation to some
extent, and its capacity to represent non-linear phenomena
(e.g. Sielenou et al., 2021; Pérez-Guillén et al., 2022; Mayer
et al., 2022). Many other statistical methods are available,
but random forests have been shown to be as relevant as
other ones (e.g. Sielenou et al., 2021). We introduced time
derivatives and cumulative values to represent the importance
of history for snowpack-related processes. Methods in the
range of recurrent neural networks are specifically designed
to cope with processes having a memory of previous states
(Hochreiter and Schmidhuber, 1997). These alternative sta-
tistical methods could be further compared to our random
forest approach. It may provide improvements in the predic-
tion scores or strengthen our results on the effectiveness of
combining snow physics and machine learning for predict-
ing avalanche activity.

Our results were obtained with a reanalysis of meteorolog-
ical and snow conditions, that is to say, input data that have
been retroactively corrected with all available observations.
This may not be completely representative of an operational
forecasting (prediction in the future) situation in which mod-
els are corrected by observations of the past but run uncon-
strained for the forecast. This transposition to the forecasting
context would be the next step in terms of complexity for
machine learning methods. However, the use of the reanal-
ysis allows for a better evaluation of the capabilities of the
machine learning model with fewer input errors, which was
the goal of this paper.

5 Conclusion and outlooks

This paper combines snow cover modelling, mechanical sta-
bility indices and observational data through machine learn-
ing for avalanche activity prediction. In particular, we con-
sidered numerous stability indices and their time deriva-
tives. To evaluate the random forest model, we defined a ro-
bust method adapted to the specific behaviour of the snow-
pack (long-term memory). This evaluation was conducted on
three district municipalities of the French Alps with 58 years
of a comprehensive dataset of avalanche observations, with
a high spatial resolution (eight aspects and three elevation
ranges) and an extended set of variables describing both me-
teorological and mechanical stability variables and their time
evolution.

The combination of snow physics through snowpack mod-
elling, stability indices and their derivatives, as well as ran-
dom forest, proves to be useful for avalanche activity predic-
tion. The snow depth and new snow depth remain the most
important predictors, but this study highlights the interest in
using mechanical stability indices and their derivatives. This
is the primary finding of our research, as this had never been
demonstrated with such a large variety of indices and their
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derivatives in previous studies (e.g. Zeidler and Jamieson,
2004; Kronholm et al., 2006; Hendrikx et al., 2014; Sielenou
et al., 2021), even the rare ones using simple stability indices
within machine learning models (Mayer et al., 2022). Our
results also underline the interest of physically based snow
cover models and stability indices for identifying avalanche-
prone conditions.

Obtained scores of recall (75.3 %), false positive rate
(23.6 %) and precision (3.3 %) are consistent with current
literature with similar goals and methods. These scores illus-
trate the difficulty in predicting avalanche occurrence with
high spatio-temporal resolution, even with the data and mod-
elling tools currently available. Moreover, we used a rather
strict evaluation method, leading to lower but robust and con-
servative scores, which are not directly comparable to other
studies (e.g. Sielenou et al., 2021). Hence, this method may
be seen as the first step for future formal comparison between
approaches. More widely, with its high spatio-temporal reso-
lution and use of physical and mechanical models, our study
opens the perspective to improve modelling tools supporting
operational avalanche forecasting.

We here focus on the avalanche activity reported by EPA.
The method may be extended in the future to other target
variables describing avalanche hazard more precisely such as
release volumes or typical situations (Schweizer et al., 2003;
Statham et al., 2018; Reuter et al., 2022; Mayer et al., 2022).
Similarly, we used meteorological reanalysis for snow mod-
elling for the quality of the data, but this may not be com-
pletely representative of forecast conditions, and tests have
to be conducted with re-forecasts rather than reanalysis.

Code and data availability. The meteorological and snow
cover reanalysis used in this study is freely available at
https://doi.org/10.25326/37 (Vernay et al., 2020). The whole EPA
avalanche database is freely available at https://www.avalanches.fr/
(INRAE, 2023).
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