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S1 Soil hydrology in PCN-MIP participants
Many factors that are especially relevant for permafrost-affected areas are treated very differently by current-generation land
surface models. Here, one prominent example is the process of supercooling which is included in roughly half of the models
participating in the PCN-MIP1. In clay rich soils a substantial fraction of water may remain liquid at sub-zero temperatures and
potentially move through and drain from the soil even if the model considers the effect of soil ice on the hydraulic conductivity
– which many models do using a power-law-based ice impedance factor. Another, important factor is the treatment of soil
organic matter, which is also explicitly included in about half of the PCN-MIP participants. Here, the importance of a high soil
organic matter concentration is often attributed to its impact on the soil thermal properties, as the high porosity can provide a
strong insulation at the surface of dry soils. However, soil organic matter also affects the hydrological properties, increasing
conductivity, hence, the percolation into deeper layers and drainage. This affects the water available for transpiration and
evaporation, with a strong impact on the surface energy budget.

At the same time, most present-day land surface models use similar formulations to represent some of the key processes of
the terrestrial hydrology1, 2. For example, the majority of models employs a 1-D formulation based on the Richards equations
with Clapp–Hornberger or van Genuchten functions to describe the vertical movement of water through the soil, while surface
runoff and infiltration are most often described using a saturation-excess based formulation. But while these approaches appear
similar, they may yield diverging results, depending on the specifics of their implementation. For example, the infiltration in a
saturation-excess based formulation depends on the way the model determines the surbgrid scale distribution of the water table
or, if the model instead uses the soil field capacity or porosity as an upper limit for infiltration, on the assumption up to which
soil layer water can infiltrate within one timestep. The same is true for the representation of evapotranspiration as most models
account for the same sources but employ different formulations to describe the respective fluxes.

It is exceedingly difficult to quantify how a given parametrization affects the modelling outcome as it is very often the
interactions between processes that determine the behaviour of a given model. This is particularly problematic as differences
in the simulated soil hydrology may also originate from differences in the treatment of the soil thermal dynamics – as these
determine the state of water in the soil – as well as from differences in the general model setup, e.g. vertical resolution and
depth of the soil column, and the representation of vegetation. Thus, our JSBACH setups merely aim at capturing the bulk
effects of the uncertainty included in the range of established soil hydrology representations without trying to connect them to
specific formulations employed by present-day land surface models. A brief overview of the hydrology characteristics of the
PCN-MIP participants is provided in table ST1, while a more detailed discussion can be found in Andresen et al. (2020)1.
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S2 CMIP6 models included in the analysis

Models Institution
ACCESS-ESM1.5; ACCESS-CM217, 18 Commonwealth Scientific and Industrial Research Organisation; Australian Research

Council Centre of Excellence for Climate System Science (Australia)
AWI19 Alfred Wegener Institute, Helmholtz Centre for Polar and Marine Research (Germany)
BCC-CSM2-MR20 Beijing Climate Center (China)
CAMS-CSM1.021 Chinese Academy of Meteorological Sciences (China)
CanESM5-CanOE; CanESM522 Canadian Centre for Climate Modelling and Analysis (Canada)
CESM2-CAM6; CESM2-WACCM623 National Center for Atmospheric Research (USA)
CIESM24 Department of Earth System Science, Tsinghua University (China)
CMCC-ESM2; CMCC-CM2-SR525 Centro Euro-Mediterraneo sui Cambiamenti Climatici (Italy)
CNRM-CM6.1-HR; CNRM-CM6.1; CNRM-ESM2.126–28 Centre National de Recherches Meteorologiques; Centre Europeen de Recherche et de

Formation Avancee en Calcul Scientifique (France)
E3SM-1.129, 30 Department of Energy (USA)
EC-Earth3; EC-Earth3-Veg0; EC-Earth3-CC; EC-Earth3-Veg-LR31 EC-Earth consortium, Rossby Center, Swedish Meteorological and Hydrological

Institute (Sweden)
FGOALS-f3-L; FGOALS-g332–34 Institute of Atmospheric Physics (China)
FIO-ESM-2.035 First Institute of Oceanography (China)
GFDL-CM4; GFDL-ESM436, 37 National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics

Laboratory (USA)
GISS-E2.1-G38, 39 Goddard Institute for Space Studies (USA)
IITM-ESM40 Centre for Climate Change Research, Indian Institute of Tropical Meteorology (India)
INM-CM5.0; INM-CM4.841, 42 Institute for Numerical Mathematic (Russia)
IPSL-CM6A-LR43–45 Institut Pierre-Simon Laplace (France)
K-ACE-1-0-G46 National Institute of Meteorological Sciences, Korea Meteorological Administration

(South Korea)
KIOST-ESM47 Korea Institute of Ocean Science and Technology (Korea)
MIROC6; MIROC-ES2L48, 49 Japan Agency for Marine-Earth Science and Technology; National Institute for En-

vironmental Studies; Atmosphere and Ocean Research Institute, The University of
Tokyo; RIKEN Center for Computational Science (Japan)

MPI-ESM1.2-LR; MPI-ESM1.2-HR50, 51 Max Planck Institute for Meteorology; Deutsches Klimarechenzentrum; Deutscher
Wetterdienst (Germany)

MRI-ESM2.052 Meteorological Research Institute (Japan)
NESM353 Nanjing University of Information Science and Technology (China)
NorESM2-LM; NorESM2-MM54–56 Norwegian Climate Center (Norway)
TaiESM57 Research Center for Environmental Changes, Academia Sinica (Taiwan)
UKESM1.0-LL; HadGEM3-GC31-LL; HadGEM3-GC31-MM58–60 Met Office Hadley Center; Natural Environment Research Council (UK)

Supplementary Table ST2. CMIP6 participants included in analysis
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S3 Comparison to observations (MPI-ESM)

Var.
REF

Bias (RMSE)
WET

Bias (RMSE)
DRY

Bias (RMSE)
W2D

Bias (RMSE)
Source Unit Period Fig.

Temp2m 0.62 (3.16) -0.85 (3.11) 1.94 (3.67) 0.04 (2.78) GSWP3 [K] 1990 - 2014 SF1
MAGT -1.95 (3.9) -2.49 (3.8) -0.17 (2.77) -1.70 (3.44) GTNP [K] 2000 - 2010 SF2
Thawmax 2.00 (2.30) 0.08 (1.09) 1.39 (1.85) 0.27 (1.11) CALM [m] 1990 - 2019 SF3
Precip 8.42 (23.75) 7.24 (23.61) 4.59 (21.34) 6.87 (22.97) GSWP3 [mm mon−1] 1990 - 2014 SF4
Snow -16.46 (66.36) -12.67 (66.00) -17.53 (66.78) -15.18 (66.06) CMC [mm] 1998 - 2012 SF8
Discharge 295 275 234 279 GRDC [km3 yr−1] 1980 - 1995 SF9
cfTree -4.3 (22.98) -13.40 (24.38) -1.05 (25.95) -12.22 (23.74) ESACCI [%] 1992 - 2020 SF6
cfGrass 24.48 (33.62) 25.42 (34.72) 20.23 (27.96) 25.48 (33.60) ESACCI [%] 1992 - 2020 SF7
cfShrub -5.58 (12.05) -5.44 (10.14) -7.01 (13.63) -4.71 (10.43) ESACCI [%] 1992 - 2020 SF8

Supplementary Table ST3. Overview over simulation biases in the northern permafrost regions for the different model
setups, namely the reference model (REF), the WET setup, the DRY setup and the W2D setup. Given are the biases and root
mean square errors for seasonally averaged 2m temperature relative to data from the Global Soil Wetness Project (GSWP3)61, 62,
mean annual ground temperature (MAGT) relative to data from the Global Terrestrial Network for Permafrost (GTNP)63–65,
maximum annual thaw depths relative to data from Circumpolar Active Layer Monitoring (CALM)66, mean seasonal
precipitation relative to GSWP3 data, annual mean snow water equivalent relative to data from the Northern Hemisphere subset
of the Canadian Meteorological Centre (CMC) operational global daily snow depth analysis67, annual river discharge of the 5
largest Arctic rivers relative to data from the Global Runoff Data Centre (GRDC)68 and tree-, grass- and shrub cover fractions
relative to ESA Climate Change Initiative (ESACCI) data69. Bold numbers indicate the simulation exhibiting the smallest bias.

Var.
REF

Bias (RMSE)
WET

Bias (RMSE)
DRY

Bias (RMSE)
W2D

Bias (RMSE)
Source Unit Period Fig.

Temp2m -0.60 (2.85) -0.90 (2.93) -0.16 (2.68) -0.65 (2.94) GSWP3 [K] 1990 - 2014 SF1
Precip -1.39 (40.59) -1.65 (40.18) -1.49 (40.89) -1.59 (39.54) GSWP3 [mm mon−1] 1990 - 2014 SF4
cfTree 4.73 (22.21) 1.97 (22.71) 5.23 (23.29) 2.06 (22.36) ESACCI [%] 1992 - 2020 SF6
cfGrass 17.55 (27.1) 17.56 (27.34) 17.03 (25.60) 17.97 (27.18) ESACCI [%] 1992 - 2020 SF7
cfShrub -8.78 (15.28) -8.74 (14.83) -9.15 (15.74) -8.46 (14.90) ESACCI [%] 1992 - 2020 SF8

Supplementary Table ST4. Overview over simulation biases across all continental areas for the different model setups,
namely the reference model (REF), the WET setup, the DRY setup and the W2D setup. Given are the biases and root mean
square errors for seasonally averaged 2m temperature relative to data from the Global Soil Wetness Project (GSWP3)61, 62,
mean seasonal precipitation relative to GSWP3 data and tree-, grass- and shrub cover fractions relative to ESA Climate Change
Initiative (ESACCI) data69. Bold numbers indicate the simulation exhibiting the smallest bias.
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Supplementary Figure SF1. 2m temperature
Comparison of simulated and observation based (Global Soil Wetness Project (GSWP3)61, 62) seasonally averaged 2m
temperature for: a) MPI-ESM1.2 standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup
(yellow). The data is averaged over the period 1990 - 2014. In the main panel each dot represents one season and one grid-box,
with the colored dots referring to the northern permafrost regions, while grey dots refer to all continental areas. The same
color-coding is valid in the histogram on the bottom right.
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Supplementary Figure SF2. Mean annual ground temperature
Comparison of simulated and observed (Global Terrestrial Network for Permafrost (GTNP)63–65) mean annual ground
temperatures (MAGT) in the northern permafrost regions for: a) MPI-ESM1.2 standard version (black), b) WET setup (blue),
c) DRY setup (red) and d) W2D setup (yellow). For each site, the data is averaged over the period with available data between
the years 2000 - 2010.
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Supplementary Figure SF3. Maximum annual thaw depth
Comparison of simulated maximum annual thaw depths and observed end-of-season thaw depths (Circumpolar Active Layer
Monitoring (CALM)66) in the northern permafrost regions for: a) MPI-ESM1.2 standard version (black), b) WET setup (blue),
c) DRY setup (red) and d) W2D setup (yellow). For each site, the data is averaged over the period with available data between
the years 1990 - 2019.
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Supplementary Figure SF4. Precipitation
Comparison of simulated and observation based (Global Soil Wetness Project (GSWP3)61, 62) seasonally averaged precipitation
for: a) MPI-ESM1.2 standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup (yellow). The data is
averaged over the period 1990 - 2014.
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Supplementary Figure SF5. Snow water equivalent
Comparison of simulated and observed (Northern Hemisphere subset of the Canadian Meteorological Centre (CMC)
operational global daily snow depth analysis67) annual average snow water equivalent in the northern permafrost regions for: a)
MPI-ESM1.2 standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup (yellow). The data is
averaged over the period 1998 - 2012.
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Supplementary Figure SF6. Tree cover fraction
Comparison of simulated and observed (ESA Climate Change Initiative (ESACCI)69) average tree cover for: a) MPI-ESM1.2
standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup (yellow). The data is averaged over the
period 1992 - 2020.

S11/S22



Supplementary Figure SF7. Grass cover fraction
Comparison of simulated and observed (ESA Climate Change Initiative (ESACCI)69) average grass cover for: a) MPI-ESM1.2
standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup (yellow). The data is averaged over the
period 1992 - 2020.
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Supplementary Figure SF8. Shrub cover fraction
Comparison of simulated and observed (ESA Climate Change Initiative (ESACCI)69) average shrub cover for: a) MPI-ESM1.2
standard version (black), b) WET setup (blue), c) DRY setup (red) and d) W2D setup (yellow). The data is averaged over the
period 1992 - 2020.
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Supplementary Figure SF9. Discharge
Observed (white; Global Runoff Data Centre (GRDC)68) and simulated ( MPI-ESM1.2 standard version [black], WET setup
[blue], DRY setup [red] and W2D setup [yellow]) annual river discharge of: a) the 5 largest Arctic rivers, b) Yenisey, c) Lena d)
Ob, e) Mackenzie and f) Yukon. Values in brackets give the relative difference between the simulated and the observed
discharge. For each river, the data is averaged over the period with available data between the years 1980 - 1995.

S14/S22



S4 ICON-ESM
The ICON-ESM is the first ESM using the unstructured, icosahedral grid concept of the ICON framework. It consists of
the atmospheric component ICON-A, with a non-hydrostatic dynamical core, the ocean model ICON-O, which builds on
the same ICON infrastructure but applies the Boussinesq and hydrostatic approximation, and the ICON-L land module. The
latter provides a new framework with a flexible scheme of land surface tiling and an object-oriented organization of physical
and biogeochemical processes, which allows the coupling of different land surface schemes to the atmospheric and ocean
components. For the present investigation we used the land surface model JSBACH4, the sucessor of JSBACH3.2, the land
surface component of the latest MPI-ESM version50. The model was adapted in the the way as JSBACH3, allowing to simulate
dry or wet conditions in the northern permafrost regions. However, as the WEED scheme could not be implemented into
JSBACH4 yet, the model does not represent the ponding of water at the land surface and the evapotranspiration from surface
water bodies. Furthermore, the natural vegetation dynamics have not yet been enabled in JSBACH4, and neither the changes in
plant water availability resulting from the modifications of the permafrost hydrology nor the increase in the atmospheric CO2
concentrations and in the near-surface temperatures have an effect on the vegetation distribution in the high latitudes. Because
of this limited functionality of JSBACH4, we do not include the simulations in the main analysis of this study and merely show
the most important results in the supplementary materials (Figs. SF10 - SF12). Overall, the results obtained with ICON-ESM
agree well with those of the MPI-ESM simulations, despite ICON-ESM being run at a comparatively low horizontal resolution,
i.e. R2B3, in which the globe is resolved by 5120 triangular cells with an average distance between cell centers of 277 km,
with the standard 5-layer vertical resolution in land cells, and despite the model simulating a dryer climate in the Acrtic and
susbarctic zone.
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Supplementary Figure SF10. Arctic futures in ICON-ESM
a) 21st century precipitation trend simulated with the DRY ICON-L setup. b) Same as a) but for evapotranspiration. c) Same as
a) but for the total soil water (liquid soil moisture and ice) content. d,e,f) Same as a,b,c) but for the WET ICON-L setup.
Non-permafrost and glacier grid cells are shaded in grey.

Despite including neither the dynamic vegetation module nor the WEED module and despite being run at a lower resolution,
the trends in precipitation and evapotranspiration compare well with the MPI-ESM simulations. However, in contrast to the
latter, there are no clear general trends in the total soil water content, either in the DRY or in the WET ICON-L setups. While
there are regions that exhibit notable in- and decreases in the total soil water in both simulations, these cancel out on the
pan-Arctic scale.
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Supplementary Figure SF11. Effects of soil hydrological conditions on near-surface climate:
a) Latent heat flux in the northern permafrost regions in WET (blue) and DRY (red) ICON-ESM simulations for SSP5-8.5.
Thin lines show the annual mean, averaged over the northern permafrost regions (note that that grid cells covered by glaciers
were excluded), while thick lines give the 10-year running mean. b) Same as a) but showing the Bowen ratio, c) precipitation,
d) surface runoff and drainage, e) accumulated cloud cover, f) solar radiation absorbed at the surface, g) surface temperatures,
h) near-surface (top 3 m of the soil) permafrost volume and i) liquid soil water content.

The ICON-ESM produces a dryer climate than the MPI-ESM, with a lower cloud cover, less precipitation and, consequently,
less evapotraspition, runoff and drainage. Due to the lower cloud cover, the surface shortwave net radiation is also higher,
resulting in a higher sensible heat flux and consequently a much higher Bowen ratio. However, despite these differences in
climate, the differences between the DRY and WET ICON-L setups generally agree well with those between the WET and
DRY MPI-ESM runs.
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Supplementary Figure SF12. Comparison to CMIP6 ensemble:
a) Differences in evapotranspiration between the WET and the DRY ICON-L setup in permafrost regions (∆evap

|DRY−WET |). Black

line gives the interquartile range (IQRevap) — that is the difference between the 75th and the 25th percentile — of the CMIP6
ensemble, while the dotted area provides 2 × the ensemble standard deviation (±σ evap). b) same as a but for precipitation
(∆pr

|DRY−WET |, IQRpr, ±σ pr), c) surface temperatures in permafrost grid cells (∆ts
|DRY−WET |, IQRts, ±σ ts) and d) surface

temperatures (land and ocean) north of 50◦N (∆ts;+50N
|DRY−WET |, IQRts;+50N , ±σ ts;+50N).

In general, the ICON-ESM simulations agree well with those using the MPI-ESM. However, the differences in the simulated
temperatures between the DRY and the WET setups are substantially smaller in the northern permafrost regions (about 0.8◦C,
which corresponds to about 30 % of the temperature differences in the MPI-ESM simulations) and also those averaged across
the latitudes 50◦N to 90◦N (about 0.6◦C, also 30 % of the temperature differences in the MPI-ESM simulations).
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