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Abstract. Trends in March mean snow water equivalent
(SWE) in the Northern Hemisphere are attributed to changes
in three main factors: total precipitation (P ), fraction of pre-
cipitation as snowfall (F ), and fraction of accumulated snow-
fall remaining on the ground (G). This trend attribution is
repeated for two reanalyses (ERA5-Land from March 1951
to 2022 and MERRA2 – Modern-Era Retrospective analy-
sis for Research and Applications, Version 2 – from 1981
to 2022) and simulations by 22 climate models from the
6th phase of the Coupled Model Intercomparison Project
(CMIP6). The results reveal a decrease in SWE in most of
the Northern Hemisphere, as decreases in F and G dominate
over mostly positive trends in P . However, there is spatial
variability in both the magnitude and sign of these trends.
There is substantial variation between the individual CMIP6
models, but the agreement between the CMIP6 multi-model
mean and ERA5-Land is reasonable for both the area means
and the geographical distribution of the trends from 1951 to
2022, with a spatial correlation of 0.51 for the total SWE
trend. The agreement for the trends from 1981 to 2022 is
worse, probably partly due to internal climate variability but
also due to the overestimation of the recent warming in the
CMIP6 models. Over this shorter period for which ERA5-
Land can be compared with MERRA2, there are also marked
trend differences between these two reanalyses. However,
the SWE decreases associated with reduced snowfall frac-
tion (F ) are more consistent between the different data sets
than the trends resulting from changes in P and G.

1 Introduction

Simulations of greenhouse-gas-induced climate change by
global climate models feature both warming and, in the
northern mid-to-high latitudes in winter, an increase in pre-
cipitation (Lee et al., 2021). These changes have oppos-
ing effects on snowpack. An increase in precipitation, if
acting alone, would increase the amount of snowfall and
snow on the ground. However, an increase in mean temper-
ature favours the occurrence of above-zero at the expense of
below-zero temperatures, particularly where and when the
mean temperature is relatively close to the freezing point (de
Vries et al., 2013; Räisänen, 2016). Therefore, a smaller frac-
tion of precipitation falls as snow (Krasting et al., 2013; Kap-
nick and Delworth, 2013; Räisänen, 2016), and the snowpack
is reduced by more frequent and intense melt events during
the winter (Musselman et al., 2021). The net effect of these
changes in climate model simulations is a shortening of the
snow season (Brown and Mote, 2009; Zhu et al., 2021) and
a decrease in the snow water equivalent (SWE) in most areas
(Mudryk et al., 2020). However, in the coldest regions such
as eastern Siberia and northern Canada, the increase in total
precipitation tends to dominate and thus leads to an increase
in SWE at the height of the snow season (Räisänen, 2008;
Brown and Mote, 2009).

Changes in snow cover and snow amount, as characterized
by either snow depth or SWE, are important from climatolog-
ical, hydrological, ecological, and many other points of view.
Climatologically, snow cover increases the surface albedo,
thus acting as an amplifier of temperature changes (Thack-
eray and Fletcher, 2016). It also isolates the air from the heat
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storage in the ground, which moderates the winter cooling of
the soil but further decreases the surface air temperature over
and above the albedo effect (Vavrus, 2007). Hydrologically,
the water stored in the snowpack reduces river flows in win-
ter but increases them during and after the spring snowmelt,
which also replenishes the soil moisture in the beginning of
the growing season (Vavrus, 2007; Li et al., 2017; Qi et al.,
2020). A thick enough snowpack also provides shelter for ro-
dents and other small animals against the winter cold, along
with many other beneficial ecological impacts (Petty et al.,
2015). For all these reasons, it is of interest to ask whether re-
cently observed changes in real-world snow conditions have
followed the expectations from climate model simulations.

Earlier research on changes in snow conditions in the
past few decades gives two key insights. The first is a gen-
eral albeit non-uniform decrease in the extent and amount
of snow. For example, Kunkel et al. (2016) reported a pre-
dominantly decreasing trend in winter maximum snow depth
from the winter of 1960/61 to 2014/15 in North America
and Europe based on station observations in the Global His-
torical Climatology Network daily data set. Pulliainen et
al. (2020) evaluated trends in snow mass in 1980–2018 using
the Global Snow Monitoring for Climate Research (Glob-
Snow) v3.0 analysis. Focusing on non-mountainous areas
north of 40◦ N, they found a statistically significant decreas-
ing trend in March mean snow mass in North America (best
estimate: −4 % per decade) but a near-zero trend in Eurasia.
Mudryk et al. (2020) derived consensus estimates of varia-
tions in Northern Hemisphere snow extent and snow mass in
the years 1981–2018, basing the former (latter) on the aver-
age of six (four) data sets produced using various method-
ologies and sources of observations. These estimates showed
a decreasing trend in snow extent and snow mass through-
out the year but especially from November to June. Using
observations for the years 1981–2010, Mudryk et al. (2017)
found the monthly mean snow cover extent in the extratrop-
ical Northern Hemisphere land areas to decrease throughout
the snow season by (1.9± 0.9)× 106 km2 for each 1 ◦C in-
crease in the mean temperature in the same month and area.

The second key message from earlier research is the need
to consider observational uncertainty (Mudryk et al., 2017;
Mortimer et al., 2020). A fundamental reason of this is the
insufficiency of direct measurements. As much of the North-
ern Hemisphere snow cover resides in sparsely populated ar-
eas poorly covered by station and snow course observations,
a hemispheric view on snow conditions requires satellite
remote sensing and/or numerical modelling. The National
Oceanic and Atmospheric Administration (NOAA) has pro-
duced snow charts based on the manual analysis of primarily
visible-light satellite images since the year 1966 (Robinson
et al., 2012). However, Mudryk et al. (2017, 2020) question
the homogeneity of this record, since its 1981-to-2010 trends
disagree with several other data sets. Notably, the NOAA
snow charts suggest a pronounced increase in snow extent

in October that appears physically incompatible with the si-
multaneous warming.

Remote sensing of SWE is more challenging than that of
snow extent. SWE estimates based on the attenuation of mi-
crowave radiation within the snowpack exist (Kelly, 2009;
Tedesco and Jeyaratnam, 2016), but these stand-alone mi-
crowave products still agree less well with in situ obser-
vations than gridded SWE data sets based on alternative
techniques (Mortimer et al., 2020). The latter include Glob-
Snow (Takala et al., 2011; Pulliainen et al., 2020), several
reanalyses that assimilate available observations to a simu-
lation by a weather prediction or climate model, and SWE
data sets produced by a land surface model forced by ob-
served or analysed time series of near-surface meteorologi-
cal variables. The GlobSnow technique, which combines in-
formation from microwave measurements and in situ snow
depth observations, appears currently as one of the most
promising approaches (Pulliainen et al., 2020). However, it
is not feasible in mountainous areas where in situ observa-
tions are sparse and surface conditions are strongly variable.
Reanalyses and land surface models produce spatially com-
plete SWE simulations, in some cases with high spatial and
temporal resolution (e.g. hourly data at 9 km resolution for
ERA5-Land; Muñoz-Sabater et al., 2021). On the other hand,
model biases and limitations in the observational input re-
sult in a large spread between the SWE estimates from dif-
ferent analysis products (Mudryk et al., 2015; Mortimer et
al., 2020). Mudryk et al. (2015) found more than a factor
of 1.5 range even in the Northern Hemisphere total winter
peak snow mass among the five data sets that they evaluated
(their Fig. 3a). More importantly for the climate change per-
spective, real trends in snow conditions may be confounded
with temporal inhomogeneity in the input observations. This
problem is especially acute for reanalyses where new types of
satellite observations are introduced to the assimilation data
stream with time. For example, Mortimer et al. (2020) re-
port a downward discontinuity in the European Centre for
Medium Range Weather Forecasts (ECMWF) ERA5 reanal-
ysis (Hersbach et al., 2020) snow mass around the year 2004,
when the assimilation of satellite-derived binary snow–no-
snow estimates began.

This paper focuses on recent trends in SWE in the North-
ern Hemisphere and the mechanisms that have contributed
to them. In addition to exploring how SWE has changed,
we proceed one step further and attribute this change to the
three multiplicative factors that determine SWE (Räisänen,
2008; 2021a): total precipitation, the fraction of precipitation
falling as snow (the snowfall fraction), and the fraction of
accumulated snowfall that has not melted away and thus re-
mains on the ground at a given time of the winter season (the
snow-on-ground fraction). The primary questions that the pa-
per aims to address are thus the following.

1. How has SWE changed?
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2. How have the changes in total precipitation, snowfall
fraction, and snow-on-ground fraction individually con-
tributed to the SWE change?

3. Are the changes in climate model simulations consistent
with those in the real world?

In practice, the answers to these questions are complicated by
both observational uncertainty, differences between climate
models, and internal climate variability. This raises three
auxiliary questions.

4. How well do we know how SWE has changed, concern-
ing both the total SWE change and the contributions of
the three multiplicative factors?

5. How much do the historical SWE change and the contri-
butions of the three multiplicative factors vary between
different climate model simulations?

6. How much of the differences in SWE change between
climate model simulations, and between climate models
and the real world, can be explained by internal variabil-
ity?

Throughout the paper, the focus will be on SWE in March,
when the Northern Hemisphere snow mass is the largest
(Pulliainen et al., 2020). In the interest of simplicity, SWE
changes will be characterized by least-squares linear trends.
For the reasons discussed in Sect. 3, these trends are calcu-
lated for two periods of time, from March 1951 to 2022 and
from 1981 to 2022.

A key finding of this research is a reasonable agreement
between the ERA5-Land reanalysis and the CMIP6 (6th
phase of the Coupled Model Intercomparison Project; Eyring
et al., 2016) models on the March mean SWE trends and their
contributing factors in the period of 1951–2022 (Sect. 5) but
a worse agreement between various observational data sets
with both each other and the CMIP6 models on the trends
from 1981 to 2022 (Sect. 6).

2 Data sets

The diagnostic framework which represents SWE using total
precipitation, snowfall fraction, and snow-on-ground fraction
(Sect. 3) requires three variables: total precipitation, snow-
fall, and SWE. Total precipitation is reported regularly at
thousands of stations but without separating the contribu-
tions of rainfall and snowfall. Furthermore, although net-
works of SWE measurement exist, for example, in Canada
(Brown et al., 2019), Russia (Bulygina et al., 2011), and Fin-
land (Haberkorn, 2019), their coverage is relatively limited
(Mortimer et al., 2020). Therefore, the current study relies on
reanalysis data sets in describing the “observed” evolution of
precipitation, snowfall, and SWE.

The first criterion in selecting the reanalyses was tem-
poral coverage for at least the past four decades up to the

present day to get a statistically meaningful and up-to-date
view on the currently ongoing SWE change. Second, re-
analyses that directly assimilate snow-related land surface
variables were discarded because data assimilation may cre-
ate a mismatch between SWE and the atmospheric forc-
ing (temperature, precipitation, etc.) that regulates snowfall
and snowmelt. Two global reanalyses meeting these criteria
were found: ERA5-Land (Muñoz-Sabater et al., 2021) and
MERRA2, the Modern-Era Retrospective analysis for Re-
search and Applications, Version 2 (Gelaro et al., 2017; Re-
ichle et al., 2017).

ERA5-Land (hereafter ERA5L) is a land-only rerun of
the ERA5 reanalysis, produced by forcing the H-TESSEL
land surface model (Balsamo et al., 2009; Dutra et al., 2010)
with ERA5 meteorological output downscaled to 9 km reso-
lution. ERA5L is available from the year 1950 to the present.
MERRA2 is an atmosphere–land reanalysis produced by ver-
sion 5.12.4 of the Goddard Earth Observing System atmo-
spheric data assimilation system. It is available from the year
1980 to the present in a 0.5◦× 0.625◦ latitude–longitude
grid. Neither ERA5L nor MERRA2 assimilates observa-
tions of land surface variables, leaving the evolution of SWE
solely determined by the land surface model used and the
meteorological forcing provided to it.

To assess the uncertainty in ERA5L and MERRA2 and to
help the interpretation of climate trends, the auxiliary data
sets summarized in Table 1 were used. Of the two variants
of the GlobSnow v3.0 SWE (Pulliainen et al., 2020; Luo-
jus et al., 2021), the bias-corrected one was chosen. These
corrections are based on comparison with snow course mea-
surements, and they improve the SWE estimates especially in
areas with thick snow, where the non-corrected data system-
atically underestimate SWE due to the saturation of the mi-
crowave signal when SWE exceeds ca. 150 mm (Pulliainen
et al., 2020). Currently, GlobSnow is being superseded by
the European Space Agency Snow Climate Change Initiative
SWE data set (Mortimer et al., 2022), but bias corrections
have not yet been implemented to it.

Climate model simulations from CMIP6 were also used,
concatenating historical simulations for the years 1950–2014
with simulations for the Shared Socioeconomical Pathways
“middle of the road” 2-4.5 scenario (Fricko et al., 2017) for
the years 2015–2022. The analysed simulations form two
groups (Table 2).

1. A 22-model ensemble was formed using one realiza-
tion per model (r1i1p1f1 or r1i1p1f2 depending on
data availability). The variation within this ensemble in-
cludes the combined effects of model differences and
internal variability. The mean value of these 22 simula-
tions is referred to as the multi-model mean (MMM).

2. For the five models with the largest number of real-
izations with different initial conditions (28 to 50 de-
pending on the model), all these realizations were used
to isolate the variance caused by internal variability
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Table 1. Auxiliary observational data sets. T is temperature, P is precipitation, SLP is sea level pressure, CRU is Climatic Research Unit
Time Series v4.06 (Harris et al., 2020), GPCC is Global Precipitation Climatology Centre (Schneider et al., 2022), GPCP is Global Precip-
itation Climatology Project Version 2.3 (Adler et al., 2018), ERA5 is ECMWF ERA5 Reanalysis (Hersbach et al., 2020), and GlobSnow is
GlobSnow v3.0 (Luojus et al., 2021). Further details on the availability and processing of these data sets are given in Appendix A.

Acronym Variable Years of record Native resolution Purpose of use

CRU T 1901–2021 0.5◦ Assessment of reanalysis T trends (Sect. 7.3)
P 1901–2021 0.5◦ Assessment of reanalysis P trends (Sect. 7.3)

GPCC P 1891–2020 0.5◦ Assessment of reanalysis P trends (Sect. 7.3)
GPCP P 1979–2022 2.5◦ Assessment of reanalysis P trends (Sect. 7.3)
ERA5 T 1940–2022 0.25◦ Global mean temperature trend (Sect. 7.3)

SLP 1940–2022 0.25◦ Trend in atmospheric circulation (Sect. 7.3)
GlobSnow SWE 1980–2018 25 km Model-independent estimate of SWE (Sects. 4 and 6)

without the confounding effect of model differences
(Sect. 7.2).

All the observational data sets and the CMIP6 simula-
tions were interpolated to a common 2.5◦× 2.5◦ latitude–
longitude grid using first-order conservative remapping
(Jones, 1999). This leads to a loss of local information par-
ticularly for the data sets with the highest resolution, such
as ERA5L. However, the 2.5◦× 2.5◦ grid is sufficient for a
large-scale analysis, and the trend decomposition results in
this grid are nearly independent of whether the grid remap-
ping is done before or after the decomposition (Eqs. 1–2 in
Sect. 3). See Fig. B1 for an illustration of the resolution de-
pendence of the 1951–2022 trends in ERA5L in the Scandi-
navian area.

3 Methods

Our diagnostic framework follows Räisänen (2008, 2021a).
Only three variables are needed from a reanalysis or a model
simulation: monthly means of SWE, snowfall, and total pre-
cipitation (P ). The monthly snowfall is first rewritten as FP,
where F is the fraction of precipitation that falls as snow.
SWE in month t then becomes

SWE=G

∫ t

t0
FPdt ′, (1)

where t0 denotes the beginning of the snow year, here fixed
to August. The snow-on-ground fraction G is diagnosed by
dividing the monthly mean of SWE by the time integral of
snowfall (FP). In evaluating the latter, August (t0) and month
t (in this study, March) are given half-weight because the
SWE data used in the analysis represent monthly means
rather than end-of-month values. To make Eq. (1) also ap-
plicable in areas where snow cover regularly or sporadically
survives to the late summer, we subtract the August mean
SWE from the left-hand-side, thus focusing on the seasonal
component of SWE. For reference, in ERA5L about 7 % of
the total snow area (red and yellow shading in the bottom-left
panel of Fig. 1) has non-negligible (>5 mm) August mean

SWE in the 2.5◦× 2.5◦ grid, largely in mountainous and Arc-
tic areas. For MERRA2, this fraction is only 1 %.

To analyse how variations in G, F , and P have contributed
to the trends in SWE, a two-step procedure is followed. First,
the same quasi-linearization as in Räisänen (2021a) is used
to decompose the SWE anomalies in individual winters. The
monthly mean values of X =SWE, G, F , and P over the
whole analysis period are denoted as X1, whereas their val-
ues in an individual winter are denoted as X2. By further
defining X = (X1+X2)/2 and 1X =X2−X1, one obtains

1SWE(t)=G

∫ t

t0
F1P dt ′︸ ︷︷ ︸

1SWE(1P )

+G

∫ t

t0
1FP dt ′︸ ︷︷ ︸

1SWE(1F)

+1G

∫ t

t0
F P dt︸ ︷︷ ︸

1SWE(1G)

+
1
4
1G

∫ t

t0
1F1P dt ′︸ ︷︷ ︸

1SWE(NL)

. (2)

Thus, the anomaly in SWE is decomposed to contributions
from the total precipitation (1P ), snowfall fraction (1F ),
and snow-on-ground fraction anomalies (1G), as well as
a non-linear term that is typically 2 orders of magnitude
smaller than the others. However, there is an implicit non-
linearity in the coefficients G, F , and P in Eq. (2), since, for
example, G=G1+1G/2 6=G1.

Second, least-squares linear trends in 1SWE and its four
components are calculated. This is repeated for two periods,
the winters of 1951 to 2022 and 1981 to 2022. Thanks to
its length, the former period maximizes the signal-to-noise
ratio between forced climate change and internal variability.
However, MERRA2 only covers the latter period. The total
SWE trend is additionally calculated for the winters of 1981
to 2018 to allow for an unbiased comparison between Glob-
Snow and the other data sets.

Where area mean values for different data sets or spatial
correlations between them are reported, this is done for ei-
ther the total snow area or the GlobSnow area. The former
includes those 2.5◦× 2.5◦ land grid boxes at latitudes of 30–
80◦ N where the climatological mean SWE in the winters
of 1981–2022 (as averaged over ERA5L and MERRA2) ex-
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Table 2. CMIP6 models used in the study. Model acronyms follow https://esgf-node.llnl.gov/search/cmip6/ (ESGF, 2023). The atmospheric
horizontal resolution is given in degrees latitude× degrees longitude. Main realization refers to the realization used in calculating the multi-
model mean and the inter-model variance. N is the number of realizations used. 1T51–22 and 1T81–22 give the total snow area November-
to-March mean temperature trends in the winters of 1951–2022 (◦C (71 yr)−1) and 1981–2022 (◦C (41 yr)−1). The model and ensemble
numbers are used in Figs. 4–5.

Model Ensemble Model acronym Atmospheric resolution Main realization N 1T51–22 1T81–22

1 ACCESS-CM2 1.25◦× 1.875◦ r1i1p1f1 1 2.3 2.4
2 1 ACCESS-ESM1-5 1.25◦× 1.875◦ r1i1p1f1 40 2.9 2.5
3 BCC-CSM2-MR 1.125◦× 1.125◦ r1i1p1f1 1 1.9 2.0
4 2 CanESM5 2.813◦× 2.813◦ r1i1p1f1 50 3.2 2.7
5 CNRM-CM6-1 1.406◦× 1.406◦ r1i1p1f2 1 3.3 1.4
6 CNRM-CM6-1-HR 0.5◦× 0.5◦ r1i1p1f2 1 2.7 2.4
7 CNRM-ESM2-1 1.406◦× 1.406◦ r1i1p1f2 1 3.3 2.2
8 EC-Earth3-CC 0.703◦× 0.703◦ r1i1p1f1 1 3.2 2.5
9 EC-Earth3 0.703◦× 0.703◦ r1i1p1f1 1 4.1 4.3
10 EC-Earth3-Veg 0.703◦× 0.703◦ r1i1p1f1 1 3.4 2.5
11 EC-Earth3-Veg-LR 1.125◦× 1.125◦ r1i1p1f1 1 2.6 1.9
12 GFDL-ESM4 1.0◦× 1.0◦ r1i1p1f1 1 1.3 1.8
13 GISS-E2-1-G 2.0◦× 2.5◦ r1i1p1f2 1 1.5 1.9
14 GISS-E2-1-H 2.0◦× 2.5◦ r1i1p1f2 1 2.7 2.3
15 IPSL-CM6A-LR 1.26◦× 2.5◦ r1i1p1f1 1 2.6 2.4
16 3 MIROC6 1.406◦× 1.406◦ r1i1p1f1 33 2.0 1.8
17 4 MIROC-ES2L 2.813◦× 2.813◦ r1i1p1f2 28 2.4 2.2
18 MPI-ESM1-2-HR 0.938◦× 0.938◦ r1i1p1f1 1 1.9 1.7
19 5 MPI-ESM1-2-LR 1.25◦× 1.875◦ r1i1p1f1 30 2.1 1.6
20 MRI-ESM2-0 1.125◦× 1.125◦ r1i1p1f1 1 2.1 2.5
21 NorESM2-MM 0.938◦× 1.25◦ r1i1p1f1 1 2.4 2.0
22 UKESM1-0-LL 1.25◦× 1.875◦ r1i1p1f2 1 2.7 3.1

Figure 1. Mean values of mid-August to mid-March total precipitation and snowfall fraction (first and second columns) and snow-on-ground
fraction and SWE (third and fourth columns) in March in the winters of 1981–2022 in ERA5L, MERRA2, and the CMIP6 MMM. For SWE,
the GlobSnow estimate for March 1981–2018 is shown in the bottom-right panel. The numerical values in the headers show the area means,
where the mean values for the snowfall fraction (F ∗) are weighted by the total precipitation (P ∗) and those for the snow-on-ground fraction
(G) by the accumulated snowfall (F ∗P ∗). The mean values without parentheses are for the total snow area (including both the red and the
yellow shading in the bottom-left panel) and those in parentheses for the GlobSnow area (red shading in the bottom-left panel).
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ceeds 5 mm at least in one calendar month. However, Green-
land is excluded. The GlobSnow area is a subset of the to-
tal snow area, covering about 81 % of it. It excludes those
2.5◦× 2.5◦ grid boxes in which more than half of the Glob-
Snow data in their original finer grid were missing, meaning
mountainous areas and latitudes south of 40◦ N. These two
averaging areas are shown in the bottom-left panel of Fig. 1.

When representing trends in maps, stippling is used as a
broad indicator of robustness. Reanalysis trends are stippled
where they exceed the 5 %–95 % range for trends generated
by white noise interannual variability. For CMIP6, stippling
is used where the MMM trend exceeds the inter-model stan-
dard deviation.

4 Average snow climate

In this section, the March mean SWE climate in the winters
of 1981–2022 is compared between the observational data
sets and the CMIP6 models, and the factors contributing to it
are analysed. SWE is shown in the fourth column of Fig. 1
and the three multiplicative factors that contribute to it in the
first three columns. For this figure and Tables 3–4, Eq. (1) is
rewritten as

SWE=GF ∗P ∗, (3)

where

P ∗ =

∫ t

t0
P dt ′ (4)

is the total precipitation integrated from August to March
(with half-weight for August and March) and F ∗ is the snow-
fall fraction for the same period.

The large-scale geographical patterns are similar for
ERA5L, MERRA2, and the CMIP6 MMM, and they show
physically expected features. The snowfall and snow-on-
ground fractions F ∗ and G increase from warm to cold cli-
mates: from south to north, from the relatively mild west-
ern Europe towards the interior and eastern parts of Eurasia,
and with increasing elevation. This makes the distribution of
March mean SWE rather different from that of the August-
to-March total precipitation (P ∗). Yet the latter also matters.
For example, the relatively modest SWE in eastern Siberia
is due to small total precipitation, while the SWE in some
mountainous regions (notably the west coast of Canada) is
amplified by very large total precipitation.

The similarity of geographical patterns suggested by
Fig. 1 is confirmed by the high spatial correlations between
ERA5L, MERRA2, and the CMIP6 MMM (Table 3). For
each of the three factors P ∗, F ∗, and G, these correlations
vary from 0.88 to 0.96 in the total snow area and are even
higher (0.93–0.97) in the GlobSnow area. Even for SWE,
which is affected by the differences in each of P ∗, F ∗, and G,
correlations close to 0.9 are found, except between ERA5L
and MERRA5 in the total snow area (r = 0.79). However,

the correlations of SWE between GlobSnow and the other
three data sets (0.78–0.82) are lower than those among these
three. Thus, the GlobSnow SWE distribution differs more
from ERA5L, MERRA2, and the CMIP6 MMM than the lat-
ter three differ from each other.

Despite the pattern similarity, there are quantitative dif-
ferences between the data sets. As a first-order indicator of
these, the area means of P ∗, F ∗, G, and SWE are given in
the map headers of Fig. 1, for both the total snow area and
the GlobSnow area, using weighting that preserves the iden-
tity (Eq. 3) for these area means (see the figure caption). The
mean SWE in ERA5L exceeds that in MERRA2, but the dif-
ference is much larger in the total snow than the GlobSnow
area. The average SWE in the mountainous, mostly relatively
low-latitude regions that are excluded from the GlobSnow
area is 129 mm in ERA5L but only 65 mm in MERRA2.
Such a large difference between the two reanalyses is re-
markable, although it might partly reflect the higher reso-
lution, and therefore steeper orography, in ERA5L (∼ 0.1◦)
than in MERRA2 (0.5◦× 0.625◦). Regardless of the aver-
aging area, the snow-on-ground fraction G is also larger in
ERA5L than MERRA2, while the average snowfall fraction
F ∗ is slightly larger in MERRA2.

The CMIP6 22-model mean SWE in the total snow area is
close to MERRA2 but 15 % below ERA5L; in the GlobSnow
area it is also below MERRA2. The average precipitation in
the CMIP6 models exceeds both ERA5L and MERRA2, but
this is compensated for by lower mean values of F ∗ and G

(third row in Fig. 1). On the other hand, the average CMIP6
SWE exceeds the GlobSnow estimate (bottom-right corner
in Fig. 1) by nearly 10 %. Kouki et al. (2022) also used Glob-
Snow as their main observational data set, finding an aver-
age ∼ 15 % overestimate of March mean SWE for a larger
set of 38 CMIP6 models (their Fig. 2b). Both the different
sets of models and the inclusion of mountainous areas (where
GlobSnow was replaced by other observational estimates) by
Kouki et al. (2022) may contribute to this slight difference.
Using linear regression, Kouki et al. (2022) attributed the
overestimate of simulated SWE in February to November-
to-January precipitation that is too large in the CMIP6 mod-
els. Although they made this regression analysis for February
rather than March mean SWE, this result is in line with the
CMIP6 MMM overestimate of area mean P ∗ suggested by
Fig. 1.

Assuming that GlobSnow and the other observational es-
timates used by Kouki et al. (2022) are correct, the average
SWE is too large in the CMIP6 MMM, MERRA2, and (espe-
cially) ERA5L. A comparison of GlobSnow with three other
bias-corrected estimates of the total snow mass in Northern
Hemisphere non-alpine areas (Table 1 of Pulliainen et al.,
2020) supports this assessment: all the four estimates are
within 7.4 %, GlobSnow being the highest. However, SWE
in mountainous areas is known less well and may be severely
underestimated in many gridded analyses (Snauffer et al.,
2016; Wrzesien et al., 2018). Despite the higher mean SWE
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Table 3. Spatial correlation of the fields shown in Fig. 1 between different data sets. The values without (within) parentheses are for the total
snow area (the GlobSnow area).

P ∗ F ∗ G SWE

ERA5L vs. MERRA2 0.93 (0.95) 0.95 (0.97) 0.88 (0.94) 0.79 (0.89)
ERA5L vs. CMIP6 0.96 (0.96) 0.95 (0.96) 0.93 (0.95) 0.87 (0.92)
MERRA2 vs. CMIP6 0.90 (0.93) 0.93 (0.94) 0.95 (0.95) 0.88 (0.93)
ERA5L vs. GlobSnow (0.78)
MERRA2 vs. GlobSnow (0.79)
CMIP6 vs. GlobSnow (0.82)

Table 4. Total snow area mean values of P ∗, F ∗, G, and SWE for March 1981–2022 and the area mean trend in March mean SWE and its
three main components (Eq. 2) in the years 1951–2022 and 1981–2022 (in parentheses) in the 22 CMIP6 models, ERA5L, and MERRA2.
F ∗ and G are non-dimensional; the other values are in millimetres. The largest and smallest values in the CMIP6 ensemble are bold.

Climate 1981–2022 Trend 1951–2022 (1981–2022)

Model acronym P ∗ F ∗ G SWE 1SWE (1P ) 1SWE (1F ) 1SWE (1G) 1SWE

ACCESS-CM2 327 0.49 0.53 84 8.6 (11.5) −9.2 (−10.5) −0.9 (−0.6) −1.4 (0.4)
ACCESS-ESM1-5 366 0.43 0.49 76 8.2 (9.5) −11.8 (−10.8) −2.8 (−3.4) −6.3 (−4.6)
BCC-CSM2-MR 339 0.47 0.63 101 7.4 (9.5) −9.9 (−12.4) −3.8 (−4.8) −6.3 (−7.6)
CanESM5 324 0.44 0.60 86 13.1 (9.9) −12.4 (−11.1) −8.4 (−6.4) −7.7 (−7.6)
CNRM-CM6-1 362 0.43 0.63 99 13.1 (8.9) −11.7 (−6.3) −10.5 (−5.6) −9.0 (−2.9)
CNRM-CM6-1-HR 357 0.48 0.65 111 12.9 (9.8) −12.6 (−10.2) −7.1 (−6.5) −6.7 (−6.8)
CNRM-ESM2−1 369 0.42 0.62 96 11.7 (7.4) −11.9 (−8.2) −10.4 (−7.3) −10.5 (−8.1)
EC-Earth3−CC 327 0.43 0.66 94 12.3 (12.6) −12.7 (−11.8) −7.4 (−6.3) −7.8 (−5.4)
EC-Earth3 319 0.46 0.71 105 19.8 (21.3) −23.3 (−23.0) −6.1 (−6.7) −9.5 (−8.4)
EC-Earth3-Veg 320 0.45 0.70 101 13.1 (10.5) −15.9 (−12.1) −5.5 (−6.1) −8.2 (−7.6)
EC-Earth3-Veg-LR 315 0.45 0.70 99 8.5 (8.3) −13.6 (−10.9) −4.7 (−5.0) −9.7 (−7.6)
GFDL-ESM4 363 0.46 0.49 81 2.3 (6.4) −4.7 (−8.3) −4.0 (−4.9) −6.4 (−6.8)
GISS-E2-1-G 377 0.54 0.65 132 12.1 (7.4) −8.9 (−9.2) −2.3 (−0.8) 1.0 (−2.6)
GISS-E2-1-H 381 0.52 0.67 133 14.1 (13.0) −11.8 (−10.8) −6.4 (−5.2) −4.0 (−3.0)
IPSL-CM6A-LR 378 0.52 0.57 112 10.6 (12.3) −11.2 (−10.1) −6.1 (−6.9) −6.6 (−4.5)
MIROC6 358 0.42 0.60 89 6.2 (5.3) −8.2 (−7.4) −7.2 (−5.2) −9.1 (−7.3)
MIROC-ES2L 366 0.40 0.46 67 9.0 (10.0) −5.7 (−5.8) −9.7 (−10.8) −6.4 (−6.5)
MPI-ESM1-2-HR 360 0.44 0.41 66 6.0 (5.0) −5.6 (−6.7) −6.7 (−5.2) −6.3 (−6.9)
MPI-ESM1-2-LR 357 0.44 0.45 70 6.1 (5.2) −6.3 (−4.4) −5.9 (−5.4) −6.0 (−4.6)
MRI-ESM2-0 388 0.42 0.61 99 7.5 (12.1) −11.8 (−14.8) −6.6 (−5.9) −10.9 (−8.5)
NorESM2-MM 302 0.50 0.75 113 14.0 (11.5) −11.3 (−13.1) −4.4 (−2.9) −1.7 (−4.5)
UKESM1-0-LL 317 0.47 0.39 59 8.8 (10.7) −8.6 (−11.2) −3.0 (−5.2) −2.8 (−5.7)

Mean 349 0.46 0.59 94 10.3 (9.9) −10.9 (−10.4) −5.9 (−5.3) −6.5 (−5.8)
Median 358 0.45 0.62 98 9.8 (9.9) −11.5 (−10.7) −6.0 (−5.3) −6.5 (−6.1)
Standard deviation 25 0.04 0.10 20 3.8 (3.5) 4.0 (3.8) 2.5 (2.1) 3.1 (2.3)

ERA5L 339 0.48 0.68 110 7.1 (5.2) −8.0 (−8.2) −7.4 (−3.9) −8.3 (−6.9)
MERRA2 312 0.49 0.61 93 (2.9) (−5.5) (−0.5) (−3.1)

in ERA5L than in MERRA2 and GlobSnow, Muñoz-Sabater
et al. (2021) found ERA5L to underestimate SWE by∼ 50 %
at the five Earth System Model – Snow Model Intercompari-
son Project (Krinner et al., 2018) alpine reference sites.

The CMIP6 MMM hides considerable inter-model vari-
ability (Table 4, first to fourth columns). Among the 22 mod-
els, the average total snow area March mean SWE varies
from 59 mm in UKESM1-0-LL to 133 mm in GISS-E2-1-H.

The mean values of P ∗, F ∗, G, and SWE in both ERA5L
and MERRA2 fall within the range of the CMIP6 simula-
tions, although there is only one model (NorESM2-MM) in
which the August-to-March total precipitation is smaller than
in MERRA2.

Table 4 also shows that the inter-model differences in
G are in relative terms larger than those in P ∗ and F ∗.
This is perhaps unsurprising, since G may be affected by
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Figure 2. Trend in March mean SWE from 1951 to 2022 (mm (71 yr)−1) (fourth column) and the contributions to it from changes in
total precipitation (first column), snowfall fraction (second column), and snow-on-ground fraction (third column) in ERA5L and the CMIP6
MMM. The area means for the total snow area are given in the headers.

a multitude of factors. As defined by Eq. (1), G reflects
the balance between the source (accumulated snowfall) and
sinks (snowmelt plus sublimation) of snow. The accumulated
snowfall depends on both the amount and phase of precipita-
tion, whereas snowmelt and sublimation are ultimately deter-
mined by the amount of energy that the land surface model
allocates to them. The latter, in turn, is constrained by the
downward solar and thermal radiation reaching the surface,
the exchange of sensible and latent heat between the land
surface and the atmospheric models, the description of the
surface albedo and emissivity, and the use or release of en-
ergy associated with temperature changes within the snow–
ground–vegetation system. As many of these processes are
described differently in different land surface models, it is
perhaps unsurprising that the simulated SWE may vary sub-
stantially even between land surface models that share the
same atmospheric forcing (Mudryk et al., 2015). A more de-
tailed understanding of the causes of variation in G within the
CMIP6 ensemble is an important target for future research.

5 Trends from the winter of 1951 to 2022

We next study the changes in SWE and their decomposition
using Eq. (2), starting from the trends from March 1951 to
2022 in this section and continuing with the shorter 1981–
2022 period in Sect. 6. Comparison of the 1951–2022 March
trends between ERA5L and the CMIP6 MMM reveals sim-
ilar large-scale features but differences in details (Fig. 2).
Increases in total precipitation have acted to increase SWE
in most of the extratropical Northern Hemisphere (first col-
umn), but this has been compensated for by reduced snowfall
fraction (second column). The trends in 1SWE(1G), repre-
senting the changes in the snow-on-ground fraction, are also
mostly negative but geographically variable (third column).
This term is the most negative in mid-latitude North Amer-
ica and in a zone extending from eastern Europe to south-
ern Scandinavia, where the main snowmelt season is ongo-
ing in March and has been advanced by rising spring temper-

atures. Conversely, the snow-on-ground fraction has locally
increased at higher latitudes in North America and in parts
of Siberia in ERA5L, although this increase is rarely statisti-
cally significant (note the lack of stippling in Fig. 2). It also
increases slightly in broadly the same areas in the CMIP6
MMM. Although warming is generally expected to enhance
snowmelt, this effect is modest where the mean temperature
in March and in the preceding winter months is well be-
low zero, so above-zero temperatures remain uncommon de-
spite the warming (Räisänen, 2008). Furthermore, where the
accumulated winter snowfall increases, the snow-on-ground
fraction also increases if the relative increase in snowmelt is
smaller than that in snowfall.

In most areas, the decreases in the snowfall and snow-on-
ground fractions dominate over the increase in total precip-
itation, leading to a decrease in March mean SWE in both
ERA5L and CMIP6 (Fig. 2, fourth column). Yet there are in-
creases in Alaska, northern Canada, and Siberia. The SWE
trends in ERA5L and the CMIP6 MMM have similar large-
scale distributions, but the trends in ERA5L are patchier. The
trends differ in sign, for example, in northern Fennoscandia
(decrease in CMIP6 but increase in ERA5L due to a larger
increase in total precipitation) and in easternmost Siberia (in-
crease in CMIP6 but decrease in ERA5L, again reflecting dif-
ferent precipitation trends). At the west coast of North Amer-
ica at ca. 45–50◦ N, decreases in precipitation make the SWE
trend more strongly negative in ERA5L than in CMIP6.

The spatial correlation between ERA5L and the CMIP6
MMM is 0.45 for 1SWE(1P ), 0.75 for 1SWE(1F), 0.58
for 1SWE(1G), and 0.51 for the SWE trend in the total
snow area (Table 5). These values are distinctly lower than
the mean climate correlations reported in Table 3 but higher
than the corresponding correlations for the 1981–2022 trends
(to be discussed in Sect. 6).

The positive trend in 1SWE(1P ) and the negative trend
in 1SWE(1F) are both larger for the CMIP6 MMM than
ERA5L, but these differences are dwarfed by the variation
between the individual CMIP6 models (Table 4). The largest
positive 1SWE(1P ) and negative 1SWE(1F) trends oc-
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Table 5. Spatial correlation of the trend in March mean SWE and its contributing terms (Eq. 2) between different data sets. SWE-EUR and
SWE-NAM refer to SWE trends in Eurasia and North America, respectively. The values without (within) parentheses represent the total
snow area (GlobSnow area).

Years 1SWE(1P ) 1SWE(1F) 1SWE(1G) SWE SWE-EUR SWE-NAM

1951–2022 ERA5L vs. CMIP6 0.45 0.75 0.58 0.51 0.59 0.49

1981–2022 ERA5L vs. MERRA2 0.42 0.79 0.39 0.29 (0.48) 0.52 (0.70) 0.11 (0.15)
ERA5L vs. CMIP6 0.35 0.61 0.27 0.09 (0.16) 0.45 (0.37) −0.34 (−0.12)
MERRA2 vs. CMIP6 0.17 0.57 0.30 0.16 (0.12) 0.23 (0.21) 0.02 (−0.05)

1981–2018 ERA5L vs. GlobSnow (0.13) (0.41) (0.02)
MERRA2 vs. GlobSnow (0.24) (0.31) (0.16)
CMIP6 vs. GlobSnow (0.34) (0.51) (0.07)

cur in EC-Earth3, which also stands out as the model with
the largest winter warming (Table 2, column 1T51–22). In one
model (GISS-E2-1-G), the area mean SWE increases slightly
in March.

6 Trends from the winter of 1981 to 2022

The trends in March mean SWE from 1981 to 2022 and
their contributing factors are shown in Fig. 3 for ERA5L,
MERRA2, and the CMIP6 MMM. Additionally, the SWE
trend in GlobSnow is given for the slightly shorter period
of 1981–2018. The predominant sign of the trends is the
same as for the 1951–2022 trends in Fig. 2: positive for
1SWE(1P ) but negative for 1SWE(1F), 1SWE(1G),
and SWE. The CMIP6 MMM trends for 1981–2022 are
also very similar in pattern to those for 1951–2022, but the
ERA5L trends are not. The total snow area spatial correla-
tion between the SWE trends in these two periods is 0.97 for
the CMIP6 MMM but only 0.16 for ERA5L. For example,
increases in SWE in northern Eurasia in ERA5L are much
more widespread in 1951–2022 than in 1981–2022, except
for easternmost Siberia, where SWE decreases in the former
period but increases in the latter (top-right panels in Figs. 2
and 3). In western North America, where ERA5L indicates a
pronounced SWE decrease in 1951–2022, the trend in 1981–
2022 is far more subtle.

The greater between-period dissimilarity of trends in
ERA5L than in the CMIP6 MMM may be partly explained
by internal variability (Sect. 7.2). However, comparison be-
tween ERA5L and MERRA2 points to observational uncer-
tainty as another potentially important factor (first to sec-
ond rows in Fig. 3 and second row in Table 5). The total
snow area spatial correlation between the 1981–2022 SWE
trends in the two reanalyses is only 0.29, and the correlations
for the individual terms of Eq. (2) are nearly as low, apart
from 1SWE(1F) (r = 0.79). Thus, ERA5L and MERRA2
agree reasonably well on the SWE trend caused by chang-
ing snowfall fraction (which, as argued below, is a rela-
tively straightforward response to warming) but much less

well on the trends associated with changes in total precipita-
tion and the snow-on-ground fraction. Furthermore, over the
slightly shorter period of 1981–2018 and in the GlobSnow
area, the spatial correlation between the ERA5L (MERRA2)
and GlobSnow SWE trends is only 0.13 (0.24).

The CMIP6 MMM SWE trends in March 1981–2022 (or
1981–2018) are not well correlated with any of the observa-
tional data sets (Table 5). In particular, the correlation with
ERA5L is much lower for the trend in 1981–2022 (0.09) than
in 1951–2022 (0.51). The CMIP6-to-reanalysis spatial cor-
relations for the individual terms in Eq. (2) are also mod-
est for 1SWE(1P ) and 1SWE(1G) but higher (∼ 0.6) for
1SWE(1F).

The contribution to the SWE trend from changing snow-
fall fraction (1SWE(1F)) agrees better between ERA5L,
MERRA2, and the CMIP6 MMM than the other compo-
nents or the March mean SWE trend in 1981–2022, and the
same holds when comparing CMIP6 and ERA5L in 1951–
2022 (Table 5). This is most likely (i) because the phase of
precipitation is primarily (Auer, 1974) although not com-
pletely (Sims and Liu, 2015; Jennings et al., 2018) deter-
mined by temperature and (ii) because the observational un-
certainty is smaller (Gulev et al., 2021) and the signal-to-
noise ratio is higher (Räisänen, 2001; Hawkins and Sutton
2009, 2011; Lehner et al., 2020) for temperature than pre-
cipitation changes. Temperature also regulates snowmelt and
thus affects the snow-on-ground fraction. However, this ef-
fect is less straightforward because of the confounding effect
of precipitation changes (witnessed by the slightly positive
1SWE(1G) trends in Figs. 2 and 3 in some of the coldest
areas) and probably also because of the complexity of mod-
elling the snowmelt process.

Averaged over the total snow area, the positive
1SWE(1P ) trend and the negative 1SWE(1F) and
1SWE(1G) trends are the largest for the CMIP6 MMM
and the smallest for MERRA2, with ERA5L falling between
these two (Fig. 3). The smallness of 1SWE(1P ) in the two
reanalyses is unusual relative to the inter-model variability,
as the MERRA2 estimate is below and the ERA5L estimate
close to the CMIP6 minimum (Table 4). The very mildly neg-
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Figure 3. First to third rows: trend in March mean SWE from 1981 to 2022 (mm (41 yr)−1) (fourth column) and the contributions to it from
changes in total precipitation (first column), snowfall fraction (second column), and snow-on-ground fraction (third column). Mean values
over the total snow area are given in the map headers. For SWE, the mean trend in the GlobSnow area from 1981 to 2018 is also given (in
parentheses). Fourth row: SWE trend in GlobSnow from 1981 to 2018 (mm (37 yr)−1).

ative 1SWE(1G) trend in MERRA2 is also slightly outside
of the CMIP6 range.

The CMIP6 MMM total snow area mean SWE trend
in March 1981–2022 (−5.8 mm) falls between the trends
in ERA5L (−6.9 mm) and MERRA2 (−3.1 mm), whereas
the corresponding trend in March 1981–2018 in the Glob-
Snow area (−3.8 mm) is slightly less negative than those in
ERA5L, MERRA2, and GlobSnow (−5.4 to −8 mm). The
Mudryk et al. (2020) consensus estimate of the Northern
Hemisphere March mean SWE trend in the same period sug-
gests an even larger decrease (∼ 9 mm by unit conversion
from their Fig. 1c).

The SWE trends in the various data sets have higher spa-
tial correlations in Eurasia than in North America (last two
columns of Table 5). However, there is a striking discrepancy
in both the Eurasian and North American area mean 1981–
2022 and 1981–2018 SWE trends between ERA5L and the
other data sets (Table B1). ERA5L suggests an increase in av-
erage SWE in North America and a major decrease in Eura-
sia, while MERRA2, GlobSnow, and the CMIP6 MMM all
indicate larger decreases in North America than Eurasia. In
particular, GlobSnow shows a near-zero SWE trend in Eura-
sia but a 17 mm decrease from 1981 to 2018 in North Amer-
ica, in good agreement with Pulliainen et al. (2020). Mirror-
ing these mean values, maps of the inter-data set trend dif-
ferences (Fig. B2) reveal a particularly pervasive difference
between ERA5L and GlobSnow, with more negative trends
in ERA5L in much of Eurasia but more positive trends in
North America (Fig. B2c). Yet, in the longer 1951–2022 pe-
riod, the SWE decrease in ERA5L is also slightly larger in
North America than in Eurasia (Table B1).

7 Discussion

The results in the two previous sections reveal several com-
mon features in the SWE trend and its contributing factors
between the CMIP6 MMM, ERA5L, and MERRA2. How-
ever, many differences are also evident, particularly in the
trends starting in the winter of 1981. This raises several ques-
tions.

1. Are the differences between the multi-model mean
trends and the analysed trends compatible with the
variation between the individual model simulations? If
not, this suggests a problem either in the analyses or
in the reliability of the CMIP6 ensemble. Conversely,
if the differences between the analysed and simulated
trends are comparable with the inter-model differences,
this supports the statistically indistinguishable ensem-
ble paradigm (Annan and Hargreaves, 2010) in which
model-simulated and real-world trends belong to the
same statistical population. This question will be stud-
ied in Sect. 7.1.

2. There are two distinct causes for the inter-model differ-
ences in the simulated trends: differences in the models
themselves (and in the details of the forcing applied)
and internal climate variability. To study the likely im-
portance of the latter, the variance of trends within five
single-model initial-condition ensembles is compared
with the variance in the multi-model CMIP6 ensemble
in Sect. 7.2.

3. In MERRA2, changes in total precipitation make a
smaller positive contribution to the SWE trend since the
winter of 1981 than any of the models simulate, and the
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trend in ERA5L is also exceeded in 20 of the 22 mod-
els (Table 4). Similarly, the decrease in SWE due to re-
duced snowfall fraction is smaller in the reanalyses than
in most models. To help understand these results, the
trends in winter temperature and precipitation are stud-
ied and the potential causes of the model-to-reanalysis
differences in them are explored in Sect. 7.3.

7.1 Are the analysed and simulated trends consistent
with the indistinguishable ensemble paradigm?

The indistinguishable ensemble paradigm posits that climate
changes in model simulations and in the real world should
belong to the same statistical population (Annan and Harg-
reaves, 2010). The validity, or lack thereof, of this paradigm
has important implications for projections of future climate,
but it can only be tested for those changes that have al-
ready occurred. Therefore, combined model plus observa-
tion ensembles were formed by concatenating the 22-model
CMIP6 ensemble with either ERA5L, MERRA2, or Glob-
Snow. Then, the trends in each of the 23 members of this en-
semble were compared with the mean of the other 22 mem-
bers, using two statistics: the spatial correlation and the mean
absolute difference (MAD). Again, we focus on trends in
March in the total snow area (or the GlobSnow area for com-
parison with GlobSnow).

As an example, the March mean SWE trends in ERA5L in
1981–2022 are compared with the CMIP6 trends in Fig. 4.
The spatial correlation of the ERA5L trend with the mean of
the 22 CMIP6 models is lower than the correlation between
any single CMIP6 model and the mean of the remaining
21+ 1 ensemble members (Fig. 4a). The MAD for ERA5L is
the second highest (Fig. 4b). Thus, the ERA5L SWE trends
in 1981–2022 appear unusual compared with the CMIP6 en-
semble, although this conclusion is weaker for MAD than the
spatial correlation.

The results for this and several other cases are summa-
rized in Table 6. Just as in ERA5L, the 1981–2022 SWE
trends in MERRA2 and the 1981–2018 trends in GlobSnow
are near the outer edge of the CMIP6 distribution, as more
divergent trends are only found in zero to two models de-
pending on the statistic used. By contrast, the ERA5L SWE
trends in March 1951–2022 do not stick out since a lower
spatial correlation (higher MAD) is found for 5 (6) of the
22 CMIP6 models. Regarding the components of the SWE
trend, the precipitation change contribution 1SWE(1P ) in
both ERA5L and MERRA2 appears unusual in comparison
with the CMIP6 trends in 1981–2022. Any evidence of dis-
crepancy in the other cases is weaker. However, there is a
systematic difference between the correlation and the MAD
measures, suggesting that the spatial patterns of the reanaly-
sis trends are more discordant with the CMIP6 ensemble than
the magnitude of the trends.

7.2 Effect of internal variability on the inter-model
variation in the simulated trends

The variance between the 22 CMIP6 models in the March
mean SWE trend and its three main components was calcu-
lated separately for each grid box and averaged over the total
snow area. The results are shown with the red bars in Fig. 5.
The same was then repeated for each of the five single-model
ensembles, each with 28–50 realizations of climate evolu-
tion starting from different initial conditions (Table 2). These
variances are represented by the blue bars in Fig. 5.

The variance within the CMIP6 multi-model ensemble in-
corporates the effects of model differences and internal vari-
ability, whereas the variance in the single-model ensembles
only includes the latter. Therefore, the variance in the multi-
model ensemble is larger. Furthermore, the smaller sample
size in estimating the trends makes the single-model vari-
ances larger in the shorter 1981–2022 period than the longer
1951–2022 period. The multi-model variance is more similar
between the two periods because the reduced internal vari-
ability is counteracted by larger model-related differences
when the length of the period (and hence the change in ra-
diative forcing) increases.

The magnitude of internal variability varies somewhat be-
tween the five single-model ensembles. Even so, internal
variability probably explains a majority of the variance in
SWE trends in the 22-model CMIP6 ensemble in 1981–2022
(single-model variances 49 %–80 % of the multi-model vari-
ance, bottom-right panel in Fig. 5). Conversely, in 1951–
2022, model differences probably dominate (top-right panel
in Fig. 5). Similar conclusions hold for the individual trend
contributions, except for 1SWE(1F) that is much less
strongly affected by internal variability than 1SWE(1P )

and 1SWE(1G) in most of the single-model ensembles.
This is probably because the snowfall fraction is mainly
determined by temperature, and the contribution of inter-
nal variability to inter-model differences tends to be smaller
for temperature than precipitation changes (Räisänen, 2001;
Hawkins and Sutton 2009, 2011; Lehner et al., 2020).

The model-to-reanalysis trend differences are mostly
larger than the inter-model differences (Sect. 7.1). Therefore,
internal variability probably explains a smaller fraction of
them than of the inter-model differences, assuming that the
magnitude of internal variability in the models is realistic.
Nonetheless, internal variability is an important complica-
tion also when comparing the CMIP6 simulations with the
reanalysis data sets.

7.3 Changes in winter temperature, precipitation, and
atmospheric circulation

To help understand the model-to-reanalysis differences in the
trends of SWE and the components of this trend (Eq. 2), as
well as the differences between the ERA5L and MERRA2 re-
analyses, the trends in November-to-March (NDJFM) mean
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Figure 4. Consistency test results for comparison of 1981–2022 March mean SWE trends between ERA5L and the 22 CMIP6 models.
(a) Spatial correlation between ERA5L (red) and each of the 22 models (blue) with the mean of the 22 other trend fields in the total snow
area. (b) As (a) but for the MAD from the mean of the 22 other trend fields.

Table 6. Number of CMIP6 models (out of 22) in which the simulated trends in March agree less well with the mean of the rest of the
combined simulation plus analysis data set than the analysed trends do, as measured by the spatial correlation (CORR) and the mean absolute
difference (MAD). See the text for further explanation.

1SWE(1P ) 1SWE(1F) 1SWE(1G) SWE

Years Analysis CORR MAD CORR MAD CORR MAD CORR MAD

1951–2022 ERA5L 3 6 10 13 12 18 5 6

1981–2022 ERA5L 2 1 4 11 2 15 0 1
MERRA2 0 1 4 8 2 16 0 2

1981–2018 GlobSnow 2 1

temperature and precipitation between the winters of 1981
and 2022 in ERA5L, MERRA2, and the CMIP6 MMM are
shown in the first two columns of Fig. 6. The CMIP6 MMM
NDJFM mean warming and precipitation increases are both
more spatially homogeneous and generally larger in magni-
tude than the trends in the two reanalyses. The smaller geo-
graphic variation is expected due to the averaging over the 22
model simulations. However, the trend in the total snow area
mean temperature in ERA5L (1.6 ◦C) is exceeded in 20 of the
22 models and the smaller warming in MERRA2 (0.9 ◦C) in
all 22 models (Table 2). The increase in the total snow area
mean precipitation in both reanalyses is also exceeded in all
22 models.

Although the link from temperature and precipitation to
SWE is modulated by the seasonally and geographically
varying baseline climate (Eq. 2), the trend in NDJFM tem-
perature is a good predictor of the March 1SWE(1F) trend
within the CMIP6 ensemble, with a correlation of −0.83
for area means in the total snow area. Similarly, the average
trends in NDJFM precipitation and 1SWE(1P ) are strongly
correlated (r = 0.81). Thus, the overestimation of the pos-
itive 1SWE(1P ) and negative 1SWE(1F) trends in the
CMIP6 ensemble is consistent with the overestimation of
the precipitation and temperature trends. The tendency for

1SWE(1G) trends that are too negative in the CMIP6 mod-
els (third column in Fig. 3) also appears physically consis-
tent with the overestimated warming, although the correla-
tion between the area mean temperature and 1SWE(1G)

trends in the CMIP6 ensemble is weak (−0.19). Similarly,
the less negative 1SWE(1F) and 1SWE(1G) trends in
MERRA2 than ERA5L are likely linked to the smaller warm-
ing in MERRA2.

To explore whether the CMIP6-to-reanalysis differences
might be explained by reanalysis uncertainty, the NDJFM
temperature trend was also calculated from the station-based
CRU analysis (Fig. B3a) and the precipitation trend from the
CRU, GPCC, and GPCP analyses (Figs. B3b–d). The total
snow area mean warming in CRU (1.5 ◦C) is much closer to
ERA5L than MERRA2 but substantially below the CMIP6
MMM of 2.3 ◦C. Similarly, the increases in area mean pre-
cipitation in these analyses (9.4 mm in CRU, 6.0 mm in
GPCC, and 5.2 mm in GPCP) are all well below the CMIP6
MMM (18.4 mm). This suggests that the general overesti-
mate of the 1981–2022 temperature and precipitation trends
in the CMIP6 models is real. However, reanalysis uncertainty
might still be an important factor at smaller spatial scales.
For example, the spatial correlation between the CRU and
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Figure 5. Red bars: variance of the SWE trend (fourth column) and its three main components (first to third columns) between the 22 models,
as averaged over the total snow area. Blue bars: the variance within each of the five single-model ensembles. The per cent values give the
ratio of the single-model variance to the CMIP6 multi-model variance.

Figure 6. Trends in NDJFM mean temperature, precipitation, and sea level pressure between the winters of 1981 and 2022 in ERA5L (for
sea level pressure, ERA5), MERRA2, and the CMIP6 MMM. The area means for the total snow area are given in the headers.

ERA5L trends in the 2.5◦ grid is 0.69 for temperature but
only 0.39 for precipitation (Table B2).

Aside from overestimating the NDJFM climate trends in
the total snow area, most of the CMIP6 models also simu-
late global and annual mean warming that is too large from
August 1980 to July 2022, with the CMIP6 MMM (1.05 ◦C)
exceeding the warming in the ERA5 reanalysis (0.81 ◦C) by
30 %. Yet the relative difference in the total snow area ND-
JFM temperature trends is slightly larger (40 %) possibly be-
cause of different trends in the atmospheric circulation. The

CMIP6 MMM shows a minor decrease in NDJFM mean sea
level pressure in most of the Northern Hemisphere continents
(bottom-right in Fig. 6). The pressure trends in ERA5L and
MERRA2 agree well with each other and show a more com-
plicated pattern of change, but the trend in most of Eura-
sia and North America is positive rather than negative. It is
tempting to speculate that, in winter when little solar radi-
ation is available, more positive pressure trends in the real
world than in the CMIP6 ensemble have acted to reduce
cloudiness and increase radiative cooling, thus moderating
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the warming relative to that in the models. Similarly, both
the more positive pressure trends and the smaller warming,
which are expected to moderate the increase in atmospheric
water vapour, have likely reduced the precipitation increase
relative to that simulated by the models. More quantitative
analysis of the circulation-related temperature and precipita-
tion trends would require the use of a dynamical adjustment
technique (e.g. Smoliak et al., 2015; Deser et al., 2016; Saf-
fioti et al., 2016; Räisänen, 2021b).

In the longer period from the winter of 1951 to 2022, the
agreement between the ERA5L and the CMIP6 MMM trends
is better (Fig. 7). The increase in precipitation is still gen-
erally smaller in ERA5L, but the warming is of the same
magnitude with the CMIP6 ensemble. The ERA5L pres-
sure trends from the winter of 1951 to 2022 are quite dif-
ferent from the trends starting in the winter of 1981 (com-
pare Figs. 7 and 6). Since the winter of 1951, there has been
a widespread pressure decrease at high latitudes and an in-
crease in the subtropical North Atlantic and southern Eu-
rope. This pattern is indicative of positive trends in the Arctic
and North Atlantic oscillations, and the resulting enhanced
westerly flow from the Atlantic Ocean towards mid-to-high-
latitude Eurasia would be expected to amplify the warming in
much of western and central Eurasia (Iles and Hegerl, 2017).
Thus, the different pressure trends between the two periods
probably partly explain why the average NDJFM warming in
the total snow area in ERA5L is closer to the CMIP6 MMM
in 1951–2022 than in 1981–2022. Furthermore, the global
annual mean warming in CMIP6 agrees better with ERA5 in
the August 1950 to July 2022 period (MMM 1.14 ◦C, ERA5
1.10 ◦C) than in the August 1980 to July 2022 period (MMM
1.05 ◦C, ERA5 0.81 ◦C).

8 Conclusions

The SWE at a given time of the winter season depends on
the time integral of total precipitation P multiplied by the
snowfall fraction F , together with the fraction of accumu-
lated snowfall that remains on the ground (snow-on-ground
fraction G). The present study has applied this framework
to diagnose the SWE climates and trends in the ERA5-Land
(ERA5L) and MERRA2 reanalyses and 22 CMIP6 climate
models in order to reveal their similarities and differences.
Comparison with the GlobSnow v3.0 SWE analysis was also
included. The focus was on SWE in March, when the North-
ern Hemisphere snow mass is the largest (Pulliainen et al.,
2020). The main findings are summarized below.

Average SWE climate. A high degree of similarity was
found between ERA5L, MERRA2, and the CMIP6 multi-
model mean (MMM), with pairwise spatial correlations
of 0.79–0.88 for SWE and 0.88–0.96 for its three multi-
plicative factors. One noteworthy difference is the much
smaller total precipitation and SWE in mountainous areas in
MERRA2 than in ERA5L. The GlobSnow SWE estimates

agree slightly less well with ERA5L, MERRA2, and the
CMIP6 MMM than these three agree with each other. How-
ever, although the CMIP6 MMM is within the range of obser-
vational uncertainty, there is over a factor of 2 variation in the
area mean SWE between the individual CMIP6 models. The
largest contribution to this variation comes from inter-model
differences in the snow-on-ground fraction.

Trends from the winter of 1951 to 2022. ERA5L and the
CMIP6 models agree qualitatively well on the dynamics of
SWE change. Although increasing total precipitation has
acted to increase SWE in most of the extratropical North-
ern Hemisphere (average contribution in ERA5L in the total
snow area: 7.1 mm), this has been more than compensated for
by reduced snowfall fraction (−8.0 mm) and, in most areas,
reduced snow-on-ground fraction (−7.4 mm). There is a rea-
sonable spatial correlation (0.51) between the geographical
distributions of the March mean SWE trend between ERA5L
and the CMIP6 MMM. Both ERA5L and the CMIP6 models
share an increase in SWE in most parts of Alaska, north-
ern Canada, and Siberia, together with decreases in much of
southern Canada, the contiguous United States, and Europe,
excluding northern Scandinavia in ERA5L (Fig. 2).

Trends from the winter of 1981 to 2022. The agreement be-
tween ERA5L and the CMIP6 MMM in this period is worse
than for the longer period of 1951–2022, with a spatial cor-
relation of only 0.09 in the March SWE trend. The correla-
tions between the ERA5L, MERRA2, and (for the winters
of 1981–2018) GlobSnow SWE trends are also modest, sug-
gesting a substantial observational uncertainty in the SWE
change over this period. The spatial patterns of SWE change
in all the observational data sets are noisier than those in
ERA5L in 1951–2022, which mirrors at least partly a larger
contribution from internal variability. However, compared
with both ERA5L and MERRA2, the CMIP6 models tend to
simulate both larger SWE increases due to increasing precip-
itation and larger SWE decreases due to decreasing snowfall
and snow-on-ground fractions.

Potential causes of model-to-model and model-to-
reanalysis differences in SWE trends and their decomposi-
tion. A substantial fraction of the inter-model variance of
the local March mean SWE trends and their decomposition
may be caused by internal variability. In the 1981–2022 pe-
riod this may even exceed the genuinely model-related dif-
ferences (except for the trend due to changing snowfall frac-
tion), but this is less likely for the longer 1951–2022 trends.
Nonetheless, model differences also play a role. Further-
more, particularly in 1981–2022, the trends in ERA5L and
MERRA2 tend to differ more from the CMIP6 trends than
the trends in the individual CMIP6 models differ from each
other. This suggests a systematic bias either in the models or
in the reanalyses. Compared with ERA5L and MERRA2, the
models generally overestimate the increases in both temper-
ature and precipitation in the extratropical Northern Hemi-
sphere since the winter of 1981, which qualitatively explains
the excessive precipitation-related increases and snowfall-
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Figure 7. Trends in NDJFM mean temperature, precipitation, and sea level pressure between the winters of 1951 and 2022 in ERA5L (for
sea level pressure, ERA5) and the CMIP6 MMM. The area means for the total snow area are given in the headers.

fraction-related decreases in SWE in the CMIP6 ensemble.
Both the exaggeration of the recent global mean warming in
the models and the differing simulated and observed trends
in the atmospheric circulation since the winter of 1981 likely
contribute to these differences. Alternative observational es-
timates of temperature and precipitation trends suggest that
the general overestimate of winter warming and precipitation
increase in CMIP6 is robust to observational uncertainty, al-
though the latter appears more important when considering
the trends on smaller spatial scales.

A key insight from this paper is the relative difficulty
of simulating SWE trends correctly in climate models due
to the competition between generally increasing winter pre-
cipitation with decreasing snowfall fraction and enhanced
snowmelt in a warmer climate. Puzzlingly, the CMIP6 mod-
els appear to manage this challenge reasonably well when
considering the SWE trends from the winter of 1951 but
less well for the shorter trends since the winter of 1981. Al-
though probably partly explained by larger internal variabil-
ity in shorter climate trends, this calls for further research on
at least two topics.

1. Considering the differences between the ERA5L,
MERRA2, and GlobSnow SWE trends since the winter
of 1981, real-world SWE trends require additional anal-
ysis. What causes the differences between these data
sets, and what can be concluded about their relative re-
liability based on in situ SWE and snow depth observa-
tions?

2. How have the different trends in model-simulated and
observed atmospheric circulation affected the SWE
trends? Several methods of dynamical adjustment have
been developed to separate circulation-induced trends
of temperature and/or precipitation from underlying
thermodynamic changes (e.g. Smoliak et al., 2015;
Deser et al., 2016; Saffioti et al., 2016; Räisänen,
2021b). Extending such adjustments to SWE may be

more challenging because SWE in, for example, March
depends on the weather history of the whole winter sea-
son rather than on the weather in March alone. One
approach might be to first construct modified time se-
ries of temperature, precipitation, and other necessary
weather parameters, from which the effects of circula-
tion variability are eliminated using dynamical adjust-
ment. Then, these modified time series could be used to
drive land surface models such as those used in ERA5L
and MERRA2 in order to simulate the potential evolu-
tion of SWE in the absence of circulation trends.

Another important question is how water resource man-
agers and other stakeholders needing SWE projections
should use the information available from climate model en-
sembles. On the face of it, the answer seems disappointing.
As real-world SWE trends to date appear to have been fur-
ther away from the model-simulated trends than the latter are
from each other, this might also well apply to the trends in the
future. It would therefore seem prudent to allow for all the
uncertainty suggested by the variation between climate mod-
els, possibly adding a safety margin for systematic model
errors. However, this conclusion may need re-evaluation if
future research is able to reduce the uncertainty in the ob-
served trends. Moreover, the practice of giving all models the
same weight in projections of future SWE change is proba-
bly sub-optimal, particularly for longer-term projections in
which model differences grow increasingly dominant over
internal variability. For example, Räisänen (2008) found a
dependence between model-simulated baseline winter tem-
peratures and projected future SWE changes, which makes
increases in SWE more likely in models with a cold rather
than a warm temperature bias. He also used inter-model cross
validation to show that this physically expected dependence
could be potentially used for improving probabilistic projec-
tions of SWE change. Furthermore, inter-model variations in
the Northern Hemisphere snow albedo feedback are strongly
correlated between seasonal and climate change timescales
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(Hall and Qu, 2006; Qu and Hall, 2014). Whether a simi-
lar cross-timescale constraint is available for SWE as well is
clearly worth exploring.

Appendix A: Further details on the observational data
sets

The uniform resource locator (URL) addresses from which
the various observational data sets were downloaded are
listed in Table A1. Additional notes are given in the text that
follows.

Table A1. URL addresses, references, and dates of last access for the observational data sets.

Data set acronym URL and reference Last access

ERA5L https://doi.org/10.24381/cds.68d2bb30 (C3S, 2023a) 8 March 2023

MERRA2 https://disc.gsfc.nasa.gov/datasets?project=MERRA-2 (GES DISC, 2023) 8 March 2023

CRU https://crudata.uea.ac.uk/cru/data/hrg/cru_ts_4.06/cruts.2205201912.v4.06/ (CRU, 2023) 8 March 2023

GPCC https://opendata.dwd.de/climate_environment/GPCC/full_data_monthly_v2022/05/ (DWD, 2023) 8 March 2023

GPCP https://www.ncei.noaa.gov/data/global-precipitation-climatology-project-gpcp-monthly/access/
(NCEI, 2023)

8 March 2023

GlobSnow https://doi.pangaea.de/10.1594/PANGAEA.911944 (Luojus et al., 2020) 8 March 2023

ERA5 https://doi.org/10.24381/cds.f17050d7 (C3S, 2023b) 8 March 2023

A1 Regridding GlobSnow to the 2.5◦ × 2.5◦

latitude–longitude grid

The GlobSnow SWE data were first regridded from their
original 25 km equal area grid to a 0.25◦× 0.25◦ latitude–
longitude grid using the nearest-neighbour method. The
values in the 0.25◦× 0.25◦ grid were then averaged to
2.5◦× 2.5◦ latitude–longitude boxes, excluding those (sea
or mountainous) 0.25◦× 0.25◦ grid boxes in which the data
were missing. If missing data covered more than half of a
2.5◦× 2.5◦ grid box, the value for that 2.5◦× 2.5◦ grid box
was left undefined.

A2 Extension of CRU and GPCC precipitation time
series until July 2022

At the time of writing, the CRU precipitation data were avail-
able until December 2021 and the GPCC data until Decem-
ber 2020. To allow for the estimation of trends until the snow
year 2021/22, these time series were extended to July 2022
by calculating, at each grid box and month separately, the
ratio between the CRU (GPCC) and ERA5L mean precipi-
tation in the years 2011–2021 (2011–2020) and multiplying
the ERA5L precipitation for the remaining 7 or 19 months
by this ratio.
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Appendix B: Additional results

Figure B1. Trend in March mean SWE in Scandinavia from 1951 to 2022 (mm (71 yr)−1) (fourth column) and the contributions to it from
changes in total precipitation (first column), snowfall fraction (second column), and snow-on-ground fraction (third column). Top: calculation
using ERA5L data at their native 0.1◦ resolution. Middle: values from the top row remapped to 2.5◦ resolution. Bottom: calculation using
ERA5L data remapped to 2.5◦ resolution before the trend decomposition.

Figure B2. Differences in March mean SWE trends between the data sets identified in the map headers. Periods and units: (a, b, d) 1981 to
2022 (mm (41 yr)−1) and (c, e, f) 1981 to 2018 (mm (37 yr)−1).
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Figure B3. Trends in NDJFM mean climate between the winters of 1981 and 2022. (a) Temperature in the CRU analysis and (b)–(d)
precipitation in the (b) CRU, (c) GPCC, and (d) GPCP analyses. The stippling indicates areas where the trends are statistically significant
against interannual variability (90 % level, two-sided t test). The area means for the total snow area are given in the headers.

Table B1. Average March mean SWE trends (mm) in Eurasia and North America. The values without parentheses represent trends until 2022
in the total snow area and those in parentheses trends until 2018 in the GlobSnow area.

Trend from 1951 to 2022 Trend from 1981 to 2022 (2018)

Eurasia North America Eurasia North America

ERA5L −7.6 −10.0 −12.6 (−12.8) 4.7 (1.2)
MERRA2 −1.3 (−4.5) −6.1 (−7.1)
CMIP6 MMM −4.1 −10.8 −3.7 (−2.4) −9.6 (−6.5)
GlobSnow (0.5) (−16.9)

Table B2. Total snow area spatial correlation of NDJFM mean temperature and precipitation trends from the winter of 1981 to 2022 between
different data sets.

Temperature MERRA2 CMIP6 CRU

ERA5L 0.33 0.60 0.69
MERRA2 −0.04 0.33
CMIP6 MMM 0.48

Precipitation MERRA2 CMIP6 CRU GPCC GPCP

ERA5L 0.28 0.28 0.39 0.41 0.21
MERRA2 0.00 0.41 0.46 0.41
CMIP6 MMM 0.11 0.01 −0.07
CRU 0.65 0.67
GPCC 0.70
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Code and data availability. All observational data sets used in this
study are publicly available, as detailed in Table A1. The CMIP6
simulations are available from the Earth System Grid Federation
(https://esgf-node.llnl.gov/search/cmip6/, ESGF, 2023). The post-
processed data and GrADS (Grid Analysis and Display System)
scripts needed for reproducing the figures and numerical results in
this article are available at https://doi.org/10.5281/zenodo.7707302
(Räisänen, 2023).
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