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Abstract. We propose a closed-form analytical model for the
mechanical behavior of stratified snow covers for the pur-
pose of investigating and predicting the physical processes
that lead to the formation of dry-snow slab avalanches. We
represent the system of a stratified snow slab covering a col-
lapsible weak layer by a beam composed of an arbitrary num-
ber of layers supported by an anisotropic elastic foundation
in a two-dimensional plane-strain model. The model makes
use of laminate mechanics and provides slab deformations,
stresses in the weak layer, and energy release rates of weak-
layer anticracks in real time. The quantities can be used in
failure models of avalanche release. The closed-form solu-
tion accounts for the layering-induced coupling of bending
and extension in the slab and of shear and normal stresses
in the weak layer. It is validated against experimentally
recorded displacement fields and a comprehensive finite-
element model indicating very good agreement. We show
that layered slabs cannot be homogenized into equivalent
isotropic bodies and reveal the impact of layering on bridg-
ing with respect to weak-layer stresses and energy release
rates. It is demonstrated that inclined propagation saw tests
allow for the determination of mixed-mode weak-layer frac-
ture toughnesses. Our results suggest that such tests are dom-
inated by mode I when cut upslope and comprise significant
mode II contributions when cut downslope. A Python imple-
mentation of the presented model is publicly available as part
of the Weak Layer Anticrack Nucleation Model (WEAC)
software package under https://github.com/2phi/weac (last
access: 28 March 2023) and https://pypi.org/project/weac
(last access: 28 March 2023, Rosendahl and Weiligraeber,
2022).

1 Introduction

Dry-snow slab avalanches are a critical danger in mountain-
ous terrain with seasonal snow cover. Not only because of
temporal succession of meteorological events are such sea-
sonal covers composed of distinct individual layers. This
yields snow covers that exhibit a stratification in terms of
grain types, grain sizes, and density, among others, and con-
sequently also mechanical properties. Highly fragile layers
(e.g., depth hoar or buried surface hoar) are referred to as
weak layers and are known to be the origin of slab avalanches
(Bair, 2013). Their failure can lead to uncritical failure
(whumpf sounds, shooting cracks) or avalanche release. The
layering of snow covers is an essential part of avalanche fore-
casting (Richter et al., 2020) and for in-terrain decision mak-
ing (Schweizer and Jamieson, 2007). It is known that the
layering directly affects crack arrest or crack propagation
(Birkeland et al., 2014). Hard layers within a snow slab have
been identified as decisive for the effect of local load distri-
bution within the snowpack (Schweizer et al., 1995; Cam-
ponovo and Schweizer, 1997).

Here, the so-called bridging effect that describes the load
distribution through the slab onto lower layers as a func-
tion of slab and layer thicknesses has been found an impor-
tant feature of the mechanics of snow covers (Schweizer and
Camponovo, 2001b; Schweizer and Jamieson, 2003). The ef-
fects appears differently in crack propagation, where thicker
slabs are linked to larger avalanches, and onset of avalanche
failure, where thinner slabs are more critical (Jamieson and
Johnston, 1998; van Herwijnen and Jamieson, 2007). This
is also discussed in the experimental and numerical study
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on stress fields below localized loadings by Thumlert and
Jamieson (2014).

When snow cover models are linked to stability analyses
(see Morin et al., 2020, for a comprehensive review), typ-
ically stability indices are used (McClung and Schweizer,
1999; Lehning et al., 2004). These indices typically em-
ploy strength-based methods such as the limit equilibrium
method (Fohn, 1987; Huang, 2014). Often, stress fields are
obtained by using solutions derived from the Boussinesq so-
lution of an infinite half-plane under a point load (Fohn,
1987; Gaume and Reuter, 2017). Monti et al. (2016) pro-
posed an equivalent-layer approach to allow for the use of
solutions of isotropic continua for the stress analysis of lay-
ered slabs. Since the early works of Smith and Chu (1972)
and Smith and Curtis (1975), finite-element methods have
been used to study stratified snowpacks (Schweizer, 1993;
Habermann et al., 2008). These studies also clearly highlight
the role of stratification and bridging on the stress and dis-
placement fields within the snowpack.

The importance of bridging has been accounted for in the
beam models by Heierli and Zaiser (2008) and Heierli et al.
(2008). In these works, the concept of anticracks (Fletcher
and Pollard, 1981) has been used to describe failure of weak
layers in snow covers. Such beam models allowed for an in-
sight into avalanche release and gave a physical explanation
for whumpf sounds and remote triggering of avalanches, both
caused by the sudden expansion of a local weak-layer col-
lapse. Based on these models we have proposed a refined
beam model for the analysis of stresses and energy release
rates of cracks in weak layers (Rosendahl and Weil3graeber,
2020a). However, the above models are restricted to homoge-
neous slabs. The role of bending on anticrack formation and
propagation (by collapse of weak layers) was also studied by
means of the discrete-element method (Gaume et al., 2015;
Bobillier et al., 2018). Gaume et al. (2018) investigated anti-
crack propagation in snow by means of an elastoplastic ma-
terial model accounting for softening and volume reduction.
Studying the effect of the slab properties on crack initiation
and propagation, van Herwijnen and Jamieson (2007), Sigrist
and Schweizer (2007), Habermann et al. (2008), and Reuter
et al. (2015) have addressed the role of layering on fracture
within snowpacks.

The importance of fracture mechanics for the analysis of
avalanche release has been emphasized by many researchers
(McClung, 1979, 1981; Heierli and Zaiser, 2006; Sigrist and
Schweizer, 2007; Gauthier and Jamieson, 2008), and the sig-
nificance of the fracture energy as the decisive material prop-
erty has been highlighted (McClung and Schweizer, 2006;
McClung, 2007; Heierli et al., 2008). In fracture-mechanics
models the energy balance of propagating cracks is consid-
ered as the central condition for the analysis of avalanche
release. Using Fohn’s solution (Fohn, 1987) and the empir-
ical measure of a critical crack length (Gaume et al., 2017),
Gaume and Reuter (2017) have proposed to link strength-
based approaches and fracture-mechanics approaches to as-
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sess the instability of snowpacks. Using an implicitly cou-
pled stress and energy criterion we have proposed a failure
model for anticrack initiation under mixed-mode loading that
considers stresses and energy simultaneously (Rosendahl and
Weillgraeber, 2020b).

In order to account for the crucial effect of layering on fail-
ure processes within a snowpack, we propose a new model
for layered snow slabs on collapsible weak layers. Using the
concepts of mechanics of layered composites (Jones, 1998)
and weak interfaces (Lenci, 2001), we provide closed-form
expressions that allow for real-time computations of snow-
pack deformations, weak-layer stresses, and the energy re-
lease rate of cracks in the weak layer. The work aims at es-
tablishing a fast computational framework for the physical
analysis of the fracture process that leads to the formation of
snow slab avalanches. For this purpose, the model considers
discrete configurations of layered slabs supported by a weak
layer that have collapsed on a given length. We to not attempt
to formulate weak-layer failure criteria or to simulate crack
advance but aim at providing the mathematical tools for such
exercises.

2 Mechanical model

In the present work, we model a stratified snow cover as a
system comprised of (i) a snow slab, represented by an ar-
bitrarily layered beam, that rests on (ii) a weak layer, repre-
sented by an elastic foundation. The beam kinematics and its
constitutive behavior are derived from first-order shear de-
formation theory of laminated plates under cylindrical bend-
ing (Reddy, 2003). The weak layer is modeled as a so-called
weak interface (Goland and Reissner, 1944). The concept
simplifies the kinematics of the weak layer and allows for
efficient analyses of interface configurations that exhibit a
strong elastic contrast. The weak interface can be under-
stood as an infinite set of smeared springs with normal and
shear stiffness attached to the bottom side of the slab. Weak-
interface models are common for the analysis of cracks in
thin, compliant layers (Lenci, 2001; Krenk, 1992; Stein et al.,
2015). The analysis of this system yields fully coupled bend-
ing, extension, and shear deformations of both the slab and
the weak layer.

2.1 Governing equations

We consider a segment of the stratified snowpack on an in-
clined slope of angle ¢ as shown in Fig. 1. As typical for
beam analyses, the axial coordinate x points left to right
along the beam midplane and is zero at its left end. The thick-
ness coordinate z is perpendicular to the midplane, points
downwards, and is zero at the center line. Slope angles ¢ are
counted positive about the y axis of the right-handed Carte-
sian coordinate system (counterclockwise). Note that on in-
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Figure 1. Stratified snowpack composed of an arbitrary number of
slab layers and a weak layer modeled as an elastic foundation.

clined slopes (¢ # 0), the axial and normal beam axes (x and
z) do not coincide with the horizontal and vertical directions.

The slab with total thickness % is composed of N layers
with individual ply thicknesses h; = z;4+1 — z;, each assumed
homogeneous and isotropic (Fig. 2). Young’s modulus, Pois-
son’s ratio, and the density of each layer are denoted by Ej,
v;, and p;, respectively. The weak layer of thickness ¢ can be
anisotropic, and its normal and tangential stiffnesses are

/

kn = % (1a)

where E| | = Eyw/(1 — v2) is the weak layer’s plane-strain
elastic modulus, and

ke = ﬂ (1b)

t

where Gy, is the weak layer’s plane-strain shear modulus.
To account for anisotropic weak layers, these constants can
be defined from independent stiffness properties. It should
be noted that since the weak layer is connected to the slab,
an intrinsic coupling of shear and normal deformation of the
weak layer occurs even when the stiffnesses k, and k; are
defined independently.

The slab is loaded by its own weight, i.e., the gravitational
load g, and an external load F (e.g., a skier) in vertical direc-
tion. The gravity load corresponds to the sum of the weight
of all layers

N
g=g) hipi. )
i=1

It is split into a normal component g, = g cos ¢ and a tangen-
tial component g = —¢g sing, which are introduced as line
loads. The tangential gravity line load acts at the center of
gravity in the thickness direction,

SN i+ ziDhip;
251 hipi

g =

3

https://doi.org/10.5194/tc-17-1475-2023

b5, ¥
22
21| =
T
JEY zig ‘
ZN
ZN+1

z hy = zZn41 — 2N

Figure 2. Slab of total thickness & composed of N individual layers.
A layer i is characterized by its height 4; and its top and bottom
coordinates z; and z; 1, respectively.

in the slab, where (z; +z;+1)/2 yields each layer’s center
z coordinate. For relevant slab thicknesses the external load
can be modeled as a point load and is introduced as a force
with a normal component F;, = F cos ¢ and a tangential com-
ponent F; = — F sing.

Deformations of the slab are described by means of the
first-order shear deformation theory (FSDT) of laminated
plates under cylindrical bending (Reddy, 2003). By drop-
ping the Kirchhoff assumption of orthogonality of cross sec-
tions and midplane, this allows for the consideration of shear
deformations. We consider midplane deflections wq, mid-
plane tangential displacements u(, and the rotation v of cross
sections. The quantities define the displacement field of the
beam according to

w(x,z) = wo(x), (4a)
u(x,z) =uo(x) +zy (x). (4b)

At the interface between slab and weak layer (z = h/2), the
displacement fields of slab (u, w) and weak-layer (v, w) co-
incide. Using Eqgs. (4a) and (4b), this yields v =u = up +
Y h/2 and @ = w = wy, where the bar indicates quantities at
the interface. Modeling the weak layer as an elastic founda-
tion of an infinite set of smeared linear elastic springs yields
constant strains and consequently a constant deformation
gradient through its thickness. Hence, weak-layer stresses
can be expressed through the differential deformation be-
tween the lower boundary of the weak layer (v = w = 0) and
its deformations at the interface:

dw(x,z) _F 1O—c?)()c)

07:(x) = Eyi&;;(x) = Eyw

dz t
— kywo(x), (5)
d , d ,
T2 (¥) = Gutyas (x) = Gwl< “f;; 2 ‘”C(lfc “)
— Gy (0— v(x) n 10} (x)>
t 2
i (L h 5b
- t<5w0(x) o) — Ewu)). (5b)
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Figure 3. Free-body cut of an infinitesimal segment of length of the
layered slab of height with half of the weak layer.

From the free body-cut of an infinitesimal beam section
of the layered slab (Fig. 3), we obtain the equilibrium condi-
tions of the section forces and moments:

dN
0= %—l—r(x)-l-qt, ©
Ozw—i—c(x)‘f‘Qns (b)
dx
0= MO o B b s (6c)
dx 2

To connect the slab section forces (normal force N, shear
force V, and bending moment M) to the deformations of the
layered slab, we make use of the mechanics of composite
laminates. The first-order shear deformation theory of lami-
nate plates under cylindrical bending yields

Nx) \ _ (Au Bn U (x)
(M(x) )‘ (Bu Diy )(wm ) (72)
and
V(x) =k Ass (wy(x) + ¥ (x)). (7b)

These constitutive equations contain the extensional stiff-
ness Aj, the bending stiffness Dj1, the bending—extension
coupling stiffness Bjpj, and the shear stiffness x Ass of the
layered slab. The coupling stiffness Bj; accounts for the
bending—extension coupling of asymmetrically layered sys-
tems such as bimetal bars. These stiffness quantities are ob-
tained by weighted! integration of the individual ply stiffness
properties:

h/2 N
E(2) E;
A= 2 A=Y —_h;, 8
1 f T z ;1_])3 i (8a)
—h/2 =
" E(2) 1N E
Z i 2 2
mi= [ s e (). @
i=1 i
—h/2

]Weighted by the moment of area of the cross section of zeroth,
first, and second order.
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h/2 - |
E(z 2 Ei 3 3
D = T 2= > —z), (8
11 / v’ & 3;1_‘)1_2 (Zz+1 Zl) (8¢)
—h/2 -
h/2 N
Ass = / G(z)dz = ZG,-h,-. (8d)
—h/2 i=l1

The shear correction factor « complements the shear stiffness
Kk Ass. Itis set to 5/6 as a good approximation for the layered
slab of rectangular cross section (Klarmann and Schweizer-
hof, 1993). The above quantities are given for the case of
isotropic layers. Orthotropic layers can be considered follow-
ing the same approach by using directional elastic properties
of the individual layers instead of an isotropic Young modu-
lus.

In the special case of a homogeneous, isotropic slab with
Young’s modulus Eg and Poisson’s ratio v, the laminate stiff-
nesses take the homogeneous stiffness properties well known
from beam theory,

Ay =B (%)
1—v2
Eslh3
D , 9b
11 12(1 — v2) (9b)
Ass = 2 90)
2(1+v)

and the coupling stiffness vanishes (B11 = 0).
2.2 System of differential equations and its solution

The equations of the kinematics of the weak layer (Egs. Sa
and 5b), the equilibrium conditions (Eqgs. 6a to 6¢), and the
constitutive equations of the layered beam with first-order
shear deformation theory (Egs. 7a and 7b) provide a com-
plete description of the mechanics of the layered snowpack
and constitute a system of ordinary differential equations
(ODEs) of second order. Introducing the vector of unknown
functions,

200 = [uo(0) ) wolx) whn) Y@ Y]’ 10

the governing equations can be expressed as a first-order sys-
tem of the form

7/(x) =Kz(x) +¢, (11)

where bold uppercase symbols denote matrices and bold low-
ercase symbols indicate vectors. For the derivation of this
ODE system and the definitions of the system matrix K and
the right-hand side vector ¢, see Appendix A.

The solution of the nonhomogeneous ODE system (11)
is composed of a complementary solution vector z(x) and
a particular integral vector zp, where the latter is constant
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in the present case. The complementary solution can be ob-
tained from an eigenanalysis of the system matrix K. De-
pending on the layering and the material properties, K has
six real or complex eigenvalues. Since the beam is bed-
ded, it has no rigid body motions and all eigenvalues of
nonzero. Real eigenvalues occur as sets of two eigenvalues
with opposite signs +Ar and linearly independent eigen-
vectors vr+ € R®. Complex eigenvalues appear as complex
conjugates Aé = Agp £ Ay with the corresponding complex
eigenvectors v([i: = vy vy such that v% € C° and Ui, Vg €
R®. Denoting the number of sets of real eigenvalue pairs as
Nr € {0, ..., 3} and the number of complex conjugate eigen-
value pairs as N¢ € {0,...,3} such that Ngr + Nc =3, the
complementary solution is given by the linear combination

Nr
zZn(x) = Z C]g'i exp (+k]§g)x) vﬁ@

n=1

+ C]gl exp (—A%x) v%l
Nc
+> c exp (Af()?)x) [vfﬁ) cos (k%")x)
n=1
— v sin (X;")x) ]
+ Cé") exp ()»g;')x) [v‘\({f) sin (A%")x)
+ vg\") cos ()»g')x> ] (12)

The particular solution is obtained using the method of un-
determined coefficients, which yields the constant vector

_ _h— T
zpzliﬂ+h(h+t 2)q o w g Qh-ba ] .

k[ 4KA55 kn 2KA55
(13)
The general solution of the system,
Ze(x) = Zn(x) + 2p, (14)

comprises six unknown coefficients C E") that must be iden-
tified from boundary and transmission conditions. It can be
given in the matrix form

Ze(X) = Zn(X) o + Zp, (15)

where Zj, : R — R®*0 is a matrix-valued function with the
summands of Eq. (12) as column vectors and c, eR® a
vector containing the six free constants Cﬁ”) according of
Eq. (12).

2.3 Layered segments without an elastic foundation

To study situations where the weak layer has partially failed,
the case of an unsupported slab must be considered. The sit-
uation can occur when the weak layer has collapsed or when
a saw cut is introduced in a propagation saw test. Account-
ing for such cases allows for the use of the present model
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in failure models for anticrack nucleation (Rosendahl and
Weiligraeber, 2020b) or growth (Bergfeld et al., 2021b). If
the slab is not supported by an elastic foundation, the gen-
eral solution simplifies. In the equilibrium conditions (6a) to
(6¢), the normal and shear stress terms are omitted since no
stresses act on the bottom side of the slab. The constitutive
Egs. (7a) and (7b) remain the same. After some calculation
(see Appendix B) one obtains the general solution of polyno-
mials of fourth order. In matrix form, the system reads

ZO(X)ZP(x)co+p(x)9 (16)

where P(x) and p(x) are the polynomial matrix and vector,
respectively. Again, a vector of six unknown coefficients,

T
e=[c" c® c® | (17)

must be determined from boundary and transmission condi-
tions.

2.4 Global system assembly

The general solutions presented above allow for the investi-
gation of different systems composed of segments of sup-
ported and unsupported layered slabs. Possible configura-
tions of interest are, e.g., skier-loaded snowpacks, skier-
loaded snowpacks with a partially collapsed weak layer,
or propagation saw tests (PSTs) with an artificially intro-
duced (sawed) edge crack. Assemblies of such configura-
tions are illustrated in Fig. 4. Individual segments are con-
nected through transmission conditions given in terms of
displacements and section forces (see Appendix C). Adding
boundary conditions at the left and right ends of the beam
assembles the desired global system. Since localized loads
(e.g., skier weight) are introduced as a (statically equivalent)
change of the section forces, the solution will not be able to
fully render effects in the close vicinity of the load introduc-
tion. This is discussed in the validation in Sect. 3.2.

Inserting the general solutions (15) and (16) into the
boundary and transmission conditions yields equations that
only depend on free constants. The set of equations can be
assembled into a system of linear equations with k = 6 N}, de-
grees of freedom, where Ny, is the number of beam segments.
In matrix form, the system reads

Ve=f. (18)

Here, ¥ € R¥*k js a square matrix of full rank, ¢ € RF is the
vector of all free constants, and f € RX is the right-hand-side
vector that contains the particular solutions and displacement
discontinuities induced by concentrated loads. With only &
degrees of freedom, the system can be solved in real time us-
ing standard methods such as Gaussian elimination or lower—
upper (LU) decomposition.

The Cryosphere, 17, 1475-1496, 2023
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Figure 4. Exemplary systems of interest assembled from supported
and unsupported layered slabs with numbered segments: (a) downs-
lope PST, (b) upslope PST, (c) skier-loaded snowpack, (d) par-
tially fractured weak-layer, and (d) layered slab loaded by multi-
ple skiers with partially fractured weak layer. Dotted lines indicate
transmission conditions for the continuity of displacements and sec-
tion forces.

2.5 Computation of displacements, stresses, and energy
release rates

Substituting the coefficients C™ obtained from Eq. (18) for
each beam segment back into the general solutions (15) and
(16) yields the vector z(x), which contains all slab displace-
ment functions; see Eq. (10).

Inserting the slab deformation solution into Egs. (5a) and
(5b) provides weak-layer normal and shear stresses, respec-
tively. As discussed in the details of the mechanical model,
weak-interface models do not allow for capturing highly
localized stress concentrations (e.g., stress singularities) as
they occur at crack tips. However, it is known that outside
the direct vicinity of crack tips, the simplified weak-interface
kinematics provide accurate displacement and stress solu-
tions (Rosendahl and Weillgraeber, 2020a).

The model can be used to determine the energy release rate
of cracks. Here, we make use of the concept of anticracks
(Fletcher and Pollard, 1981) that allows for studying failure
of a weak layer in a snowpack exhibiting collapse (Heierli
et al., 2008). As typical for fracture mechanics (Broberg,
1989), the symmetry of the displacement field around the
crack tip can be used to identify symmetric (mode I) and
antisymmetric deformations (mode II). We follow this con-
vention to study mode I (crack closure) and mode II (crack
sliding) energy release rates of anticracks. Further implica-
tions are discussed in Rosendahl and Weil3graeber (2020b).
Following Krenk (1992), the energy release rate of cracks in
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Figure 5. Illustration of benchmark snow profiles used in the
present work. Material properties of hard, medium, and soft slab
layers (dark) and the weak layer (light) are given in Table 1. The
weak layer is 2cm thick and the slab layers have a thickness of
12 cm each. Similar profiles were used by, e.g., Habermann et al.
(2008) and Monti et al. (2016). Here, we complement the homoge-
neous slab H.

Table 1. Considered snow layers and their elastic properties with
reference to three-layer slabs used by Habermann et al. (2008).

Hand Density p Young’s  Poisson’s
Layer hardness (kg m_3) modulus ratio v
index E (MPa)
Hard P 350 93.8 0.25
Medium 1F 270 30.0 0.25
Soft 4F 180 5.0 0.25
Weak layer F- 100 0.15 0.25
weak interfaces can be given as
o(@? (@)’
G(a) = Gi(a) + Gi(a) = (19)

2ky 2k

where a denotes the crack-tip coordinate. The limitations of
the weak-interface kinematics yield energy release rates that
cannot capture very short cracks but, again, provide accurate
results for cracks of a minimum length (Hiibsch et al., 2021).
Cracks shorter than a few millimeters cannot be studied by
the present approach.

3 Model validation

With reference to the analysis of snowpack layering by
Habermann et al. (2008) and Monti et al. (2016), we use
three-layered slabs proposed as schematic hardness profiles
by Schweizer and Wiesinger (2001) that are composed of
soft, medium, and hard snow as benchmark slab configura-
tions (Fig. 5). Assuming bonded slabs (e.g., rounded grains)
and considering the density—hand-hardness relations given
by Geldsetzer and Jamieson (2000), we assume densities
of p =350, 270, and 180kg m~3 for hard, medium, and
soft snow layers with hand hardness indices pencil (P), four
fingers (4F), and one finger (1F), respectively. From slab
densities, we calculate Young’s modulus using the density
parametrization developed by Gerling et al. (2017) using
acoustic wave propagation experiments and improved by
Bergfeld et al. (2023a) using full-field displacement mea-
surements:

https://doi.org/10.5194/tc-17-1475-2023
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Table 2. Material properties used throughout this work unless spec-
ified differently.

Property Symbol  Value
Skier weight m 80kg
Slope angle 10 38°
Slab thickness* h 36cm
Weak-layer thickness™ t 2cm
Effective out-of-plane ski length [, 100 cm
Young’s modulus weak layer Ew 0.15MPa
Poisson’s ratio v 0.25
Length of PST block IpsT 250 cm
Length of PST cut apsT 50cm
* Thicknesses given in slope-normal direction.
P 44
Eg(p) = 6.5 x 10° MPa (—) , (20)
£0

where pg = 917 kgm™3 is the density of ice. Each slab layer
is 12 cm thick, and their individual material properties are
given in Table 1. With reference to Jamieson and Schweizer
(2000), who report weak layer thickness between 0.2 and
3cm, we assume a weak-layer thickness of # =2 cm. Fol-
lowing density measurements of surface-hoar layers by Fohn
(2001), who reports densities (i) between 44 and 215 kg m3
with a mean of 102.5kg m—3 and (ii) between 75 and
252 kgm~3 with a mean of 132.4 kgm ™3 using two different
measurement techniques, we assume a weak-layer density of
pwl = 100kg m~3 and a Young modulus of Ey = 0.15 MPa.
Other parameters are summarized in Table 2.

3.1 Finite-element reference model

To validate the model, in particular with respect to different
slab layerings, we compare the analytical solution to finite-
element analyses (FEAs). The finite-element model is as-
sembled from individual layers with unit out-of-plane width
on an inclined slope. Each layer is discretized using at least
10 eight-node biquadratic plane-strain continuum elements
with reduced integration through its thickness. The lowest
layer corresponds to the weak layer and rests on a rigid
foundation. Weak-layer cracks are introduced by removing
all weak-layer elements on the crack length a. The mesh is
refined towards stress concentration such as crack tips, and
mesh convergence has been controlled carefully (Rosendahl
and Weillgraeber, 2020a). The weight of the snowpack is in-
troduced by providing the gravitational acceleration g and
assigning each layer its corresponding density p. The load
introduced by a skier is modeled as a concentrated force act-
ing on the top of the slab. If skier loading is considered, the
horizontal dimensions of the model are chosen large enough
for all gradients to vanish. Typically 10 m suffice. Bound-
ary conditions of PST experiments are free ends. In the FE
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Figure 6. Principal stresses and snowpack deformations scaled
200 times in the central 200 cm section of a skier-loaded snow-
pack comparing the present model (top) and the FEA reference
model (bottom). In the homogeneous slab B H, maximum princi-
pal normal stresses o (tension) normalized to their tensile strength
ac+ = 9.1 kPa are shown. In the weak layer we show minimum prin-
cipal normal stresses oy (compression) normalized to an assumed
weak layer compressive strength of o, = 2.6 kPa. The weak-layer
thickness is scaled by a factor of 4 for illustration.

model, the energy release rate of weak-layer cracks,

0ll(a) = TM(a+ Aa)—Tl(a— Aa)
da 2Aa

Ore(a) = — . @D
is computed using the central difference quotient to approxi-
mate the first derivative of the total potential IT with respect
to a. The crack increment Aa corresponds to the element size
and could be increased 2-fold or 3-fold without impacting
computed values of Gpg(a). Weak-layer stresses are evalu-
ated in its vertical center.

3.2 Visualization of displacement and stress fields

Although visual representations of deformation and stress
fields are limited to qualitative statements, they illustrate the
principal responses of structures in different load cases. For
this purpose, Fig. 6 compares principal stresses in a deformed
slab-on-weak-layer system between the present model and
the finite-element reference solution. The system is loaded
by the weight of the homogeneous slab BH and a concen-
trated force representing an 80kg skier. Deformations are
scaled by a factor of 200 and the weak-layer thickness by a
factor of 4. In the slab, we show maximum principal normal
stresses (tension) normalized to their tensile normal strength
o = 9.1kPa obtained from the scaling law

2.44
o (p) = 240kPa <ﬁ> (22)
0
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Figure 7. Horizontal displacement field of the first 1.3 m of a flat-
field propagation saw test (PST) with an @ =23 cm cut into the
t = 1 cm weak layer under an & = 46 cm slab. Comparison of the
present model (top) with full-field digital image correlation mea-
surements (bottom). White patches indicate missing data points.
Deformations are scaled by a factor of 100 and the weak-layer thick-
ness by a factor of 10 for illustration.

by Sigrist (2006), where pp = 917kg m3 is the density of
ice. This illustrates the potential of tensile slab fracture. In the
weak layer, minimum principal normal stresses (compres-
sion) normalized to their rapid-loading compressive strength
o, = 2.6kPa according to Reiweger et al. (2015) are shown,
illustrating the potential for weak-layer collapse. We choose
principal stresses for the visualization because they allow for
the assessment of complex stress states by incorporating sev-
eral stress components. Please refer to Appendix D for the
calculation of principal stresses from model outputs.

While the present model (Fig. 6, top panel) does not cap-
ture the highly localized stresses at the contact point between
skier and slab observed in the FEA model (Fig. 6, bottom
panel), the overall stress fields are in excellent agreement.
This is consistent with Saint-Venant’s principle, according
to which the far-field effect of localized loads is indepen-
dent of their asymptotic near-field behavior. The same holds
for the displacement field. While the concentrated load in-
troduces a dent in the slab’s top surface, the overall defor-
mations agree. With respect to the numerical reference, the
present model renders displacement fields and both weak-
layer and slab stresses well. Moreover, we can confirm the
model assumption of constant stresses through the thickness
of the weak layer.

Experimental validations are challenging since direct mea-
surements of stresses are not possible and displacement mea-
surements require considerable experimental effort. The lat-
ter can be recorded using digital image correlation (DIC) as
demonstrated by Bergfeld et al. (2023a). From their analysis,
we use the DIC-recorded displacement field of the first 1.3 m
of a 3.0+ 0.1 m long flat-field propagation saw test (Fig. 7,

The Cryosphere, 17, 1475-1496, 2023

bottom panel). The PST was performed on 7 January 2019,
had a slab thickness of 7 = 46.cm, a critical cut length of a =
23 £ 2cm, and the density profile shown in Fig. 7 (left panel)
with a mean slab density of 5 = 1114 6kgm™>. From the
density we computed individual layer stiffnesses according
to Eq. (20). Figure 7 compares both in-plane deformations
of the snowpack (outlines) and the horizontal displacement
fields (colorized overlay) obtained from the present model
(top panel) and from DIC measurements (bottom panel). De-
formations are scaled by a factor of 100 and the weak-layer
thickness by a factor of 10 for their visualization. In-plane
slab and weak-layer deformations are in very good agree-
ment. This is evident in both the deformed contours and in
the colorized displacement field overlay. Since displacements
are C! continuous across layer interfaces, the effect of layer-
ing is not directly visible in the displacement field. However,
the slightly larger-than-expected tilt of the slab at its left end
hints at a higher stiffness at the bottom of the slab and a com-
pliant top section.

3.3 Weak-layer stresses and energy release rates

For all benchmark profiles illustrated in Fig. 5, weak-layer
shear and normal stresses (7,o) obtained from the FEA
model (dotted, light) and the present analytical solution
(solid, dark) are compared in Fig. 8. We investigate a 38°
inclined slope subjected to a concentrated force equivalent
to the load of an 80kg skier on an effective out-of-plane ski
length of 1 m. The finite-element reference model has a hori-
zontal length of 10 m, of which the central 3 m is shown. The
boundary conditions of the present model require the com-
plementary solution (12) to vanish, representing an infinite
extension of the system.

Kinks in the model solution originate from the loading dis-
continuity introduced by the concentrated skier force. They
are a direct result of the plate-theory modeling approach.
The agreement with the FEA reference solution is close for
all types of investigated profiles, and layering effects on
weak-layer stress distributions are well captured. Only for
profile 3 C does the present solution slightly underestimate
the normal stress peak directly below the skier. As we ar-
gue in Rosendahl and WeiB3graeber (2020b), this observa-
tion is not relevant for the prediction of weak-layer failure
in a snow cover. To study size effects present in any struc-
ture, a nonlocal evaluation of stresses must be used (Neuber,
1936; Peterson, 1938; Waddoups et al., 1971; Sih, 1974).
This has been discussed in detail by Leguillon (2002), lay-
ing the foundation for the successful application of finite-
fracture-mechanics approaches with weak-interface models
(Weillgraeber et al., 2015; Rosendahl et al., 2019). Effects of
bending stiffness (Fig. 8c vs. d) or bending—extension cou-
pling (Fig. 8e vs. f) resulting from different layering orders
will be discussed in detail below.

A similar comparison of solutions for all profiles is given
in Fig. 9, where total energy release rates (ERRs) of weak-
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Figure 8. Weak-layer normal and shear stresses (o, T) owing to
combined skier and snowpack-weight loading for the benchmark
profiles illustrated in Fig. 5. The present solution (solid, dark) only
slightly underestimates the maximum normal stresses with respect
to the FEA reference (dotted, light) in the case of profile 3 C. Ma-
terial properties are given in Tables 1 and 2.

layer anticracks in 38° inclined PST experiments are shown.
Here, both models consider free boundaries of the 1.2 m long
PST block. The structure is loaded by the weight of the
slab, and saw-introduced cracks are modeled by removing all
weak-layer elements on the crack length a. This causes finite
ERRs, even for very small cracks, because a finite amount
of strain energy is removed from the system with these ele-
ments. The ERR of a sharp crack is expected to vanish in the
limit of zero crack length (< 1 cm).

The principal behavior of the ERR as a function of crack
length is unaffected by the choice of profile. However, the
different resulting stiffness and deformation properties influ-
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Figure 9. Total energy release rates of weak-layer anticracks in 38°
inclined PST experiments of 120 cm length with the benchmark pro-
files illustrated in Fig. 5. The present solution (solid, dark) and FEA
reference (dotted, light) are in good agreement. Material properties
are given in Tables 1 and 2.

ence the magnitude of the energy release rate considerably.
For instance, between cases A and B, we observe a difference
of almost 10 % (Fig. 9).

Figure 10 shows weak-layer fracture toughnesses deter-
mined from critical cut lengths of PSTs with layered slabs
throughout the 2019 winter season using the present model.
Details of the tests are reported by Bergfeld et al. (2023a, b).
The authors performed 21 tests on the same weak layer.
While we observe small weak-layer fracture toughnesses at
the beginning of January 2019, it quickly increases with
the most significant precipitation event in mid-January and
then remains comparatively constant throughout the rest of
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Figure 10. Weak-layer fracture toughness determined with the
present model from critical cut lengths of 21 flat-field propaga-
tion saw tests (PSTs) throughout the 2019 winter season on the
same surface-hoar weak layer covered by a layered slab of chang-
ing thickness (Bergfeld et al., 2023a, b). All results are within the
hatched boundaries, indicating the thus far lowest and highest pub-
lished fracture toughness of weak layers, 0.01J m~2 (Gauthier and
Jamieson, 2010) and 2.7 J m—2 (van Herwijnen et al., 2016), respec-
tively.

the season. For details on the temporal evolution of slab
and weak-layer properties, the interested reader can refer
to Bergfeld et al. (2023b). For the purpose of validation of
the present model, it should be noted that all fracture tough-
nesses computed from the experiments lie within the bounds
of the to-date lowest and highest published values, 0.01 Jm—?
(Gauthier and Jamieson, 2010) and 2.7 Jm~2 (van Herwijnen
et al., 2016), respectively.

The present model can be classified as a structural-
mechanics model as frequently employed in fracture me-
chanics. As shown by Bergfeld et al. (2021b), structural mod-
els can be used to obtain effective quantities characterizing
weak layers. Effective quantities of fracture-mechanics mod-
els always include microscopic mechanisms without further
resolving their microscopic nature (Broberg, 1989).

4 Results

In the following, we use the above model to conduct paramet-
ric studies in order to investigate key mechanisms that may or
may not lead to the release of slab avalanches. Among these
are bridging or the effect of layer ordering. Unless specified
otherwise, we used the material parameters given in Tables 1
and 2.

The Cryosphere, 17, 1475-1496, 2023

4.1 Stiffnesses of layered slabs

The mechanical behavior of the slab is governed by its stiff-
nesses. A layered system may have different stiffnesses with
respect to extension, shear, or bending. Hence, we distin-
guish the extensional stiffness Ajj, the bending—extension
coupling stiffness Bjj, the bending stiffness Dpj, and the
shear stiffness Ass. They are obtained from integration of the
individual layer stiffnesses as specified in Egs. (8a) to (8d).
The ordering of layers influences each stiffness differently.
That is, the simple homogenization of layered continua in
the form of a single homogeneous equivalent layer is insuf-
ficient. With the aim to describe the shear stresses in a slab,
Monti et al. (2016) proposed a concept of equivalent layers
to allow for the use of Boussinesq’s solution for an isotropic
elastic half-plane. They followed concepts developed in or-
der to describe the surface deformation of layered systems in
the normal direction (De Barros, 1966). Using the equivalent
Young modulus E.q introduced by Monti et al. (2016), the
stiffnesses of a homogenized slab read

Afl = IE_equ, (23a)
Bl =0, (23b)
D{l = % (23¢)

o= Z(fe—jrhv) (23d)

Table 3 and Fig. 11 compare stiffnesses computed with the
present concept of laminate mechanics, Eqs. (8a) to (8d),
with these stiffnesses of an equivalent homogeneous slab
computed with properties obtained from the equivalence con-
cept, Egs. (23a) to (23d). Table 3 and Fig. 11 compare
both concepts against the stiffnesses computed using finite-
element analyses. Here, the corresponding stiffnesses are ob-
tained from the force response of unit extension and bend-
ing deformations. While Egs. (8a) to (8d) reproduce the
reference stiffnesses exactly, the equivalent layer approach
systematically underestimates the extensional, the bending,
and the shear stiffnesses and cannot account for bending—
extension couplings.

4.2 Effect of layering

To study the effect of layering we look at the deformations
within a PST of 250cm length with a 50 cm cut (20% of
the PST length). The symmetric configuration of profile 3 C
is studied as well as the profiles ™ A and 4 B with typical
layerings. The results are shown in Fig. 12. Here, the un-
supported length of the slab is illustrated by a shaded back-
ground. The longitudinal displacement of the midplane ug
and at the interface between the slab and the weak layer u
shows pronounced effects around the crack tip that induces
slab bending. The midplane deformation of the symmetric
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Table 3. Slab extension, coupling, bending, and shear stiffnesses of the benchmark profiles. Comparison of Ay, By, D11, and Ass of

eq
D77, and A55

the present model with A] 1 B”, 11

obtained from an equivalent isotropic slab according to Monti et al. (2016). Numbers in

parentheses indicate the ratio of the modeled stiffness to the corresponding stiffness obtained from finite-element analyses (visualized in

Fig. 11). Layer configurations as detailed in Fig. 5 are used.

M1 4 Jd 4 " Jd B

Aqq (104\1/111111 1.65(1.0) 1.65(1.0) 247(1.0) 1.33(1.0) 1.33(1.0)  1.33(1.0)  1.15(1.0)

i Bu (106 ) —1.36(1.0) 1.36(1.0) 0.00(1.0) 0.00(1.0) —=1.36(1.0) 1?6(\ ) 0.00(1.0)

presen - (10 Nm) 202(1.0)  2.02(1.0) 375(1.0) 034(1.0)  1.98(1.0) 1.98(1.0) 1.24(1.0)
1455 (10 N/mm) 6.44(1.0) 6.44(1.0) 9.63(1.0) 35.19(1.0) 519 (1.0)  5.19(1.0)  4.32(1.0)

Al (10 N/mm) L1707y 11707y  L.79(0.7)  0.72(0.5) 0.72(0.5) 0.72(0.5) 1.15(1.0)

equivalent slab chf (106 0.00 (0.0)  0.00(0.0) 0.00(L.0) 0.00(1.0) 0.00 (0.0)  0.00(0.0) 0.00(1.0)
of Montietal.  Dff (lO 1\111111) 1.26 (0.6)  1.26(0.0) 1.93(0.5) 0.78(2.3) 0.78 (0.4) 0.78(0.4) 1.24(1.0)
AZ(10°N/mm) 438 (0.7) 438(07) 671(07) 269(0.5)  2.69(0.5) 2.69(0.5) 432(1.0)

present  Monti et al. (2015) positive (compression of the weak layer) along the complete

Ay DyAss AnDnAss ApnDnAss AnDnAss AnDnAss AnDuAss

Figure 11. Slab extension, bending, and shear stiffnesses A
(N mm_l), D11 Nmm), and As5 (N mm_l) of the present model
and the equivalent isotropic slab approach by Monti et al. (2016)
normalized to the finite-element analysis (FEA) reference stiffness.
The bending—extension coupling stiffness By; (N) is not shown be-
cause it is always zero in the model of Monti et al. (2016) and agrees
exactly between reference and present model; see Table 3.

profile 3 C is practically unaffected by this bending since its
bending—extension stiffness By is zero (Table 3). That is,
bending and extension are only coupled through the weak
layer but not through the slab itself. The near-constant mid-
plane displacements originate from the 38° inclination. For
the asymmetric profiles, the effect of slab bending depends
on the stiffness distribution. The stiff bottom layer of profile
4 B increases midplane displacements when the slab bends
down on towards the right end of the PST. The opposite is
observed for profile ™ A with a stiff top layer. Here, the mid-
plane displacements are reduced owing to crack-induced slab
bending. The effect can be attributed to the different signs
of the bending—extension stiffnesses By of profiles ™ A and
4 B (Table 3). Constant longitudinal displacements at the in-
terface between slab and weak layer u are reduced by slab
bending for all profiles. Profile 3 C has the largest bending
stiffness D1 (Table 3). Hence, its reduction of u is smallest.
Again, the stiff top layer of profile ™ A causes a strong re-
duction of axial displacements. Deflections wg are downward

https://doi.org/10.5194/tc-17-1475-2023

PST and increase towards the cut end. Again, profile 3 C has
the largest bending stiffness and, hence, exhibits the small-
est deflections. Soft top layers (profile 4 B) cause the largest
deflections. Cross-section rotations ¥ are close to zero in
the longitudinal center of the PST and increase towards the
free ends of the PST, where the negative sign indicates down
bending. Similar arguments as for wg hold.

The effect of layering on the stresses in the weak layer is il-
lustrated in Fig. 13. It shows shear and normal stresses in the
weak layer below a skier-loaded slab — each panel for two of
the considered profiles. Since the profiles ™ A and # B and
profiles 7 E and < F have the same mean densities, their stress
levels outside the skier’s influence zone are the same. Pro-
files 3 C and 4 D have a different mean densities, and, hence,
the stresses induced by the slab weight outside the skier’s
influence are different. Here, constant loading leads to con-
stant slab deformations and, hence, to constant weak layer
stresses. Both shear and normal stresses show pronounced
stress peaks close to the skier load point. As discussed above
(Table 3), owing to their layering, profiles 3 C and = D dif-
fer significantly in their bending stiffnesses (factor of 11)
while the extensional stiffness is only doubled. In particular
the smaller bending stiffness of profile 4 D leads to local-
ized stresses below the skier with higher maximum values
but narrower influence zones (Fig. 13b). In the comparison
of profiles ™ A and 4 B (Fig. 13a) and profiles 7E and 4 F
(Fig. 13c), we observe that profiles with increasing top-to-
bottom stiffness exhibit slightly stronger weak-layer normal
stress concentrations but weaker shear stress concentrations
compared to their counterparts with reverse layering order.

In Fig. 14, the energy release rates of cuts introduced in
PST experiments are shown as a function of crack length.
For each pair of two profiles (A-B, C-D, E-F), the total
differential energy release rate is shown. All curves show
the expected monotonic increase in the energy release rate
with increasing crack length. However, magnitudes and the

The Cryosphere, 17, 1475-1496, 2023
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Figure 12. Deformations along the length of a PST with a cut
at x =200cm (cut length 50 cm) illustrated by the shaded back-
ground. Comparison of three snow profiles. The longitudinal dis-
placement of the midplane of the slab ug and at the interface be-
tween slab and weak layer u, the deflection wg, and the cross-
section rotation i are shown.

progression towards higher crack lengths strongly depend
on the layering. The comparisons of profiles M A vs. 4 B
(Fig. 14a) and 7 E vs. 4 F (Fig. 14c) illustrate that even with
same extensional and bending stiffnesses, the order of layers
has a significant impact on the energy released during crack
growth. As observed in Fig. 13, profiles with increasing top-
to-bottom stiffness are more critical with respect to the weak
layer’s structural integrity. The energy release rate depends
both on the compliance of the snowpack and on the overall
loading. That is, layers of higher density represent increased

The Cryosphere, 17, 1475-1496, 2023
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weight loads, but since the Young modulus increases with
increasing stiffness, deformations of the slab and energy re-
lease rates may decrease. This is evident in Fig. 14b. Here,
profile A C is heavier than profile 4 D. However, owing to its
increased stiffness, its energy release rate is smaller.

4.3 Bridging

The distribution of a localized external load over a certain
area of the weak layer (bridging) depends on the stiffness of
the slab. To study this important effect, Fig. 15 shows skier-
induced weak-layer stresses below a slab with profile 4 F in
its original and a modified configuration. For the modifica-
tion, the thicknesses of all layers of the original profile given
in Table 1 are halved. The reduced weight (p o< k) of the
thinner slab leads to smaller overall stresses. However, its re-
duced stiffness (A1] och, D & h3) yields more pronounced
stress peaks. In the case of normal stresses, peak compressive
stresses below the thinner slab even exceed the ones of the
original configuration. For shear stresses, the sharper stress
peak does not outweigh the reduced slab weight.

While the effect of bridging on weak-layer stresses
through the distribution of concentrated loads is somewhat
intuitive, it can be observed for the energy release rate of
weak-layer anticracks, too. Let us demonstrate this by inves-
tigating total thickness changes of layered slabs in PST ex-
periments. Figure 16a shows the energy release rates of a cut
of a = 30cm length in a 2.5 m propagation saw test. Energy
release rates are shown as functions of the total slab thickness
for three different profiles (W A, 3 C, 4 F). They increase with
increased slab thickness, mainly because the energy release
rate is proportional to the square of the total load. At large
slab thicknesses (h > 70cm), the heaviest profile 3 C shows
the highest energy release rates and the lightest profile 4 F the
smallest. For small slab thicknesses (h < 70cm), the oppo-
site is observed. This can be attributed to the changing bend-
ing stiffness of the slab. In order to isolate the influence of
slab stiffness, Fig. 16b shows the energy release rate normal-
ized by the square of the slab weight > p; ;. Since flat PSTs
are dominated by the slab’s bending stiffness, which again
has a cubic dependence on the slab thickness (D11 h3), we
observe a sharp decrease in the weight-normalized energy
release rates with increasing slab thickness, i.e., increasing
slab bending stiffness. Hence, profile 3 C with the highest
bending stiffness (Table 3) has the lowest normalized energy
release rate, and profile 4 F with the highest compliance (Ta-
ble 3) exhibits the highest normalized energy release rate.

4.4 Effect of slope angle

The slope angle has a particular effect on the mode I/II mix-
ity (compression and shear) of energy release rates in prop-
agation saw tests. Consider the 2.5m PST with a = 50cm
cuts between inclinations —90° < ¢ < 90° shown in Fig. 17.
All PSTs are cut from the right-hand side such that negative
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Figure 13. Comparison of shear and normal stresses in the weak layer of inclined skier-loaded layered snowpacks. The central 0.6 m section

of an infinite slab is shown.
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Figure 14. Comparison of total differential energy release rates G
of cracks of length a in a 2.5 m long PST between the considered
benchmark profiles.

slope angles (¢ < 0) correspond to upslope cuts and positive
slope angles (¢ > 0) to downslope cuts. Profiles 4 B, aC,
= D, and the homogeneous case B H are shown. With increas-
ing inclinations (both positive and negative) shear stresses
and deformations increase. This increases the mode II energy
release rate and, hence, the mixed-mode ratios Gy/G. How-
ever, common effect for all profiles are considerably larger
mixed-mode ratios Gy /Gy for downslope cuts (¢ > 0). While
mode II energy release rates reach the magnitude of their
mode I counterparts Gy/G; &~ 1 at ¢ ~ +45°, this magnitude
is first reached at ¢ &~ —70° for upslope cuts. The effect can

https://doi.org/10.5194/tc-17-1475-2023

be amplified by the slab’s layering. While the homogeneous
profile B H and profile 3 C produce notable mode II contri-
butions in upslope cuts, profile # D makes mode II energy
release rates almost inaccessible with upslope PSTs.

The effect originates from the competition of different
shear stress contributions. Unsupported sections of the slab
cause transverse shear forces at the crack tip that induce
transverse shear stresses. The shear forces originate from
the slab’s gravitational dead load and, hence, induce shear
stresses of the same sign regardless of slope angle. Then
again, horizontal slab movements on inclined slopes induce
lateral shear stresses that change their sign with slope angle.
At the upslope ends of PSTs, both shear stresses have the
same sign and cause considerable contributions to the mode
II energy release rate for downslope cuts. At the downslope
end of PSTs, the shear stresses have opposite signs inducing
small mode II contributions for upslope cuts.

This has important implications for field tests. If pure
mode I energy release rates are of interest, upslope cuts
are relatively robust against mode II influences. However, if
mode II contributions are of interest, downslope cuts are ad-
vised.

4.5 Example of extended analyses

As discussed in Sect. 2.4, the model covers complex cases
with multiple external loads and several interacting cracks.
An example is given in Fig. 18, where an inclined snowpack
with profile 4 B is loaded by two skiers in the vicinity of a
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file 4 F.

weak-layer crack. For this analysis, five segments connected
through transmission conditions were introduced to account
for the discontinuities of two external loads and the crack.
Figure 18a shows the obtained slab displacements and the ro-
tations of slab cross sections. Both skiers locally increase de-
formations and interact, in particular with respect to deflec-
tions wg, owing to their proximity. The deformations of the
layered slab above the crack of 100 cm length are even larger
yet much smaller than the weak-layer thickness of 20 mm.
Figure 18b shows the corresponding weak-layer shear and
normal stresses. Again, the interaction of both loads, in par-
ticular in terms of normal stresses, is observed. Without load
interaction, stresses would drop to the level of stresses in-
duced by the slab weight alone in between the skiers. The
effect is connected to bridging because the area across which
individual loads are distributed depends on the snowpack’s
stiffness.

5 Discussion

The proposed model uses the established concepts of lami-
nate mechanics to assess the problem of layered slabs resting
on weak layers. Heierli (2008) and Rosendahl and Weiflgrae-
ber (2020a) have shown that beam-type solutions can provide
accurate representations of the mechanical response of ho-
mogeneous snowpacks loaded by gravity and localized loads.
Analyses of layered snowpacks have only been performed
with numerical models (Schweizer, 1993; Habermann et al.,
2008) or with approximate solutions of limited generality

The Cryosphere, 17, 1475-1496, 2023

ge=|f

3.0

4.0

x107°) —

m
kg2

2.0

Gl (Zpih)*(

0.0
0 50 100 150

Total slab thickness 4 (cm) —

Figure 16. Bridging effect on the energy release rate in flat PST
experiments. (a) Total differential energy release rate G for profiles
3C, 4D, and T E. (b) Energy release rate G normalized with re-
spect to the square of the total slab weight Y p; h;.

(Monti et al., 2016). The validation in Sect. 3 shows that the
present model provides an accurate closed-form analytical
solution for layered slabs on a weak layer loaded by their
own weight and external (point) loads. The comparison to
the numerical reference solution demonstrates a high accu-
racy of the solution in terms of displacements, stresses, and
also energy release rates of anticracks within the weak layer.
The latter is obtained by using the analysis approaches de-
veloped for so-called weak interfaces exhibiting high elastic
contrasts (Fraisse and Schmit, 1993; Lenci, 2001).

The anisotropic mechanical response of the slab is de-
scribed by the stiffnesses of laminate mechanics. The ex-
tensional stiffness A and the shear stiffness Ass are linear
with respect to the thickness of the individual layers within
the slab and do not depend on the ordering. The bending—
extension coupling stiffness B is zero for symmetric lami-
nates and scales both with the square of the individual layer
thickness and linearly with z distance to the coordinate ori-
gin. Hence, it depends on the order of layers. This is even
more pronounced for the bending stiffness Dy that depends
on the power of three of the layer thicknesses and on the
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P. WeiBlgraeber and P. L. Rosendahl: A closed-form model for layered snow slabs 1489

1.5

1.0

Gu/G1 —

0.5

0 _
-90° -60° -30° 0° 30° 60° 90°

~

Figure 17. Effect of slope angle on the mode mixity of the energy
release rates in propagation saw tests. Mode mixity is expressed as
the ratio of mode II (shear) to mode I (collapse) energy release rate
(Gn/G1)- PSTs are 2.5 m long and cut @ = 50cm from the right.

Inclination ¢ —

[ ] &x_&yp

) YA W W v vl wa Wl Y

square of the distance to midplane. That is, both stiffnesses
account for the complex mechanical behavior of a layered
structure while accounting for layer ordering effects. Table 3
shows that within the considered examples, decisive differ-
ences between the stiffnesses of different profiles can occur.
The profile pairs ™ A, 4 B and 7 E, 4 F each have the same
extensional and bending stiffnesses, A1y and Djj, respec-
tively, and only the sign of the bending—extension stiffness
By differs. Profiles 3 C and 4 D exhibit a strong layering
effect. In the equivalent-layer concept (Monti et al., 2016),
the layer moduli are homogenized into one equivalent Young
modulus of the slab. To use models for homogeneous elastic
half-spaces (e.g., Fohn, 1987), this system of slab and weak
layer is then replaced with a single layer with the Young
modulus of the weak layer and the slab thickness is scaled to
account for this. Of course, such a homogenization works for
extension deformation as well as bending deformation. How-
ever, Table 3 and Fig. 11 show that using this concept does
not yield correct stiffness properties of the slab. As pointed
out by Monti et al. (2016), the equivalence layer concept does
not account for the order of the layers. Hence, the significant
ordering effects of the considered profiles cannot be not ac-
counted for. It is worth noting that the equivalence layer con-
cept also depends on the Young modulus of the weak layer.
Birkeland et al. (2014) address the role of the slab on the
crack propagation. They changed the slab by introducing cuts
normal to the surface that significantly reduce the thickness
locally. As shown in Fig. 16, when normalized for different
profile weights, the reduced bending stiffness leads to much
lower energy release rates that may not suffice for crack prop-
agation. In a PST experiment, the weight of the slab is the
only load and is constant along the weak layer. In a skier-
loaded snowpack, the local loading of the skier leads to a
locally increased energy release rate in the vicinity of the
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skier. With low bending stiffness, this energy release rate at-
tains locally high values but then rapidly decreases to energy
release rates originating from the slab’s weight only. With
higher bending stiffnesses, the influenced domain of a local-
ized loading (e.g., a skier) is larger while the magnitude of
the effect decreases.

The deformations of the slab (Fig. 12) show the result-
ing effect of the layering. This is pronounced as the longitu-
dinal deformation at the interface of the slab and the weak
layer u depends strongly on the beam rotation . That is,
with increased bending stiffness of a slab, the longitudinal
deformations at the weak layer will also be smaller, lead-
ing to reduced shear loading of the weak layer. The anal-
ysis of the stresses in the weak layer (Fig. 13) shows that
the layering and the order of the layers control weak layer
stresses and the effective bridging length (Schweizer and
Camponovo, 2001a). In particular, the stress peaks below the
localized loading of the skier will change with bridging. For
stiffer slabs, a wider area below the skier is loaded while the
maximum stresses decrease. Besides the stress loading in the
weak layer, the energy released during crack initiation and
growth controls avalanche release. The energy release rate,
too, shows a pronounced effect of the stiffness of the slab and
the ordering of the layers (Fig. 14). Slabs with high stiffness
layers adjacent to the weak layer lead to higher energy re-
lease rates (in the considered PST configuration). The present
results agree with the findings by Schweizer and Jamieson
(2003), van Herwijnen and Jamieson (2007), and Thumlert
and Jamieson (2014) that identified an increase in snowpack
stability with increased bridging. Moreover, the results of the
current model on the energy release rate of layered slabs can
explain why failure propagation may be accentuated by stiff
slabs, also reported by van Herwijnen and Jamieson (2007).

In the studies by Schweizer and Jamieson (2003) and
Thumlert and Jamieson (2014), a bridging index (BI) is in-
troduced and applied to the analysis of snowpack stability.
The bridging index accounts for the hand hardness index and
the thickness of each layer. We propose to use the bending
stiffness D11 to characterize the bridging of a snowpack con-
figuration. Then, the ordering of the layers and the nonlinear
contribution of the thickness to the bending behavior is con-
sidered. By restricting the consideration to this single prop-
erty, effects such as shear deformation, bending—extension
coupling, or weak layer deformation are not considered, but
it will provide a good first indication of the bridging. For a
full analysis, the use of a comprehensive and efficient model
like the present one is advised.

The effect of the stiffness is also studied using profiles in
which the layer order remains the same but each layer thick-
ness is changed by the same factor (Fig. 15). With half the
thickness of each layer, the total bending stiffness is reduced
by a factor of 8. Hence, the bridging area is reduced, and the
maximum peak stress increases, although the general stress
level in the weak layer has decreased due to the lower total
weight of the thinner layered slab. For energy release rates
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in PST experiments, weight loading dominates and heavier
profiles (3 C > M A > 4 F) feature higher energy release rates
(Fig. 16a). Only when normalizing for the slab weight does
an increased bending stiffness (3 C > ™ A > 4°F) reduce the
energy release (Fig. 16b).

Investigating the effect of the slope angle on energy release
rates of PST experiments (Fig. 17) offers intriguing views
of the behavior of PSTs and its experimental variants. The
slab above the cut is subject to two sources of shear load-
ing: (i) transverse shear deformation from the shear force
of the weight of the overhanging slab and (ii) lateral shear
loading of the tangential component g; of the gravitational
load. On a flat slope, the latter vanishes. On inclines, its sign
changes with negative and positive slope angles. The former
has the same sign regardless of positive or negative inclina-
tion. Hence, shear contributions to the energy release rate are
superimposed either additively or subtractively depending on
the sign of the slope angle. Our results show that for upslope
cuts, mode II plays a much smaller role than for downslope
slope cuts. This has a direct effect on the mode II energy
release rate and constitutes a significant difference between
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the two possible cut directions. Sigrist and Schweizer (2007),
who were able to obtain relatively large contributions from
shear deformations in their PST experiments, used downs-
lope cuts. Whether this was done for the purpose of obtain-
ing large mode II contributions or coincidence is not reported
but is consistent with the present results. The findings may
be used to develop PST procedures specifically designed to
study mode I and mode II separately. Previously, some vari-
ations of PST experiments have been proposed in literature
(e.g., Birkeland et al., 2019).

Even with increasing number of comprehensive numerical
models, closed-form analytical models are highly relevant.
As pointed out in the broad review by Morin et al. (2020),
there is still a large need for an improved understanding of
snow physics and for models that can assess snowpack sta-
bility. Especially for the use in model chains, extensive para-
metric studies, or in optimizations, a very high computational
efficiency is very important. Within this work we have per-
formed a total number of 6875 different analyses in the con-
sidered non-exhaustive parametric studies. This alone high-
lights the necessity of highly efficient, functional mechani-
cal models. Moreover, in their simplistic structure, analytical
models reveal fundamental physical interrelationships and
effects. The present model in particular uses only input pa-
rameter with clear physical meaning that can be determined
in relatively simple experiments. No numerical stabilization
such as artificial viscosity or tuning parameters for complex
constitutive laws that are not directly accessible in experi-
ments are used or required.

The present model makes use of fundamental structural
mechanisms and allows for insights into the mechanics of
dry-snow slab avalanche release. The model can be used
to implement failure models or to analyze experimental re-
sults. A similar model for homogeneous slabs (Rosendahl
and WeilBigraeber, 2020a) has been used by Bergfeld et al.
(2021a) to identify the Young modulus of a slab by means
of digital image correlation of PST experiments. The authors
observed that the model provided consistent results for the
Young modulus of the slab and weak layer, irrespective of
experimentally recorded cut lengths. In contrast, using the
expression of the system’s elastic energy provided by Heierli
et al. (2008), as proposed by van Herwijnen et al. (2016),
showed a significant dependence on the cut length and led to
inconsistent results. This can be attributed to the negligence
of weak-layer elasticity by Heierli et al. (2008) and demon-
strates the importance of considering the principal features of
a physical problem. In the case of slab avalanche release, we
view the mechanics of the layered slab and the weak layer as
crucial.

For the proposed model, the computational effort does not
change with domain size or number of considered layers.
Computing the eigenvalues of the system matrix K of the
governing ODE (11) represents the main computational ef-
fort. This is independent of the number of segments or lay-
ers, and it only needs to be done once for any set of boundary
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conditions, load cases, and slope angles. Each segment adds
six free coefficients, i.e., 6 degrees of freedom to the linear
system of equations of Eq. (18). This has virtually no im-
pact on the computation effort even with 20 segments. In this
case, timing 1000 stress evaluations yields a mean run time
of 0.7 ms per analysis on a single 2.4 GHz Intel Core 9.

The model does not account for contact of the slab with
base layers or the remains of a collapsed weak layer. For long
weak-layer cracks, the corresponding normal deformations
may become too large to be rendered correctly in the present
model. A corresponding extension of the present model is a
work in progress and will allow for the analysis of sustained
anticrack growth. As discussed, the weak-interface concept
used brings the limitation that cracks shorter than a few mil-
limeters cannot be studied.

6 Conclusions

The present work presents a closed-form analytical model for
the mechanical response of a layered slab resting on compli-
ant weak layers.

1. Itis applicable to slopes loaded by one or multiple skiers
and propagation saw tests.

2. The model provides anisotropic slab stiffnesses, slab
displacement fields, weak-layer stresses, and energy re-
lease rates of cracks in the weak layer that are in excel-
lent agreement with finite-element reference solutions.

3. Its implementation is highly efficient, allows for real-
time applications, and allows for the consideration of
arbitrary system sizes and an arbitrary number of lay-
ers. It can be readily used to implement novel failure
models.

4. In an analysis of bridging, we reveal significant effects
of slab weight, stiffness, and layering on weak-layer
stresses and energy release rates.

5. Based on an investigation of inclined propagation saw
tests, we recommend upslope cut PSTs for the analyses
for mode I energy release rates and downslope cut PSTs
for mode II analyses.

Appendix A: Derivation of the governing equations for a
layered slab supported by an elastic foundation

With the first derivative of the constitutive equation of the
normal force Eq. (7a)’ inserted into the equilibrium of hori-
zontal forces Eq. (6a), we obtain

0= Ajjug(x) + Biiyg (x) + 1(x) +gi. (A1)

Likewise, with the first derivative of the constitutive equation
of the shear force Eq. (7b)’ and the vertical force equilibrium
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Eq. (6b), we have
0=« Ass(wy(x) + ' (x)) + 0 (x) + ¢n. (A2)

The first derivative of the constitutive equation of the bend-
ing moment Eq. (7a)’ with the balance of moments Eq. (6¢)
yields

0= Biiug(x)+ D" (x) — k Ass (wi(x) + v (x))
+1
2

We then insert the definition of the shear stresses Eq. (5b)
into Eq. (A1) to obtain

oz (A3)

t
0= Ajug(x) —kuo(x) — ktzwé(x)

h
+Bnl/f"(x)—kt§1/f(x)+qt- (A4)

Inserting the normal stress definition Eq. (5a) into Eq. (A2)
yields

0 =k Asswy (x) — knwo (x) + k Ass ¥’ (x) + g, (A5)
and, again, inserting the shear stress (5b) into Eq. (A3) yields
+t

h /
0= Briug(x) —k uo(x) + Diiy” (x)

h+tt
+ (%Ekt —I{A55> w)(x)

h+th
- (KASS + Tzkt) Y (x) + 254t (A6)
Equations (A4) to (A6) constitute a system of linear ordi-
nary differential equations of second order with constant co-
efficients of the deformation variables u(x), w(x), ¥ (x) that
describes the mechanical behavior of a layered beam on a
weak layer.
Using the vector z(x) of all unknown functions (10), the
ODE system can be written as a system of first order for the
form

A7 (x) +Bz(x)+d =0, (A7)
with the matrices
1 0 o 0 0 0
0 A O 0 0 B
0 0 1 0 0 0
A= 0 0 0 «xAss 0 O (A8)
0O 0 O 0 1 0
|10 By O 0 0 Dy
and
0 -1 0 0 0 0
k0 0 ki —kZ 0
0 0 0 -1 0 0
B= 0 0 -k, O 0 kAss |’ (A9)
0 0 0 0 0 -1
| h;rt k O 0 Bes  Bgs 0
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where

Bes =kth +tt — K Ass and Bgs = —kth_Hh — K Ass

and the vector

d=[0 g 0 ¢ 0 zq |" (A10)

The system (A7) can be rearranged into the form

7 (x) =Kz(x) + ¢, (A11)
where

K=-A"'B, (A12)
g=—-A"'4d. (A13)

Appendix B: Derivation of the governing equations of
an unsupported layered slab

Without an elastic foundation, the equilibrium conditions
(6a) and (6b) reduce to

0= IV | Bl

- d.x q[v ( )

0=V (B2)
dx

0= M) _ V(x) + z5qt. (B3)
dx

By adding and subtracting £D1jw(x) to the constitutive
equation of the bending moment (Eq. 7a) and using the
first derivative of the constitutive equation of the shear force
(Eq. 7b)’, we obtain

Dll ’ /"
Vi(x) — Driwy (x). (B4)
Ass

M(x) = Briug(x) + -

Differentiating twice and using the first derivatives of the
equilibrium conditions, Egs. (B2)" and (B3)' yield

M"(x) = V'(x) = —gn = Biiug (x) = Drjwg’(x).  (BS)

Adding and subtracting £ B1jwy to the constitutive equation
of the normal force (Eq. 7a) and using the constitutive equa-
tion of the shear force (Eq. 7b) gives

B
N(x) = Aju)(x) + ——V'(x) = Bjjwf(x). (B6)
K Ass

Differentiating this equation and, again, using the derivatives
of the equilibrium conditions, Egs. (B1)" and (B2)' yield

N'(x) = —q = Anug(x) — Briwg (x). (B7)

Solving the derivative of this equation for ' (x) and insert-

ing it into Eq. (BYS) yields an ordinary differential equation of
fourth order for the vertical displacement:

A
B}, — A Dy "

"

wy (x) = (B8)
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It can be solved readily by direct integration:

wo(x) =c1+crx + 03x2 + C4x3

A g
_ x4
24(B}, — A1 D11)

(B9)

Solving Eq. (B7) for ug(x), integrating twice, and insert-
ing the third derivative of the general solution for wq(x)
(Eq. B9)' yields the general solution for the tangential dis-
placement of unsupported beams:

(631164—Qt)x2
2A1
By o>
- = < n .
6(8% —41D1)

uog(x) =cs+cex +

(B10)

To obtain a solution of the cross-section rotation ¥ (x), we
take the derivative of the constitutive equation for the bend-
ing moment (Eq. 7a)’ and insert it together with the constitu-
tive equation of the shear force (Eq. 7b) into the equilibrium
of moments (Eq. B3). Solving this for v (x) yields

1
Y(x)= W(Bnug(x) + D" (x) + zeqt) — wh(x). (B11)

55
Equation (B7) allows for eliminating ug (x). In order to elim-
inate ¥ (x), we insert the constitutive equation of the shear
force (Eq. 7b) into the second derivative of the vertical equi-
librium (Eq. B2)”, which yields " (x) = —wy’(x), and we
obtain

2
V)= Bi, —AnDn
KkAs5A1

Bii\ g
" <Zs An) KAss’
which is fully defined through the solution for wq(x)
(Eq. B9).

In order to assemble a global system of linear equations
from boundary and transmission conditions between sup-
ported and unsupported beam segments, it is helpful to ex-
press the general solutions for both cases in the same form.
For this purpose, we express vector of unknown functions
(Eq. 10) used for the solution of supported beam segments
through the general solutions Egs. (B12) to (B9) for unsup-
ported beam segments. This yields the matrix form z,(x) =
P(x) ¢ + p(x) (see Eq. 16), where ¢, = [C{", ..., O]  is
the vector of unknown coefficients,

w (x) — wo(x)

(B12)

i 0 38112 i

0 O i 1 x
él
0 0 O 651 0 1
1 x x2 x3 0 0
P(x) = B13
W=l 1 2 352 0o o | B
0 —1 —2x ;K- —3x2 0 0
o 0 -2 “6x 0 0 |
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and

px)= 6All 3 ) (B14)

Al 3 _Bu\_ gt _ _4n
6K, In* +(ZS Air ) kAss T~ kAss®
A 2 _ _¢n
2K0qnx I(A55

with Ko = 3121 — A11Dr11.

Appendix C: Boundary and transmission conditions

Stability tests are typically conducted on finite volumes with
free ends that require vanishing section forces and moments,

N=V=M=0, (C1)

as boundary conditions. Skier-induced loading is typically
confined in a very small volume compared to the overall di-
mensions of the snowpack that extends over the entire slope.
For the model, this corresponds to an unbounded domain,
where all components of the solution converge to a constant
at infinity. That is, at the boundaries, the complementary so-
lution vector must vanish:

zh =0, (C2)

which yields constant displacements z(x) = zp; see Eq. (13).

At interfaces between two segments (e.g., change from
supported to unsupported), C° continuity of displacements
and section forces is required and the transmission conditions
read

Auy =0,
AN =0,

Awy =0,
AV =0,

AY =0,
AM =0, (C3)

where the A operator indicates the difference between left
and right segments, i.e., Ay = y| — r.

External concentrated forces (e.g., skiers) are introduced
as discontinuities of the section forces. They are considered
with their normal and tangential components F; and F; and
with their resulting moment M = —h F;/2. They have to be
accounted for in the form of the transmission conditions be-
tween two segments:

h
AM =——-F, (C4)

AN = F, 3

AV = Fy,
where, again, the A operator expresses the difference be-
tween left and right segments. Therefore, at points of such
loads the slab must always be split into segments to allow for
the definition of the transmission conditions.
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Appendix D: Slab stress fields

The in-plane stresses oy, o, and Ty, within layers of the
slab are obtained using the layers’ constitutive equations and
exploiting the equilibrium conditions (Reddy, 2003). Using
Hooke’s law and the identities &, (x, z) = u'(x, 2) = ug(x) +
zy'(x), the axial layer normal stresses can be expressed in
terms of slab displacements in the form

E(2)

ox(x,z) = m

() +29')), (d1)
where Young’s modulus E(z) and Poisson’s ratio v(z) are
layerwise, i.e., piecewise, constant in the z direction. Inte-
grating the local equilibrium condition

0= 00y 0Tyy 0Ty
T ox dy 9z’

(D2)

with respect to z, where derivatives with respect to y van-
ish owing to the plane-strain assumption, yields the in-plane
layer shear stress

Ty (x,2) = —fa)ﬁ(x,z)dz

E
__ / %(ug(x) +20'(0)dz. (D3)

The second-order derivatives are obtained from the left-hand
side of Eq. (11), and integration with respect to z is per-
formed using the trapezoidal rule. Again, integrating the
equilibrium condition

O_arxz dty; 0oy
C dx dy 3z’

(D4)

with respect to z under the same assumptions, yields the in-
terlayer normal stresses

o.(x,2) = —/T;Z(x,z) dz. (D5)

Here, differentiation is performed using difference quotients
with consideration of discontinuities. Finally, maximum (oy)
and minimum (op) principal stresses are computed from

2
GI,HIZUX;—UZ i\/<0x20Z> +‘[x22 . (D6)

Code availability. A Python implementation of the present model
is publicly available at https://github.com/2phi/weac (last access:
28 March 2023), Zenodo (https://doi.org/10.5281/zenodo.5810763,
Rosendahl and Weiigraeber, 2022), and https://pypi.org/project/
weac (Rosendahl and Wei3graeber, 2023).

Data availability. Data used in this work were generated using the
software resources cited in the “Code availability” section and can
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be reproduced using the input data given herein. Additional data
used for model validation were taken from the literature. Finite-
element model outputs are available upon request.
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