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Abstract. Snowmelt runoff serves both human needs and
ecosystem services and is an important parameter in op-
erational forecasting systems. Sentinel-1 synthetic-aperture-
radar (SAR) observations can estimate the timing of melt
within a snowpack; however, these estimates have not been
applied on large spatial scales. Here we present a workflow
to combine Sentinel-1 SAR and optical data from Landsat-8
and Sentinel-2 to estimate the onset and duration of snowmelt
in the La Joie Basin, a 985 km2 watershed in the south-
ern Coast Mountains of British Columbia. A backscatter
threshold is used to infer the point at which snowpack sat-
uration occurs and the snowpack begins to produce runoff.
Multispectral imagery is used to estimate snow-free dates
across the basin to define the end of the snowmelt period.
SAR estimates of snowmelt onset form consistent trends in
terms of elevation and aspect on the watershed scale and re-
flect snowmelt records from continuous snow water equiv-
alence observations. SAR estimates of snowpack saturation
are most effective on moderate to low slopes (< 30◦) in open
areas. The accuracy of snowmelt duration is reduced due to
persistent cloud cover in optical imagery. Despite these chal-
lenges, snowmelt duration agrees with trends in snow depths
observed in the La Joie Basin. This approach has high poten-
tial for adaptability to other alpine regions and can provide
estimates of snowmelt timing in ungauged basins.

1 Introduction

Snowmelt runoff is an important source of streamflow
or groundwater recharge in many regions of the world.
Snowmelt comprises approximately 32 % of global fresh-
water discharge (Meybeck et al., 2001), and over a billion
people depend on this seasonal water source (Barnett et al.,
2005). Both the volume and persistence of the snowpack are
altered by warming global temperatures (Mote et al., 2005).
Changes in snowmelt timing will broadly impact ecosys-
tem health and natural hazard frequency, as the timing of
snowmelt is linked with trends in soil moisture (Harpold
et al., 2015; Kampf et al., 2015), streamflow (Luce and
Holden, 2009; Rauscher et al., 2008; Déry et al., 2009), and
wildfires (Westerling, 2016; Westerling et al., 2006). To pre-
dict the release of water from a snowpack, a thorough under-
standing of snowmelt is required.

Snowmelt occurs during three phases: moistening, ripen-
ing, and runoff (Dingman, 2015). Snowmelt begins with
moistening, when the top layers of the snowpack start to melt
due to increases in air temperatures or solar radiation. When
the wetting front penetrates the snowpack, the ripening phase
begins. Once the snowpack is fully saturated and isother-
mal (0 ◦C throughout), further energy inputs will be directed
at snowmelt and liquid water will be released (Dingman,
2015). The phases of snowmelt can be identified through
continuous measurements of liquid water content (LWC) and
snow water equivalence (SWE). The runoff phase initiates
when a snowpack has reached its maximum liquid water con-
tent and SWE sharply declines.
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Several methods exist to monitor SWE and snowpack
LWC. SWE is measured manually via snow sampling tubes
or automatically via snow scales and snow pillows (Kinar
and Pomeroy, 2015). Manual and automated measurements
of LWC use variable techniques, including dielectric, cen-
trifugal, or calorimetric methods (Kinar and Pomeroy, 2015).
Centrifugal and calorimetric methods are time-consuming
and destructive, whereas dielectric techniques are more com-
mon for in situ observations of LWC. Systems that exploit
dielectric properties in the microwave region of the electro-
magnetic spectrum, such as the snowpack analyzer (Stähli
et al., 2004) or upward-looking ground-penetrating radar
(Schmid et al., 2014), can provide automated LWC measure-
ments for operational forecasting. Establishing networks of
continuous SWE and LWC observations is labour-intensive
and expensive in high alpine areas, which are difficult to ac-
cess and can experience extreme winter conditions. Due to
these time and cost constraints, physical snowpack observa-
tions are often limited to point observations at mid-elevations
of mountainous ranges and are insufficient to capture the spa-
tial variability of the snowpack.

Snow cover is highly variable from the watershed to sub-
grid scale (Deems et al., 2006; Lopez-Moreno et al., 2015),
and point observations do not always represent snowpack
conditions in nearby areas (Elder et al., 1991; Neumann
et al., 2006). Further, high-elevation snowpack observations
are crucial, as headwater regions generate large proportions
of baseflow in mountain streams (Rumsey et al., 2020). In
the province of British Columbia, Canada, there are 120 au-
tomated snow weather stations that monitor 22 major water-
sheds (Government of British Columbia, 2017). These sta-
tions are situated at an average elevation of 1400 m above
sea level (a.s.l.), and less than 10 % are located above
2000 ma.s.l. to monitor high alpine snowpacks (i.e., the
Coast Mountains and Rocky Mountains of British Columbia
reach elevations of 4000 and 3300 ma.s.l., respectively). The
low density of physical observations in mountain regions,
such as those in British Columbia, hinder snowpack moni-
toring and modelling efforts. Distributed observations of the
snowpack are required for accurate snowmelt runoff fore-
casting and model improvement (Luce et al., 1998). Con-
sidering the need for spatially distributed observations of the
snowpack, remote sensing observations are attractive supple-
ments to physical monitoring systems.

Remote sensing data offer alternative methods to mon-
itor snowmelt and estimate the timing of runoff from the
snowpack. Marin et al. (2020) demonstrated the sensitivity
of Sentinel-1 synthetic aperture radar (SAR) to SWE and
snowpack LWC at five test sites in the European Alps. Three
phases of melting were identified from the SAR time series
at point locations. The onset of snowmelt runoff, or the point
in time when LWC is at its maximum and SWE sharply de-
clines, coincided with minima in SAR time series at all test
locations. SAR is effective for monitoring snowmelt due to

its sensitivity to the LWC of snow; however, SAR signals
will be broadly impacted by land cover type and topography.

C-band SAR signals (such as those from Sentinel-1) can
penetrate dry snowpacks to depths of several metres (Mät-
zler, 1987). In a dry snowpack, the backscatter signal is the
sum of volume scattering within the snowpack and surface
scattering at the snow–ground interface; however, surface
scattering is the dominant signal (Shi and Dozier, 1995; Na-
gler and Rott, 2000). In a wet snowpack, liquid water be-
comes the dominant factor influencing backscatter and sur-
face scattering can be neglected (Shi and Dozier, 1995; Na-
gler and Rott, 2000). As demonstrated by Marin et al. (2020),
backscatter values become increasingly negative as LWC in-
creases during the ablation season, reaching a minimum at
the point of runoff (or melt) onset. After reaching their min-
ima, backscatter values increase until the snowpack dissi-
pates (Marin et al., 2020). However, the relation between
SAR and snowmelt will be impacted by physical properties
of the snowpack and local terrain. SAR signals are altered by
snowpack properties such as snow grain size, density, depth,
stratigraphy, impurity content, and surface roughness (Liu
et al., 2006). Further, the magnitude of SAR backscatter val-
ues over snow-covered regions will be impacted by local in-
cidence angle (Nagler and Rott, 2000; Shi and Dozier, 1995),
forest cover (Pivot, 2012), and polarization (Nagler et al.,
2016). The influence of snowpack characteristics and topog-
raphy on SAR estimates of snowmelt onset requires further
exploration.

In British Columbia, where mountain ranges and winter
snowpacks dominate the landscape, remote sensing obser-
vations are needed to characterize snowmelt because few
physical snowpack measurements are available. In this pa-
per, we use C-band Sentinel-1 SAR imagery with Landsat-8
and Sentinel-2 multispectral imagery to define the onset and
duration of snowmelt in the La Joie Basin, a large watershed
in the southern Coast Mountains of British Columbia. We ex-
amine how the relation between SAR minima and snowmelt
(Marin et al., 2020) is impacted by polarization, land cover,
aspect, and hillslope in the La Joie Basin. We further assess
how estimates of snowmelt onset and duration can be veri-
fied with continuous records of SWE. This work establishes
a low-cost and adaptable method for monitoring snowmelt
onset in ungauged basins that can be used by watershed man-
agers across western North America.

2 Study area

The La Joie Basin is a 985 km2 watershed located in the
Coast Mountains of British Columbia, 170 km north of Van-
couver. Runoff in the watershed flows into Downton Lake,
which is formed by the La Joie Dam. The La Joie Basin is
a critical area for hydroelectric power generation as the La
Joie Dam is the first structure in a larger hydroelectric system
that generates approximately 5 % of the province’s power.
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Figure 1. The La Joie Basin by land cover type. Land cover types were determined via a random forest classification in Google Earth Engine
from Sentinel-2 imagery.

The watershed ranges in elevation from 800 to 2800 ma.s.l.
and has a median elevation of 1910 ma.s.l. The lower ele-
vations of the La Joie Basin are forested, and the treed area
covers 47 % of the catchment (Fig. 1). The dominant bio-
geoclimatic zones in the watershed are Engelmann Spruce–
Subalpine Fir and Montane Spruce, with small areas of In-
terior Mountain Heather Alpine and Boreal Altai Fescue
Alpine zones (Pojar et al., 1987). Forest harvesting occurs
within the watershed to a minor extent, with less than 10 %
of the basin impacted.

Precipitation records from the Green Mountain automated
weather station (Fig. 1) indicate this region received an av-
erage of 1090 mm of precipitation between 1993 and 2011.
During this period, approximately 39 % of precipitation fell
as snow and SWE values exceeded 1300 mm. Of the total
basin area, 16 % is glacierized (Fig. 1). As a result, the basin
has a nival–glacial hydrological regime and is mostly fed by
snowmelt in May and June and glacier melt in July and Au-
gust.

3 Data

3.1 Telemetry and lidar data

Two automated weather stations located in the La Joie Basin
are operated by the provincial hydroelectric utility BC Hydro
(Fig. 1). The Downton Lake Upper automated weather sta-

tion (1829 ma.s.l.) and Green Mountain automated weather
station (1725 ma.s.l.) provide hourly records of temperature,
precipitation, and SWE. Downton Lake Upper is situated on
a northwest-facing slope and is classified as disturbed for-
est (Fig. 1). Green Mountain is situated on a northeast-facing
slope and is classified as mature forest (Fig. 1).

A 5 m bare-earth lidar DEM was used to create slope, as-
pect, and elevation classes in the La Joie Basin. Lidar data
were collected on 22 September 2017 from a fixed-wing air-
craft using methods described elsewhere (Pelto et al., 2019).
The DEM was resampled to 30 m and classified into 4 aspect
classes, 6 slope classes, and 20 elevation classes.

3.2 Sentinel-1 SAR

The Sentinel-1 constellation acquires SAR scenes every 2
to 3 d over the La Joie Basin. The constellation consists of
two satellites orbiting the Earth in ascending and descend-
ing directions. Each satellite has two tracks that capture the
La Joie Basin. In the descending direction both tracks (13
and 86) completely capture the La Joie Basin; however, in
the ascending direction only one track (137) has full cover-
age, while the other (64) only captures the eastern side of the
basin (Table 1). Local incidence angles vary slightly by satel-
lite track (Table 1). On average, incidence angles are higher
for tracks in the descending direction (Table 1). Local inci-
dence angles in descending Sentinel-1 images at Downton
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Table 1. Sentinel-1 SAR orbit tracks over the La Joie Basin. Percentiles for average local incidence angles for each track are displayed, as
well as the area covered by that track (calculated as a percent of the total basin area).

Direction Track 5th percentile 50th percentile 95th percentile % covered

Ascending 64 11.2◦ 35.2◦ 61.8◦ 53
Ascending 137 18.8◦ 42.8◦ 68.2◦ 100
Descending 13 22.2◦ 44.3◦ 71.7◦ 100
Descending 86 15.7◦ 36.8◦ 63.7◦ 100

Lake Upper measure between 33 and 42 ◦, whereas at Green
Mountain they measure between 26 and 34◦.

Images over the watershed are acquired in the interfero-
metric wide-swath mode, the default collection mode over
land. These SAR scenes have a resolution of 10 m and have
two polarization bands available, VV (vertical–vertical) and
VH (vertical–horizontal).

The Level-1 ground-range-detected (GRD) Sentinel-1
SAR dataset from Google Earth Engine (GEE) is pre-
processed using the Sentinel-1 Toolbox (European Space
Agency, 2021). The images undergo five steps during cor-
rection:

1. application of the precise orbital file,

2. removal of the GRD border noise,

3. removal of thermal noise,

4. conversion of digital numbers to backscatter (σ ◦) in
decibels (dB),

5. correction of images for terrain (range–Doppler
method)

The Committee on Earth Observation Society Analysis
Ready Data for Land (CEOS-ARD) identify additional steps
needed for SAR pre-processing (Lewis et al., 2018) that are
not included in the Sentinel-1 GEE catalogue. These steps
include radiometric terrain correction and pixel-based iden-
tification of shadow or layover (Lewis et al., 2018).

3.3 Multispectral and optical data

The operational land imager and thermal infrared sensor
aboard Landsat-8 from the National Aeronautics and Space
Administration acquire imagery over the La Joie Basin ev-
ery 16 d. Images are provided at a 30 m resolution, and
bands provide coverage across the visible, near-infrared, and
shortwave-infrared spectrums. Top-of-atmosphere (TOA) re-
flectance Landsat-8 scenes are publicly available in the
GEE data catalogue.

The multispectral instrument aboard Sentinel-2 from the
European Space Agency collects multispectral imagery over
the La Joie Basin every 6 d. Images are provided at 20 m res-
olution, and bands provide coverage across the visible, red-
edge, near-infrared, shortwave-infrared, and thermal spec-

Table 2. The number of Sentinel-1 SAR images used for analysis
by satellite pass direction.

Year Pass direction Number of Acquisition
images frequency (d)

2018 Ascending 11 12–24
2018 Descending 29 5–12
2019 Ascending 30 12
2019 Descending 29 5–12
2020 Ascending 16 12
2020 Descending 29 5–12
2021 Ascending 29 6–24
2021 Descending 31 1–12

trums. TOA reflectance Sentinel-2 scenes are freely available
in the GEE data catalogue.

4 Methods

4.1 Snowpack saturation from Sentinel-1 SAR

Dates of snowpack saturation from 2018 to 2021 were esti-
mated from Sentinel-1 SAR images. GEE was used to access,
correct, and download Sentinel-1 SAR scenes. To detect the
onset of snowmelt in the basin, we restricted our analysis
for SAR scenes acquired between February and August. We
created eight image collections from Sentinel-1 SAR scenes,
with two collections created for each study year based on
the directional pass of the satellite (ascending or descending)
(Table 2). To prevent border noise from impacting results, we
only selected images containing the whole basin (i.e., those
captured by tracks 13, 86, and 137) to create the stacks. We
corrected the Sentinel-1 image collections for slope-induced
radiometric distortion using a volumetric model (Vollrath
et al., 2020) and applied a filter to reduce radar-induced
speckle (Lopes et al., 1990). After corrections, we resam-
pled the image collections to 30 m for consistent analysis
with optical imagery and downloaded them. We performed
these steps for images captured in both VV and VH polariza-
tions.

We used RStudio, an integrated development environment
for R (RStudio Team, 2021), to estimate snowpack satura-
tion from the created Sentinel-1 image collections. Before
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Table 3. Total corrected area for SAR estimates of melt onset, opti-
cal estimates of snow disappearance, and optical-radar estimates of
melt duration.

2018 2019 2020 2021

Onset (km2) 60.3 58.3 63.4 64.7
Onset (%) 6.2 5.6 6.5 6.6
Melt end (km2) 109.0 116.6 121.6 134.8
Melt end (%) 11.1 11.9 12.4 13.8
Duration (km2) 191.8 257.9 204.1 230.9
Duration (%) 19.6 26.3 20.5 23.6

we extracted saturation dates, we temporally smoothed time
series of backscatter values in each pixel using a locally
weighted least-squares regression with a span of 0.2 (Sup-
plement). This correction reduces noise in SAR time series
and thus minimizes false positives in the final saturation date
maps. After smoothing, we identified the date of the mini-
mum backscatter value for each pixel.

We used backscatter minima to approximate the date of
snowpack saturation (Marin et al., 2020) for all pixels in the
basin, regardless of their snow-covered status. After we ex-
tracted saturation dates, we calculated mean values for each
elevation, slope, aspect, and land cover class. To correct for
any remaining artefacts of SAR speckle and distortion, we
removed any pixels with estimated saturation dates that were
outside of 2.5 standard deviations of the calculated means.
We then infilled saturation dates with the median value from
that pixel’s elevation, slope, aspect, and land cover class (Ta-
ble 3).

To further validate the behaviour of SAR signals over com-
plex terrain, we focus on SAR time series extracted from pix-
els between elevations of 1600 and 1800 m and average them
by land cover type and slope. We also extracted SAR time
series at the Green Mountain and Downton Lake Upper au-
tomated weather stations, where continuous measurements
of SWE are available. To create SAR signals at the location
of each automated weather station, we used the average pixel
values from all pixels located within a 40 m circular radius
of each station. All SAR time series were smoothed with a
LOESS regression with a span of 0.2.

4.2 Snow disappearance from Landsat-8 and
Sentinel-2

We determined snow disappearance from Sentinel-2 and
Landsat-8 images in GEE. We filtered Sentinel-2 and
Landsat-8 scenes to create collections of images containing
the La Joie Basin captured between February and September
from 2018 to 2021 (Table 4). Images were further filtered to
remove scenes with more than 60 % cloud cover, resulting in
the use of 53 %, 51 %, 56 %, and 55 % of all available im-
ages each year from 2018 to 2021, respectively. We masked

Table 4. Number of Sentinel-2 and Landsat-8 images used for anal-
ysis.

Year Landsat-8 Sentinel-2 Total Acquisition
scenes scenes frequency (d)

2018 33 83 116 1–17
2019 36 79 115 1–15
2020 35 87 122 1–18
2021 28 95 123 1–8

images for clouds and combined them into a single image
collection for each study year (Table 4).

We utilized a hybrid approach to approximate snow
disappearance from the multi-source images. Over non-
glacierized areas, we calculated Normalized Difference
Snow Index (NDSI; Hall et al., 1995) and Normalized Dif-
ference Forest Snow Index (NDFSI; Wang et al., 2015) val-
ues to classify each image for snow cover using a threshold
of 0.4 (Table 5). For glacierized areas of the La Joie Basin,
we used a k-means clustering algorithm to classify the ini-
tial image collection for snow cover. We created two classes
on the glacier, snow and ice, based on reflectance values in
the visible, near-infrared, and shortwave-infrared spectrums
(Shea et al., 2013).

For all areas in the basin, we selected the first snow-free
date per pixel and extracted the corresponding date. We then
exported the maps of snow disappearance, or snowmelt end,
from GEE and calculated mean values for each elevation,
slope, aspect, and land cover class. To correct for errors due
to clouds and cloud masking, we removed any pixels with
estimated snow disappearance dates that were outside of 2.5
standard deviations of the calculated means. We then infilled
snow disappearance dates with the median value from that
pixel’s elevation, slope, aspect, and land cover class (Ta-
ble 3).

4.3 Snowmelt duration estimates

We approximated snowmelt duration from the created maps
of snowpack saturation and snowmelt end. We took the dif-
ference in days between disappearance and saturation esti-
mates as the duration of melt production for each study year.
Elevation-based thresholds were used to identify improbable
melt duration estimates, such as negative estimates or esti-
mates exceeding 120 d. Improbable melt duration estimates
were infilled with the median value from that pixel’s eleva-
tion, slope, aspect, and land cover class.

4.4 Telemetry data

To validate SAR time series, estimates of snowmelt on-
set, and estimates of snowmelt duration we used contin-
uous SWE records from the Downton Lake Upper and
Green Mountain automated weather stations. We averaged
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Table 5. Vegetation indices used to detect snow cover from optical and multispectral imagery.

Index Formula Source

Normalized Difference Snow Index (NDSI) green − swir2
green + swir2 Hall et al. (1995)

Normalized Difference Forest Snow Index (NDFSI) nir − swir2
nir+ swir2 Wang et al. (2015)

Figure 2. Snow water equivalence records from Downton Lake Upper (top) and Green Mountain (bottom). Linear piecewise regressions of
SWE trends are displayed with observational data. Breakpoints in the regression are marked with vertical dotted lines, and the inferred melt
period from the regression is shaded in light blue.

hourly SWE measurements for each day and calculated max-
imum SWE for each snow season between 2018 and 2021.
We used a piecewise linear regression to infer the period of
melt at each station. Regression models were determined us-
ing the “segmented” package (Muggeo, 2017), which imple-
ments a bootstrap restarting algorithm (Wood, 2001) to esti-
mate breakpoints in the time series. We used the first break-
point after maximum SWE to approximate melt onset, and
we used the last breakpoint to approximate the end of melt
(Fig. 2).

5 Results

5.1 Snowmelt from SWE records

Estimates of snowmelt onset and duration from the linear
piecewise regression were consistent during the study pe-
riod. At Downton Lake Upper, snowmelt duration ranged
from 40 to 51 d among study years, with the shortest dura-

tion observed in 2019. Snowmelt onset dates were consis-
tent at Downton Lake Upper, ranging from 4 to 10 May,
with the earliest onset recorded in 2018. At Green Moun-
tain, snowmelt duration ranged from 27 to 35 d among study
years, with the shortest duration estimated in 2021. Estimates
of melt onset at Green Mountain ranged from 29 April to
13 May, with the earliest onset observed in 2018.

5.2 Sensitivity of SAR to snowmelt

At automated weather stations, the minimum value in each
SAR time series coincided with rapid (10–20 mmd−1) de-
clines in snow water equivalence (Figs. 3 and 4). At Down-
ton Lake Upper, SAR time series minima occurred within
0–10 d of SWE melt onset estimates for both polarizations
(Fig. 3). Comparing across four melt seasons at Downton
Lake Upper, the maximum difference (+4 d) between on-
set estimates from VV polarized time series and teleme-
try records was produced in 2019. The minimum difference
was produced in 2018 when there was no difference be-
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Figure 3. Comparisons of SAR time series and continuous snow water equivalence records (SWE) at Downton Lake Upper. SWE records
are displayed in dark blue, with melt periods shaded in light blue. SAR time series for VV and VH polarized images are depicted in green,
with time series minima denoted by dashed lines.

tween telemetry records of melt onset and SAR estimates of
melt onset. The maximum difference (−10 d) between esti-
mates from VH polarized time series and telemetry records
was produced in 2020 at Downton Lake Upper. The mini-
mum difference was produced in 2018, when (similar to the
VV time series) there was no difference between teleme-
try records of melt onset and SAR estimates of melt onset.
At Green Mountain, SAR minima occurred within 1–13 d
of SWE melt onset estimates (Fig. 4). Among study years,
the maximum difference (+11 d) between onset estimates
from VV polarized time series and telemetry records was
produced in 2019. The minimum difference was produced
in 2019 (−1 d). The maximum difference (−13 d) between
onset estimates from VH polarized time series and teleme-
try records was produced in 2020 at Green Mountain. The
minimum difference was produced in 2021, when there was
no difference between telemetry records of melt onset and
SAR estimates of melt onset. Minima from VV polarized im-
ages produced more accurate approximations of melt onset
compared to those produced from VH polarized images at
both stations. At Downton Lake Upper, all VV-derived min-
ima occurred within 7 d of SWE melt onset estimates. At this
location, only 50 % of minima from VH polarized images oc-
curred within 7 d of melt onset. At Green Mountain, 75 % of

VV-derived minima occurred within 7 d of SWE melt on-
set estimates. Similar to the results at Downton Lake Upper,
only 50 % of minima at Green Mountain from VH polarized
images occurred within 7 d of melt onset.

SAR backscatter time series from across the basin have a
characteristic “U” shape, with their lowest values occurring
in late spring (Fig. 5). In open areas, the seasonal decrease
is most pronounced on gentle slopes (< 10◦) and decreases
in amplitude as slope increases.In forested regions of the La
Joie Basin, the seasonal decrease in backscatter showed the
greatest amplitude on steep slopes (40–49◦). Among land
cover classes, SAR minima are the most pronounced over
bare earth and become harder to detect under dense vegeta-
tion, especially on moderate (10–29◦) slopes.

5.3 SAR estimates of melt onset in the La Joie Basin

Due to the lower frequency of images in the ascending direc-
tion, results are shown for imagery captured by the descend-
ing pass of the satellite only. As time series from VH polar-
ized images produced less reliable estimates of melt onset at
Green Mountain and Downton Lake Upper, only results from
VV polarized images are shown. For results from VH polar-
ized images, see the Supplement. From 2018 to 2021 in the
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Figure 4. Comparisons of SAR time series and continuous snow water equivalence records (SWE) at Green Mountain. SWE records are
displayed in dark blue, with melt periods shaded in light blue. SAR time series for VV and VH polarized images are depicted in green, with
time series minima denoted by dashed lines.

La Joie Basin, onset estimates were consistent by elevation
with slight interannual variability (Fig. 6).

Generally, SAR estimates of melt onset indicate that
snowmelt initiates in early March at low elevations in the
La Joie Basin, with later snowmelt onset dates observed at
higher elevations. The highest-elevation pixels are estimated
to initiate melt in mid-July. When examined by elevation,
2018 showed the earliest average melt onset dates when com-
pared to other study years, with low elevations estimated to
initiate melt as early as 15 March. At low elevations, pix-
els were estimated to initiate melt the latest in 2019 when
compared to other study years, with estimates averaging as
late as 7 April. The largest range in mean melt onset esti-
mates was produced in 2018, with 97 d between the earliest
and latest elevation-binned averages. The smallest range was
produced in 2019, with 83 d between the earliest and latest
elevation-binned averages. At high elevations, the latest av-
erage melt onset dates were estimated in 2020, with pixels
initiating melt on 5 July. The earliest average melt onset dates
at high elevations were estimated in 2018, with the highest-
elevation pixels initiating melt on 20 June. Melt onset es-
timates across elevations were influenced by aspect, slope,
and land cover (Fig. 7). From 2018 to 2021, south- and west-
facing slopes initiated melt earlier than north- and east-facing

slopes. SAR melt onset estimates indicate that melt initiates
earlier in the La Joie Basin on steep slopes (40–49◦) and ini-
tiates progressively later as slope decreases. Melt onset dates
are similar between land cover types, with the exception of
seasonal snow on glaciers, which initiated later than other
classes in all study years.

5.4 Optical estimates of snow disappearance

Snow-free dates estimated from optical and multispectral im-
agery (Fig. 8) show a similar elevation dependence to melt
onset. However, we observe a greater variability in the snow-
free dates in forested regions and at lower elevations.

The detection of snow-free dates from Landsat-8 and
Sentinel-2 images provided consistent estimates by aspect,
elevation, land cover type, and slope (see the Supplement).
The impact of aspect is most pronounced at upper eleva-
tions, with northern and eastern slopes melting later than
southern and western slopes. Similar to SAR estimates of
melt onset, snow disappearance estimates were the most vari-
able on steep slopes (> 30◦). When compared to the other
land classes, snow cover on glaciers disappears much later in
the ablation season. Trends in snow-free dates are consistent
among study years.
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Figure 5. SAR backscatter time series in the La Joie Basin from pixels located between 1600 and 1800 m from VV (a, b) and VH (c, d)
polarized images. Observations under mature forest cover are displayed on the right (b, d), whereas observations in open areas are displayed
on the left (a, c). Average backscatter for each cover type is shown by the shaded lines, with each line representing a different slope category.
Observations are from 2021.

5.5 Snowmelt duration products

With SAR-derived estimates of melt onset and optical and
multispectral estimates of snow disappearance, we map
snowmelt duration in the La Joie Basin (Fig. 9).

SAR snowmelt duration estimates formed consistent pat-
terns based on elevation (Fig. 10). Snowmelt duration es-
timates were the longest between elevations of 2200 and
2400 ma.s.l. in the La Joie Basin from 2018 to 2021.
Between 2200 and 2400 ma.s.l. the snowpack produced
runoff for 46 d on average, whereas the basin-wide aver-
age was 30 d. At elevations above 2400 ma.s.l. duration es-
timates shorten to an average of 38 d. Below 1200 ma.s.l.,

estimated snowmelt duration is the shortest, lasting 14 d on
average. Among study years, elevation-averaged snowmelt
duration estimates were the shortest in 2021 at 27 d on aver-
age and the longest in 2018 at 32 d on average.

Snowmelt duration is more sensitive to land cover, slope,
and aspect when compared to melt onset dates, especially at
elevations of greater than 1400 ma.s.l. Melt durations were
longer on north- and east-facing slopes compared to south-
ern and western slopes. Increasing slope duration decreases
melt duration in the La Joie Basin, with the longest durations
observed in relatively flat areas (0–9◦) above 2000 ma.s.l.
Land cover strongly influences melt duration. On average,
from 2018 to 2021 snowmelt duration estimates were the
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Figure 6. Estimates of snowpack saturation (snowmelt onset) from Sentinel-1 SAR images of the La Joie Basin. Snowmelt onset estimates
are inferred from minima in SAR time series.

Figure 7. Average estimates of snowmelt onset by elevation, aspect, classification, and slope. Estimates of melt onset are inferred from
minima in Sentinel-1 SAR time series.
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Figure 8. Estimates of snow-free dates in the La Joie Basin from Landsat-8 and Sentinel-2. Grey shading represents perennial snow, and the
grey outlines delineate glaciers.

Figure 9. Snowmelt runoff duration in the La Joie Basin from optical-radar melt products. Duration is approximated by differencing radar
estimates of snowmelt onset and optical and multispectral estimates of snow-free dates. Grey shading represents perennial snow, and the grey
outlines delineate glaciers.
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Figure 10. Average estimates of snowmelt duration by elevation, aspect, classification, and slope. Estimates of melt duration are derived
from SAR-based estimates of melt onset and optical estimates of melt end. Averages are obtained from VV polarized SAR images.

Table 6. Comparison of multi-source and SWE estimates of
snowmelt end, onset, and duration at Downton Lake Upper. The
difference in days is provided between telemetry-based (TLM) es-
timates of melt and SAR, optical (OPT), and optical-radar (OPT-
SAR) estimates of melt.

2018 2019 2020 2021

Onset (TLM) 5 May 8 May 4 May 10 May
Onset (SAR) 12 May 7 May 13 May 19 May
Difference (d) 7 1 9 10
Melt end (TLM) 24 Jun 17 Jun 24 Jun 26 Jun
Melt end (OPT) 19 Jun 14 Jun 16 Jun 8 Jun
Difference (d) 5 3 8 18
Duration (TLM) 50 40 51 47
Duration (OPT-SAR) 38 38 34 19
Difference (d) 12 2 17 28

longest over glacierized terrain, followed by mature forest.
Snowmelt duration estimates were the shortest over disturbed
or immature forest, followed by bare earth.

Multi-source snowmelt duration estimates did not always
reflect melt duration from SWE records at automated weather
stations (Tables 6 and 7). Optical-radar melt duration ranged
from 19 to 38 d at Downton Lake Upper and from 14 to 36 d
at Green Mountain. Higher inaccuracies are seen in the opti-
cal estimates of snow-free dates when compared to SAR es-
timates of snowmelt onset.

Table 7. Comparison of multi-source and SWE estimates of
snowmelt end, onset, and duration at Green Mountain. The differ-
ence in days is provided between telemetry-based (TLM) estimates
of melt and SAR, optical (OPT), and optical-radar (OPT-SAR) es-
timates of melt.

2018 2019 2020 2021

Onset (TLM) 29 Apr 30 Apr 7 May 13 May
Onset (SAR) 12 May 19 May 4 May 20 May
Difference (d) 13 18 3 7
Melt end (TLM) 3 Jun 3 Jun 9 Jun 9 Jun
Melt end (OPT) 17 Jun 29 Mar 18 May 1 Jun
Difference (d) 14 66 22 7
Duration (TLM) 35 33 33 27
Duration (OPT-SAR) 36 32 14 27
Difference (d) 1 1 19 0

6 Discussion

6.1 Role of slope, cover, and satellite polarization in
snowmelt onset estimates

While VV polarized time series produced more accurate es-
timates of melt compared to VH polarized time series at au-
tomated weather stations, increased noise in VV time series
is observed in the La Joie Basin (Fig. 5). The amplified noise
in the VV time series can be attributed to the steep slopes
and forest cover present in the La Joie Basin. Vegetation cov-
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ers a significant proportion (∼ 45 %) of the total area of the
La Joie Basin. Manickam and Barros (2020) report that a
common thresholding approach for mapping wet snow us-
ing co-polarized SAR images (Nagler and Rott, 2000) failed
in Colorado, USA, due to the presence of conifer forest.
Backscatter coefficients from cross-polarization were more
sensitive to snow cover below vegetation compared to those
from co-polarization and enabled wet snow mapping below
the treeline (Manickam and Barros, 2020). Furthermore, the
high relief in our study area may amplify the observed noise
in co-polarized images, as steep slopes reduce the ability of
VV polarization to distinguish between wet snow and snow-
free surfaces (Nagler et al., 2016). The combination of steep
slopes and forested regions present in the La Joie Basin in-
crease noise in VV time series; however, VV polarized SAR
images are shown to be more sensitive to wet snow compared
to VH polarized images (Nagler et al., 2016). The increased
sensitivity to wet snow in VV polarized images is reflected
in the La Joie Basin through the greater accuracy of VV time
series for approximating snowmelt onset at Downton Lake
Upper and Green Mountain.

The U shape of SAR time series is more pronounced in
open areas compared to mature forest (Fig. 5). As a re-
sult, estimates of melt onset and duration were less reliable
in forested areas. The decreased sensitivity in forested ar-
eas can be attributed to the scattering of SAR signals by
the forest canopy. Forests effectively scatter radar energy
depending on their structure, composition, and stem den-
sity (Bernier, 1987). Conifers, in particular, strongly scat-
ter C-band SAR signals (Bernier, 1987). Spruce and fir trees
(conifers) dominate forests in the La Joie Basin, leading to
increased noise in melt onset maps from Sentinel-1 data. The
locally weighted least-squares regression temporal smoother
helped to reduce the variability of melt onset estimates in
forested regions; however, ground truthing in these regions
is required to verify the validity of this shift.

In open areas, the U shape of SAR time series is more
pronounced on flat slopes when compared to steep slopes
(Fig. 5). Manickam and Barros (2020) presented similar
findings in the Swiss Alps, where between April and May
backscattering coefficients were less sensitive to wet snow as
slope increased. In forested regions, however, slope has a less
uniform effect on SAR signals. The most distinct U-shaped
signals are created from SAR time series collected on steep
(> 30◦) slopes and the least distinct are collected on mod-
erate (10–29◦) slopes. Scatter from forests is impacted by
terrain, which induces changes in trunk–ground and crown–
ground scattering mechanisms (Park et al., 2012). Vegetative
scattering mechanisms can create more negative values based
on ground surface tilt (Park et al., 2012). In the La Joie Basin,
the increased visibility of SAR minima on steep slopes in
forested regions may be related to terrain-induced changes in
vegetative scattering mechanisms.

6.2 Interannual variability in multi-source melt
products

Optical-radar estimates of melt onset and duration were im-
pacted by interannual climate fluctuations. At Downton Lake
Upper, SAR estimates of melt onset from VV times series
from 2018 to 2021 were within 0–4 d of telemetry estimates.
For VH polarized time series, melt onset estimates were
within 0–4 d of telemetry estimates in 2018 and 2021 only,
with minima occurring 10 and 9 d early in 2019 and 2020,
respectively. At Green Mountain, VH estimates of melt onset
were also early in 2020, with minima occurring 13 d before
telemetry estimates. VV and VH estimates were late in 2019
at Green Mountain, with both minima occurring 11 d after
telemetry estimates. In 2020, early estimates of melt onset at
both stations may be the product of large temperature fluc-
tuations in early April. Melt–refreeze cycles alter snowpack
LWC and grain size (Yamaguchi et al., 2010), and they will
thus impact SAR signals (Liu et al., 2006). The late and early
melt onset estimates in 2019 are also a likely result of temper-
ature fluctuations. In 2019, daytime and nighttime tempera-
tures at the La Joie Basin exceeded 0 ◦C from 17 to 22 March,
increasing snowpack LWC and thus the possibility for early
melt onset estimates. However, after the initial warming pe-
riod in 2019 temperatures decreased, with average nighttime
temperatures of below 0 ◦C for the entire month of April.
Snowpack refreezing can decrease seasonal differences in
SAR backscatter values (Floricioiu and Rott, 2001), and,
as a result, minima in SAR time series may become less
pronounced during refreezing periods. Among study years,
interannual variations in climate, and therefore snowpack
metamorphosis, influenced the accuracy of SAR snowmelt
retrieval in the La Joie Basin and can partially explain the
variability in snowmelt onset at automated weather stations.

6.3 Validation of multi-source melt products

Melt onset and duration estimates displayed varying agree-
ment with continuous SWE records at Downton Lake Up-
per and Green Mountain. While all VV SAR minima from
the extracted time series were within 5 d of melt onset at
Downton Lake Upper, they occurred up to 11 d apart at Green
Mountain. Green Mountain is located on a northeast-facing
slope and receives morning sunlight. For this analysis only
descending images were used, which are captured around
07:00 PST (Pacific standard time) in the La Joie Basin. De-
scending images in the La Joie Basin may be more sus-
ceptible to false positives from morning wetting on east-
facing slopes during the ripening stage. Morning wetting of
the snowpack may attribute to the greater variability seen
in Green Mountain time series when compared to Downton
Lake Upper. At both locations, time series estimates of melt
onset were improved in VV polarization when compared to
VH polarization. Final melt onset maps, however, were more
accurate from VH polarized melt onset estimates when com-
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pared to VV, with 75 % of VH estimates at Green Mountain
occurring within 1 d of telemetry estimates (see the Supple-
ment). Co-polarized SAR signals have shown greater sen-
sitivity to wet snow when compared to cross-polarized im-
ages (Nagler et al., 2016); however, cross-polarized images
are preferable when mapping wet snow below the treeline
(Nagler et al., 2016; Manickam and Barros, 2020). Green
Mountain is more heavily vegetated compared to Downton
Lake Upper, which may result in the increased accuracy of
VH estimates at this location. As the accuracy of VH obser-
vations at Green Mountain in final melt onset maps was not
mirrored in time series estimates, increased physical obser-
vations of the snowpack are required to further quantify the
impact of polarization when using SAR minima as proxies
for snowmelt onset.

Inaccuracies in snowmelt duration is attributed to errors
in SAR onset estimates and optical snow disappearance es-
timates. Among study years, SAR acquisitions are available
every 5 to 12 d, averaging 6 d in each year. Optical observa-
tions are variable among study years (Table 4); however, av-
erage revisit intervals are consistent at 4 d in 2018 and 2019
and 3 d in 2020 and 2021. We calculated errors in snowmelt
duration (σD) using Eq. (1).

σD =

√
σ 2

ONS+ σ
2
END, (1)

where error in the onset (σONS) and disappearance
dates (σEND) are taken as the average revisit interval for each
data type and study year. Rounding to the nearest day, this
yields an average error in the duration estimates of ± 7 d for
all study years. Ideally, a revisit time for SAR observations of
3 d would reduce this error to ± 4 d. Daily SAR observations
could reduce error in duration estimates to ± 3 d; however,
high-resolution optical imagery is needed at more frequent
revisit intervals for reduced error or operational applications.

Snowpack monitoring with optical remote sensing data is
challenging in the La Joie Basin, as imagery is frequently
obscured by cloud cover. Cloud cover is persistent at high
elevations during the ablation season in the La Joie Basin.
Missing data from cloud cover reduce the temporal resolu-
tion at which imagery is available, decreasing the accuracy
of snow disappearance estimates. The inclusion of optical
data with a more frequent revisit interval or the use of com-
plex snow detection algorithms could improve this analy-
sis. Support vector machine algorithms have yielded promis-
ing results for multi-source snow detection with optical and
SAR data in mountainous environments (He et al., 2015;
Lui et al., 2020). Further, downscaling and gap-filling algo-
rithms can improve snow cover detection using multi-source
optical data (Premier et al., 2021; Revuelto et al., 2021).
Revuelto et al. (2021) produced 20 m snow cover products
by downscaling observations from the high-frequency, low-
resolution Moderate Resolution Imaging Spectroradiometer
with Sentinel-2 observations. In future studies, downscaling

or machine-learning methods can be adopted to reduce error
in snow disappearance estimates.

Despite errors in snow-free estimates, the observed trends
in snowmelt duration agree with trends in snow depths ob-
served in the study area (Sergio Tagle and Brian Menounos,
personal communication, 2021). The snowpack is generally
deepest at middle to high elevations (2200 to 2400 ma.s.l.) in
the La Joie Basin, as at the highest elevations there is heavy
redistribution of snow by wind and avalanching.

SAR retrievals of snowmelt onset and duration rely on
the high resolution and revisit frequency of Sentinel-1. On
23 December 2021, Sentinel-1B malfunctioned and has not
been communicating data since (European Space Agency,
2022). The loss of Sentinel-1B reduces the number of ob-
servations available for snowpack monitoring, which means
that there may not be sufficient data to capture melt onset
until the launch of Sentinel-1C in 2023. Alternative C-Band
SAR datasets can be explored for snowmelt monitoring, such
as the RADARSAT Constellation Mission.

7 Conclusions

We present a low-cost, adaptable method to estimate
snowmelt onset and duration using Sentinel-1, Sentinel-2,
and Landsat-8 imagery. Estimates of snowmelt onset from
Sentinel-1 SAR were in agreement with continuous SWE ob-
servations from automated weather stations in the La Joie
Basin. On the watershed scale, estimates of snowmelt onset
in the La Joie Basin reflect changes in elevation and topog-
raphy and are sensitive to land cover and slope. While steep
slopes introduce error into SAR snowmelt onset estimates
in open areas, they can improve minima detection under
vegetative cover. To map snowmelt on the watershed scale,
VV polarized images are recommended; however, VH polar-
ized images may produce more accurate results in forested
areas. Although snowmelt duration agreed with snow depth
records in the La Joie Basin, they were inaccurate at auto-
mated weather stations due to cloud cover in Sentinel-2 and
Landsat-8 imagery.

To reduce errors in snowmelt duration in future studies,
optical and multispectral imagery with a higher cadence are
both recommended. Further, a dense network of field ob-
servations is required to validate estimates of snowmelt on-
set and duration, particularly under varied land cover types.
Future research will explore the impact of forest cover on
snowmelt estimates in greater depth and will provide addi-
tional validation for snowmelt estimates in alpine regions.

Snowmelt dominates hydrologic regimes in western North
America and thus requires frequent monitoring. Our study
supports findings from Marin et al. (2020) that Sentinel-1
SAR can be used to characterize snowmelt in these regions.
We demonstrate that Sentinel-1 SAR observations provide
high-resolution estimations of snowmelt onset and can be
used to characterize snowmelt in ungauged basins. These
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findings are of increased importance as current snowmelt
regimes are threatened by warming global temperatures,
which alter the extent and the duration of snow cover (Mote
et al., 2005). As changes in snowmelt timing impact fresh-
water availability and natural hazard risk, increased observa-
tions of the snowpack, such as those provided by radar satel-
lites, are required moving forward.

Code availability. The code used to download Sentinel-1 SAR im-
ages for snowmelt analysis is freely available at https://github.com/
saradarychuk/Snowmelt-Characterization-from-Sentinel-1-SAR
(Darychuk, 2023a). Code for estimating snow disappearance from
Sentinel-2 and Landsat-8 images is available at https://github.com/
saradarychuk/Snowmelt-Characterization-from-Sentinel-1-SAR
(Darychuk, 2023b).
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