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Abstract. We provide sea ice classification maps of a sub-
weekly time series of single (horizontal-horizontal, HH) po-
larization X-band TerraSAR-X scanning synthetic aperture
radar (TSX SC) images from November 2019 to March 2020,
covering the Multidisciplinary drifting Observatory for the
Study of Arctic Climate (MOSAIC) expedition. This classi-
fied time series benefits from the wide spatial coverage and
relatively high spatial resolution of TSX SC data and is a
useful basic dataset for future MOSAIC studies on physical
sea ice processes and ocean and climate modeling. Sea ice is
classified into leads, young ice with different backscatter in-
tensities, and first-year ice (FYI) or multiyear ice (MYI) with
different degrees of deformation. We establish the per-class
incidence angle (IA) dependencies of TSX SC intensities
and gray-level co-occurrence matrix (GLCM) textures and
use a classifier that corrects for the class-specific decreasing
backscatter with increasing IAs, with both HH intensities and
textures as input features. Optimal parameters for texture cal-
culation are derived to achieve good class separation while
maintaining maximum spatial detail and minimizing textu-
ral collinearity. Class probabilities yielded by the classifier
are adjusted by Markov random field contextual smoothing
to produce classification results. The texture-based classifi-
cation process yields an average overall accuracy of 83.70 %
and good correspondence to geometric ice surface roughness
derived from in situ ice thickness measurements (correspon-
dence consistently close to or higher than 80 %). A positive

logarithmic relationship is found between geometric ice sur-
face roughness and TSX SC HH backscatter intensity, sim-
ilar to previous C- and L-band studies. Areal fractions of
classes representing ice openings (leads and young ice) show
prominent increases in middle to late November 2019 and
March 2020, corresponding well to ice-opening time series
derived from in situ data in this study and those derived from
satellite synthetic aperture radar (SAR) and optical data in
other MOSAIC studies.

1 Introduction

During the 1-year-long Multidisciplinary drifting Observa-
tory for the Study of Arctic Climate (MOSAIiC) expedition
from 2019 to 2020, the icebreaker RV Polarstern drifted
with sea ice along the Transpolar Drift in the central Arc-
tic Ocean, conducting the largest multidisciplinary Arctic re-
search expedition in history (Nicolaus et al., 2022). Satellite
data acquisitions from multiple platforms were coordinated
to survey the sea ice area surrounding the expedition, en-
abling continuous, large-scale sea ice monitoring along the
drift. Moreover, extensive on-ice, airborne, and ship-based
in situ data were collected surrounding the MOSAIC ice
floe, where RV Polarstern was moored and the Central Ob-
servatory (CO) was established. These include data from
sources such as meteorological stations, airborne laser sur-
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veys, ship radar measurements, and a distributed network of
autonomous buoys (Krumpen and Sokolov, 2020; Nicolaus
et al., 2021; Shupe et al., 2022). This expedition aimed to
facilitate physical, biogeochemical, and ecological studies of
the region, enabling multiscale quantification of relevant pro-
cesses and feedbacks and, eventually, the production of im-
proved climate and Earth system models (Krumpen et al.,
2021; Nicolaus et al., 2021; Shupe et al., 2022).

Sea-ice-type classification is an important basic represen-
tation of sea ice conditions that supports various further anal-
yses, such as the monitoring of ice breakup and lead for-
mation, inferring the occurrence of sea ice deformation and
studying ice-associated and under-ice ecology, as well as in-
put to ocean and climate models. Satellite synthetic aper-
ture radar (SAR) data have been widely used for sea ice
classification for operational and scientific purposes due to
their high spatial resolution as well as their weather- and
illumination-independent monitoring capabilities (Zakhvatk-
ina et al., 2019). Coordinated acquisitions of TerraSAR-X
scanning synthetic aperture radar (TSX SC) data were con-
ducted to provide consistent coverage of the MOSAIC ice
floe throughout the expedition. This dataset provides daily
X-band (9.65 GHz) imaging with an 8.25 m nominal pixel
spacing, which is considerably higher than publicly available
scanning synthetic aperture radar (ScanSAR) products, e.g.,
Sentinel-1 (S1). The extent of TSX SC scenes is approxi-
mately 100km x 150km. These features make TSX SC a
valuable data source for detailed examinations of sea ice de-
velopment for large areas around the MOSAIC ice floe. This
study aims to produce a classified winter (November 2019 to
March 2020) TSX SC time series surrounding the CO, which
can serve as a basis for further MOSAIC sea ice studies and
modeling efforts.

TSX SC scenes in this time series cover a wide range
of incidence angles (IAs). Therefore, appropriate adjustment
for the IA effect of the SAR signal, i.e., generally decreas-
ing backscatter intensities with the IA, is crucial for reliable
and consistent classification. The magnitude of the IA ef-
fect varies with ice type (Mékynen et al., 2002; Mikynen
and Karvonen, 2017; Mahmud et al., 2018), which necessi-
tates per-class IA correction. A sea ice classifier that specif-
ically considers this phenomenon is used in this study. De-
veloped and published by Lohse et al. (2020), this classi-
fier directly incorporates per-class IA dependencies into a
Bayesian classifier, treating the IA dependence as a class
property. This classifier replaces the constant mean vector
of the Gaussian probability density function with a linearly
variable mean, which represents class-specific IA dependen-
cies (Lohse et al., 2020), and is therefore named the Gaussian
incidence angle (GIA) classifier. It has been developed based
on S1 Extra Wide (EW) swath data and has also been used
with the RADARSAT-2 (RS2) ScanSAR Wide (SCW) and
Fine resolution Quad-polarization beam (FQ) data products
with minor adjustments (Guo et al., 2022). The GIA clas-
sifier reliably corrects the IA effect on the HH (horizontal—
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horizontal) and HV (horizontal-vertical) channels of these
datasets, resulting in improved classification results com-
pared with classification with global IA correction.

TSX SC data collected for MOSAIC are in HH polariza-
tion. The same ice types can have vastly different HH inten-
sities due to factors such as different surface characteristics,
e.g., different degrees of deformation on first-year ice (FYI)
and multiyear ice (MY]), and different surface roughness
and salinity levels on young ice. On the other hand, some
ice types have similar X-band HH intensities, e.g., MY, de-
formed FYI, and young ice (e.g., Liu et al., 2016). There-
fore, in addition to HH intensities, we use image textures
as input to the classification to expand the feature space.
Specifically, we use texture measures calculated on the ba-
sis of the gray-level co-occurrence matrix (GLCM; Haralick
et al., 1973). The GLCM tabulates how different combina-
tions of gray levels co-occur in image windows, based on
which statistical measures are derived to represent the spatial
variability surrounding the central pixel. GLCM textures are
among the most powerful texture discrimination tools (Bar-
ber and LeDrew, 1991; Zakhvatkina et al., 2019); they have
been generally widely used for the texture-based classifica-
tion of remote sensing images (Hall-Beyer, 2017) and have
been specifically used for the sea ice classification of X- and
C-band SAR data (e.g., Clausi and Yu, 2004; Leigh et al.,
2014; Zakhvatkina et al., 2017; Murashkin et al., 2018; Park
et al., 2020; Lohse et al., 2021; and those publications listed
in Table 1). Compared with classification based only on SAR
intensities, they provide additional separability between FYI
and MYI, young ice and MY]I, and level and deformed ice
(e.g., Holmes et al., 1984; Shokr, 1991; Leigh et al., 2014;
Zakhvatkina et al., 2017; Lohse et al., 2021).

Table 1 shows the GLCM texture parameters employed
in previous sea ice classification studies using X-band SAR.
Texture names and parameters can be found in Haralick et al.
(1973) and Conners and Harlow (1980), and they are intro-
duced in more detail in Sect. 2.3. Table 1 presents a wide
variety of datasets and parameters, indicating that various
GLCM textures on different geographical scales are useful
for discriminating between sea ice classes. Many studies use
a limited number of texture measures and do not involve a
process of selecting texture combinations based on class sep-
arability and textural collinearity.

In the logarithmic (decibel, dB) domain, S1 EW textures
of the HH channel for different ice types generally have a lin-
ear relationship with IA and have been used for sea ice clas-
sification (Lohse et al., 2021). For TSX data, Ressel et al.
(2015) used five GLCM textures from the VV (vertical—
vertical) channel of three TSX SC images to classify sea ice
near Svalbard with an artificial neural network (ANN) and re-
ported satisfactory results for scenes with similar IA ranges
to the training scene. Liu et al. (2016) used eight GLCM
textures from TSX SC and Wide ScanSAR (WSC) data to
classify sea ice on the east coast of Antarctica, using IA di-
rectly as an input feature to a support vector machine (SVM)
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Table 1. Texture parameter selection in previous studies of X-band synthetic aperture radar (SAR) sea ice classification.

Data ‘ Texture parameters
Area Dataset Frequency and Resolution® (m) | GLCM textures® Window size® —  Co-occurrence
channel® pixel (m) distance® —
pixel (m)
Holmes et al. Beaufort Sea SURSAT SAR- X-band HV 3 | CON and ENP 5(15) 2(6)
(1984) 580 (airborne)
Barber and LeDrew ~ Mould Bay, STAR-1 (air- X-band HH 6 UNId, COR, ENP, 25 (150) 1(6)
(1991) Canada borne) DIS, and CON
Shokr (1991) Mould Bay, STAR-1 (air- X-band HH 36 | CON, ENP, UNIY, 5 (180) 1(36)
Canada borne) HOM, and MAX
Liu et al. (2016) East coast, TSX SC and X-band HH 15 | ASM, CON, COR, 39 (585) 4 (60)
Antarctica WSC DIS, ENP, HOM,
MEAN, and VAR
Ressel et al. (2015)  Barents Sea TSX SC X-band VV ~48 | CON, DIS, ENG, 11 (~528) 1(48)
ENP, and HOM
Zhang et al. (2019)  Barents Sea TSX SC X-band HH and 8.25 | CON, COR, HOM, 39 (321.75) 4 (33)
Vv MEAN, and VAR
Liu et al. (2021) Beaufort Sea TSX SC and X-band HH 8.25 | CON, COR, HOM, 39 (321.75) 4 (33)
WSC MEAN, and VAR

@ Only SAR channels used for GLCM calculation are shown. b Effective pixel spacing after preprocessing. © GLCM textures, window sizes, and co-occurrence distances are those used for texture-based
classification or those that yield the best classification results in studies comparing different parameter combinations. d UNI denotes uniformity and is calculated as uniformity = _; Z/- Pf/.; therefore, it is
similar to energy (ENG). Other previously undefined abbreviations and acronyms used in the table are as follows: SURSAT — SURveillance SATellite, STAR-1 — Sea Ice and Terrain Assessment Radar-1,
CON - contrast, ENP — entropy, COR - correlation, DIS — dissimilarity, HOM — homogeneity, MAX — maximum probability, ASM — angular second moment, MEAN — mean, and VAR — variance.

classifier. Zhang et al. (2019) used five GLCM textures in an
SVM classifier on five TSX SC (HH and VV) scenes, and
Liu et al. (2021) used the same five GLCM textures on eight
TSX SC and WSC (HH) scenes to classify sea ice, both in
the Beaufort Sea, with no corrections for the IA effect. To
our knowledge, no previous study has demonstrated the IA
dependencies of different Arctic sea ice types for TSX SC
intensities and GLCM textures.

This study examines this phenomenon in winter during the
MOSAIC campaign and, accordingly, includes GLCM tex-
tures as input features to the GIA classifier. Optimal param-
eters for texture calculation are derived to provide statisti-
cal separability between class distributions evaluated by the
Kolmogorov—Smirnov (K-S) distance (Massey, 1951). A to-
tal of 17 GLCM texture measures are analyzed, which can
be derived using commonly available software tools, i.e., the
Sentinel Application Platform (SNAP), provided by the Eu-
ropean Space Agency (ESA; European Space Agency, 2020),
and the Google Earth Engine (GEE; Gorelick et al., 2017).
As we aim to fully utilize the spatial resolution of TSX SC
data, a rating system is developed to find the set of tex-
ture measures that provides class separability at the small-
est window size while minimizing intercorrelations between
textures.

In summary, the objectives of this study are as follows:
(1) to use the GIA classifier on TSX SC HH intensity and
textures to produce a classified winter time series for sea ice
surrounding the area covered during the MOSAiC expedition
and (2) to demonstrate per-class IA dependencies of TSX SC
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HH intensity and textures for the abovementioned study area
and period.

2 Materials and methods
2.1 Data

This study analyzes 53 TSX SC scenes (1 November 2019 to
11 April 2020; IA from 17.18 to 59.56°) with an average of 3
scenes per week. All scenes are radiometrically corrected and
calibrated to o and converted to decibels. Figure 1a shows
the scene boundaries for each month using black rectangles.
Figure 1c shows the IA ranges of the scenes in red.

Among the aforementioned scenes, 50 scenes (1 Novem-
ber 2019 to 28 March 2020; IA from 31.90 to 59.56°) are
used for sea ice classification and are hereafter referred to as
the time series. The remaining three scenes (31 March 2020,
3 April 2020, and 11 April 2020; IA from 17.18 to 36.70°)
are only included to cover the full IA range of the TSX SC
data in order to examine the IA dependencies of HH inten-
sities. They were captured at low [As (Fig. 1c) to retain the
CO, which was drifting below 85.5° N (Fig. 1b), in the scene
frames. These scenes exhibit consistent IA dependency with
other scenes for HH intensities but not for HH textures (not
shown). The spatial details obtainable from these scenes are
different from others after being subjected to identical pre-
processing steps, resulting in considerably different texture
values. Moreover, these scenes are generally more affected
by noise (Fritz et al., 2013).

The Cryosphere, 17, 1279-1297, 2023
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We use 13 scenes, including the 3 scenes with low IAs, as
reference scenes (dates and IA ranges are shown in Fig. Ic
and d), from which reference polygons are derived to exam-
ine IA dependencies. These scenes are selected to cover each
month between November 2019 and April 2020 as well as
the full IA range of the TSX SC data. As mentioned above,
the 3 scenes with low IAs are only used to demonstrate IA
dependencies of HH intensities, and the other 10 reference
scenes before 31 March 2020 are used to demonstrate IA de-
pendencies of both HH intensities and textures as well as for
classification training and testing.

Environmental conditions associated with the scenes are
inferred from 2 m air temperature records from the MetCity
weather station in the CO (Fig. 1c, black), the drift track of
which is shown in Fig. 1b (gray line). Figure 1c shows that
temperatures are mostly below —5 °C during the study period
except for in late April, when warm spells brought tempera-
tures to near 0 °C. For the reference scenes, near-coincident
scenes (within 3h of TSX acquisition) from the National
Snow and Ice Data Center (NSIDC) MOD29/MYD29 sea
ice surface temperature (IST) dataset (Hall and Riggs, 2021)
are extracted to show that temperatures within TSX scene
boundaries are well below —5° (Fig. 1d). Overlapping S1
EW and RS2 FQ scenes and the Ocean and Sea Ice Satel-
lite Application Facility (OSI SAF) sea ice type (OSI-403-d;
Fig. 1a) product (OSI SAF, 2019) are used as qualitative vi-
sual references to aid the derivation of reference polygons,
providing general knowledge about large-scale ice condi-
tions and comparison with C-band SAR signals, respectively.

Young ice shows a wide range of HH intensities due to dif-
ferences in surface characteristics; this affects ice-type clas-
sification. Figure 2 shows an example of the progression of
young ice on overlapping TSX SC and S1 EW scenes in HH
polarization. On 20 November 2019, widespread lead open-
ings occurred around the CO. Between 20 and 21 Novem-
ber 2019, more openings appeared that quickly refroze into
young ice. On the TSX scenes from 21 November 2019, most
of the young-ice areas appear very bright. Subsequently,
young ice gradually darkens to brightness levels similar to
the surrounding ice. On the S1 scenes, the HH intensities
of young ice gradually increase from brightness levels sim-
ilar to or lower than the nearby ice to very bright on 23
and 24 November 2019. Afterwards, they again darken to a
similar brightness level to their surroundings. The changing
young-ice intensities are presumably due to evolving surface
roughness, e.g., influenced by the formation and evolution of
frost flowers, which are highly saline and have different sizes,
leading to varying scales of surface roughness (Martin et al.,
1995; Barber et al., 2014; Isleifson et al., 2018; Johansson
et al., 2018). The delayed increase and decrease in young-
ice backscatter in the C band (5.405 GHz) compared with
the X band (9.65 GHz) are then presumably due to different
interactions between changing surface roughness scales and
different SAR wavelengths (Isleifson et al., 2010; Dierking,
2010; Barber et al., 2014; Park et al., 2020). These observa-
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tions confirm the need to split young ice into separate classes
for ice-type classification, as described below.

2.2 Reference polygons of sea ice classes

Based on the ice conditions in the study area and period, we
classify sea ice into leads, rough young ice with different
HH intensities, and FYT or MYI with different deformation
states. The intensity thresholds shown below are empirically
derived approximate values only used as one of the criteria in
deriving the reference polygons. These classification thresh-
olds are defined as follows:

1. Leads are ice openings occupied by calm open water,
nilas, or smooth newly formed ice and have the low-
est HH intensities (< —25 dB). Separation in open wa-
ter due to different wind states is not within the scope
of this study, and a visual examination shows that open-
water leads in the time series are all narrow (< 250 m)
and predominantly occur in a calm state.

2. Dark young ice (DYI) refers to newly formed ice in leads
and has relatively high HH intensities (> —15dB), ir-
respective of thickness. Young ice is further split into
two classes, as mentioned above, with the DYI class
having comparatively low intensities (between —15 and
—10dB). The separated young-ice classes do not corre-
spond to existing ice types in the World Meteorological
Organization (WMO) nomenclature (WMO, 2018).

3. Bright young ice (BYI) denotes rough young ice with
HH intensities of greater than —10 dB.

4. Level ice (LI) refers to smooth FYI or MYT areas with
intermediate HH intensities that are between those of
leads and DYT (—25 and —15 dB, respectively).

5. Deformed ice (Defl) is rough FYI or MYI with HH in-
tensities between —15 and —10dB.

6. Heavily deformed ice (HDefl) refers to FYI or MYI ar-
eas with very high degrees of deformation and, thus,
high HH intensities (> —10dB).

For each class, 15 reference polygons in 3 pixel x3 pixel
rectangles are manually derived for each reference scene to
standardize the number of reference pixels between classes.
The polygon size is determined to accommodate typical
widths of small or linear surface features, i.e., classes rep-
resenting “lead ice” (leads, DYI, and BYI) and HDefI. The
former usually takes a linear shape along ice openings, and
the latter usually includes (1) linear strips or spatially limited
aggregations of deformation features or (2) rounded MYI
floes. Therefore, polygons are placed at the center of small,
rounded features and along the width of linear features. To
minimize spatial dependence, a minimum distance of 50 pix-
els is maintained between polygons, and polygons for each

https://doi.org/10.5194/tc-17-1279-2023



W. Guo et al.: Sea ice classification of TerraSAR-X ScanSAR images for the MOSAiC expedition

(a)

2019-11-15 2019-12-15

2020-03-15

1283

2020-01-15

OSI SAF Sea Ice Type
[] Nodata
- Open water

FYI

I v
[ Ambiguous

[] Tsxsc

2020-04-15

(b)

Scene IA

1 1 1 1

Jan2020 Feb2020 Mar2020 Apr2020

(d)

%%%%

3

85°N
MetCity: Nov2019 — Apr2020 120°E
g
TSX SC /§ 20
]
or . -20
/‘ 100°E 5
f = -30
©
80°E Sy
1
Nov2019 Dec2019
T T T
ol
60°E &
a0t
=
ks
[&]
=]
0 100 200km » -30
[ | =
40 -
1 |
i% o )
',\\ﬂ' '\\!\' '\"vsb
S o ¥ S
L » » L

4 i N N o° s N -

o
&
P

N Vv V Vv > %1 3
& & & &S
CE R R

Figure 1. (a) TSX SC scenes for each month and OSI SAF sea ice classifications of surrounding sea ice areas in the middle of each month;
(b) the drift track of the MetCity weather station and its position relative to TSX SC scenes; (c¢) 2 m air temperature records and IA ranges
of TSX scenes (average IAs are shown using the red line), with vertical lines representing selected reference scenes; and (d) box plots of
the NSIDC IST data within each reference scene, where boxes cover the 25th to the 75th percentile, the median is shown using the red bar,
whiskers extend to data extremes excluding outliers, and red crosses indicate outliers.

class are distributed evenly across the scenes where possi-
ble. Polygons of each class in each scene are then randomly
split in half for training and testing. To improve training con-
sistency across scenes, polygons of LI, Defl, and HDefI are
derived for approximately the “same ice” for all reference
scenes, where possible. Figure 3 shows example reference
polygons derived for 22 November 2019.
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2.3 The IA dependencies of HH intensities and textures

We examine IA dependencies of HH intensities and 17
GLCM textures for different ice types and evaluate class sep-
arability provided by them. This enables us to optimize the
utilization of GLCM textures as classification features and
classify sea ice for MOSAiC with reliable IA correction. The
textures used are listed in Table 2, where the mathematical
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Figure 2. Progression of young ice on near-coincident TSX SC and S1 EW scenes scaled by the same range of intensities. All subsequent

figures of HH intensities use the decibel range shown here.

TSX SC 2019-11-22

Figure 3. Example reference polygons of different classes over the scene on 22 November 2019.

expressions match those from Haralick et al. (1973) and Con-
ners and Harlow (1980).

In an initial examination of GLCM textures, we found that
only textures of HH intensities in the logarithmic (dB) do-
main have a consistent linear relationship with IA, given a
properly constrained IA range (more detail below), whereas
textures of HH intensities in the linear domain do not. This
linear dependency is one of the prerequisites for input fea-
tures of the GIA classifier. Similar findings are reported in
Lohse et al. (2021) for C-band S1 EW data. Thus, GLCM
textures are calculated for HH intensities in decibels, split
into 64 gray levels to achieve balance between the precision

The Cryosphere, 17, 1279-1297, 2023

of gray-level information and computational efficiency, and
averaged for four directions (0, 45, 90, and 135°) to avoid
directional sensitivity of textures. We use a data-driven ap-
proach to optimize the other three texture parameters for im-
age classification: co-occurrence distance, texture window
size, and the combination of texture measures (more detail
given in Sect. 2.4). These texture parameters are explained in
Haralick et al. (1973).

The statistical distribution and scatterplots of HH intensi-
ties of the 13 reference scenes (Fig. 4) show that ambigui-
ties in HH intensities are most prominent for two class pairs:
BYI vs. HDefl and DYT vs. Defl. Thus, these difficult class

https://doi.org/10.5194/tc-17-1279-2023
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pairs are the focus of subsequent separability evaluations.
The IA dependency of leads is the weakest and is statisti-
cally insignificant (Fig. 4), with HH intensities mostly under
the nominal noise floor (Fritz et al., 2013) and with the widest
scatter. HH intensities of the other classes are generally linear
with IA throughout the IA range and have significant slopes.

The distribution of GLCM textures in an example window
size of 9 pixels and their scatterplots in the IA range of the 10
training scenes (31.90 to 59.56°) are shown in Fig. 4. Only
the difficult class pairs are shown for visual clarity. Textures
generally show a weak linear relationship with IA with vary-
ing levels of dependencies (IA slopes), similar to previous C-
band and X-band findings (e.g., Liu et al., 2016; Lohse et al.,
2021; Scharien and Nasonova, 2020). Some textures show
visually apparent separability between one or both of the dif-
ficult class pairs (e.g., DIS, ENP, MEAN, SMA, and VAR).
The classes form approximately Gaussian distributions for
HH intensities and most textures (Fig. 4), satisfying the pre-
requisite for input features of the GIA classifier.

A considerable part of the leads class is below the nom-
inal noise floor, affecting its distribution for HH intensities
and textures. Moreover, the leads class has distinctly different
HH intensities than other classes. Therefore, the leads class
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is excluded from subsequent texture-based classification. A
separate classification is run using HH intensities only, from
which leads are extracted and used for the final classification
result, which we found to provide satisfactory lead separa-
tion.

IA slopes of the C-band and X-band SAR intensities for
sea ice types derived in previous studies are shown in Fig. 5.
There are a limited number of studies reporting IA dependen-
cies of Arctic sea ice types for X-band sensors. IA slope val-
ues shown in Liu et al. (2016), presented using blue asterisks,
are derived from TSX SC and WSC scenes with a limited
IA range of 22.61 to 45.31° from the east coast of Antarc-
tica. HH intensities of TSX SC data derived in our study
are generally less dependent on IA than those for C-band
sensors, the values of which are summarized in Guo et al.
(2022). This has also been observed in previous compara-
tive studies of airborne X- and C-band sensors (e.g., Miky-
nen and Hallikainen, 2004). The general pattern of compar-
ative IA slopes between classes is similar for the C- and
X-band: LI has a slightly stronger IA dependency than de-
formed MYI and FYI (in this study HDefl and Defl), pre-
sumably due to stronger volume scattering and added ran-
domness in backscatter caused by deformation features, re-
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font indicating statistical significance. Values of all texture measures are scaled to the —1 to 1 range in order to yield comparable slope

values.

spectively, which both lead to decreased sensitivity to IA
(Mikynen et al., 2002; Dierking and Dall, 2007; Zakhvatk-
ina et al., 2013). These differences confirm the necessity for
per-class IA correction in classifying the time series.

2.4 Parameter optimization of GLCM textures

Optimization of the abovementioned three parameters is per-
formed to provide class separability while maximizing the
retention of spatial details and minimizing the correlation be-
tween textures. The texture window size and the combination
of texture measures determine the spatial domain for texture
calculation as well as the variety and abundance of GLCM-
based statistics used for classification. The co-occurrence

The Cryosphere, 17, 1279-1297, 2023

distance determines the spatial displacement of gray-level
co-occurrences captured by the GLCM and directly impacts
the resulting texture values.

In this study, class separability is evaluated using the K-S
distance (Massey, 1951), which is nonparametric and, thus,
a relatively robust metric without assumptions regarding the
class distribution (Daniel, 1990). The K-S distance quanti-
fies the distance between class distributions, and the K-S test
yields a test decision for the hypothesis that two classes come
from the same distribution. The detailed steps of the param-
eter optimization are as follows:

1. For each texture, the K-S distances between class pairs
are calculated for odd window sizes between 3 and 61
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pixels with co-occurrence distances of 1, 2, 4, and 8 that
are smaller than the window sizes for all pixels within
the training polygons (training pixels).

For each combination of textures, the smallest win-
dow size at which all of the individual constituent tex-
tures provide statistical separability between all class
pairs (as evaluated by the K-S test) for at least one co-
occurrence distance is selected as the “optimal” window
size.

3. For each texture combination at its optimal window size
and associated co-occurrence distances providing sepa-
rability between all class pairs, the summation of the K-
S distances for all textures is divided by the summation
of correlation coefficients between texture pairs, result-
ing in a “combination rating” that provides control over
textural collinearity.

. Texture combinations with the 10 highest ratings in the
corresponding optimal window size and co-occurrence
distance are used to classify the training scenes. The re-
sults are compared visually to arrive at a final selection
of texture parameters.

GLCM texture calculation for the training pixels and the op-
timization of texture parameters are conducted in MATLAB
R2021b (The Mathworks Inc., 2021). GLCM textures cal-
culated for whole TSX images are then produced with opti-
mized parameters using SNAP (from the ESA) and GEE.

2.5 Classification of MOSAIiC winter time series

Sea ice classification of the time series is conducted using the
GIA classifier trained with HH intensities and textures with
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optimal parameterization. Details of the training process can
be found in Lohse et al. (2021). Within the classification pro-
cess, a Markov random field (MRF) contextual smoothing
component (Doulgeris, 2015) is added to alter the posterior
class probabilities yielded from the classifier before deter-
mining the maximum probability class labels. This technique
replaces global class probabilities with spatially varying lo-
cal probabilities by giving more weight to class memberships
of spatially neighboring classes. This process reduces scat-
tered, misclassified pixels caused by texture-based classifica-
tion and ScanSAR image artifacts, including scalloping and
inter-scan banding. These artifacts are small in areal cover-
age but widespread, thus necessitating a smoothing process.
As the area surrounding the CO is the main focus of MO-
SAIC sea ice studies, we present classification results for a
70 km x 70 km square around the CO.

3 Results and discussion

In this section, we first present a qualitative and quantita-
tive evaluation of the performance of our classification prod-
uct. We then compare the classification maps with sea ice
roughness estimates from MOSAIC in situ data and, accord-
ingly, evaluate our classification scheme splitting FYI and
MYTI into different deformation states. To evaluate the con-
sistency of the classification, the temporal development of
areal fractions of each class is then presented and compared
with indicators of ice openings from in situ data and other
MOSAIC studies. Finally, we list several limitations of our
workflow and give potential directions for future studies fol-
lowing this work.
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3.1 Classification with HH intensities and textures

The selected optimal combination of textures used for clas-
sification is DIS, ENG, ENP, HOM, MAX, SMA, and
VAR, with an optimal window size of nine pixels and a
co-occurrence distance of two pixels. Figure 6 shows the
comparison between classification results for three example
scene subsets using HH intensities only and HH intensities
and textures with and without MRF contextual smoothing.
Due to ambiguities in HH intensities, classification without
textures shows prevalent mixing of difficult class pairs. Defl
and HDefl are frequently misclassified as young ice (e.g.,
8 January and 28 March 2020, zoomed-in image patches),
resulting in classification maps dominated by DYI and BYI
(green). Young ice is also frequently classified as Defl or
HDefI (e.g., 14 November 2019, zoomed-in image patch).
Considerable classification improvement is achieved from
the inclusion of GLCM textures, especially in the correct sep-
aration between these class pairs. MRF contextual smoothing
further greatly reduces scattered, misclassified pixels due to
texture classification and image artifacts.

Overall classification accuracies for different testing
scenes are shown as box plots in Fig. 7. The average overall
accuracy for the classification of HH intensities and textures
(78.31 %) is significantly higher (p value < 0.01) than that
of HH intensities only (64.79 %). The use of MRF contex-
tual smoothing further increases (p value < 0.01) the overall
accuracy to 83.70 %. For the final classification with MRF
contextual smoothing, the confusion matrix (not shown) in-
dicates that remaining misclassifications mostly happen be-
tween the difficult class pairs, as expected. Leads and level
ice are mostly correctly classified. The MRF contextual
smoothing technique is theoretically (Doulgeris, 2015) and
practically (not shown) superior to image smoothing pro-
cesses that do not incorporate contextual information (e.g.,
a local majority filter) with respect to improving classifica-
tion accuracy and minimizing the loss of spatial detail.

To demonstrate temporal classification consistency, clas-
sification maps for the middle of each month and the last
scene of the time series (28 March 2020) are shown in Fig. 8.
The general distribution of LI vs. Defl and HDefI is con-
sistent through the time series for the classified scenes and
the MOSAIC ice floe carrying the CO (zoomed-in patches).
The classification maps clearly capture the breakup and the
change in the size and shape of the MOSAIC ice floe. Major
lead openings are seen on 17 and 28 March 2020, which are
partially classified as BYI and DYI. Panoramic photos taken
from RV Polarstern (Fig. 9b; Marcel et al., 2021) confirm
the presence of ice openings occupied by young ice with the
same position relative to the ship as indicated by Fig. 8, with
RV Polarstern indicated by a black circle in the zoomed-in
patches.

A manual classification map of a small area around RV Po-
larstern is shown in Fig. 9a, which was produced by a co-
author with extensive knowledge of sea ice conditions during
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MOSAIC. Our classification is consistent with the ground
observations summarized in this map, indicating that the
MOSAIC ice floe was composed of a mixture of FYI and
second-year ice (SYI) and had a strongly deformed zone
in the center (named “the Fortress”), which is the oval-
shaped ice surface consistently classified as Defl and HDefI
(Krumpen et al., 2020; Itkin et al., 2023). In most scenes in
November 2019, part of the SYI surface of the MOSAIC
ice floe surrounding the Fortress appears similar to or even
darker than nearby LI (Fig. 8) and is, thus, classified as LI.
This is attributed to the presence of refrozen melt ponds
(Fig. 9a; Krumpen et al., 2021).

3.2 Comparison to sea ice roughness estimates

The standard deviation of the sea ice thickness measured
from the electromagnetic induction (EM) instrument (GEM-
2; Hendricks et al., 2022) along several transects near the
CO is used as a combined indicator of ice surface and bot-
tom roughness and is plotted in blue on the classification
maps in Fig. 10a. This dataset captures geometric roughness
on the sea ice surface on the spatial scale of ice blocks or
pressure ridges (i.e., approximately 1 to 30 m). Geograph-
ical coordinates from satellite images and ground data are
converted to a local coordinate system that corrects for sea
ice drift during data collection (Itkin et al., 2023). Additional
minor manual translations are applied to account for geolo-
cation errors. Nevertheless, some effects of ice floe rotation
and deformation are present, and the data points are averaged
in 4 pixel x 4 pixel windows (33m x 33m) in TSX SC im-
ages to partially remedy these issues. Rougher ice (deeper
blue) along the transects mostly corresponds correctly to ar-
eas classified as Defl or HDefl, and smoother ice (lighter
blue) mostly corresponds correctly to LI (Fig. 10a).

Additionally, ice roughness transect points are classified
into LI, Defl, and HDefl, as shown in Fig. 10a overlaid on
HH intensities using the same color scheme as the SAR clas-
sification. This roughness classification is based on threshold
values for level, rubble, and ridge ice, as described by Itkin
et al. (2023). Briefly, in areas of mostly smooth FYI and
SYI (outside the Fortress), ice roughness is classified into
LI and DefT using a threshold of 0.2 m, showing good cor-
respondence with LI and Defl in the SAR classification. In
the Fortress, ice roughness is classified into Defl and HDefI
using the same threshold, again showing a similar spatial dis-
tribution to Defl and HDefI in the SAR classification.

Two of the transects are repeated during the entire sea-
son: the southern and northern transect loops, or “Sloop”
and “Nloop”, respectively (Fig. 10a). Sloop is located in the
aforementioned ponded SYI area, and it crosses rough SYI
and smooth refrozen melt ponds, which have similar HH in-
tensities to LI, whereas Nloop is located in the Fortress and,
thus, consists of predominantly heavily deformed SYT (Itkin
et al., 2023). These observations are mostly correctly shown
in both the SAR and roughness classifications. The “Run-
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optimal texture measures, and with MRF contextual smoothing applied for three scenes across the time series. IA contours are shown as

white lines on HH intensities.

way” transect (Fig. 10a), established on LI, is also consis-
tently classified as LI in both classifications.

The transect ice roughness estimate represents surface and
bottom roughness, whereas the SAR classification represents
only surface roughness. Consequently, there is an apparent
mismatch between the two classifications that can be seen,
for example, in Sloop on the “November ridges”, as indicated
by arrows in Fig. 10a, most notably on 12 January 2020. In
the southern part of Sloop (arrow to the right), where ice is
smooth but thick, low HH intensities lead to the SAR classi-
fication result of LI, but the roughness classification result is
DefI, presumably due to the dominance of ice-bottom rough-
ness. On the contrary, in the western part (arrow to the left),
high HH intensities and, hence, a rough ice surface lead to a
SAR classification of Defl, whereas the roughness classifica-
tion result is mostly LI, likely due to low thickness standard
deviations calculated from thin ice (Fig. 9a).

The percentage of correct correspondence between both
classifications in repeated transects is shown in Fig. 10b. Cor-
responding to a roughness classification data point, the SAR
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classification is counted as “correct” if the ice class of at least
one TSX pixel in its surrounding 4 pixel x 4 pixel window is
the same class. Good correspondence is found between the
two classifications, with the percentages of correctly classi-
fied SAR pixels being consistently near or more than 80 %.
Finally, we demonstrate the relationship between HH
intensities and ice roughness for the repeated transects,
grouped by class labels from the SAR classification
(Fig. 10c). An apparent logarithmic fit can be seen, where
the points representing mean roughness and intensities for
LI, Defl, and HDefI (shown using stars) are very close to the
fitted curve. This indicates that TSX SC HH intensities in
these particular transects are largely controlled by geomet-
ric ice roughness because other sea ice surface properties,
such as micro-roughness (centimeter to decimeter), salinity,
and snow, are quite similar. This relationship as well as the
good correspondence between the SAR and roughness clas-
sifications shown by Fig. 10c and the above qualitative com-
parisons illustrate that, under similar environmental condi-
tions, TSX SC HH intensities of FYI and MYI can be at-
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Figure 7. Overall accuracies for sea ice classification derived from
testing scenes based on TSX SC HH intensities and on HH intensi-
ties and GLCM textures with and without MRF smoothing.

tributed to different degrees of deformation, which justifies
our chosen classification scheme. Previous studies have also
found a similar logarithmic relationship between geometric
surface roughness and SAR backscatter intensities for winter
sea ice for co- and cross-polarization channels of C- and L-
band SAR sensors (Cafarella et al., 2019; Segal et al., 2020),
whereas microscale roughness has a more significant impact
on C-band backscatter than on the L-band (e.g., Dierking
and Dall, 2007; Gegiuc et al., 2018). It is expected that the
TSX signal, with a shorter wavelength than C-band sensors,
should also react to small-scale roughness, but quantifying
the contrast between the influence of different spatial scales
of surface roughness on SAR backscatter is not achievable
with the observations used here, nor is it within the scope
of this study. The contribution from both surface and bot-
tom roughness to our ice roughness estimate as well as the
additional influence from small-scale surface roughness pre-
sumably leads to the relatively wide spread of the scatterplot.

3.3 The temporal development of ice class fractions

Areal fractions of different classes for all scenes in the time
series are shown in Fig. 11. Leads, DYI, and BYI are com-
bined into a “lead ice” category, representing areas of ice
opening. Defl and HDefl are combined into a “deformed ice”
category. Relative proportions of level vs. deformed ice are
reasonably consistent through the time series (Fig. 11). Sev-
eral peaks in the lead ice fraction are visible, most notably
in middle to late November 2019 and late January to early
February 2020. In March 2020, lead ice fractions remain high
and ice openings can be consistently observed in the scenes.
A major ice-opening event occurred on 28 March 2020
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(Fig. 8) during which time the lead ice fraction reached
7.16 %. This event persisted through early April.

A detailed examination of ice-opening events is conducted
by comparing the class fractions to indicators of ice openings
derived in this work and in other MOSAIC studies:

1. Areal change between buoys. The area between four se-
lected buoys (P103, P193, P195, and P204; Fig. 11b)
surrounding the CO (Bliss et al., 2021) is calculated
every 3h, partially representing events of divergence
and convergence (Fig. 11a, orange). Similar peaks in
this areal change to those of the lead ice fractions can
be seen in middle to late November (Fig. 11). Areal
changes are also frequent through March, indicating
frequent short-lived ice openings between the buoys.
The sharp decrease in the area on 15 December 2019
is caused by a large-scale shearing event that lasted
through to 23 December 2019 but is not prominently
registered by changes in the lead ice fraction in the
scenes due to significantly larger spatial scales.

2. Other MOSAIC studies. Several peaks in the lead
ice fractions in Fig. 11a have good correspondence
with those generated from optical satellite observations
shown in Krumpen et al. (2021). Lead fractions within
a 50km radius of the CO show prominent peaks in
early to middle December, early February, and early
and late March, matching those in Fig. 11. In the
same study, no lead fraction is produced for middle to
late November and middle to late March, but promi-
nent divergence and convergence events can be seen
in middle to late November and late March, as ob-
tained from S1 sea ice drift data (Krumpen et al., 2021).
Similar to our study, a recent sea ice classification
study on TSX dual-polarization Stripmap (SM) images
(54km x 16 km at a 3.5 m resolution) also identifies a
prominent rise in young-ice fractions in the 3 km x 3 km
area around RV Polarstern in late November 2019 and
late March 2020 (Kortum et al., 2022). Abrupt and
prominent changes in wind speed and direction were
recorded from RV Polarstern during these periods (Itkin
et al., 2023), which likely contributed to the observed
increase in lead-opening events.

These comparisons demonstrate that our classified time se-
ries is valuable as an indicator of ice openings; thus, it is
a good reference for studying the associated physical pro-
cesses over a larger spatial scale than the previously derived
MOSAIC sea ice classification product (Kortum et al., 2022).

3.4 Limitations and future steps

The current classifier has a limited capability with respect
to detecting linear young-ice areas that are narrower than
the texture window size. This is an inevitable outcome of
texture-based classification that we try to mitigate by min-
imizing texture windows. Comparatively, the leads class is
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Figure 8. Classification maps of example TSX SC scenes; the zoomed-in patches focus on the MOSAIC ice floe, and black circles indicate

the position of RV Polarstern.

mostly fully represented in the classification, as it is classi-
fied with HH intensities only. The texture parameter selec-
tion workflow established in this study produces satisfactory
classification results (Sect. 3.1, 3.3) and is generally applica-
ble to future studies. However, the texture parameters yielded
are specific to our dataset on the constrained IA range of the
training scenes.

The inherent scalloping and inter-scan banding issues in
ScanSAR products can be observed in HH intensities and

https://doi.org/10.5194/tc-17-1279-2023

textures with varying visibility across scenes and are more
prominent in HH textures than in HH intensities. These im-
age artifacts affect the classification results, most notably
leading to misclassification between the difficult class pairs.
This issue is partially remedied by MRF contextual smooth-
ing. For future studies using TSX SC scenes with obvi-
ous sensor artifacts, additional correction steps should be
taken using previously proposed procedures (e.g., Igbal et al.,
2012; Yang et al., 2020).
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Figure 9. (a) Manual sea ice classification of the CO overlaid on a RS2 SCW scene (HH) on 12 January 2020. The color code used in the
figure is as follows: yellow — FYI; purple — rough SYT; and red — ponded SYI. The RV Polarstern, weather stations, and transects with sea
ice thickness measurements are also shown. Panel (b) shows two respective panoramic photographs taken from RV Polarstern on 17 and

28 March 2020.

No continuous in situ observation is available to provide
detailed information on thin ice evolution through the time
series. Ice roughness derived from in situ ice thickness mea-
surements is calculated on a different spatial scale from that
of the classification maps, represents both surface and bot-
tom ice roughness, and suffers from potential co-location er-
rors due to sea ice rotation and deformation. Therefore, the
utilization of ice surface roughness calculated from airborne
and ground-based laser scanners is desirable in future studies
as a stronger validation of ice classification. This study has
focused on the freezing season during the MOSAIC expedi-
tion. Future steps will extend the study period into summer
to examine the seasonality of TSX SC textures of sea ice and
its effects on texture-based sea ice classification.

For future studies on texture-based sea ice classifica-
tion, more detailed quantification of the correspondence be-
tween GLCM textures and ice surface properties should
be conducted, following previous studies (e.g., Baraldi and
Parmiggiani, 1995; Soh and Tsatsoulis, 1999). Moreover,
previous studies of texture-based sea ice classification have
achieved ice-type separation using various physical window
sizes. Therefore, investigation into the better inclusion of
multiscale textural information (e.g., by varying window size
and co-occurrence distance) is desirable (e.g., Soh and Tsat-
soulis, 1999; Leigh et al., 2014). Although GLCM textures
are among the most powerful tools for texture-based classifi-
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cation (Hall-Beyer, 2017; Zakhvatkina et al., 2019), it is still
valuable to examine IA dependencies and the utilization of
other types of image textures previously used for sea ice clas-
sification, such as first-order textures; image moments; and
MRF-based, wavelet-transformed-based, variogram-based,
and gray-level-dependence-matrix-based textures (Conners
and Harlow, 1980; Unser, 1995; Clausi, 2001; Clausi and
Yu, 2004; Sanden and Hoekman, 2005; Bogdanov et al.,
2007; Komarov and Buehner, 2017; Gegiuc et al., 2018;
Scharien and Nasonova, 2020). Finally, the integration of ice-
type-specific IA dependencies into other classifiers, such as
convolutional-neural-network-based classifiers (e.g., Boulze
et al., 2020), is desirable to potentially improve classification
performance.

4 Conclusions

This study demonstrates per-class IA slopes of HH intensi-
ties and GLCM textures calculated from TSX SC data, and it
uses a sea ice classifier incorporating these IA dependencies
to produce a classified time series for the winter MOSAIC
period. Linear IA dependencies of HH intensities in decibels
in our study area and period are generally lower than C-band
data, but between-class IA slope differences still necessitate
per-class IA correction. In the constrained IA range, GLCM
textures calculated from decibel intensities also exhibit lin-

https://doi.org/10.5194/tc-17-1279-2023



W. Guo et al.: Sea ice classification of TerraSAR-X ScanSAR images for the MOSAIiC expedition

2019-11-15

LI

: )
e
f‘ ol |
Runway, f :\D
% November. - ¥
) Ridges LhBa-"0
M Leads M ov1 [ BYI L

M pefi [ HDefl

1293

2020-02-13

%m-“.’i"h .

Y,
[ 2N

(b) <80 ¥
& 60
3
g 40 ==
20 s
£ z
8 2
© 2 > Vo a -
9—'9’} 2> o AL 0,6"«' gsp W&:L g
S s> g g P 1o b
T

== log-fit
¥ class means
LFYI
a © DMYI
22 BMYI/DefFYI

o 1 3.0

0 2.0
Roughness (m)

Figure 10. (a) Sea ice roughness in transects (in blue) overlaid on synthetic aperture radar (SAR) classification maps as well as the classi-
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RV Polarstern for the same dates as those shown in Fig. 8; (b) the percentage correspondence between SAR and roughness classifications in
repeated transects; and (c) a scatterplot of HH intensities vs. ice roughness in repeated transects, grouped by their corresponding class labels

from the SAR classification.

ear IA dependencies. The leads class has a wide scatter in
HH intensities and textures vs. IAs, resulting in weak lin-
ear dependency, and is, thus, retrieved from a separate clas-
sification on HH intensities only. A texture parameter selec-
tion process based on statistical separability between class
distributions determines the optimal texture combination to
be DIS, ENG, ENP, HOM, MAX, SMA, and VAR (see Ta-
ble 2 for definitions) at a window size of nine pixels with
a co-occurrence distance of two pixels. We use a classifica-
tion scheme that separates young ice into different SAR in-
tensities and separates FYI and MY into different deforma-

https://doi.org/10.5194/tc-17-1279-2023

tion states. Qualitative assessments via visual inspection of
classification maps and quantitative assessment using clas-
sification accuracies show that the inclusion of GLCM tex-
tures is essential for classifying single-polarization TSX SC
data. The application of MRF contextual smoothing refines
the result while preserving maximum spatial details, lead-
ing to significantly increased classification accuracies. Good
correspondence is found between the classification result and
geometric ice roughness calculated from in situ ice thickness
measurements, with the latter showing a logarithmic relation-
ship with HH backscatter intensities. The classified time se-
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Figure 11. (a) Fractions of level ice, deformed ice, and lead ice (left y axis) as well as the areas between four buoys surrounding the CO
(right y axis) over the time series; (b) the names and positions of the four buoys are shown for 1 November 2019.

ries shows reasonably consistent fractions of LI vs. Defl and
HDefl. Lead ice fractions derived from the classification re-
sult correspond well to other indicators of ice openings de-
rived in this work and in previous studies. This suggests that
the classified time series can serve as a reliable reference of
the sea ice conditions and associated physical processes dur-
ing the expedition within the spatial scale of the TSX SC
scenes. This study provides valuable information on the uti-
lization of per-class IA dependencies of TSX SC intensities
and GLCM textures in classifying sea ice as well as a clas-
sification product incorporating a broad area surrounding the
MOSAIC ice camp that can potentially facilitate future MO-
SAIC sea ice studies and modeling efforts.

Data availability. Data used in this article were produced as
part of MOSAIC and have the tag MOSAiIC20192020 and
Project_ID AWI_PS122_00. The TerraSAR-X images used in
this study were acquired using TerraSAR-X AO OCE3562_4
(PI: SS). RADARSAT-2 data were provided by NSC/KSAT un-
der the Norwegian—-Canadian RADARSAT agreement (2019 and
2020). Sentinel-1 data are publicly available from the Copernicus
Open Access Hub (https://scihub.copernicus.eu/, last access: Oc-
tober 2021; European Space Agency, 2021). MetCity temperature
data were provided by the National Science Foundation (project
no. OPP-1724551; Cox et al., 2021). The OSI SAF global sea-ice-
type product (OSI-403-d) is publicly available from https://osi-saf.
eumetsat.int/products/osi-403-d (last access: October 2021; OSI
SAF, 2019). The NSIDC IST dataset (MOD29/MYD29) is pub-
licly available from https://doi.org/10.5067/MODIS/MOD29.061
(last access: October 2021; Hall and Riggs, 2021).

The classified time series presented in this pub-
lication is available as projected GeoTIFF files (in
EPSG:3575): https://www.dropbox.com/sh/edx4eq2oux0fqdg/

AABS5CXZ8ReTwZNpXe48mpoZYa?dl=0 (Guo et al., 2023).
An updated version of the classified time series with a
wider temporal coverage will be published on PANGAEA at
https://www.pangaea.de/ (last access: 15 March 2023); this will be
updated under “Assets”. Correspondence between pixel values and
class labels is as follows: 3 — leads; 5 — DYI; 6 - BYIL; 7 - LI; 9 —
Defl; and 10 — HDefI.
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