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Abstract. Monitoring snow cover to infer climate change im-
pacts is now feasible using Earth observation data together
with reanalysis products derived from Earth system models
and data assimilation. Temporal stability becomes essential
when these products are used to monitor snow cover changes
over time. While the temporal stability of satellite products
can be altered when multiple sensors are combined and due
to the degradation and orbital drifts in each sensor, the sta-
bility of reanalysis datasets can be compromised when new
observations are assimilated into the model. This study eval-
uates the stability of some of the longest satellite-based and
reanalysis products (ERA5, 1950–2020, ERA5-Land, 1950–
2020, and the National Oceanic and Atmospheric Admin-
istration Climate Data Record (NOAA CDR), 1966–2020)
by using 527 ground stations as reference data (1950–2020).
Stability is assessed with the time series of the annual bias
in snow depth and snow cover duration of the products at the
different stations.

Reanalysis datasets face a trade-off between accuracy and
stability when assimilating new data to improve their es-
timations. The assimilation of new observations in ERA5
improved its accuracy significantly during the recent years
(2005–2020) but introduced three negative step discontinu-
ities in 1977–1980, 1991–1992, and 2003–2004. By contrast,
ERA5-Land is more stable because it does not assimilate
snow observations directly, but this leads to worse accuracy
despite having a finer spatial resolution. The NOAA CDR
showed a positive artificial trend from around 1992 to 2015
during fall and winter that could be related to changes to
the availability of satellite data. The magnitude of most of
these artificial trends and/or discontinuities is larger than ac-
tual snow cover trends and the stability requirements of the
Global Climate Observing System (GCOS). The use of these

products in seasons and regions where artificial trends and
discontinuities appear should be avoided.

The study also updates snow trends (1955–2015) over lo-
cal sites in the Northern Hemisphere (NH), corroborating the
retreat of snow cover, driven mainly by an earlier melt and
recently by a later snow onset. In warmer regions such as
Europe, snow cover decrease is coincident with a decreasing
snow depth due to less snowfall, while in drier regions such
as Russia, earlier snowmelt occurs despite increased maxi-
mum seasonal snow depth.

1 Introduction

Ground snow cover plays a very important role in the cli-
mate system due to its high albedo, thermal insulation, and
contribution to soil moisture and runoff. Therefore, it has
been defined as an Essential Climate Variable (ECV) by the
Global Climate Observing System (GCOS) (GCOS, 2016).
A snow cover decrease has been observed globally during
the last decades (Stocker et al., 2013; Blunden and Arndt,
2020), which is at the same time a consequence and a cause
of global warming. Snow cover retreat has led to a positive
snow-albedo feedback of [0.3,1.1Wm−2 K−1

] in the North-
ern Hemisphere (NH) (Stocker et al., 2013). The increase in
global net solar energy flux due to snow cover loss ranges
from 0.10 to 0.22 Wm−2 (±50 %; medium confidence), de-
pending on the dataset and the period (Meredith et al., 2019).
The effects are amplified in the poles, particularly over the
Arctic, which has warmed at more than twice the global rate
during the last 50 years, driven by strong snow-albedo feed-
back. Two pronounced warming peaks during snow onset
(October and November) and snowmelt (April and May) sea-
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sons can be observed currently (Brown et al., 2017). Snow
loss is not only affecting the global energy budget but also
other systems such as the water cycle, vegetation, soil con-
ditions, global atmospheric circulation, and human activities
(Callaghan et al., 2011).

Ground stations provide the most accurate snow measure-
ments, but their spatial representativeness is very limited in
mountain regions or places with heterogeneous land cover.
Besides, ground measurements are scarce in remote regions
where the snow loss effects are greater such as the Arctic
and high elevations. Long-term snow measurements are par-
ticularly limited in the Southern Hemisphere (SH) (Stocker
et al., 2013). Therefore, gridded snow products have be-
come crucial to globally evaluate the snow trends during the
last decades (Brown et al., 2017). Existing products report
a wide range of snow parameters including snow mass, e.g.,
snow depth (SD), snow water equivalent (SWE), snow den-
sity (ρS), and snow cover, e.g., binary snow cover (SC), snow
cover fraction (SCF), snow cover duration (SCD), and snow
cover extent (SCE).

Satellite products estimate snow properties based either
on the optical (visible–infrared) or microwave spectral re-
gions (Frei et al., 2012). Estimating snow cover from opti-
cal data is straightforward but presents limitations related to
cloud cover, vegetation, and non-illuminated regions. Some
examples include the National Oceanic and Atmospheric Ad-
ministration (NOAA) Interactive Multi-sensor Snow and Ice
Mapping System (IMS, 1998–present) (Chiu et al., 2020);
the historical NOAA weekly SCE charts (NOAA Climate
Data Record (CDR), 1966–present) (Estilow et al., 2015);
National Aeronautics and Space Administration (NASA)
Moderate Resolution Imaging Spectroradiometer (MODIS)
snow cover products (2000–present) (Hall et al., 2006); the
Japan Aerospace Exploration Agency (JAXA) SCE prod-
uct (GHRM5C, 1979–present) (Hori et al., 2017), which
combines AVHRR and MODIS imagery; or the NH SCE
1 km product produced by Copernicus Global Land Service
(CGLS) in near real time using Suomi-NPP/VIIRS images
(Schwaizer et al., 2020). On the other hand, microwave-
based methods exploit the scattering of microwave radiation
by snow grains, being able to estimate snow mass parame-
ters such as SWE under all-sky conditions. However, they
have coarser resolutions (≥ 25 km), and their uncertainty in-
creases over deep snowpacks (SWE> 150 mm) (Pulliainen
et al., 2020). GlobSnow (1979–present) (Luojus et al., 2021)
and the snow Climate Change Initiative (snow CCI, 1979–
2018) (Solberg et al., 2020), both developed by the Euro-
pean Space Agency (ESA), combine passive microwave re-
trievals with station observations to estimate SWE and SCE.
More detailed reviews can be found in Frei et al. (2012) or
the SnowPEx project (https://snowpex.enveo.at, last access:
1 May 2021), an international joint effort to inter-compare
satellite estimations of SWE and SCE (ESA, 2020; Mortimer
et al., 2020).

Global reanalyses appear as an increasingly appealing op-
tion for climate studies due to their long-term global cover-
age of multiple atmospheric, land, and ocean variables. They
provide estimations of most snow parameters such as snow-
fall, snowmelt, snow mass, and snow cover. The latest gen-
eration of global reanalyses includes ERA5 (1950–present)
from the Copernicus Climate Change Service (C3S) (Al-
bergel et al., 2018), MERRA-2 (1980–present) from NASA
(Gelaro et al., 2017), and JRA-55 (1953–present) from the
Japanese Meteorological Agency (JMA) (Kobayashi et al.,
2015). They mainly differ in their spatial resolution, the com-
plexity of their snow schemes (Krinner et al., 2018), and the
amount and type of assimilated observations. However, de-
spite their recent improvements, their accuracy is still con-
strained by their coarse spatial resolutions (30–60 km) (Ur-
raca et al., 2018; Mortimer et al., 2020; Orsolini et al., 2019;
Bian et al., 2019).

The temporal coverage of satellite products is limited to
that of the satellite/sensor used, so different satellite in-
struments are combined to produce Climate Data Records
(CDRs). For instance, JAXA GHRM5 combines optical data
from NOAA’s AVHRR and MODIS sensors, whereas both
ESA GlobSnow and ESA CCI SWE combine passive mi-
crowave data from SMMR, SSM/I, and SSMIS sensors. The
transition periods between different sensors are the main
source of instability in these products (Mortimer et al., 2022),
but stability issues can also arise due to sensor degradation
and orbital drifts (e.g., AVHRR data). The increasing num-
ber of satellite sources can also alter the stability of prod-
ucts derived manually by analysts from multiple sources of
satellite imagery (e.g., IMS and NOAA CDR). On the other
hand, global reanalyses have generally been available since
the start of the satellite era or before, but the amount and
type of assimilated data change temporally (Mudryk et al.,
2015). All these issues can introduce artificial trends and dis-
continuities in long-term satellite and reanalyses products.
Characterizing their stability is therefore critical, particularly
for climate applications. Stability is defined by GCOS as the
extent to which the uncertainty of measurement remains con-
stant with time (GCOS, 2016). The GCOS stability require-
ments for snow cover are 10 mm per decade for SD and SWE
and 4 % per decade for SCE. These requirements refer to the
maximum acceptable change in systematic error per decade.

The goal of the study is to analyze the temporal stability of
snow-related variables from satellite products, global reanal-
ysis, and land reanalysis. We selected one product of each
type: NOAA CDR (1966–present), ERA5 (1950–present),
and ERA5-Land (1950–present), respectively. They provide
the longest temporal coverage in each group. Besides, the
NOAA CDR is the most widely used product for climate
studies including the IPCC AR5 (Stocker et al., 2013) or the
“State of the Climate” (Blunden and Arndt, 2020). The sta-
bility of the products is evaluated against 527 ground stations
over the NH measuring snow from 1950 to 2020. The study
also updates the snow cover trends in the Northern Hemi-
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sphere from 1955 to 2015. Snow depth and snow cover trends
are evaluated with in situ data due to the discontinuities and
trends found in gridded datasets. Snow cover extent could
be only evaluated by inter-comparing the three gridded prod-
ucts.

2 Data and methods

2.1 Snow products

2.1.1 ERA5

ERA5 is the latest global climate reanalysis produced by
the European Centre for Medium-Range Weather Forecasts
(ECMWF) within the Copernicus Climate Change Service
(C3S) providing hourly data on atmospheric, land, and sea
parameters. ERA5 implements a 4D-Var assimilation system
based on the Integrated Forecast System (IFS) CY41R2, with
137 vertical pressure levels and a spatial resolution of around
31 km. The assimilated data increase temporally, with the
first satellite observations starting in 1979. ERA5 uses the
H-TESSEL land surface model which implements a single-
layer snow model (Dutra et al., 2010). The SCF is a diagnos-
tic variable calculated as min(1,SD [cm]/10). It assimilates
both in situ and satellite snow observations. The number of in
situ assimilated snow observations has been increasing pro-
gressively from 1979 to the present, with 4689 stations being
assimilated in 2020. Since 2004, ERA5 has also assimilated
the IMS product (only below 1500 m). The IMS (Chiu et al.,
2020; Orsolini et al., 2019) is produced by NOAA combining
microwave, visible, and infrared satellite images, as well as
manual analysis input, to produce the binary NH snow cover
with a spatial resolution of 24 km (since 1997), 4 km (since
2004), and 1 km (since 2014). The IMS 4 km binary SC is
assimilated into the ERA5 model by assigning a snow depth
of 5 cm (SCF= 50 %) to all IMS snow-covered pixels.

ERA5 has been available from 1979 onward at the C3S
Climate Data Store (CDS) (Albergel et al., 2018). A prelimi-
nary back extension (1950–1978) was recently released (Bell
et al., 2020). In this study, both versions are used, making a
combined temporal coverage of 71 years (1950–2020). The
snow parameters available at the CDS are SWE and ρs at
hourly and monthly resolutions. In this study, hourly SWE
and ρs were used to calculate the hourly SD and then aggre-
gated to obtain the average daily SD.

2.1.2 ERA5-Land

The ERA5-Land reanalysis has a replay of the land compo-
nent of the ERA5 climate reanalysis, forced by meteorologi-
cal fields from ERA5. It has been produced with the ERA5-
Land model H-TESSEL (version IFS CY45R1) without cou-
pling the atmospheric model and without directly assimilat-
ing observations to make the simulations computationally af-
fordable (Muñoz Sabater, 2019). This allowed the implemen-

tation of some improvements for land surface applications
such as a finer spatial resolution of around 9 km. The snow
model is the same as in ERA5, but observations are not di-
rectly assimilated. Neither in situ snow depth measurements
nor the IMS product is directly assimilated by ERA5-Land.
ERA5-Land is still influenced indirectly by the snow ob-
servations (and observations of other variables) assimilated
by ERA5 because ERA5 atmospheric variables are used to
control the simulated ERA5-Land fields, which is known as
ERA5 atmospheric forcing.

Similar to ERA5, ERA5-Land spans 1950 to the present.
The main ERA5-Land dataset goes from 1981 to present, and
the ERA5-Land back extension covers 1950–1980. Com-
pared to ERA5, ERA5-Land provides SD as a diagnostic pa-
rameter in the CDS, besides SWE and ρs. However, we did
not use the diagnostic SD, and we calculated the daily SD
from the hourly SWE and ρs to keep consistency with the
method applied in ERA5.

2.1.3 NOAA CDR

The NOAA weekly SCE (NOAA CDR) (Estilow et al., 2015)
is the longest satellite CDR currently available and the one
most widely used for climate applications. It spans 4 Octo-
ber 1966 up to the present with only 9 months missing (July
1968, June–October 1969, July–September 1971). Before
June 1999, SCE charts were manually produced by trained
NOAA meteorologists based on different sources of visible
satellite imagery and then digitalized into a 89× 89 Carte-
sian grid laid over a stereographic projection (∼ 190.5 km)
(Robinson et al., 1993). Since then, weekly charts have been
based on the daily IMS 24 km binary snow cover (Helfrich
et al., 2007). The two methodologies overlapped for 2 years
(June 1997–May 1999) that were used to minimize the im-
pact of the transition in the CDR. Based on this overlap, the
conversion from the daily 24 km IMS product to the weekly
(Tuesday to Monday) 190.5 km NOAA CDR was done using
the Monday IMS estimates and NOAA CDR pixels were set
as snow-covered where 42 % of IMS pixels indicated snow.
Therefore, weekly SCE maps are heavily weighted towards
the end of the mapping week (Estilow et al., 2015). In this
study, the NH SCE version 4 available at the National Snow
& Ice Data Center (NSIDC) is used, which re-grids the orig-
inal NOAA CDR to the NH EASE-Grid 2.0 projection of
25km× 25 km (Brodzik and Armstrong, 2013).

2.2 In situ snow measurements

In situ daily snow observations were obtained from the
Global Historical Climatology Network (GHCN) managed
by NOAA’s National Centers for Environmental Information
(NCEI), the All-Russia Research Institute of Hydrometeoro-
logical Information-World Data Centre (RIHMI-WDC), and
the Environment and Climate Change Canada (ECCC) net-
work.
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Table 1. Description of the snow products used in the study.

Product Producer Type Spatial coverage Temporal coverage Spatial resolution Temporal
resolution

ERA5 ECMWF/C3S Reanalysis Global 1950–1978, 1979–2020 0.25◦× 0.25◦ (∼ 31 km) 1 h
ERA5-Land ECMWF/C3S Land reanalysis Global 1950–1980, 1981–2020 0.1◦× 0.1◦ (∼ 9 km) 1 h
NOAA CDR NOAA/NSIDC Satellite Northern Hemisphere 1966–2020 720× 720 pixels (∼ 25 km) 1 week

The GHCN is an integrated database with more than
100 000 stations across the globe providing daily measure-
ments of land variables since 1981 (Menne et al., 2012). The
stations are divided into four main groups based on the data
source: (i) US collection, the largest one; (ii) international
collection, obtained through personal contacts; (iii) govern-
ment data exchange, data collected through official GCOS or
bilateral agreements; and (iv) the global summary of the day
from SYNOP reports.

The RIHMI-WDC contains 620 stations measuring snow
since 1882 (Bulygina et al., 2011, 2009). They measure both
the snow depth at the station and the snow cover fraction
in the surrounding region, which is estimated visually every
morning. Snow course surveys are also available every 5 or
10 d depending on the season but are not used in the present
study. The dataset includes an automatic quality control pro-
cedure that flags potentially erroneous snow depth measure-
ments. All values flagged by this procedure were discarded.

The ECCC network is the primary in situ network for mon-
itoring snow cover trends in Canada (Brown et al., 2021). The
ECCC network is composed of manual and automated sta-
tions. Manual stations based on ruler measurements started
in 1883, but global coverage of Canada was not achieved un-
til the mid-1950s. The manual network peaked around the
1980s with more than 1600 stations measuring daily snow
depth, but it has been declining since the 1990s due to the clo-
sure of stations and curtailment of manual SD-observing pro-
grams. Automated stations with Campbell Scientific SR50 or
SR50 A sonic snow depth sensors have been replacing man-
ual ones since the 1990s, but these efforts have not com-
pensated for the high number of manual stations closed.
Only manual stations fulfilled the selection procedure for this
study. As suggested by Brown et al. (2021), gap-filled SD
values within 14 d of a measurement were used in this study.

All stations measuring daily SD from each network be-
tween 1950 and 2020 were used. Over Canada, this period
was reduced to 1955–2015 due to the low number of avail-
able ECCC stations before 1955 and after 2015. Only sta-
tions with more than 10 snow days per year and at least 90 %
of valid years in the study period were exploited. Missing
values are frequent in snow measurements due to the prac-
tice of only recording days with snow presence (Pirazzini
et al., 2018). Filling them systematically with zeros would
introduce a negative bias in the measurements since some
missing values could be truly missing. To avoid this, only
years with less than 5 % of missing days were used. In some

stations, missing values had already been filled with zeros.
These cases were identified by flagging years without snow
in stations with more than 40 snow days per year. Flagged
years were removed after visually inspecting their time se-
ries.

Based on the previous methodology, a reference dataset of
527 stations (228 RIHMI, 242 GHCN, 57 ECCC) was cre-
ated (Fig. 1). Currently, 313 of these stations are assimilated
into ERA5. These stations were kept for the stability analy-
sis, since their addition to ERA5 may explain some of the dis-
continuities observed, but were removed from the accuracy
analysis to guarantee the independence of the validation set.
The reference dataset was manually divided into the follow-
ing spatial regions based on the snow patterns and the per-
formance of the snow products: ECCC N (northern Canada,
5), ECCC E (eastern Canada, 31 stations), ECCC W (west-
ern Canada, 21 stations), GHCN AK (Alaska, 12 stations),
GHCN USA-W (western USA, 26 stations), GHCN USA-E
(eastern USA, 116 stations), GHCN EU (central Europe, 43
stations), GHCN CH (Switzerland, 7 stations), GHCN NO
(Norway, 38 stations), RIHMI EU (European Russia, 49 sta-
tions), RIHMI Ural (Ural region, 59 stations), RIHMI Siberia
(46 stations), RIHMI S (southern Siberia, 41 stations), and
RIHMI E (eastern Russia, 33 stations).

2.3 Spatial representativeness of in situ snow
observations

The spatial representativeness of in situ observations is crit-
ical to conduct point-to-pixel validations, particularly when
evaluating coarse products such as global reanalyses. The ex-
tent to which point observations are representative of their
larger surrounding depends on the geophysical variable and
the characteristics of the surrounding terrain, among other
factors. The spatial representativeness of in situ observations
was assessed based on the method proposed by Schwarz et
al. (2017) for downward solar radiation measurements. This
method uses a high-resolution product to evaluate the vari-
ability of a geophysical variable within the pixels of the
coarser product being validated. For that, the high-resolution
pixel collocated with the station is compared against the
mean of the high-resolution pixels contained by the coarser
pixel. The method includes (i) a correlation analysis and
(ii) an estimation of the spatial sampling error (SSE), which
arises when estimating a variable over a large area (i.e., the
coarse pixel) from a point observation.
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Figure 1. Spatial distribution of the stations used in the study.

The NOAA’s IMS high-resolution 1 km product was used,
which has been providing daily binary snow cover since
2014 (Chiu et al., 2020). The coarse products evaluated are
ERA5 (0.25◦× 0.25◦) and ERA5-Land (0.1◦× 0.1◦). The
spatial representativeness was evaluated using all daily IMS
maps of snow cover during 2015. For each station, the daily
snow cover from the IMS pixel collocated with the station
(SCstation

d ) and the mean of IMS pixels contained by coarser
ERA5/ERA5-Land pixels (SCarea

d ) were extracted. The co-
efficient of determination (R2) between both variables was
calculated. The spatial sampling error was estimated as the
mean absolute deviation (MAD) of daily SC:

SSE=
1
N

N∑
d=1

∣∣SCstation
d −SCarea

d
∣∣. (1)

This metric slightly differs from that proposed by Schwarz
et al. (2017), who used a more conservative 95 percentile in-
stead of the mean. Additionally, a new metric was calculated
and referred to as the spatial sampling bias (SSB) to quantify
the systematic error introduced:

SSB=
1
N

N∑
d=1

(
SCstation

d −SCarea
d
)
. (2)

Both SSE and SSB were originally dimensionless because
SC is a binary variable. However, both metrics were multi-
plied by 365 to analyze the results in terms of annual snow
cover duration [dyr−1] which is easier to interpret. Stations
with (SSEERA5 > 10dyr−1) or (SSEERA5Land > 10dyr−1)

were flagged as low representative and subsequently re-
moved from the validation after visually inspecting their
SCD map around the station (Sect. 3.1).

2.4 Validation of snow products

The SD and SCD estimations from the snow products were
validated against the reference ground measurements. The
daily SD of ERA5 and ERA5-Land was directly compared
against the daily SD measurements. For snow cover dura-
tion, daily SC had to be calculated first from daily SD values.
The NOAA CDR was also added to this second part of the
validation. Besides low spatially representative stations, sta-
tions falling within pixels masked as sea/ocean in the differ-
ent products (ERA5 – 18 stations, ERA5-Land – 13 stations,
NOAA CDR – 18 stations) were also removed for the valida-
tion. Note that some sites met the spatial representativeness
criteria but fell within a pixel masked as sea by the product.

The conversion from snow depth into snow cover is one of
the most sensitive aspects when validating snow products. In
a previous study performed with the same group of stations
by JAXA (Hori et al., 2017), a threshold of 2.5 cm was used
to calculate SC based on a local minimum found in the sta-
tion measurements. The snow cover fraction in the surround-
ing of the station is visually assessed at the RIHMI network
(Bulygina et al., 2011). We used these measurements to an-
alyze the correlation between SD at the station and the sur-
rounding SCF (Fig. 2). For a surrounding SCF of 0.5 (50 %),
the mean and median SD at the station was 3.95 and 1 cm,
respectively. The 2.5 cm threshold used by JAXA falls just in
the middle of these values, so we decided to keep the same
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Figure 2. Relationship between the snow cover fraction (SCF)
around the station and the snow depth (SD) at the station in all
RIHMI sites. Solid and dashed lines represent the mean and median
value, respectively. The gray shaded region shows the 5th and 95th
percentiles. The red dot represents the threshold of 2.5 cm selected
to convert SD into SC.

value in our study. Additionally, we performed a sensitivity
analysis to evaluate the impact of the threshold used in the
snow cover validation metrics (Fig. A2). We analyzed how
the SCD bias changes when varying the threshold from 0 to
10 cm by intervals of 2.5 cm. The analysis was done in 2015
to include the IMS 1 km product.

The threshold used to convert SD into SC varies between
snow products. Besides, some products provide SCF and oth-
ers the binary SC. The latter is needed to calculate the SCD.
For ERA5 and ERA5-Land, all pixels with SCF> 50 %
(SD> 5 cm) were considered snow-covered. The NOAA
CDR already provides the binary SC but at a weekly reso-
lution. The annual SCD was calculated by considering that if
a week was flagged as snow-covered, all the days within that
week were snow-covered.

2.4.1 Validation metrics

The main goal of the study is to assess the stability of long-
term snow cover products. For that, the annual mean bias
deviation (MBD) of each product was calculated for SD and
SCD values at each station (bias = product − station). Sta-
bility was evaluated by analyzing how the annual bias in
both SD and SCD changed temporally. Stability was ana-
lyzed separately for ECCC, GHCN, and RIHMI stations to
discard potential trends or discontinuities in the in situ mea-
surements, such as major changes in the measuring proto-
cols. If a step discontinuity was found, the difference in the
bias between the 4 years after and before the discontinu-

ity was calculated (1bias= biasafter− biasbefore). The rela-
tive 1bias in percentage was also calculated as 1bias [%] =
(biasafter− biasbefore)/biasbefore. The interval of 4 years was
chosen based on the sensitivity analysis of Fig. A1. This in-
terval needs to be long enough to remove the effects on inter-
annual variations of the snow cover, but intervals that are too
long may be affected by the underlying trends in the bias.
Therefore, the shortest interval once1bias has stabilized was
chosen. If a trend in the annual bias was found, the decadal
trend of the annual bias during that period was computed.
The temporal stability of the random error was also analyzed
by evaluating how the interquartile range (IQR) of the annual
bias changes temporally.

The accuracy of the products was evaluated during those
years when the products showed optimal stability: 2005–
2020 for ERA-Interim and ERA5-Land. Only spatially rep-
resentative stations that are not assimilated into ERA5 were
used in this part. The metrics used were the bias, relative bias,
root mean squared deviation (RMSD), and relative RMSD.
For SD, the number of daily values below the GCOS accu-
racy requirements (10 mm) was also calculated. Both accu-
racy and stability were evaluated annually and seasonally.

2.5 Analysis of snow cover trends in the Northern
Hemisphere

The trends in SD and SCD were analyzed using the in situ
observations due to the artificial discontinuities and trends
found in the snow products. Stations flagged as not spa-
tially representative were kept in this part of the study. The
methodology to calculate SCD from SD was the same as
that used for the validation. For each variable, decadal trends
and annual anomalies for the period 1955–2015 were ana-
lyzed. Compared to the stability analysis, the study period
was reduced due to the low number of Canadian stations be-
fore 1955 and after 2015. The significance of the trends was
evaluated with the Mann–Kendall test (Mann, 1945; Kendall,
1975). Note that the density of stations was too low for a
complete analysis of NH snow cover trends. Even in regions
with good coverage, the heterogeneous density of the stations
as well as their different spatial representativeness also pre-
vents the calculation of spatially representative trends. How-
ever, our main goal was to estimate the trend magnitude to
evaluate the significance of the artificial trends and disconti-
nuities introduced by each product.

The trends in the total NH SCE were analyzed using the
three snow products, taking into account the stability issues
detected during the validation. The SCE trends and anoma-
lies were calculated over the period when the three datasets
were available simultaneously (1972–2020). In the NOAA
CDR, the total NH SCE was calculated by summing the area
of all snow-covered pixels. In ERA5 and ERA5-Land, snow-
covered pixels were summed taking into account the fraction
of the pixel covered by snow.
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3 Results and discussion

3.1 Spatial representativeness of in situ snow
measurements

The spatial representativeness criteria were met by 387 of
the 527 snow stations (Table 2 and Fig. 3). The stations re-
moved were primarily located in coastal and mountain re-
gions. On the coast, stations overestimate the mean snow
cover over the coarse reanalysis pixel because they are lo-
cated over land, while the pixel covers both land and sea
(see Fig. 3c). In mountainous regions, the spatial represen-
tativeness of the stations decreases due to the large elevation
gradients (Fig. 3b). The SSE and SSB were very similar in
all the stations, which indicates that most of the error in-
troduced by spatial sampling is systematic. Some of these
stations showed sampling errors above 100 dyr−1 (> 50 %).
Norway was the region most affected by the station removal,
with 87 % of its stations discarded due to the combination
of an irregular coast surrounded by high mountains. Most of
the stations were removed because they did not meet the SSE
threshold for the coarser ERA5 grid. However, of the 104 sta-
tions that were removed, 17 passed the threshold for ERA5
grid (0.25◦× 0.25◦) but not for ERA5-Land (0.1◦× 0.1◦).
This was the case in sites with high spatial variability of
snow cover, where the mean SC over the coarse pixel agreed
with the station value just by chance. Implementing the spa-
tial representativeness test at different spatial resolutions, or
taking into account the spatial variability of the geophysi-
cal variable, is therefore critical to identify and remove these
cases.

The resulting group of 387 stations used for the valida-
tion has an average R2 > 0.91 and SSE< 4.01 d in all re-
gions. Non-representative stations were removed for both ac-
curacy and stability assessment, despite the effects of low
spatial representativeness on stability being smaller because
SSE and SSB are usually constant in time. The spatial repre-
sentativeness of the stations was not analyzed for the NOAA
CDR grid. Despite the version used in this study having a
similar resolution to ERA5, the resolution of the original in-
put data (historical NOAA weekly charts) is much coarser
(∼ 190.5 km) and not appropriate for point-to-pixel compar-
isons. Therefore, this product was not used in the accuracy
assessment and was only kept in the stability evaluation as a
reference, i.e., to discard potential artifacts/trends in the sta-
tions when evaluating the temporal evolution of the bias.

3.2 Temporal stability of the products

The analysis of the temporal stability reveals different step
discontinuities and trends in the annual bias of both SD and
SCD (Figs. 4 and 5) for the three products evaluated. Addi-
tional information about the seasonal stability of the bias is
available in Figs. A3–A8.

The annual bias of ERA5 significantly decreases in time
for both SD and SCD, presenting three negative step dis-
continuities in 1977–1980, 1991–1992, and 2003–2004, as
well as a negative trend between 1980–1991. From 1950 to
2020, the interquartile range (IQR) of the annual bias in SD
decreases from [3.5,11.1cm] to [−0.2,0.4cm] at RIHMI,
from [0.3,1.9cm] to [−0.2,0.2cm] at GHCN, and from
[0.1,5.3cm] to [−0.3,0.3cm] at ECCC. The greater initial
bias and greater decrease at RIHMI stations are explained
by the longer snow season and deeper snowpack over Rus-
sia (Bulygina et al., 2011, 2009). The decrease of the bias is
more evident in DJF and MAM seasons (Figs. A4 and A5).
The magnitude of the bias in SCD is more similar between
both networks, with the bias IQR decreasing from [5,25d]
to [−11,−2d] at RIHMI, from [2,26d] to [−13,−1d] at
GHCN, and from [−5,15d] to [−15,−3d] at ECCC. The
negative change of the bias in both SD and SCD is driven by
three stepwise discontinuities. They appear in both networks
except for the 1992 discontinuity, which is only observed at
RIHMI stations. The hypothesis of an artificial discontinuity
in RIHMI in situ measurements was discarded, because the
1992 step discontinuity was not observed in the other prod-
ucts, ERA5-Land, and NOAA CDR. Instead, the three dis-
continuities are more likely caused by the assimilation of new
observations into ERA5. In both 1978–80 and 1992 disconti-
nuities, not only the median bias but also the bias variability,
a measure of ERA5 random error, was reduced.

The ERA5-Land bias also decreases temporally for both
SD and SCD but in a more gradual way without showing any
stepwise discontinuity. The absence of discontinuities is ex-
plained by the lack of direct data assimilation in the ERA5-
Land model. ERA5-Land is still indirectly influenced by the
observations assimilated in ERA5 because ERA5 is used to
control the simulated ERA5-Land fields (atmospheric forc-
ing). Therefore, the gradual negative trends in ERA5-Land
could be indirectly caused by the three stepwise disconti-
nuities observed in ERA5. Despite being more stable than
ERA5, ERA5-Land always exhibits a positive bias but larger
bias variability in both SD and SCD. Both the magnitude
and variability of ERA5-Land bias are comparable to that
of ERA5 before 1980 when no data were being assimilated,
whereas ERA5 has clearly been outperforming ERA5-Land
since 1992. Despite having a finer spatial resolution and be-
ing tailored to land surface applications, the quality of ERA5-
Land snow estimates is constrained by the lack of data assim-
ilation.

The NOAA CDR showed a positive overestimation in
SCD and a large bias variability. Both issues were somewhat
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Table 2. Spatial representativeness metrics (R2, SSE – spatial sampling error, SSB – spatial sampling bias) per region in the group of stations
selected for the validation after discarding low spatially representative sites.

ERA5 grid ERA5-Land grid

Sites selected (total) R2 SSE [dyr−1] SSB [dyr−1] R2 SSE [dyr−1] SSB [dyr−1]

ECCC E 19(31) 0.97 2.22 0.74 0.99 0.95 0.21
ECCC W 13(21) 0.99 1.16 −0.39 0.99 0.77 −0.15
ECCC N 2(5) 0.97 1.50 1.50 0.98 1.00 1.00

GHCN AK 5(12) 0.98 1.60 1.60 1.00 0.20 0.20
GHCN USA-W 20(26) 0.92 3.66 −0.85 0.96 1.55 −0.25
GHCN USA-E 103(116) 0.96 1.78 −0.17 0.98 1.02 0.01
GHCN NO 5(38) 0.94 3.01 −0.60 0.95 2.01 −1.60
GHCN CH 1(7) 0.94 4.01 −4.01 1.00 0.00 0.00
GHCN EU 27(43) 0.92 1.63 −0.89 0.95 1.00 −0.26

RIHMI EU 42(51) 0.98 1.07 −0.41 0.99 0.50 0.02
RIHMI Ural 55(57) 0.99 0.69 −0.00 0.99 0.55 −0.22
RIHMI Siberia 41(46) 0.99 0.98 0.10 0.99 0.76 −0.46
RIHMI S 33(41) 0.98 1.67 −0.82 0.99 0.58 −0.03
RIHMI E 21(33) 0.99 1.15 −0.86 1.00 0.43 0.14

387(527)

Figure 3. (a) Spatial sampling error (SSE) of in situ snow measurements with respect to ERA5 grid. Stations in gray have an IMS snow
cover equal to zero. Triangles indicate stations assimilated into the ERA5 model. Spatial distribution of annual snow cover duration (SCD)
from the IMS 1 km product in two of the stations flagged as low spatially representative: (b) coastal station and (c) mountain station. Red
lines represent the ERA5 grid. The red cross shows the station location. Terrain map tiles by Stamen Design, under CC-BY 3.0. Data by ©
OpenStreetMap, under ODbL.
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Figure 4. Temporal evolution of the annual bias (product – station) in snow depth (SD) per network. Vertical lines show the years when the
potential discontinuities in each product occur.

expected. The positive bias could be explained by changes
in the method used to produce the snow charts, which since
1999 have considered a pixel to be snow-covered when
only 42 % of the IMS pixels within the pixel were snow-
covered. On the other hand, the large bias variability could
also be related to the coarse resolution of the original prod-
uct (∼ 190.5 km), making it inappropriate for point-to-pixel
comparisons. This was already stated in the product man-
ual, which recommends using this CDR only for SCE stud-
ies over large regions (Estilow et al., 2015). Anyway, as dis-
cussed in Sect. 3.1, we decided to use the NOAA CDR in the
stability assessment because the goal was not to make point
SCD estimations but to include a satellite product in the com-
parison that helps to discard artificial trends and discontinu-
ities in the in situ measurements. In this sense, the NOAA
CDR shows an overall good temporal stability in spring and
summer, but a positive trend in the bias has been observed
since 1990 in fall (Fig. A6) and winter (Fig. A7). The posi-
tive trend in fall has been previously reported as problematic
in several studies (Brown et al., 2017; Brown and Derksen,
2013; Derksen, 2014; Hori et al., 2017) and it is further in-
vestigated in Sect. 3.2.2.

3.2.1 ERA5 stepwise discontinuities

The magnitude of each ERA5 discontinuity is estimated by
calculating the difference in the bias between the 4 years after
and before the discontinuity occurred (Fig. 7 and Table A1).

The 1977–1980 discontinuity is the most important over-
all and could be explained by the assimilation of the
first satellite products and in situ observations into ERA5
(Fig. 6). As reported in the ERA5 documentation web
page (ECMWF, 2021), significant improvements were ob-
served in the ERA5 forecast skill after 1978 over regions
with scarce conventional observations. Carrying out simula-
tions prior to the satellite era is the main challenge of the
ERA5 back extension. The annual 1bias is larger in SD
(RIHMI=−19.4 %, GHCN=−24 %, ECCC=−49.8 %)
than in SCD (RIHMI=−2.5 %, GHCN=−7.5 %, ECCC=
−8.2 %). The magnitude of the discontinuity is correlated
with the snow depth, having more impact at RIHMI stations
and particularly at mountain regions such as the Alps, south-
ern Russia, or Norway. Similarly, the most affected seasons
(ranked from largest to smallest) are those with more snow:
DJF, MAM, and SON. A positive ERA5 bias in SD of simi-
lar magnitude was also observed in SD (Orsolini et al., 2019)
and SWE (Bian et al., 2019) over the Tibetan Plateau, a re-
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Figure 5. Temporal evolution of the annual bias (product – station) in snow cover duration (SCD) per network. Vertical lines show the years
when the potential discontinuities/trends in each product occur/start.

gion where neither in situ observations nor the IMS product
is assimilated. Orsolini et al. (2019) suggested that the most
likely cause was an excessive snowfall precipitation over the
Tibetan Plateau, discarding other effects such as snow sub-
limation due to blowing snow or the SCF threshold. In this
study, ERA5 also shows a large positive bias in periods with
low data assimilation (before 1980). Besides, ERA5-Land,
which does not directly assimilate observations, also shows a
predominantly positive bias in SD. As suggested by Orsolini
et al. (2019), the most likely cause of the snow depth overes-
timation in both ERA5 and ERA5-Land could be a precipi-
tation bias, which is only corrected in ERA5 by the assimila-
tion of snow depth observations after 1979.

The 1991–1992 discontinuity presents a similar seasonal
pattern in 1biasSD than the one in 1977–1980, having more
impact (sorted from largest to smallest) in DJF (−52.8 %),
MAM (−33.1 %), and SON (−8.1 %), respectively. The
main difference is that the 1991–1992 discontinuity is only
observed over Eurasia. This step is most likely caused by the
assimilation of new in situ observations in Russia and China
starting from 1992 (Fig. 6). The assimilation of these ob-
servations further corrects the large positive bias exhibited
by most Russian stations (1biasSD =−18.2 %, 1biasSD =

−6.3 %), falling within a similar range to that observed over

Europe and North America. Similar to the 1980 discontinu-
ity, this discontinuity not only reduced the median bias but
also its variability.

The 2003–2004 discontinuity, already reported by Mor-
timer et al. (2020), is caused by the assimilation of the
satellite-based IMS product. Compared with the previous
ones, this discontinuity has a greater impact on snow onset
and snowmelt detection than on snow depth. The change of
the bias is larger in SCD than in SD, and spatially, the dis-
continuity is larger at GHCN stations (1biasSD =−17.2 %,
1biasSCD =−16.1 %) than at RIHMI ones (1biasSD =

−0.6 %, 1biasSCD =−1.5 %). This could be explained by
how the IMS product is integrated into the ERA5 model.
Snow-covered pixels are assimilated as 5 cm of snow depth,
explaining the relatively low impact in snow depth and the
large improvements in the detection of the start/end of the
snow season, which are more evident in SON, MAM, and re-
gions with a short snow season. Particularly large changes are
also observed in coastal or mountain regions (Rocky Moun-
tains, southern Siberia), which could be related to the ben-
efits of assimilating a product with a finer resolution over
these regions where assimilated snow observations are also
scarce. Note that the IMS product was only assimilated be-
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Figure 6. Temporal evolution of the in situ snow stations and observations assimilated by ERA5: (a) all stations assimilated by ERA5 and
(b) stations assimilated by ERA5 within our validation set.

low 1500 m, so large improvements observed in mountain re-
gions mostly occur at stations located in the valleys.

Figure 6 shows that the observations assimilated into
ERA5 also increased significantly in 2001–2002 (more Eu-
ropean stations), 2011–2015 (new stations in eastern Eu-
rope and the Scandinavian Peninsula), and 2019–2020 (new
Kazakh stations and more observations in China and Eu-
rope). However, discontinuities related to these changes were
observed in neither the SD/SCD bias time series nor the
global SCE time series.

Table A1 summarizes the number of stations where ERA5
shows acceptable stability according to the GCOS require-
ments. This metric was only calculated for SD (stability =
10 mm) because no explicit requirement is made for SCD.
The three discontinuities introduced a 1biasSD above this
threshold in most of the stations, particularly if analyzing
the winter trends alone. Only 10.6 %, 12.2 %, and 58.2 % of
RIHMI stations; 41.1 %, 69.7 %, and 50.0 % of GHCN sta-
tions; and 0 %, 67.7 %, and 69.7 % of ECCC stations were
below the stability threshold in winter during the 1977–
1980, 1991–1992, and 2003–2004 discontinuities, respec-
tively. Note that these values would be even larger if look-

ing only at snow-covered days in regions such as the USA or
Europe where snow does not last the full winter season.

3.2.2 NOAA CDR bias trend in fall and winter

The NOAA CDR exhibits a positive trend in the SCD bias
during SON and DJF (Fig. 8 and Table A2). The trend
steadily starts from 1990–1995, almost extending to present
day. The positive trend in the bias explains the artificial posi-
tive trend in the snow cover extent observed in Fig. 11 during
SON, which was already documented by different authors
(Hori et al., 2017; Brown and Robinson, 2011; Brown and
Derksen, 2013). Brown and Robinson (2011) reported that
the positive October SCE trend was an artifact of the NOAA
CDR since this positive trend was opposed to several inde-
pendent snow products and to in situ measurements (Peng et
al., 2013). They suggested that the most likely cause could
be the increase of satellite data ingested by the NOAA CDR
analysts, as well as the increase in the temporal and spatial
resolution of these products, which led to a more accurate
snow onset detection. In the same line, Mudryk et al. (2017)
found that the NOAA CDR trends in October and Novem-
ber are non-physical and not consistent with other datasets.
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Figure 7. Change in the ERA5 bias in snow depth (SD) and snow cover duration (SCD) during 1977–1980, 1991–1992, and 2003–2004
discontinuities. The 4 years before and after the discontinuity are compared (1bias= biasafter− biasbefore). (a) Seasonal change in the bias
per network. (b) Annual change in the bias per station.

Our study corroborates the existence of a significant positive
trend in the bias around 5–10 d per decade in many Eurasian
stations and in some stations of northern USA. Additionally,
our study reveals that the same trend in the bias appears in
DJF in some European (10 d per decade) and eastern USA
stations (7.2 d per decade), regions where snow onset takes
place later than in Russia. Figure 5 also corroborates the fact
that there is no step discontinuity related to the transition be-
tween the two methodologies in 1999, though the positive
trend in the bias may have been aggravated after 1999 due to
the improved resolution and the increasing number of satel-
lite products ingested by the IMS product.

Brown and Derksen (2013) suggested that the opposite ef-
fect during the spring season could be expected but was not
observed. Theoretically, improved detection of snow melting
could lead to a stronger spring trend, introducing an artifi-
cial negative trend in the CDR. In this line, Derksen (2014)
reported a tendency of the NOAA CDR to map less snow
in spring since 2007 than the multi-dataset composed by

the NOAA CDR, MERRA, and ERA-Interim. Mudryk et al.
(2017) also found that the NOAA CDR has a spring trend
stronger than other datasets. We analyzed this issue by eval-
uating the snow cover duration trends in spring. Negative
trends in the spring bias only appear in some Russian stations
(Fig. 8a). However, the number of stations showing signifi-
cant trends in spring is smaller, and the magnitude of these
trends is lower than those in fall and winter. Despite the fact
that this issue could exist in some regions, the impact at a
global scale is negligible (Fig. A8).

3.3 Spatial accuracy of the reanalyses after the last
ERA5 discontinuity

Figure 9 shows the performance of ERA5 and ERA5-Land
after the last ERA5 discontinuity (2005–2020). Only spa-
tially representative stations that are not assimilated by
ERA5 are used (152 of 527). The ERA5 estimations are
mostly unbiased for SD, with the annual IQR bias within
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Figure 8. Decadal trend of the annual bias in seasonal snow cover duration (SCD) of the NOAA CDR from 1992 to 2015 (a) per network and
(b) per station. Only significant trends (p < 0.05, Mann–Kendall) are shown. The MAM map was excluded due to the lack of an artificial
trend globally during that season.

[−0.1,0.1cm] in most regions. Large positive biases only re-
main over the mountains (Rocky Mountains, southern Rus-
sia ranges), which could be related to not assimilating IMS
snow above 1500 m. On the contrary, ERA5-Land con-
stantly overestimates SD in most regions, with a bias IQR of
[0.8,2.9cm]. Despite its finer resolution, ERA5-Land qual-
ity also degrades in the mountains. Regarding the absolute
error, ERA5 shows an RMSE below 1.5 cm in most stations
that increases up to 12 cm in mountain stations. On average,
82.6 % of daily ERA5 snow depth values meet the GCOS ac-
curacy requirements, while this number decreases to 10.5 %
for ERA5-Land.

In SCD, ERA5 presents a constant underestimation (IQR)
of around [−9.4,−5.5d], while ERA5-Land keeps overes-
timating [2.4,11.2 d]. As mentioned above, the SCD bias
strongly depends on the threshold used to convert SD to SC.
Both ERA5 and ERA5-Land use a threshold (5 cm) larger
than the one applied to the stations (2.5 cm). This could ex-
plain why ERA5 has a negative SCD bias despite having an
unbiased snow depth. Indeed, when the ERA5 threshold is
applied to the stations (Fig. A2), the ERA5 SCD bias is close
to zero in the three networks. We could be tempted to use
the same threshold for in situ and satellite data. However, the
thresholds applied by the products need to be validated as
well, and we can only do it by deriving independent thresh-
olds for the station measurements. In this study, we have used
RIHMI visual observations of snow cover in the station, but
other data sources such as high-resolution satellite imagery
could be used.

We investigated this issue further with a sensitivity anal-
ysis that evaluates how the SCD bias changes with different
snow depth to snow cover thresholds (Fig. A2). The magni-
tude of the SCD bias is similar between networks, suggesting
a good consistency between their measuring protocols. How-
ever, the magnitude of the SCD bias strongly varies between
products. When a threshold of 2.5 cm is used, the mean SCD

bias varies as follows: 24.8 d (NOAA CDR), 14.3 d (IMS),
8.0 d (ERA5-Land), and −6.7 d (ERA5). These differences
are the result of the different thresholds applied by the prod-
ucts, as well as their different snow depth biases (in the case
of reanalysis). Orsolini et al. (2019) already pointed out that
the different thresholds applied by reanalysis datasets were
one of the main limitations for inter-comparing them. The
sensitivity analysis also shows that changing the threshold
by 1 cm leads to changes in the annual SCD bias of around
2–3 d. These changes are constant between products but vary
between networks (ECCC= 2.8–4.3 dcm−1, GHCN= 1.8–
2.1 dcm−1, RIHMI= 2.6–3.2 dcm−1) due to the different
snow conditions in each region. Stations with many SD val-
ues near the threshold will be more affected by a change in
the threshold.

3.4 Snow cover trends in the Northern Hemisphere

Linear decadal trends in SD and SCD were calculated an-
nually and seasonally over the period 1955–2015 using data
from the ground stations (Fig. 10 and Table 3). The temporal
representativeness of the linear trends was further analyzed
by plotting the temporal evolution of the anomalies per spa-
tial region (Figs. A9 and A10).

The SD trends show large spatial variability. Signifi-
cantly negative trends are observed over Europe (Norway –
−0.9 cm per decade, central Europe – −0.1 cm per decade)
driven by a strong decrease in winter SD, particularly be-
tween 1980–1990. On the contrary, significantly positive
SD trends are observed in most of Russia, specifically over
the Ural region (+0.9 cm per decade), Siberia (+1.3 cm per
decade), and the Sea of Okhotsk (+1.7 cm per decade),
driven by a strong increase of both winter and spring snow
depth. These trends agree with those reported by Brown et
al. (2017) for the Russian Arctic over the 1966–2014 period
(SDmax, +0.7 cm per decade). However, as mentioned by
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Figure 9. Bias (product – station) in snow depth (SD) and snow cover duration (SCD) after the last ERA5 discontinuity (2005–2020). Stations
assimilated by ERA5 have been excluded.

Brown et al. (2017), a tipping point is observed around 2000
that reverses the SD increase during the latest years in some
Russian regions (e.g., European Russia, Ural region). Neg-
ative trends in SD are also observed in eastern USA and in
most of Canada (−0.9 to −1.6 cm per decade)

The SCD trends are more spatially homogeneous. A pre-
dominantly negative SCD trend of around [−2,−4 d per
decade] is observed globally, driven by a strong negative
trend during the melting season. The largest reductions in
annual SCD are observed over Europe (Norway – −6 d per
decade, central Europe – −2.9 d per decade, European Rus-
sia – −3.8 d per decade). In Russia, most regions experience
a decrease in annual SCD despite their positive SD trends
(Siberia – −2.3 d per decade, southern Siberia – −2.2 d per
decade). Only a few stations in the Ural region and the Sea of
Okhotsk show a longer snow season during the last 70 years.
When the trends are recalculated for the period 1981–2020,
an acceleration of the SCD decrease is observed as well as an
increasing importance of the later snow onset in the annual
SCD trends. Again, few stations in eastern USA show signif-
icant trends. The low number of significant trends compared
to that reported by Knowles (2015) could be explained by

a recent recovery in winter and spring SCD starting around
2000 (Fig. A10). Still, the few significant trends observed in
the USA are predominantly negative with some exceptions
around the Great Lakes that Knowles (2015) attributed to
an increased precipitation pattern. The SCD trends are also
consistently negative in most of Canada (−1.5 to −5.3 d per
decade), driven by negative DJF trends in coastal regions and
negative MAM trends in inland and polar regions.

The large spatial variability in SD trends is explained by
the non-linear interactions between temperature and precip-
itation (Brown and Robinson, 2011). At high latitudes, in-
creasing temperatures lead to increasing precipitation due to
a moister climate (Thackeray et al., 2019), but snowfall de-
pends on the precipitation phase as well. In relatively warmer
climates and maritime regions (e.g., central Europe, Scan-
dinavia, European Russia), negative SD trends could be re-
lated to a shift in the form of precipitation towards a rainfall-
dominated winter (Luomaranta et al., 2019). On the contrary,
in colder and drier climates such as Siberia, snow accumula-
tion is limited by moisture availability (Kunkel et al., 2016),
so the positive SD trends may be due to warmer and moister
weather (Bulygina et al., 2009) and/or to more extreme snow
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Figure 10. (a) Annual and (b) seasonal decadal trends in snow depth (SD) and snow cover duration (SCD) from 1955 to 2015 based on in
situ measurements. Only statistically significant trends (p value< 0.05, Mann–Kendall) are shown.

Figure 11. Annual (a) and seasonal (b) NH snow cover extent (SCE) [106 km2].
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events, which are more likely to occur below the freezing
point (Kunkel et al., 2016). Despite these heterogeneous SD
trends, SCD trends are consistently negative globally. The
SCD reductions from 1955 to 2015 are mainly driven by an
earlier melt that is strongly correlated with the increasing
spring temperatures amplified by the snow-albedo feedback
(Brown et al., 2017; Luomaranta et al., 2019; Bulygina et al.,
2009; Matiu et al., 2021). In regions such as Europe, both
SD and SCD are decreasing, with the trend towards shallow
snow depth amplifying the shorter snow season. In Russia,
spring SCD is also decreasing despite the positive trends in
SD. This means that the spring melt driven by warming tem-
peratures overrides any increase in snow accumulation dur-
ing winter.

Larger variability has been reported for SCD trends during
the snow onset season (Brown et al., 2017). However, as also
recently suggested by Mudryk et al. (2020), this study evi-
dences the increasing importance of negative SON trends in
regions such as Europe, Russia, and the Rocky Mountains,
where they have a higher impact than spring trends during
recent years.

The Northern Hemisphere presents an average annual SCE
of 23.9× 106 km2 (NOAA CDR) over the 1972–2020 pe-
riod (the common period between the three products). The
three products show an annual decrease in NH SCE (Fig. 11),
though the SCE trends should be interpreted cautiously, tak-
ing into account the trends and discontinuities discussed in
Sect. 3.2. The NOAA CDR is the product typically used for
assessing the NH SCE trends. It shows the smallest trend
(1972–2020) in annual SCE overall (−0.15× 106 km2 per
decade, −0.63 % per decade), which is driven by a sig-
nificant decrease in MAM (−0.61× 106 km2 per decade,
−2.13 % per decade) and JJA (−0.71× 106 km2 per decade,
−14.2 % per decade). These seasons are when most snow
melts, and again, these reductions are strongly related to the
increasing temperature and the snow-albedo amplification.
The small decrease in annual SCE compared to that in MAM
and JJA is explained by the SCE positive trends of +0.62
and +0.19× 106 km2 per decade in SON and DJF, respec-
tively. This is due to the artificial positive trend in SON and
DJF SCD described in Sect. 3.2.2. In this sense, Derksen
(2014) estimated that the artificial trend in October SCE for
this product could be around 1× 106 km2 per decade, which
would revert the sign of the SON trend. Other snow satellite
products such as JAXA’s GHRM5C (Hori et al., 2017) have
also reported negative trends of −0.94 and −0.39× 106 km2

per decade for SON and DJF, respectively, during 1980–
2020. Negative trends have been observed as well in SON
for the group of stations used in this study. All of this corrob-
orates the underestimation of the snow cover retreat in the
fall and winter seasons by the NOAA CDR product.

The ERA5-Land reanalysis has better stability than ERA5,
showing a small negative trend caused by the ERA5 atmo-
spheric forcing. This is somewhat corroborated in terms of
SCE, with ERA5-Land showing just a slightly smaller trend

in MAM than NOAA CDR (−0.54 vs. −0.61× 106 km2 per
decade). On the contrary, ERA5 strongly overestimates the
SCE decrease throughout all seasons, showing the largest
negative trend in annual SCE (−1.07×106 km2 per decade).
Among the three ERA5 discontinuities detected, the assim-
ilation in 2004 of IMS snow products has the largest im-
pact overall, leading to a large step discontinuity of around
−13 % (annual SCE) and −30 % (SON SCE) in just 1 year
(Fig. 11b). As discussed above, the large impact of IMS on
the onset and melting period is explained by how this prod-
uct is assimilated into the model. Overall, ERA5 should be
avoided to analyze the NH SCE trends before 2004. The
ERA5-Land reanalysis has better stability but still overesti-
mates the actual snow cover retreat.

4 Stability of the products for snow trend analysis

Global reanalyses appear as an increasingly appealing op-
tion for climate studies due to their long-term global cover-
age of multiple atmospheric, land, and ocean variables. Great
efforts have been made lately to extend backward global
4D-Var reanalyses with the release of ERA5 back extension
(1950–present) and JRA-55 (1958–present). The core of re-
analysis products is the data assimilation system that allows
combining numerical weather prediction (NWP) simulations
with in situ observations and satellite products. The number
of available observations has increased exponentially during
the latest years, improving the accuracy of reanalysis esti-
mations and bringing them closer to satellite-based products.
However, assimilating new observations creates a trade-off
between accuracy and stability. For applications requiring
high accuracy such as NWP initialization, more weight is
given to new observations in order to provide the best possi-
ble estimations. However, this can introduce temporal incon-
sistencies in the data records, as observed in ERA5. These
challenges increase even more when trying to extend back-
ward reanalysis before the satellite era.

In the case of snow, the present study reveals the high
dependence of the ERA5 accuracy on the assimilated snow
observations. After 2004, when ERA5 assimilates the IMS
snow product and more than 4000 snow stations, it clearly
outperforms ERA5-Land, a specific land reanalysis with a
much finer spatial resolution (9 vs. 31 km) but without di-
rect assimilation of observations. The strong dependence of
the bias on the assimilated observations created a significant
negative trend in ERA5 far larger than the 10 mm stabil-
ity limit of GCOS, particularly in winter. Therefore, the use
of ERA5 snow parameters for climate studies before 2004
should be avoided as it artificially overestimates the decrease
of all snow-related parameters (SD, SC, SCE). Correcting the
systematic bias may be possible (Mortimer et al., 2020) and
highly recommendable if using ERA5 before 2004. However,
the study shows that some changes in the data assimilation
also created discontinuities in the random error, whose cor-
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rection is not so simple. The potential implications for other
ERA5 snow-related parameters such as surface albedo or hy-
drological variables have not been evaluated in this study but
could be significant in snow-covered regions as well.

Satellite products generally provide more accurate and sta-
ble estimates, but their temporal coverage is limited to that
of the satellite instrument. Different satellite instruments can
be combined to extend the temporal coverage of the prod-
ucts which alters the stability of the product during the tran-
sition period. The probability of adding artificial trends in-
creases even more in products that assimilate a non-uniform
number of satellite data such as IMS or NOAA CDR, sim-
ilar to the reanalysis assimilation system. In any case, the
temporal coverage of most satellite products is limited to
the start of the satellite era. The NOAA CDR was able to
extend its coverage up to 1969 by combining observations
from different sensors and products with manual processing.
This makes it the longest satellite CDR available and the
one typically used in climate studies. However, the present
study corroborates the existence of a positive artificial trend
around [+5,+10d per decade] in SON (mostly over Russia)
and reveals the presence of a similar trend in DJF (over Eu-
rope and eastern USA). Both trends are most likely related to
an improved detection of the snow onset due to the increas-
ing number of satellite data ingested. This artificial trend ex-
plains the SCE recovery observed in SON and DJF, which
opposes the trends observed with other satellite products and
station measurements in these seasons. Therefore, NOAA
CDR estimations in these seasons should be corrected to ob-
tain reliable results (e.g., Hori et al., 2017). Moreover, us-
ing multi-datasets instead of a single product to calculate
snow cover trends should be preferred, as also suggested by
Mudryk et al. (2020). Note that despite multi-datasets being
much more robust, characterizing the stability of the individ-
ual products is still critical to obtain stable ensembles, par-
ticularly when different products share the same instabilities
(e.g., ERA5 and ERA5-Land).

5 Conclusions

This study evaluates the temporal stability of ERA5 (1950–
2020), ERA5-Land (1950–2020), and NOAA CDR (1968–
2020) for analyzing snow trends. Despite being some of the
longest satellite and reanalysis datasets available and being
extensively used for climate application, the study reveals the
existence of different artificial trends and discontinuities in
the three products that compromise their temporal stability.
In the reanalysis, the assimilation of more observations into
the model creates a trade-off between accuracy and stabil-
ity. ERA5 presents the worst temporal stability overall due to
three negative stepwise discontinuities caused by the assimi-
lation of new observations, but it shows the best accuracy af-
ter 2004 when the amount of assimilated data is the largest.

By contrast, ERA5-Land does not assimilate data showing
better stability but worse accuracy.

The NOAA CDR presents a positive artificial trend in
SON and DJF. These results provide another line of evidence
supporting the problematic fall trends in the NOAA CDR and
reveal that a similar trend appears in Europe of eastern North
America during winter. Despite the numerous studies high-
lighting the inconsistency of NOAA CDR fall trends with in
situ measurements and with other datasets, some studies keep
claiming a positive snow cover trend in fall based solely on
NOAA CDR data (e.g., Cohen et al., 2021). Using the NOAA
CDR without correction in SON and DJF should be avoided.
The NOAA CDR could still be valid after correction or in
other regions and seasons (e.g., MAM) not affected by artifi-
cial trends.

We also analyze the NH snow trends (1950–2020) based
on in situ measurements. The analysis shows a global de-
crease in SCD driven mostly by an earlier melt in spring
which is directly linked to the snow-albedo feedback. How-
ever, a decrease due to a later snow onset in fall is also
observed during the last years. In warmer regions such as
Europe, SCD decrease is aggravated by a decreasing snow
depth, which could be related to the decreasing amount of
precipitation as snowfall. In drier regions such as Russia,
SCD also decreases (except in the Ural region and the Sea of
Okhotsk) despite the increase in snow depth observed over
Russia due to warmer and moister weather.
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Appendix A: Additional figures and tables

Figure A1. Sensitivity analysis to determine (a) the exact year of step discontinuities and (b) the interval used to estimate the magnitude
of the discontinuity. (a) Change in ERA5 1SCDbias (before – after) when the step year varies from 1955 to 2015. (b) Change in ERA5
1SCDbias (before – after) during the 2004 discontinuity when the number of years used for its calculation (interval) is varied from 1 to 10.
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Figure A2. Sensitivity of the snow cover duration (SCD) bias on the snow depth to snow cover threshold used at the stations. (a) Variation
of the SCD bias (median± interquartile range) per product and network when changing the threshold from 0 to 10 cm by intervals of 2.5 cm.
(b) Spatial analysis of the rate of change [dcm−1] for ERA5. Both figures are derived with data from 2015.

Figure A3. Temporal stability of the bias (product – station) in snow depth (SD) per product and network during SON. Vertical lines show
the years when the potential discontinuities in each product occur.
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Figure A4. Temporal stability of the bias (product – station) in snow depth (SD) per product and network during DJF. Vertical lines show
the years when the potential discontinuities in each product occur.

Figure A5. Temporal stability of the bias (product – station) in snow depth (SD) per product and network during MAM. Vertical lines show
the years when the potential discontinuities in each product occur.
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Figure A6. Temporal stability of the bias (product – station) in snow cover duration (SCD) per product and network during SON. Vertical
lines show the years when the potential discontinuities/trends in each product occur/start.

Figure A7. Temporal stability of the bias (product – station) in snow cover duration (SCD) per product and network during DJF. Vertical
lines show the years when the potential discontinuities/trends in each product occur/start.
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Figure A8. Temporal stability of the bias (product – station) in snow cover duration (SCD) per product and network during MAM. Vertical
lines show the years when the potential discontinuities/trends in each product occur/start.
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Table A1. Change in the ERA5 bias (median with its 95 % CI) during 1977–1980, 1991–1992, and 2003–2004 discontinuities. The 4 years
before and after the discontinuity are compared (1bias= biasafter – biasbefore). Valid [%] depicts the percentage of stations that meet the
GCOS stability requirements.

SD SCD

1bias [cm] 1bias [%] Valid [%] 1bias [d] 1bias [%]

1977–1980

ECCC

Annual −3.5 [−5.1,−2.3] −49.8 [−67.1,−17.9] 9.1 −8.2 [−13.5,−3.8] −4.8 [−11.7,−1.4]
SON 0 [0,0] 0.6 [0,1.4] 75.8 1 [0.2,1.8] 3.9 [1.5,6.3]
DJF −8.5 [−9.8,−7.3] −126.4 [−228.1,−65.1] 0.0 −0.8 [−1.2,0] −1.8 [−6.2,0]
MAM −5.8 [−7.9,−4.6] −104.3 [−188.9,−71.6] 15.2 −7.5 [−7.8,−5] −22.6 [−36.4,−12.9]

GHCN

Annual −0.3 [−0.5,−0.2] −24 [−35.1,−16.3] 74.1 −7.5 [−10.2,−6] −22.5 [−27,−17.3]
SON 0 [0,0] 3.3 [1.8,6.9] 96.2 0.2 [0,0.2] 1.2 [0,2.8]
DJF −0.9 [−1.2,−0.7] −145.8 [−274.8,−92.4] 41.1 −6.4 [−7.4,−5.2] −152.3 [−216.7,−108]
MAM −0.1 [−0.2,−0.1] −13.7 [−25.8,−8.6] 73.4 −1 [−1.5,−0.8] −16.7 [−26.3,−11.1]

RIHMI

Annual −2.3 [−2.8,−1.8] −19.4 [−25.9,−14.9] 19.7 −2.5 [−3.5,−0.8] −1.5 [−2.1,−0.4]
SON −1 [−1.1,−0.9] −9.6 [−13,−7.5] 39.9 −0.3 [−0.8,−0.1] −1.1 [−2.5,−0.2]
DJF −5.8 [−6.2,−5.3] −64.3 [−82.7,−50.8] 10.6 0 [0,0] 0 [0,0]
MAM −1.8 [−2,−1.4] −19.7 [−25.3,−13.3] 20.7 −0.5 [−1.2,−0.2] −1.8 [−2.9,−0.3]

1991–1992

ECCC

Annual −0.1 [−0.2,0] −0.9 [−3,1.1] 84.8 2.2 [−3,3.5] 1.6 [−2,2.7]
SON 0 [0,0] 0.2 [0,1.1] 100.0 0.5 [0.2,0.7] 1.4 [0.5,2.1]
DJF 0 [−0.3,0.1] −0.7 [−4.9,1] 69.7 0 [0,0.5] 0 [0,1.5]
MAM −0.1 [−0.2,−0.1] −2.5 [−5.9,−0.5] 75.8 0 [−0.5,0.5] 0 [−0.9,1.3]

GHCN

Annual 0 [0,0] −0.1 [−3,4.4] 88.0 0.2 [−0.8,1] 0.6 [−1.8,2.7]
SON 0 [0,0] 0.3 [−0.6,1.6] 95.6 0.1 [0,0.2] 1.5 [0,3.2]
DJF 0 [−0.1,0] −2.9 [−9.9,4.6] 72.2 0 [0,0.5] 0.4 [0,5.6]
MAM 0 [0,0] 1.4 [−0.3,4.4] 83.5 0 [0,0] 0 [−1.3,0]

RIHMI

Annual −2.2 [−2.8,−1.6] −18 [−26.1,−12.9] 24.9 −10.2 [−12,−8.5] −6.3 [−7.7,−5.3]
SON −0.8 [−0.9,−0.6] −7.9 [−10,−5.9] 48.1 −1.8 [−2.2,−1.2] −5.4 [−7,−4.2]
DJF −4.8 [−5.7,−4] −52 [−67.8,−38.4] 12.2 0 [0,0] 0 [0,0]
MAM −3 [−3.5,−2.7] −34 [−45.8,−26.9] 17.5 −6.8 [−7.2,−6.2] −20.4 [−23.6,−17.9]

2003–2004

ECCC

Annual 0 [−0.2,0.1] −0.1 [−2.6,1.2] 93.9 −1 [−5.2,2] −0.8 [−3.3,1.7]
SON −0.1 [−0.1,0] −0.8 [−1.3,0.2] 93.9 0.1 [0,0.5] 0.5 [0,1.9]
DJF −0.1 [−0.5,0] −2.1 [−4.3,0] 69.7 −1.2 [−2.2,0] −3.3 [−6.2,0]
MAM 0.1 [−0.1,0.2] 1.2 [−0.8,2] 87.9 0 [−0.2,0.7] 0 [−1.2,1.6]

GHCN

Annual −0.2 [−0.3,−0.1] −16.8 [−25.1,−10.9] 79.2 −4.8 [−6.8,−2.8] −15.6 [−20.6,−9.1]
SON −0.1 [−0.1,−0.1] −30.1 [−51.9,−17.9] 94.8 −0.5 [−0.8,−0.5] −15.9 [−26.3,−10]
DJF −0.5 [−0.7,−0.4] −119.8 [−178.9,−85.4] 50.0 −2.8 [−3.8,−2] −48.2 [−75,−33.3]
MAM −0.1 [−0.2,−0.1] −47.8 [−68.4,−29.1] 76.6 −0.8 [−1.2,−0.5] −23.7 [−37.2,−14]

RIHMI

Annual −0.1 [−0.1,0] −0.6 [−1.3,−0.2] 74.1 −2.5 [−3.5,−1.2] −1.5 [−2.2,−0.6]
SON −0.2 [−0.2,−0.2] −3.2 [−4.3,−2.5] 78.8 −1 [−1.5,−0.5] −3.3 [−4.4,−2.1]
DJF 0 [−0.1,0] −0.5 [−1,−0.1] 58.2 0 [0,0] 0 [0,0]
MAM −0.1 [−0.1,0] −0.6 [−1.2,−0.3] 67.7 −0.5 [−0.8,−0.2] −1.2 [−1.8,−0.7]
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Table A2. Decadal trend (median with its 95 % CI) of the seasonal bias in snow cover duration (SCD) of the NOAA CDR (1992–2015)
per region. N shows the number of stations showing significant trends (p < 0.05, Mann–Kendall). Only statistically significant trends are
included in the median calculation.

SON DJF

Trend [d per decade] N Trend [d per decade] N

ECCC E – 2 (10.5 %) – 2 (10.5 %)
ECCC N – – – 2 (100 %)

GHCN USA-W – 3 (15 %) – 3 (15 %)
GHCN USA-E 3.2 [0.5,7.4] 7 (6.9 %) 7.1 [6,10.1] 20 (19.6 %)
GHCN NO – – – 2 (50 %)
GHCN EU – 2 (7.4 %) 8.3 [7.5,10.2] 6 (22.2 %)

RIHMI EU 8.8 [5.5,11] 14 (34.1 %) 6.3 [4.7,8.8] 19 (46.3 %)
RIHMI Ural 6.4 [5.8,7.1] 17 (31.5 %) 3.3 [2.1,7.5] 6 (11.1 %)
RIHMI Siberia 5.6 [4.6,7.3] 12 (29.3 %) – –
RIHMI S 8.6 [4.4,15.7] 6 (18.2 %) – –
RIHMI E 5.9 [5,10.4] 6 (30 %) – –
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Figure A9. Annual and seasonal anomalies in snow depth (SD) per spatial region compared to the 1955–2015 reference period. Thick gray
lines show the 10-year running mean.
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Figure A10. Annual and seasonal anomalies in snow cover duration (SCD) per spatial region compared to the 1955–2015 reference period.
Thick gray lines show the 10-year running mean.
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Data availability. All of the datasets used in the study are
freely available. ERA5 (https://doi.org/10.24381/cds.adbb2d47,
Hersbach et al., 2018) and ERA5-Land
(https://doi.org/10.24381/cds.e2161bac, Muñoz Sabater,
2019) were retrieved from the Copernicus Climate Data
Store (CDS, https://cds.climate.copernicus.eu/#!/home, last
access: 17 December 2021). NOAA CDR (NH SCE ver-
sion 4, https://doi.org/10.5067/P7O0HGJLYUQU, Brodzik
and Armstrong, 2013) and NOAA IMS daily 1 km
(https://doi.org/10.7265/N52R3PMC, U.S. National Ice Cen-
ter, 2008) are available at NSIDC (https://nsidc.org/data, last
access: 17 December 2021).

RIHMI snow measurements are available at http:
//meteo.ru/english/climate/snow1.php (Bulygina et al., 2021).
GHCN daily measurements (https://doi.org/10.1175/JTECH-
D-11-00103.1, Menne et al., 2012) can be retrieved from
https://www.ncei.noaa.gov/products/land-based-station/
global-historical-climatology-network-daily (last access:
16 June 2021). ECCC snow measurements are available from
the ECCC data catalogue (https://doi.org/10.18164/e75562d9-
625c-4dd8-9481-682d50adf2d7, Brown et al., 2021).

Author contributions. RU designed the experiment, performed the
analysis, and wrote the original manuscript. NG supervised the
study and reviewed the document. All authors have read and agreed
to the published version of the paper.

Competing interests. The contact author has declared that neither
of the authors has any competing interests.

Disclaimer. Publisher’s note: Copernicus Publications remains
neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Acknowledgements. The support provided by DG DEFIS, i.e. the
European Commission Directorate-General for Defence Industry
and Space, and the Copernicus Programme is gratefully acknowl-
edged.

Review statement. This paper was edited by Francesca Pellicciotti
and reviewed by Álvaro Ayala and one anonymous referee.

References

Albergel, C., Dutra, E., Munier, S., Calvet, J.-C., Munoz-Sabater,
J., de Rosnay, P., and Balsamo, G.: ERA-5 and ERA-Interim
driven ISBA land surface model simulations: which one
performs better?, Hydrol. Earth Syst. Sci., 22, 3515–3532,
https://doi.org/10.5194/hess-22-3515-2018, 2018.

Bell, B., Hersbach, H., Berrisford, P., Dahlgren, P., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Radu, R., Schepers, D., Simmons,
A., Soci, C., and Thépaut, J.-N.: ERA5 hourly data on single lev-

els from 1950 to 1978 (preliminary version), Tech. rep., Coper-
nicus Climate Change Service (C3S) Climate Data Store (CDS),
2020.

Bian, Q., Xu, Z., Zhao, L., Zhang, Y.-F., Zheng, H., Shi, C.,
Zhang, S., Xie, C., and Yang, Z.-L.: Evaluation and In-
tercomparison of Multiple Snow Water Equivalent Products
over the Tibetan Plateau, J. Hydrometeorol., 20, 2043–2055,
https://doi.org/10.1175/JHM-D-19-0011.1, 2019.

Blunden, J. and Arndt, D. S.: State of the Climate
in 2019, B. Am. Meteorol. Soc., 101, S1–S429,
https://doi.org/10.1175/2020BAMSStateoftheClimate.1, 2020.

Brodzik, M. and Armstrong, R.: Northern Hemisphere EASE-
Grid 2.0 Weekly Snow Cover and Sea Ice Extent, Version 4,
Tech. rep., Boulder, Colorado USA, NASA National Snow and
Ice Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/P7O0HGJLYUQU, 2013.

Brown, R., Vikhamar Schuler, D., Bulygina, O., Derksen, C., Luo-
jus, K., Mudryk, L., and Wang, L.: Arctic terrestrial snow cover,
in: Snow, Water, Ice and Permafrost in the Arctic (SWIPA) 2017,
Arctic Monitoring and Assessment Programme (AMAP), 25–55,
Oslo, Norway, ISBN 978-82-7971-101-8, 2017.

Brown, R. D. and Derksen, C.: Is Eurasian October snow
cover extent increasing?, Environ. Res. Lett., 8, 024006,
https://doi.org/10.1088/1748-9326/8/2/024006, 2013.

Brown, R. D. and Robinson, D. A.: Northern Hemisphere spring
snow cover variability and change over 1922–2010 including
an assessment of uncertainty, The Cryosphere, 5, 219–229,
https://doi.org/10.5194/tc-5-219-2011, 2011.

Brown, R. D., Smith, C., Derksen, C., and Mudryk, L.: Canadian
In Situ Snow Cover Trends for 1955–2017 Including an Assess-
ment of the Impact of Automation, Atmos. Ocean, 59, 77–92,
https://doi.org/10.1080/07055900.2021.1911781, 2021.

Bulygina, O. N., Razuvaev, V. N., and Korshunova, N. N.: Changes
in snow cover over Northern Eurasia in the last few decades,
Environ. Res. Lett., 4, 045026, https://doi.org/10.1088/1748-
9326/4/4/045026, 2009.

Bulygina, O. N., Groisman, P. Y., Razuvaev, V. N., and Kor-
shunova, N. N.: Changes in snow cover characteristics over
Northern Eurasia since 1966, Environ. Res. Lett., 6, 045204,
https://doi.org/10.1088/1748-9326/6/4/045204, 2011.

Bulygina, O. N., Razuvaev, V. N., and Aleksandrova, T. M.:
RIHMI snow survey routines, http://meteo.ru/english/climate/
snow1.php, last access: 16 June 2021.

Callaghan, T. V., Johansson, M., Brown, R. D., Groisman, P. Y.,
Labba, N., Radionov, V., Bradley, R. S., Blangy, S., Bulygina, O.
N., Christensen, T. R., Colman, J. E., Essery, R. L. H., Forbes,
B. C., Forchhammer, M. C., Golubev, V. N., Honrath, R. E.,
Juday, G. P., Meshcherskaya, A. V., Phoenix, G. K., Pomeroy,
J., Rautio, A., Robinson, D. A., Schmidt, N. M., Serreze, M.
C., Shevchenko, V. P., Shiklomanov, A. I., Shmakin, A. B.,
Sköld, P., Sturm, M., Woo, M.-K., and Wood, E. F.: Multiple
Effects of Changes in Arctic Snow Cover, AMBIO, 40, 32–45,
https://doi.org/10.1007/s13280-011-0213-x, 2011.

Chiu, J., Paredes-Mesa, S., Lakhankar, T., Romanov, P.,
Krakauer, N., Khanbilvardi, R., and Ferraro, R.: Inter-
comparison and Validation of MIRS, MSPPS, and IMS
Snow Cover Products, Adv. Meteorol., 2020, 4532478,
https://doi.org/10.1155/2020/4532478, 2020.

The Cryosphere, 17, 1023–1052, 2023 https://doi.org/10.5194/tc-17-1023-2023

https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.24381/cds.e2161bac
https://cds.climate.copernicus.eu/#!/home
https://doi.org/10.5067/P7O0HGJLYUQU
https://doi.org/10.7265/N52R3PMC
https://nsidc.org/data
http://meteo.ru/english/climate/snow1.php
http://meteo.ru/english/climate/snow1.php
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.1175/JTECH-D-11-00103.1
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://www.ncei.noaa.gov/products/land-based-station/global-historical-climatology-network-daily
https://doi.org/10.18164/e75562d9-625c-4dd8-9481-682d50adf2d7
https://doi.org/10.18164/e75562d9-625c-4dd8-9481-682d50adf2d7
https://doi.org/10.5194/hess-22-3515-2018
https://doi.org/10.1175/JHM-D-19-0011.1
https://doi.org/10.1175/2020BAMSStateoftheClimate.1
https://doi.org/10.5067/P7O0HGJLYUQU
https://doi.org/10.1088/1748-9326/8/2/024006
https://doi.org/10.5194/tc-5-219-2011
https://doi.org/10.1080/07055900.2021.1911781
https://doi.org/10.1088/1748-9326/4/4/045026
https://doi.org/10.1088/1748-9326/4/4/045026
https://doi.org/10.1088/1748-9326/6/4/045204
http://meteo.ru/english/climate/snow1.php
http://meteo.ru/english/climate/snow1.php
https://doi.org/10.1007/s13280-011-0213-x
https://doi.org/10.1155/2020/4532478


R. Urraca and N. Gobron: Temporal stability of long-term snow products 1051

Cohen, J., Agel, L., Barlow, M., Garfinkel, C. I., and White,
I.: Linking Arctic variability and change with extreme win-
ter weather in the United States, Science, 373, 1116–1121,
https://doi.org/10.1126/science.abi9167, 2021.

Derksen, C.: Validation of satellite derived snow cover data records
with surface networks and multi-dataset inter-comparisons, in:
LPVE 2014, Land Product Validation and Evolution, ESA/ES-
RIN, Frascati (Italy), 2014.

Dutra, E., Balsamo, G., Viterbo, P., Miranda, P. M. A., Bel-
jaars, A., Schär, C., and Elder, K.: An Improved Snow
Scheme for the ECMWF Land Surface Model: Descrip-
tion and Offline Validation, J. Hydrometeorol., 11, 899–916,
https://doi.org/10.1175/2010JHM1249.1, 2010.

ECMWF: CDS documentation, ERA5 back extension 1950–1978
(preliminary version): large bias in surface analysis over Aus-
tralia prior to 1970, https://confluence.ecmwf.int/display/CKB/
ERA5+back+extension+1950-1978+%28preliminary+version%
29%3A+large+bias+in+surface+analysis+over+Australia+
prior+to+1970, last access: 5 May 2021.

ESA: Satellite Snow Product Intercomparison and Evaluation Ex-
ercise (SnowPEx), https://snowpex.enveo.at (last access: 1 May
2021), 2020.

Estilow, T. W., Young, A. H., and Robinson, D. A.: A long-term
Northern Hemisphere snow cover extent data record for cli-
mate studies and monitoring, Earth Syst. Sci. Data, 7, 137–142,
https://doi.org/10.5194/essd-7-137-2015, 2015.

Frei, A., Tedesco, M., Lee, S., Foster, J., Hall, D. K., Kelly,
R., and Robinson, D. A.: A review of global satellite-
derived snow products, Adv. Space Res., 50, 1007–1029,
https://doi.org/10.1016/j.asr.2011.12.021, 2012.

GCOS: The Global Observing System for Climate: Implementation
Needs, Tech. rep., GCOS, No. 200, WMO, https://library.wmo.
int/index.php?lvl=notice_display&id=19838#.Y_iKooTMKUk
(last access: 1 June 2021), 2016.

Gelaro, R., McCarty, W., Suárez, M. J., Todling, R., Molod, A.,
Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Re-
ichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella,
S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G.-
K., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Par-
tyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D.,
Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective
Analysis for Research and Applications, Version 2 (MERRA-2),
J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-
0758.1, 2017.

Hall, D., Riggs, G., and Salomonson, V.: MODIS/Terra Snow
Cover 5-Min L2 Swath 500 m, Version 5, Tech. rep.,
Boulder, Colorado, USA, NASA National Snow and Ice
Data Center Distributed Active Archive Center [data set],
https://doi.org/10.5067/ACYTYZB9BEOS, 2006.

Helfrich, S. R., McNamara, D., Ramsay, B. H., Baldwin, T.,
and Kasheta, T.: Enhancements to, and forthcoming de-
velopments in the Interactive Multisensor Snow and Ice
Mapping System (IMS), Hydrol. Process., 21, 1576–1586,
https://doi.org/10.1002/hyp.6720, 2007.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A.,
Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Rozum,
I., Schepers, D., Simmons, A., Soci, C., Dee, D., and Thépaut,
J.-N.: ERA5 hourly data on single levels from 1959 to present,

Copernicus Climate Change Service (C3S) Climate Data Store
(CDS) [data set], https://doi.org/10.24381/cds.adbb2d47, 2018.

Hori, M., Sugiura, K., Kobayashi, K., Aoki, T., Tanikawa, T.,
Kuchiki, K., Niwano, M., and Enomoto, H.: A 38 year (1978–
2015) Northern Hemisphere daily snow cover extent prod-
uct derived using consistent objective criteria from satellite-
borne optical sensors, Remote Sens. Environ., 191, 402–418,
https://doi.org/10.1016/j.rse.2017.01.023, 2017.

Kendall, M.: Rank Correlation Methods, Charles Griffin & Co,
ISBN-13 978-0852641996, 1975.

Knowles, N.: Trends in Snow Cover and Related Quantities
at Weather Stations in the Conterminous United States, J.
Climate, 28, 7518–7528, https://doi.org/10.1175/JCLI-D-15-
0051.1, 2015.

Kobayashi, S., Ota, Y., Harada, Y., Ebita, A., Moriya, M., Onoda,
H., Onogi, K., Kamahori, H., Kobayashi, C., Endo, H., Miyaoka,
K., and Takahashi, K.: The JRA-55 Reanalysis: General Specifi-
cations and Basic Characteristics, J. Meteorol. Soc. Jpn. Ser. II,
93, 5–48, https://doi.org/10.2151/jmsj.2015-001, 2015.

Krinner, G., Derksen, C., Essery, R., Flanner, M., Hagemann, S.,
Clark, M., Hall, A., Rott, H., Brutel-Vuilmet, C., Kim, H., Mé-
nard, C. B., Mudryk, L., Thackeray, C., Wang, L., Arduini, G.,
Balsamo, G., Bartlett, P., Boike, J., Boone, A., Chéruy, F., Colin,
J., Cuntz, M., Dai, Y., Decharme, B., Derry, J., Ducharne, A.,
Dutra, E., Fang, X., Fierz, C., Ghattas, J., Gusev, Y., Haverd, V.,
Kontu, A., Lafaysse, M., Law, R., Lawrence, D., Li, W., Marke,
T., Marks, D., Ménégoz, M., Nasonova, O., Nitta, T., Niwano,
M., Pomeroy, J., Raleigh, M. S., Schaedler, G., Semenov, V.,
Smirnova, T. G., Stacke, T., Strasser, U., Svenson, S., Turkov,
D., Wang, T., Wever, N., Yuan, H., Zhou, W., and Zhu, D.:
ESM-SnowMIP: assessing snow models and quantifying snow-
related climate feedbacks, Geosci. Model Dev., 11, 5027–5049,
https://doi.org/10.5194/gmd-11-5027-2018, 2018.

Kunkel, K. E., Robinson, D. A., Champion, S., Yin, X., Estilow, T.,
and Frankson, R. M.: Trends and Extremes in Northern Hemi-
sphere Snow Characteristics, Current Climate Change Reports,
2, 65–73, https://doi.org/10.1007/s40641-016-0036-8, 2016.

Luojus, K., Pulliainen, J., Takala, M., Lemmetyinen, J., Mortimer,
C., Derksen, C., Mudryk, L., Moisander, M., Hiltunen, M.,
Smolander, T., Ikonen, J., Cohen, J., Salminen, M., Norberg, J.,
Veijola, K., and Venäläinen, P.: GlobSnow v3.0 Northern Hemi-
sphere snow water equivalent dataset, Scientific Data, 8, 163,
https://doi.org/10.1038/s41597-021-00939-2, 2021.

Luomaranta, A., Aalto, J., and Jylhä, K.: Snow cover trends
in Finland over 1961–2014 based on gridded snow
depth observations, Int. J. Climatol., 39, 3147–3159,
https://doi.org/10.1002/joc.6007, 2019.

Mann, H. B.: Nonparametric Tests Against Trend, Econometrica,
13, 245–259, https://doi.org/10.2307/1907187, 1945.

Matiu, M., Crespi, A., Bertoldi, G., Carmagnola, C. M., Marty, C.,
Morin, S., Schöner, W., Cat Berro, D., Chiogna, G., De Grego-
rio, L., Kotlarski, S., Majone, B., Resch, G., Terzago, S., Valt,
M., Beozzo, W., Cianfarra, P., Gouttevin, I., Marcolini, G., No-
tarnicola, C., Petitta, M., Scherrer, S. C., Strasser, U., Winkler,
M., Zebisch, M., Cicogna, A., Cremonini, R., Debernardi, A.,
Faletto, M., Gaddo, M., Giovannini, L., Mercalli, L., Soubey-
roux, J.-M., Sušnik, A., Trenti, A., Urbani, S., and Weilguni, V.:
Observed snow depth trends in the European Alps: 1971 to 2019,

https://doi.org/10.5194/tc-17-1023-2023 The Cryosphere, 17, 1023–1052, 2023

https://doi.org/10.1126/science.abi9167
https://doi.org/10.1175/2010JHM1249.1
https://confluence.ecmwf.int/display/CKB/ERA5+back+extension+1950-1978+%28preliminary+version%29%3A+large+bias+in+surface+analysis+over+Australia+prior+to+1970
https://confluence.ecmwf.int/display/CKB/ERA5+back+extension+1950-1978+%28preliminary+version%29%3A+large+bias+in+surface+analysis+over+Australia+prior+to+1970
https://confluence.ecmwf.int/display/CKB/ERA5+back+extension+1950-1978+%28preliminary+version%29%3A+large+bias+in+surface+analysis+over+Australia+prior+to+1970
https://confluence.ecmwf.int/display/CKB/ERA5+back+extension+1950-1978+%28preliminary+version%29%3A+large+bias+in+surface+analysis+over+Australia+prior+to+1970
https://snowpex.enveo.at
https://doi.org/10.5194/essd-7-137-2015
https://doi.org/10.1016/j.asr.2011.12.021
https://library.wmo.int/index.php?lvl=notice_display&id=19838#.Y_iKooTMKUk
https://library.wmo.int/index.php?lvl=notice_display&id=19838#.Y_iKooTMKUk
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.1175/JCLI-D-16-0758.1
https://doi.org/10.5067/ACYTYZB9BEOS
https://doi.org/10.1002/hyp.6720
https://doi.org/10.24381/cds.adbb2d47
https://doi.org/10.1016/j.rse.2017.01.023
https://doi.org/10.1175/JCLI-D-15-0051.1
https://doi.org/10.1175/JCLI-D-15-0051.1
https://doi.org/10.2151/jmsj.2015-001
https://doi.org/10.5194/gmd-11-5027-2018
https://doi.org/10.1007/s40641-016-0036-8
https://doi.org/10.1038/s41597-021-00939-2
https://doi.org/10.1002/joc.6007
https://doi.org/10.2307/1907187


1052 R. Urraca and N. Gobron: Temporal stability of long-term snow products

The Cryosphere, 15, 1343–1382, https://doi.org/10.5194/tc-15-
1343-2021, 2021.

Menne, M. J., Durre, I., Vose, R. S., Gleason, B. E., and Hous-
ton, T. G.: An Overview of the Global Historical Climatology
Network-Daily Database, J. Atmos. Ocean. Tech., 29, 897–910,
https://doi.org/10.1175/JTECH-D-11-00103.1, 2012.

Meredith, M., Sommerkorn, M., Cassotta, S., Derksen, C., Ekaykin,
A., Hollowed, A., Kofinas, G., Mackintosh, A., Melbourne-
Thomas, J., Muelbert, M. M. C., Othersen, G., Pritchard, H.,
and Schuur, E. A. G.: Polar regions, in: IPCC Special report
on the ocean and cryosphere in a changing climate, edited by:
Portned, H. O., Roberts, D., Masson-Delmotte, V., Zhai, P., Tig-
nor, M., Poloczanska, E., Mintenbeck, K., Alegria, A., Nicolai,
M., Okem, A., Petzold, J., Rama, B., and Weyer, N. M., Cam-
bridge University Press, Cambridge, UK and New York, NY, US,
https://doi.org/10.1017/9781009157964.005, 2019.

Mortimer, C., Mudryk, L., Derksen, C., Luojus, K., Brown, R.,
Kelly, R., and Tedesco, M.: Evaluation of long-term Northern
Hemisphere snow water equivalent products, The Cryosphere,
14, 1579–1594, https://doi.org/10.5194/tc-14-1579-2020, 2020.

Mortimer, C., Mudryk, L., Derksen, C., Brady, M., Luo-
jus, K., Venäläinen, P., Moisander, M., Lemmetyinen, J.,
Takala, M., Tanis, C., and Pulliainen, J.: Benchmark-
ing algorithm changes to the Snow CCI+ snow water
equivalent product, Remote Sens. Environ., 274, 112988,
https://doi.org/10.1016/j.rse.2022.112988, 2022.

Mudryk, L., Santolaria-Otín, M., Krinner, G., Ménégoz, M., Derk-
sen, C., Brutel-Vuilmet, C., Brady, M., and Essery, R.: Historical
Northern Hemisphere snow cover trends and projected changes
in the CMIP6 multi-model ensemble, The Cryosphere, 14, 2495–
2514, https://doi.org/10.5194/tc-14-2495-2020, 2020.

Mudryk, L. R., Derksen, C., Kushner, P. J., and Brown,
R.: Characterization of Northern Hemisphere Snow Water
Equivalent Datasets, 1981–2010, J. Climate, 28, 8037–8051,
https://doi.org/10.1175/JCLI-D-15-0229.1, 2015.

Mudryk, L. R., Kushner, P. J., Derksen, C., and Thackeray, C.:
Snow cover response to temperature in observational and cli-
mate model ensembles, Geophys. Res. Lett., 44, 919–926,
https://doi.org/10.1002/2016GL071789, 2017.

Muñoz Sabater, J.: ERA5-Land hourly data from 1981
to present, Tech. rep., Copernicus Climate Change
Service (C3S) Climate Data Store (CDS) [data set],
https://doi.org/10.24381/cds.e2161bac, 2019.

Orsolini, Y., Wegmann, M., Dutra, E., Liu, B., Balsamo, G., Yang,
K., de Rosnay, P., Zhu, C., Wang, W., Senan, R., and Arduini,
G.: Evaluation of snow depth and snow cover over the Ti-
betan Plateau in global reanalyses using in situ and satellite
remote sensing observations, The Cryosphere, 13, 2221–2239,
https://doi.org/10.5194/tc-13-2221-2019, 2019.

Peng, S., Piao, S., Ciais, P., Friedlingstein, P., Zhou, L., and Wang,
T.: Change in snow phenology and its potential feedback to tem-
perature in the Northern Hemisphere over the last three decades,
Environ. Res. Lett., 8, 014008, https://doi.org/10.1088/1748-
9326/8/1/014008, 2013.

Pirazzini, R., Leppänen, L., Picard, G., Lopez-Moreno, J. I., Marty,
C., Macelloni, G., Kontu, A., von Lerber, A., Tanis, C. M.,
Schneebeli, M., de Rosnay, P., and Arslan, A. N.: European In-
Situ Snow Measurements: Practices and Purposes, Sensors, 18,
7, https://doi.org/10.3390/s18072016, 2018.

Pulliainen, J., Luojus, K., Derksen, C., Mudryk, L., Lemmetyinen,
J., Salminen, M., Ikonen, J., Takala, M., Cohen, J., Smolan-
der, T., and Norberg, J.: Patterns and trends of Northern Hemi-
sphere snow mass from 1980 to 2018, Nature, 581, 294–298,
https://doi.org/10.1038/s41586-020-2258-0, 2020.

Robinson, D. A., Dewey, K. F., and Heim, R. R.: Global
Snow Cover Monitoring: An Update, B. Am. Meteo-
rol. Soc., 74, 1689–1696, https://doi.org/10.1175/1520-
0477(1993)074<1689:GSCMAU>2.0.CO;2, 1993.

Schwaizer, G., Keuris, L., Nemec, J., Metsamaki, S., and Luojus,
K.: Snow Cover Extent, Collection 1 km Northern Hemisphere,
Version 1.0., Tech. rep., Copernicus Global Land Service, 2020.

Schwarz, M., Folini, D., Hakuba, M. Z., and Wild, M.: Spatial Rep-
resentativeness of Surface-Measured Variations of Downward
Solar Radiation, J. Geophys. Res.-Atmos., 122, 13319–13337,
https://doi.org/10.1002/2017JD027261, 2017.

Solberg, R., Schwaizer, G., Nagler, T., Wunderle, S., Naegeli, K.,
Luojus, K., Takala, M., Pulliainen, J., Lemmetyinen, J., and
Moisander, M.: ESA CCI+ Snow ECV: Product User Guide,
version 2.0, Tech. rep., ESA, https://catalogue.ceda.ac.uk/uuid/
ef8eb5ff84994f2ca416dbb2df7f72c7 (last access: 4 June 2021),
2020.

Stocker, T., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.,
Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. (Eds.):
Climate Change 2013: The physical science basis. Contribution
of working group I to the Fift Assessment Report of the Inter-
governamental Panel on Climate Change, Cambridge University
Press, Cambridge, UK and New York, USA, ISBN 978-1-107-
05799-1, 978-1-107-66182-0, 2013.

Thackeray, C. W., Derksen, C., Fletcher, C. G., and Hall,
A.: Snow and Climate: Feedbacks, Drivers, and Indices
of Change, Current Climate Change Reports, 5, 322–333,
https://doi.org/10.1007/s40641-019-00143-w, 2019.

Urraca, R., Huld, T., Gracia-Amillo, A., Martinez-de Pison, F. J.,
Kaspar, F., and Sanz-Garcia, A.: Evaluation of global horizontal
irradiance estimates from ERA5 and COSMO-REA6 reanalyses
using ground and satellite-based data, Sol. Energy, 164, 339–354,
https://doi.org/10.1016/j.solener.2018.02.059, 2018.

U.S. National Ice Center: IMS Daily Northern Hemisphere Snow
and Ice Analysis at 1 km, 4 km, and 24 km Resolutions, Version
1, Boulder, Colorado USA. National Snow and Ice Data Center
[data set], https://doi.org/10.7265/N52R3PMC, 2008.

The Cryosphere, 17, 1023–1052, 2023 https://doi.org/10.5194/tc-17-1023-2023

https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.5194/tc-15-1343-2021
https://doi.org/10.1175/JTECH-D-11-00103.1
https://doi.org/10.1017/9781009157964.005
https://doi.org/10.5194/tc-14-1579-2020
https://doi.org/10.1016/j.rse.2022.112988
https://doi.org/10.5194/tc-14-2495-2020
https://doi.org/10.1175/JCLI-D-15-0229.1
https://doi.org/10.1002/2016GL071789
https://doi.org/10.24381/cds.e2161bac
https://doi.org/10.5194/tc-13-2221-2019
https://doi.org/10.1088/1748-9326/8/1/014008
https://doi.org/10.1088/1748-9326/8/1/014008
https://doi.org/10.3390/s18072016
https://doi.org/10.1038/s41586-020-2258-0
https://doi.org/10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
https://doi.org/10.1175/1520-0477(1993)074<1689:GSCMAU>2.0.CO;2
https://doi.org/10.1002/2017JD027261
https://catalogue.ceda.ac.uk/uuid/ef8eb5ff84994f2ca416dbb2df7f72c7
https://catalogue.ceda.ac.uk/uuid/ef8eb5ff84994f2ca416dbb2df7f72c7
https://doi.org/10.1007/s40641-019-00143-w
https://doi.org/10.1016/j.solener.2018.02.059
https://doi.org/10.7265/N52R3PMC

	Abstract
	Introduction
	Data and methods
	Snow products
	ERA5
	ERA5-Land
	NOAA CDR

	In situ snow measurements
	Spatial representativeness of in situ snow observations
	Validation of snow products
	Validation metrics

	Analysis of snow cover trends in the Northern Hemisphere

	Results and discussion
	Spatial representativeness of in situ snow measurements
	Temporal stability of the products
	ERA5 stepwise discontinuities
	NOAA CDR bias trend in fall and winter

	Spatial accuracy of the reanalyses after the last ERA5 discontinuity
	Snow cover trends in the Northern Hemisphere

	Stability of the products for snow trend analysis
	Conclusions
	Appendix A: Additional figures and tables
	Data availability
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Review statement
	References

