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Abstract. The retreat and acceleration of marine-terminating
outlet glaciers in Greenland over the past 2 decades have
been widely attributed to climate change. Here we present a
comprehensive annual record of glacier terminus positions in
northwest and central-west Greenland and compare it against
local and regional climatology to assess the regional sen-
sitivity of glacier termini to different climatic factors. This
record is derived from optical and radar satellite imagery
and spans 87 marine-terminating outlet glaciers from 1972
through 2021. We find that in this region, most glaciers
have retreated over the observation period and widespread
regional retreat accelerated from around 1996. The accelera-
tion of glacier retreat coincides with the timing of sharp shifts
in ocean surface temperatures, the duration of the sea-ice
season, ice-sheet surface mass balance, and meltwater and
runoff production. Regression analysis indicates that termi-
nus retreat is most sensitive to increases in runoff and ocean
temperatures, while the effect of offshore sea ice is weak.
Because runoff and ocean temperatures can influence termi-
nus positions through several mechanisms, our findings sug-
gest that a variety of processes – such as ocean-interface
melting, mélange presence and rigidity, and hydrofracture-
induced calving – may contribute to, but do not conclusively
dominate, the observed regional retreat.

1 Introduction

The Greenland Ice Sheet has lost significant mass over the
last few decades (Enderlin et al., 2014; Shepherd et al., 2020)
as many of its glaciers have retreated (Hill et al., 2017; Howat
and Eddy, 2011; King et al., 2020; Moon and Joughin, 2008;

Murray et al., 2015), and ice flow has accelerated (Joughin
et al., 2010; Moon et al., 2012; Rignot and Kanagaratnam,
2006). Recent Greenland ice loss has contributed to rates at
times approaching 1 mm a−1 of global sea-level rise (Shep-
herd et al., 2020), with the contribution from northwest and
central-west Greenland combined representing nearly half of
the cumulative contribution from Greenland to sea-level rise
since 1972 (Mouginot et al., 2019). Although surface mass
balance has dominated Greenland’s mass loss in the past
2 decades, over half of the mass loss in northwest and central-
west Greenland is currently due to ice discharge (Mouginot
et al., 2019), which has accelerated since 2000 in this region
(King et al., 2020).

Changes in ice discharge are often related to changes to
glacier terminus positions, with terminus retreat into deeper
water driving acceleration and upstream thinning (Howat et
al., 2008; Joughin et al., 2008b). Because of the relationship
between the terminus position and calving rate, initial per-
turbations that increase calving can trigger further glacier
retreat. While glacier retreat and acceleration are generally
linked to changes at the terminus, it remains unclear which
processes are most responsible for controlling perturbations
to calving rates and subsequent terminus retreat (Straneo et
al., 2013).

The recent acceleration and retreat of Greenland outlet
glaciers have been attributed to warmer ocean temperatures
(Fahrner et al., 2021; Holland et al., 2008; Howat et al., 2008;
Morlighem et al., 2016; Rignot et al., 2012; Slater et al.,
2019; Wood et al., 2021), to changes in the characteristics
of sea ice and mélange – icebergs bound by a sea-ice ma-
trix (Amundson et al., 2010; Carr et al., 2013; Cassotto et
al., 2015; Foga et al., 2014; Joughin et al., 2008a; Moon et
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al., 2015), and to increased melting and crevassing associ-
ated with warming air temperatures (Benn et al., 2007; Nick
et al., 2013; van der Veen, 1998). In turn, responses to these
forcings are modulated by geometric factors associated with
individual glaciers such as bed topography and fjord width
(Carr et al., 2015; Catania et al., 2018; Felikson et al., 2021;
Schild and Hamilton, 2013); for many glaciers, these mod-
ulating factors necessitate detailed records of terminus posi-
tion changes in order to identify the importance of different
forcing mechanisms on decadal-scale outlet glacier changes
across a large area.

Most previous studies of Greenland outlet glacier termi-
nus positions have been temporally or spatially limited. Some
studies cover the entire ice sheet for over a decade but map
termini only decadally or in non-consecutive years (Howat
and Eddy, 2011; Moon and Joughin, 2008). Other studies
map termini more frequently but only for a small sector of the
ice sheet (Bjørk et al., 2012; McFadden et al., 2011; Moon
et al., 2015) or for a few specific glaciers (Holland et al.,
2016; Joughin et al., 2008b; Larsen et al., 2016; Motyka et
al., 2017; Schild and Hamilton, 2013). Murray et al. (2015)
mapped terminus positions at high spatial and temporal res-
olutions but only for a single decade. More recent studies
have attempted to fill these observational gaps with ice-sheet-
wide analyses of annual terminus positions spanning multi-
ple decades (Fahrner et al., 2021; King et al., 2020; Wood et
al., 2021), although they come to differing conclusions about
the drivers of observed terminus retreat.

In this paper, we analyze glacier change at a high
spatiotemporal resolution by constructing a multi-decadal
(49 years) record of annual terminus positions for 87 marine-
terminating outlet glaciers in northwest and central-west
Greenland. This record allows us to identify the behavior of
individual glaciers as well as regional trends in the magni-
tude and timing of glacier retreat. We compare this regional
behavior with climate data – sea-surface and subsurface tem-
peratures; sea-ice concentration; and ice-sheet surface mass
balance, precipitation, melt, and runoff – to assess the relative
influence of different forcing mechanisms on multi-decadal
and annual terminus retreat in this sector of Greenland. It is
important to note that we do not account for the effect of
geometric factors such as bed topography on modulating the
retreat of individual glaciers, as we instead focus on terminus
retreat in connection with regional climate trends.

2 Data and methods

We used 455 synthetic aperture radar (SAR) mosaics and op-
tical satellite images to trace annual terminus positions for 87
marine-terminating outlet glaciers in northwest and central-
west Greenland (68.9 to 78.2◦ N) (Fig. 1) from 1972 through
2021.

2.1 Satellite images

We digitized terminus positions from SAR images acquired
by the European Copernicus Programme’s Sentinel-1A and
Sentinel-1B and the Canadian Space Agency’s Radarsat-1
satellites for 13 of the 49 years in our record. These radar
satellites are able to image the surface regardless of clouds
or darkness. For the most recent 7 years (2014/15 through
2020/21), we traced terminus positions in mosaics of Coper-
nicus Sentinel-1A and Sentinel-1B images (Joughin et al.,
2016a). These mosaics are typically created from images ac-
quired in the early February of their respective years and
have a 25 or 50 m product-dependent resolution. Radarsat-1
mosaics were used to trace terminus positions for six win-
ters (2000/01, 2005/06–2008/09, 2012/13) (Joughin et al.,
2015; Moon and Joughin, 2008). These mosaics are formed
from images collected from October through March and have
nominal resolutions of 20 m.

For the remaining 36 years in our record, we used im-
agery from all Landsat missions to map terminus positions.
We also used Landsat imagery to map individual glacier ter-
mini where they were missing from or indiscernible in the
SAR imagery. We prescreened images in the USGS Global
Visualization Viewer (GloVis) to confirm that glaciers of in-
terest were not obscured by clouds and that the images were
georeferenced well. We continued to use Landsat 7 images
after the instrument’s scan-line corrector failure in 2003 as
Landsat 5 images were typically unavailable over our study
area during this period, although we kept only images which
retained a sufficient number of data to map the terminus. In
those images, we digitized across the scan-line corrector gaps
when they crossed a glacier terminus (Supplement Fig. S1);
comparison of temporally close images with different data
gaps indicates that this method only marginally increases er-
rors. In all, the scan-line corrector gaps affected 348 termi-
nus traces (9.7 % of the dataset). Due to winter darkness, we
could not select images from the same time of year as the
SAR mosaics; instead, we chose images as close to winter as
possible, with a preference for spring over autumn to capture
a more winter-like state to reduce the effects of seasonal vari-
ation (Fig. 2). As a result, the majority of the Landsat images
we used were collected in spring (March–May). Because of
the difficulty in finding sunlit, cloud-free imagery, however,
we had to use data from other periods, so all months except
January and December are represented. For some glaciers
there are several years with missing data. The image reso-
lution ranges from 15 m (Landsat 8 panchromatic band) to
60 m (Landsat 1–5 Multispectral Scanner). We digitized ter-
mini using the panchromatic band for Landsat 7 and Land-
sat 8 and using a single band that provided high image con-
trast (typically band 2) for Landsat 1–Landsat 5.
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2.2 Terminus positions

Using ArcGIS, we manually traced annual terminus posi-
tions from the radar and Landsat imagery. This dataset builds
on a preexisting dataset covering six winters between 2000
and 2013 (Joughin et al., 2015; Moon and Joughin, 2008).
The study area ranges from Saqqarliup Sermia (68.9◦ N,
50.3◦W; ∼ 35 km southwest of Jakobshavn Isbræ) to Bamse
Gletsjer (78.2◦ N, 72.7◦W) (Fig. 1). Individual glacier names
and coordinates are detailed in Supplement Table S1. To fo-
cus our analysis on glaciers that produce substantial ice dis-
charge, we limited our analysis to marine-terminating out-
let glaciers that are at least ∼ 1.5 km wide at the terminus
and are flowing at a rate of at least ∼ 1000 m a−1. We traced
each glacier’s terminus position once per hydrological year
(1 September through 31 August; Ettema et al., 2009) in ev-
ery year for which suitable imagery was available. We used
winter or near-winter imagery whenever possible as indi-
cated by Fig. 2.

Errors in terminus position may arise from both the im-
agery used and the digitization process. The primary sources
of errors introduced by the image data are the uncertainties
in position after orthorectification and georeferencing. To re-
duce such errors, candidate images were compared with con-
trol images and discarded if they were noticeably offset or
distorted. Manual digitization also introduces errors, which
are exacerbated by poor image resolution and image artifacts
(such as shadows or an indistinct transition from glacier to
mélange) (Joughin et al., 2015). If a terminus position was
ambiguous in one image, it was flagged during tracing and
compared with close-in-time images from the same satellite
platform or other satellite platforms when possible. Digitiza-
tion errors are typically comparable to the image resolution;
for example, a 25 m error for a Landsat 7 image with a 30 m
resolution (Moon et al., 2015)

In addition to the errors associated with digitization of the
images, there is additional uncertainty introduced by sam-
pling seasonal variability at different times of year. For the
terminus positions mapped from Landsat imagery, it was not
possible to obtain sunlit and cloud-free images over each
glacier at the same time every year (Fig. 2). This timing vari-
ation complicates the year-to-year comparison at a glacier,
which might include seasonal variability in the terminus po-
sition. Such seasonal variability could produce some short-
term deviations in our data; for example, Moon et al. (2015)
found a mean annual terminus range of 610 m for a subset
of our study glaciers. However, the data collection season is
largely consistent across each of our glaciers (Fig. 2), and
because these seasonal errors are not independent, they tend
to cancel out over longer periods. Since we mostly focus on
decadal-scale trends, issues of seasonal sampling should not
greatly affect our results.

Figure 1. Map of study area, showing individual glacier locations
(white) and points where ocean data were acquired (orange, num-
bered). Glacier labels are (a) every 10th glacier, numbered, and
(b) specific glaciers named in the paper, abbreviated as follows:
Jakobshavn Isbræ (JI), Alianaatsup Sermia (AS), Sermeq Avan-
narleq (SA), Store Gletsjer (ST), Sermilik Isbræ (SI), Kangilleq
(KA), Kangerlussuup Sermia (KS), Rink Isbræ (RI), Upernavik Is-
strøm (UI), Naajarsuit Sermiat (NS), unnamed glacier no. 26 (26),
Alison Glacier (AL), unnamed glacier no. 36 (36), Kjer Gletsjer
(KJ), Kong Oscar Gletsjer (KO), unnamed glacier no. 55 (55), un-
named glacier no. 66 (66), Tracy Gletsjer (TR), Verhoeff Gletsjer
(VH), and Morris Jesup Gletsjer (MJ). Basemaps are (a) bed topog-
raphy from BedMachine Greenland V3 (Morlighem et al., 2017b,
a) and (b) ice-sheet velocity from MEaSUREs GIMP (Joughin et
al., 2016b, 2018a).

2.3 Glacier change measurements

We calculated glacier area change over time using the box
method (Moon and Joughin, 2008). Each glacier has a static,
open-ended reference box (polygon) that approximately de-
lineates the main region of ice flow. The box sides are
roughly parallel to ice flow, and the “back” of the box is per-
pendicular to ice flow at an arbitrary location up-glacier of
the extent of maximum observed terminus retreat (see exam-
ple in Fig. 3). Where a terminus trace intersects the open end
of the box, the polygon is closed, and the area of that polygon
represents the glacier’s reference area at that point in time.
Repeating this process for each terminus trace for a glacier
forms a time series of reference areas, from which we deter-
mine the annual area change. While the areas are arbitrarily
determined by the box size, the area differences between suc-
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Figure 2. Years in which a terminus position was observed (filled circles) for each glacier, colored by the season of the observation. If a
terminus position was not observed, an estimated position was interpolated (open circles) from prior and subsequent observations to use in
annual analyses. Glacier nos. 76–78 are not shown because they are not ice-sheet outlet glaciers and therefore are not included in this study.

cessive terminus traces represent the annual gain or loss of
area. By focusing on the area change between measurements
rather than the absolute area of each measurement, we can
ignore the arbitrariness of how the boxes are drawn, as well
as any small regions of stagnant ice that may be included
within the box boundaries. There is a small error associated
with these area-change measurements because the boxes do
not completely conform to the glacier sides.

As length change can provide a more intuitive measure of
retreat than area change, we determine the nominal length
change by scaling the area change by the average width of
the box to obtain an approximate length change. This mea-
surement should be interpreted as a proxy for length change
rather than an exact measurement. Compared to the center-
line method of measuring length change, this method is less
sensitive to uncertainties in the centerline position at the ter-
minus.

In years when no observations were made, we linearly
interpolated between the prior and subsequent observations
to estimate glacier length and area during the missing years
(Fig. 2). For glaciers with missing observations at the begin-
ning of the record, we did not interpolate prior to the first ob-
servation in the record. The largest temporal gap interpolated
is 9 years (1975/76 through 1983/84), at Sermeq Avannarleq
(no. 8). Most temporal gaps are in the 1970s and early 1980s,
with additional gaps into the 1990s for some high-latitude
glaciers, and there are no temporal gaps after 2002.

Because it is difficult to compare changes in area be-
tween glaciers of different sizes, we also determined the per-
cent area change over time for each glacier. For each in-

dividual glacier area time series, we normalized the mini-
mum observed glacier area to 0 and the maximum observed
glacier area to 1 and linearly scaled the other measured ar-
eas between those set points. This method normalizes ev-
ery glacier’s area change to the same 0–1 scale, allowing
straightforward comparison of size changes between differ-
ent glaciers. Because the equivalent length is simply a scaled
area, the results are identical for area and length.

To pinpoint the timing of changes in glacier area and
length, we performed a break-point analysis on the time se-
ries for each glacier. We fit each time series with a piecewise
linear function with two segments (Jekel and Venter, 2019);
the break point between the two segments corresponds to a
year in the time series that is the best fit for approximating
the time series as a two-segment piecewise linear function.
We performed an F test to determine whether the piecewise
linear function was statistically a better fit than a single lin-
ear regression and discarded any break points that were not
statistically significant (p < 0.05).

2.4 Climate data

Earlier work has shown that climate-related processes in-
cluding terminus ablation and undercutting (driven by ocean
warming) (Holland et al., 2008; Motyka et al., 2011; Slater
et al., 2019; Rignot et al., 2012; Wood et al., 2021), mélange
rigidity (driven by changes in ocean temperature, sea-ice
concentration, and/or runoff) (Carr et al., 2017; Joughin et
al., 2020; Moon et al., 2015; Sohn et al., 1998; Todd and
Christoffersen, 2014), and enhanced hydrofracture (driven
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by changes in runoff and surface mass balance) (Benn et al.,
2007; Nick et al., 2010) may affect terminus position. Hence,
we acquired several ice-sheet and oceanographic datasets in
order to compare our glacier terminus position changes with
climatic factors. For each variable and dataset, we considered
the annual and decadal mean values. For the ice-sheet vari-
ables, we considered the annual mean at a fixed location near
the front of each glacier, as well as the population annual
and decadal means. For the oceanographic data, due to lack
of reliable long-term data in narrow fjords, we used offshore
observations as a proxy for fjord conditions. We used eight
points offshore (Fig. 1), selected to be representative of clus-
ters of glaciers: Disko Bay, Uummannaq Fjord, Upernavik
Icefjord, south Melville Bay–Wilcox Head, central Melville
Bay, north Melville Bay–Cape York, Wolstenholme Bay–
Thule, and Inglefield Fjord (coordinates for each point are
detailed in Supplement Table S2).

Ice-sheet surface mass balance, snowfall, rainfall, melt-
water production, and runoff were extracted from the Mod-
èle Atmosphérique Régional (MAR), Version 3.11, on a
6 km× 6 km grid over the period 1979–2020 (Fettweis et al.,
2017).

Sea-surface temperatures came from the NASA JPL Es-
timating the Circulation and Climate of the Ocean (ECCO)
consortium ocean circulation model, Version 5 (Forget et al.,
2015; Zhang et al., 2018), on a 1/3◦× 1/3◦ grid over the
period 1992–2017, and the merged Hadley-OI sea-surface
temperature and sea-ice concentration dataset (Hurrell et al.,
2008; Shea et al., 2020), on a 1◦× 1◦ grid over the period
1972–2020.

We also obtained subsurface temperatures from ECCO for
most of our study area. In the Disko Bay area we used field
observations from the ICES Dataset on Ocean Hydrography
(ICES, 2014), collected over the period 1977–2016 by the
Greenland Institute of Natural Resources. For both datasets,
subsurface temperatures were averaged over the lower 60 %
of the water column in order to capture warm water at depth
while excluding the near-surface mixed layer. For the ECCO
data, we applied a temperature correction to bring the data in
line with Wood et al. (2021) (see Supplement).

Sea-ice concentration came from the merged Hadley-OI
dataset, as well as the NOAA/NSIDC Climate Data Record
of Passive Microwave Sea Ice Concentration, Version 3
(Meier et al., 2017; Peng et al., 2013), on a 25 km× 25 km
grid over the period 1978–2019. For the sea-ice concentra-
tion, we calculated the annual duration of the period when
sea-ice concentration exceeds 15 %, as well as the seasonal
mean sea-ice concentration.

3 Results

We produced a comprehensive multi-decadal dataset of ter-
minus positions for glaciers in our study area and collected

Figure 3. Illustration of terminus traces and box method for Kjer
Gletsjer (no. 42). Each trace intersects the glacier’s box (green) to
form a closed polygon. The areas of sequential polygons are differ-
enced to create a time series of glacier area change. The basemap is
a Sentinel-1 SAR mosaic from 4–9 February 2020.

climate data both near the termini of these glaciers and in the
ocean offshore of clusters of these glaciers.

3.1 Terminus positions

We created a dataset of 3606 annual terminus positions for
our 87 selected glaciers from 1972/73 through 2020/21 (see
example in Fig. 3). The median number of annual observa-
tions per glacier is 41, and nearly all glaciers were observed
in 38 to 46 of the 49 years examined. Only three glaciers
have fewer (33–34) observations; these glaciers are located
just south of Thule Air Base and have limited imagery avail-
able in the 1980s and early 1990s. After interpolating area
changes between glacier observations, the first year with ei-
ther an observation or an interpolation available for each
glacier is 1977/78. Therefore, our glacier analyses start in
this year except where noted.

3.1.1 Terminus behavior

The majority of the glaciers in our study area retreated be-
tween 1977 and 2021. The cumulative area loss of all of these
glaciers is 1067 km2, equivalent to a cumulative retreat of
287 km. The individual area and length changes are plotted
in Fig. 4 with glaciers with the greatest change broken out
separately. We identify these dominant glaciers as those with
a net change falling more than 2 standard deviations beyond
the population mean, which yields four glaciers that domi-
nate the area change: Jakobshavn Isbræ (no. 3;−130.9 km2),
Alison Glacier (no. 35; −59.4 km2), Kjer Gletsjer (no. 42;
−81.5 km2), and Tracy Gletsjer (no. 81; −58.7 km2). These
glaciers together are responsible for 31.0 % of the total area
loss. Five glaciers dominate the length change: Jakobshavn
Isbræ (−16.9 km), Alison Glacier (−14.7 km), Kjer Gletsjer
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(−14.7 km), Tracy Gletsjer (−14.0 km), and one unnamed
glacier (no. 36; −11.1 km). These glaciers are cumulatively
responsible for 24.9 % of the total retreat. For the remain-
ing glaciers, the mean area change is−8.9 km2 and the mean
length change is −2.6 km. Net area and length changes for
individual glaciers are detailed in Supplement Table S3.

A total of 15 glaciers were stable in that the net changes in
area were within 2 standard deviations of their respective ob-
served interannual variability, and no glaciers advanced sig-
nificantly over the observation period. The 15 stable glaciers
are as follows: Alianaatsup Sermia (no. 7); Sermeq Avan-
narleq (no. 8); Store Gletsjer (no. 9); Sermilik (no. 11);
Kangilleq (no. 12); Kangerlussuup Sermia (no. 16); Rink
Isbræ (no. 17); Upernavik Isstrøm (no. 21); Naajarsuit Ser-
miat (no. 25); Kong Oscar Gletsjer (no. 51); Verhoeff Glet-
sjer (no. 86); Morris Jesup Gletsjer (no. 87); and unnamed
glacier nos. 26, 55, and 66.

3.1.2 Timing of change

Because a small number of glaciers tend to dominate the
overall trends in glacier changes, we scaled each glacier’s
length and area to a 0–1 scale as described above in order
to consistently compare the relative timing of each glacier’s
behavior (Fig. 5a). The resulting data are noisy, so to bet-
ter identify overall trends, we computed the mean and stan-
dard deviation of the scaled glacier changes (blue overlay in
Fig. 5a). Of the observed mean size change (area or equiv-
alent length), ∼ 4 % occurs each decade before 1996 and
∼ 31 % occurs each decade after 1996. The population of
glaciers notably readvanced in 2017 and 2018 but began to
retreat again in 2019.

We performed a break-point analysis (see Sect. 2.3) for
each glacier’s area time series (Fig. 5b). The step change in
retreat rates in around 1996 for the normalized time series
is consistent with the time series break points for individual
glaciers. The most common break-point years were 1996/97
and 1997/98, with additional smaller peaks in break points
in the mid-1990s and mid-2000s. The break-point years for
each glacier are detailed in Supplement Table S3.

3.2 Climate data

All of the climate variables that we surveyed showed long-
term trends consistent with regional climate warming. Most
of these variables, in most of the locations that we sampled,
also showed a sharp change in their long-term trends between
the 1990s and 2000s.

Figure 6 summarizes the data from the MAR climate
model. While there is considerable interannual variability,
the data indicate a net decrease in surface mass balance
(Fig. 6a) and a net increase in both meltwater production
(Fig. 6b) and runoff (Fig. 6c), with corresponding increases
in the annual number of meltwater production days (Fig. 6d)
and runoff days (Fig. 6e), that have occurred since the

late 1970s. The mean surface mass balance was steady in
the 1980s and 1990s but dropped by 0.48 m a−1 between
the 1990s and the 2000s, primarily due to substantial in-
creases in meltwater production (+0.42 m a−1) and runoff
(+0.48 m a−1). By contrast, there were only small changes to
the mean snowfall (−0.01 m a−1; Fig. 6f) and the mean rain-
fall (+0.02 m a−1; Fig. 6g) from the 1980s to the 2010s. For
the 2010s, while the annual surface mass balance anomaly
was positive in 2013, 2017, and 2018, it reached its lowest
values for the full record in 2019 and 2020. These extremes
are reflected in coincident meltwater production and runoff
anomalies. For this decade as a whole, the decadal mean sur-
face mass balance anomaly is slightly more negative than that
of the 2000s and the decadal mean meltwater production and
runoff continued to increase.

Like the mean meltwater production and runoff, the mean
number of melt days (Fig. 6d) and runoff days (Fig. 6e) in-
creased between the 1990s and the 2000s by 7 and 12 d, re-
spectively. However, instead of continuing to increase in the
2010s, the number of melt and runoff days decreased, sug-
gesting that the net increase in meltwater production and
runoff was due to more intense melt events rather than a
greater number of melt events.

Figure 7a shows that Disko Bay warmed by between
0.21 ◦C (ICES) and 0.69 ◦C (ECCO) between the 1990s
and 2000s and cooled in 2016–2017 (the final years of
the two subsurface temperature datasets). North of Disko
Bay (Fig. 7b–h), the decadal subsurface ocean temperatures
followed a continuously increasing trend at every location
we sampled. The temperature warmed substantially (0.79–
1.07 ◦C) between the 1990s and 2000s at each of these lo-
cations, with a lesser magnitude of warming (0.01–0.45 ◦C)
between the 2000s and the 2010s. The temperature trends,
especially between the 1990s and the 2000s, are largely im-
posed by the corrections from Wood et al. (2021) (see Sup-
plement).

Figure 8 shows that sea-surface temperatures (SST) were
relatively steady in the 1970s and 1980s. At some locations
the SSTs dipped slightly in the 1990s, followed by a sharp
rise (0.57–0.78 ◦C from ECCO, 0.33–0.81 ◦C from Hadley-
OI) in SSTs in the 2000s at all sites. SSTs in the 2010s were
slightly warmer or cooler than in the 2000s, depending on the
location and data source, but remained consistently above the
pre-2000s temperatures.

Figure 9 shows that the annual duration of the sea-ice sea-
son (defined as when sea-ice concentration exceeds 15 %)
has shortened since the 1970s. In particular, from Upernavik
Icefjord north to Wolstenholme Bay (Fig. 9c–g), while the
decadal mean sea-ice season length was relatively steady
from the 1970s through the 1990s, it decreased by 1 to
2 months between the 1990s and the 2000s and remained
relatively steady at the new shorter duration in the 2000s and
2010s. This pattern is borne out in the seasonal sea-ice con-
centration as well at many locations (Supplement Figs. S2–
S5).
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Figure 4. Cumulative (a) area change and (b) length change for large glaciers that dominate the total observed change. Glacier changes
in each plot are labeled using the abbreviation scheme in Fig. 1. The color map follows the order of the glaciers (from south to north), so
glaciers with similar colors are spatially closer together. For all other glaciers, cumulative (c) area change and (d) length change are provided
but not distinguished by glacier. The final net (e) area change and (f) length change are reported as histograms.

3.3 Regression analysis

We conducted a suite of multiple linear regressions of key cli-
mate variables against terminus retreat (Table 1), using data
from 1992–2017, where we have data available for all vari-
ables. We ran two cases with all variables included: one with
the corrected ECCO deepwater temperatures and one with
the original uncorrected ECCO deepwater temperatures. The
remaining cases systematically drop one of the variables at a
time and then include only one type of variable (ocean tem-
peratures, sea ice, runoff). For each case, we report the sen-

sitivity of terminus retreat to each climate variable with 1σ
errors, as well as the R2 value of the regression.

While it is difficult to interpret the results because of mul-
tiple correlations between the different parameters, it is clear
that runoff has the dominant effect. Overall, terminus retreat
appears to be most sensitive to runoff, moderately sensitive
to ocean temperatures, and least sensitive to sea ice. For each
case, the R2 value is small, likely due to large interannual
variability in the climate variables. When we drop runoff
from the regression, the R2 value drops by 0.098, suggest-
ing that runoff accounts for ∼ 10 % of the variance in ter-
minus sensitivity. Aside from runoff, dropping any individ-
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Figure 5. Break-point analysis to identify the onset of increased terminus retreat rates. (a) Glacier cumulative area change is normalized
such that for each glacier the greatest observed extent is 1 and the smallest observed extent is 0 so that glaciers of all sizes are placed on a
common scale. Each glacier’s cumulative change is then approximated as a two-segment piecewise linear function, and for cases where the
piecewise linear function is statistically better than a linear regression, we compute (b) a histogram of the break-point year between the two
segments.

ual variable seems to have little effect. Although dropping
ocean temperatures (surface and deepwater) from the regres-
sions has a small effect, keeping only ocean temperatures ac-
counts for about half as much variance (0.094) as keeping
only runoff (0.186). The sea-ice parameter sensitivities are
not significantly different from zero, and the effect of drop-
ping them is weak.

4 Discussion

Our measurements (Fig. 5) show a multi-decadal trend of
regional glacier retreat with a step change in the terminus
retreat rate from around 1996. Several mechanisms have
been proposed as drivers of outlet glacier retreat, including
ocean-warming-induced terminus ablation and undercutting,
mélange rigidity, and enhanced hydrofracture, all of which
can affect calving (Straneo et al., 2013). All of these mecha-
nisms are tied to climatic warming in some sense, whether
due to rising air or ocean temperatures, and associated
changes in meltwater production, runoff, and sea-ice concen-
tration. Our observed step change in terminus retreat rate was
approximately coincident with sharp increases in meltwater
production (22 %; Fig. 6b), runoff (26 %; Fig. 6c), deepwater
temperature (0.21–1.07 ◦C; Fig. 7), and sea-surface temper-
ature (0.33–0.81 ◦C; Fig. 8) and a sharp decrease in the du-
ration of the sea-ice season (1–2 months; Fig. 9). Thus, any
or all processes related to these anomalies could have con-
tributed to the terminus retreat rates. Multiple linear regres-
sions suggest that runoff is the dominant contributor to ter-
minus retreat, with ocean temperatures accounting for much
of the remaining variance. Offshore sea ice has a small and
likely negligible effect.

4.1 Observations of regional retreat

The timing of our observed step change in the terminus re-
treat rate is consistent with previous studies of northwest
and/or central-west Greenland that identified accelerated
glacier retreat (Carr et al., 2017; Catania et al., 2018; Fahrner
et al., 2021; Howat and Eddy, 2011; Wood et al., 2021) and
ice speedup and discharge (Joughin et al., 2018b; King et
al., 2020) beginning in the middle to late 1990s. Nearly all
glaciers in our study region retreated between the onset of
this step change and the end of our observations in 2021, in
line with other observations of sustained retreat in the 21st
century (Bunce et al., 2018; Fahrner et al., 2021; Howat and
Eddy, 2011; Murray et al., 2015). Howat and Eddy (2011)
found that between 2000 and 2010, nearly 100 % of glaciers
in northwest Greenland retreated; although we considered a
larger set of glaciers, we found that 85 % of our glaciers re-
treated and 15 % were stable over the same time period. Be-
tween 2010 and 2020, 74 % of glaciers retreated and 22 %
were stable. In both decades, 69 % of glaciers retreated and
9 % were stable. Overall, between 2000 and 2020, 86 % of
glaciers retreated and 14 % maintained stable terminus posi-
tions.

We observed a brief period of regional advance in 2017
and 2018, which was negated by regional retreat in 2019
(Fig. 5a, b). This broad pattern of readvance coincides
with the readvance of Jakobshavn Isbræ in 2017 and 2018
(Khazendar et al., 2019); however, while Jakobshavn Isbræ
remained in a relatively advanced position in 2019 and 2020
and retreated in 2021 (Fig. 4a, b), the region as a whole be-
gan to retreat again in 2019. The regional behavior is coinci-
dent with a sustained negative runoff and meltwater produc-
tion anomaly (and positive surface mass balance anomaly)
in 2017 and 2018 with values near the 20th-century mean
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Figure 6. Annual and decadal mean anomaly of (a) surface mass balance, (b) meltwater production, (c) number of melt days, (d) runoff,
(e) number of runoff days, (f) snowfall, and (g) rainfall, from the MAR climate model, averaged over all glacier fronts in the study area. The
mean for each anomaly is reported in each panel.

anomaly. This negative anomaly was followed by the strong
positive anomalies in the record in 2019 and 2020 (Fig. 5a).
Although we lack sufficient ocean temperature or sea-ice
data during this period to assess a relationship between those
factors and regional glacier behavior, our regression analysis
indicates that runoff anomalies have the strongest effect on
terminus position.

4.2 Terminus melting

Ocean subsurface warming and surface warming in Baffin
Bay and adjacent fjords have been cited as contributors to re-
gional glacier retreat (Rignot et al., 2012; Slater et al., 2019;

Wood et al., 2021) as well as to retreat for individual glaciers
(Holland et al., 2008; Khazendar et al., 2019; Motyka et al.,
2011; Rignot et al., 2010). Warmer ocean water increases
melt at the calving face, and, in conjunction with subglacial
discharge plumes, subsurface warming undercuts the termi-
nus (Motyka et al., 2013; Slater et al., 2015, 2017), which
could enhance calving (How et al., 2019; Luckman et al.,
2015; Morlighem et al., 2019; Rignot et al., 2015).

Wood et al. (2021) found that ocean thermal forcing
switched from a stable period to one of rapid warming be-
tween 1997 and 1998, consistent with the timing of the sharp
step change in glacier retreat rate we observed. Based on the
same ocean dataset, we found that ocean subsurface temper-
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Figure 7. Annual and decadal mean deepwater (bottom 60 %) ocean temperature anomaly from ECCO (blue) and ICES (green). Each panel
corresponds with an ocean point in Fig. 1. The mean for each anomaly is reported in each panel. The “decadal” means are not taken over the
entire decade in the 1990s (for ECCO) and 2010s due to lack of data.

atures increased an average of 0.90 ◦C coincident with our
observed step change in glacier retreat rate (Fig. 7) and to-
gether with sea-surface temperatures were moderately asso-
ciated with terminus retreat. Wood et al. (2021) identified
deep glaciers sitting in warmer water as those that are re-
treating the most. Terminus response, however, tends to scale
non-linearly with depth, and deeper termini should be more
responsive to any change that induces retreat (Schoof, 2007).

As evidence of this effect, we note the strong response to
seasonal perturbations on three of Greenland’s deepest outlet
glaciers (Jakobshavn, Kangerlussuaq, and Helheim), which
is large compared to the degree of melting at the terminus
(Joughin et al., 2020; Kehrl et al., 2017). Thus, irrespective
of the forcing that caused the initial perturbation, a greater
response would be expected for the deeper glaciers (> 100 m
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Figure 8. Annual and decadal mean sea-surface temperature anomaly from ECCO (blue) and Hadley-OI (orange). Each panel corresponds
with an ocean point in Fig. 1. The mean for each anomaly is reported in each panel.

depth), whether the forcing is due to ocean melting or some
other process.

Similarly to ocean subsurface temperatures, sea-surface
temperatures averaged over all of our subregions also in-
creased (0.58 ◦C) in concert with accelerated glacier retreat
(Fig. 8). Fahrner et al. (2021) found a significant relation-
ship between sea-surface temperatures and terminus change
in northwest Greenland, whereas Murray et al. (2015) found
no relationship between retreat and sea-surface temperature

in this region. Elsewhere in Greenland, warming sea-surface
temperatures have been linked with rapid terminus retreat
(Howat et al., 2008).

4.3 Mélange rigidity

Models indicate that the absence of a rigid mélange may be
more important than ocean-driven melting of the terminus
in enhancing glacier retreat (Todd and Christoffersen, 2014).
Observations show a correlation between terminus change
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Figure 9. Annual duration of sea-ice season (when sea-ice concentration is greater than 15 %) from Hadley-OI (orange) and NOAA (purple).
Each panel corresponds with an ocean point in Fig. 1.

and sea-ice and mélange conditions (Carr et al., 2017; Moon
et al., 2015; Sohn et al., 1998) and that reduced sea-ice and
mélange formation could have triggered retreat at several
Greenland glaciers (Amundson et al., 2010; Howat et al.,
2010; Joughin et al., 2008a; Sohn et al., 1998). The pres-
ence of a rigid mélange can exert sufficient force to inhibit
calving, facilitating seasonal glacier advance (Amundson et
al., 2010; Cassotto et al., 2015; Cook et al., 2021; Reeh et al.,
2001; Robel, 2017). We observed a sharp reduction in both
the duration of the sea-ice season (Fig. 9) and sea-ice con-

centrations (Supplement Figs. S2–S5), coincident with a step
change in the regional glacier retreat rate in 1996; however,
our regression analysis indicated that offshore sea-ice con-
ditions have only a weak connection with terminus retreat.
This suggests that the effect of offshore sea ice on terminus
retreat is weak, although we note that the data we sampled
are an imperfect proxy for near-terminus sea-ice conditions.

Runoff increases and ocean warming are both coincident
with terminus retreat. While these factors also contribute to
terminus melt, the majority of the ocean heat in the fjords
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goes into melting icebergs (thus weakening mélange) rather
than the terminus face (Moon et al., 2018; Mortensen et
al., 2020). Moreover, the runoff-enhanced iceberg melting
lags discharge, causing iceberg melt to peak in late summer
and early autumn (Moon et al., 2018). At least for Jakob-
shavn Isbræ, reductions in mélange rigidity appear to cor-
respond to periods of warmer temperatures at depth in the
fjord (Joughin et al., 2020). Warmer sea-surface tempera-
tures, although unlikely to contribute to submarine under-
cutting of the terminus, may also inhibit sea-ice formation
and reduce mélange rigidity. Additionally, the observed in-
crease of 26 % in runoff and 11 % in the number of runoff
days (Fig. 6c, e), coincident with the observed step change
in terminus retreat rates, may have seasonally contributed to
more mobile mélange near the terminus. Thus, the combi-
nation of increased runoff, sea-surface temperature, and sub-
surface temperature together suggests a reduction in mélange
presence and rigidity that might have increased calving and
retreat.

4.4 Enhanced hydrofracture

In addition to reducing mélange rigidity, increased meltwa-
ter production and runoff could also increase hydrofracture-
induced calving. Crevasses filled with surface melt penetrate
deeper than dry crevasses (van der Veen, 1998; Weertman,
1973), and if a crevasse near the terminus penetrates the full
thickness of the ice, it can cause calving (Nick et al., 2010;
Sohn et al., 1998). We observed a sustained 26 % increase in
runoff (Fig. 6c) coincident with accelerated glacier retreat in
1996, which could contribute to increased filling of surface
crevasses and subsequent hydrofracture, which would facil-
itate greater calving and retreat. Although runoff remained
high in the 2010s, the duration of the runoff season decreased
by 6 d (Fig. 6e) while sustained glacier retreat continued.
These results suggest that to the extent that hydrofracture
may have contributed to retreat, it is through increased runoff
volume rather than seasonal duration.

5 Conclusions

We have built a comprehensive record of annual terminus
positions for 87 marine-terminating outlet glaciers in north-
west and central-west Greenland from 1972 through 2021.
The majority of these glaciers retreated and lost area over the
observation period, with retreat accelerating after 1996. We
observed a brief regional readvance in 2017 and 2018, which
was offset by losses in 2019. Ice-sheet climate data indicate
that surface mass balance, meltwater production, and runoff
increased substantially between the 1990s and 2000s, coin-
cident with accelerated glacier retreat. Similarly, in most re-
gions sea-surface and deepwater temperatures increased and
sea-ice season duration decreased between the 1990s and
2000s.
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Our results indicate that increased runoff and ocean tem-
peratures correspond with periods of increased terminus re-
treat. Runoff and ocean warming are expected to increase
terminus retreat through a combination of terminus under-
cutting and reducing mélange rigidity; runoff could also in-
crease calving rates through enhanced hydrofracture. Thus,
some combination of these processes is likely responsible
for the widespread observed retreat across northwest and
central-west Greenland. In order to more conclusively reveal
the primary drivers of retreat, future studies would benefit
from additional information such as more spatiotemporally
dense oceanographic measurements and estimates in fjords
(e.g., Wood et al., 2021) and more widespread analysis of
fjord mélange conditions (e.g., Joughin et al., 2020). Further
research is needed to improve our understanding of the dom-
inant processes contributing to terminus retreat and the re-
sulting increases in ice discharge.

Code availability. Data analysis and visualization code are
available on GitHub (https://github.com/tarynblack/northwest_
decadal_2021, last access: 8 February 2022) and Zenodo
(https://doi.org/10.5281/zenodo.6015419, Black, 2022).

Data availability. Some of the terminus positions are avail-
able on NSIDC as part of the MEaSUREs Annual Green-
land Outlet Glacier Terminus Positions from SAR Mosaics
dataset (https://nsidc.org/data/NSIDC-0642, Joughin et al., 2015),
and the remainder are being prepared for delivery as part
of the same dataset. Bed topography is from BedMachine
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2017b). Ice-sheet velocity is from MEaSUREs Multi-year
Greenland Ice Sheet Velocity Mosaic, Version 1 (https://nsidc.
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gcp-public-data-landsat, Google, 2022). Sentinel-1 images are
from MEaSUREs Greenland Image Mosaics from Sentinel-1A
and -1B, Version 3 (https://doi.org/10.5067/WXQ366CP8YDE,
Joughin, 2021). Ocean temperatures are from ECCO Version 5
(https://ecco-group.org, Forget et al., 2015; Zhang et al., 2018),
the ICES Dataset on Ocean Hydrography (https://ocean.ices.dk/
hydchem/hydchem.aspx, ICES, 2021), and the merged Hadley-
OI sea-surface temperature and sea-ice concentration dataset
(https://doi.org/10.5065/r33v-sv91, Hurrell et al., 2008; Shea et
al., 2020). Sea-ice concentrations are from the merged Hadley-OI
dataset and the NOAA/NSIDC Climate Data Record of Passive Mi-
crowave Sea Ice Concentration, Version 3 (https://nsidc.org/data/
g02202, Meier et al., 2017; Peng et al., 2013). Ice-sheet climate data
are from MAR v3.11 output over Greenland (ftp://ftp.climato.be/
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