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Abstract. The feasibility of assimilating sea ice thick-
ness (SIT) observations derived from CryoSat-2 along-track
measurements of sea ice freeboard is successfully demon-
strated using a 3D-Var assimilation scheme, NEMOVAR,
within the Met Office’s global, coupled ocean–sea-ice model,
Forecast Ocean Assimilation Model (FOAM). The CryoSat-
2 Arctic freeboard measurements are produced by the Centre
for Polar Observation and Modelling (CPOM) and are con-
verted to SIT within FOAM using modelled snow depth. This
is the first time along-track observations of SIT have been
used in this way, with other centres assimilating gridded and
temporally averaged observations. The assimilation leads to
improvements in the SIT analysis and forecast fields gener-
ated by FOAM, particularly in the Canadian Arctic. Arctic-
wide observation-minus-background assimilation statistics
for 2015–2017 show improvements of 0.75 m mean differ-
ence and 0.41 m root-mean-square difference (RMSD) in
the freeze-up period and 0.46 m mean difference and 0.33 m
RMSD in the ice break-up period. Validation of the SIT
analysis against independent springtime in situ SIT obser-
vations from NASA Operation IceBridge (OIB) shows im-
provement in the SIT analysis of 0.61 m mean difference
(0.42 m RMSD) compared to a control without SIT assim-
ilation. Similar improvements are seen in the FOAM 5 d SIT
forecast. Validation of the SIT assimilation with independent
Beaufort Gyre Exploration Project (BGEP) sea ice draft ob-
servations does not show an improvement, since the assimi-

lated CryoSat-2 observations compare similarly to the model
without assimilation in this region. Comparison with air-
borne electromagnetic induction (Air-EM) combined mea-
surements of SIT and snow depth shows poorer results for the
assimilation compared to the control, despite covering simi-
lar locations to the OIB and BGEP datasets. This may be ev-
idence of sampling uncertainty in the matchups with the Air-
EM validation dataset, owing to the limited number of obser-
vations available over the time period of interest. This may
also be evidence of noise in the SIT analysis or uncertainties
in the modelled snow depth, in the assimilated SIT obser-
vations, or in the data used for validation. The SIT analysis
could be improved by upgrading the observation uncertain-
ties used in the assimilation. Despite the lack of CryoSat-2
SIT observations available for assimilation over the summer
due to the detrimental effect of melt ponds on retrievals, it
is shown that the model is able to retain improvements to
the SIT field throughout the summer months due to prior,
wintertime SIT assimilation. This also results in regional im-
provements to the July modelled sea ice concentration (SIC)
of 5 % RMSD in the European sector, due to slower melt of
the thicker sea ice.
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1 Introduction

In recent decades, Arctic sea ice cover has undergone a con-
siderable reduction in both thickness and extent (e.g. Comiso
et al., 2008; Kwok et al., 2009; Lindsay and Schweiger,
2015; Stroeve and Notz, 2018; Meredith et al., 2019), which
has the potential to impact weather and climate at lower lat-
itudes (e.g. Koenigk et al., 2016; Screen, 2017), to alter the
ecosystem and living environment (e.g. Meier et al., 2014),
and to change the nature of Arctic shipping by opening up
new sea routes (e.g. Smith and Stephenson, 2013; Wei et al.,
2020; Zeng et al., 2020). Therefore, predictions of sea ice
cover on timescales of days, seasons and beyond are becom-
ing increasingly important.

It has long been understood that the initialisation of nu-
merical weather prediction (NWP) models using data assim-
ilation is vital for producing accurate forecasts over a range
of timescales. In the case of sea ice forecasting, assimilation
of satellite sea ice concentration (SIC) observations into cou-
pled ocean–sea-ice models is well established and routine at
almost all centres producing operational sea ice and ocean
forecasts (e.g. Bertino and Lisaeter, 2008; Blockley et al.,
2014; Smith et al., 2015; Posey et al., 2015; Lemieux et al.,
2016). Time series of well-homogenised satellite observa-
tions of SIC are available dating back to 1979 (e.g. Lavergne
et al., 2019), allowing for accurate monitoring of SIC and
extent, as well as use in hindcasts and reanalyses.

Large-scale observations of sea ice thickness (SIT) have
become available much more recently than SIC, with the
launch of the first dedicated polar satellite mission, ESA’s
CryoSat-2, in April 2010. CryoSat-2 is able to observe sea
ice freeboard (the height of sea ice above the ocean sur-
face), and, based on the assumption that the sea ice is floating
in hydrostatic equilibrium, the freeboard observations can
be converted to SIT. Although observations of sea ice free-
board have been successfully obtained from previous radar
and laser altimetry missions, namely ESA’s European Re-
mote Sensing (ERS) and Envisat satellites, and NASA’s Ice,
Cloud and land Elevation Satellite (ICESat; e.g. Laxon et al.,
2003; Kwok and Rothrock, 2009), these have considerably
larger unobserved areas over the poles than CryoSat-2. Ob-
servations from ICESat were additionally limited by cloud
cover, and, for the radar missions, instrument footprint sizes
were notably larger than for CryoSat-2, with a greater contri-
bution of noise in the observations from radar speckle (Laxon
et al., 2013). Consequently, the processing of satellite free-
board observations is still very much an ongoing and active
area of research and development, particularly regarding the
accuracy of observations, the characterisation of uncertain-
ties and the timeliness of data delivery (e.g. Ricker et al.,
2014, 2016; Tilling et al., 2016, 2018). The field is addition-
ally much less mature than the use of altimetry to measure
sea level anomaly (SLA), which is readily assimilated into
operational ocean forecasting models (e.g. Blockley et al.,
2014).

As a complement to radar altimetry, which can be used to
retrieve SIT greater than around 1 m thick, observations of
thin SIT can be obtained from the Soil Moisture and Ocean
Salinity (SMOS) satellite, launched in November 2009. Us-
ing a passive microwave radiometer, the thickness of sea ice
less than 1 m thick is inferred from L-band brightness tem-
perature measurements (Kaleschke et al., 2010; Tian-Kunze
et al., 2014). The only additional estimates of SIT are sparse
in situ observations from surface and submarine platforms.

A number of studies have emphasised the importance of
accurate initialisation of SIT fields for seasonal predictions
of sea ice concentration and extent: Day et al. (2014), Mas-
sonnet et al. (2015), Collow et al. (2015) and Dirkson et al.
(2017); and CryoSat-2 and/or SMOS SIT observations have
been used to initialise seasonal sea ice forecasts by Block-
ley and Peterson (2018), Yang et al. (2019) and Allard et al.
(2020). Several studies have demonstrated the impact of us-
ing satellite SIT observations in addition to SIC to initialise
short-term operational sea ice forecasts: e.g. Yang et al.
(2014), Mu et al. (2018), Xie et al. (2018) and Liang et al.
(2020). All of these previous studies have made use of grid-
ded, temporally averaged satellite SIT datasets (e.g. weekly,
monthly) and not the along-track CryoSat-2 data used herein.
It was not originally envisioned that using CryoSat-2 ob-
servations without a certain degree of spatial and tempo-
ral averaging would be possible, due to noise in the free-
board retrievals (Wingham et al., 2006). However, the nature
of operational ocean forecasting at the Met Office and de-
velopments towards a coupled ocean–ice–atmosphere NWP
framework, with short assimilation time windows of the or-
der of 6 h, means that along-track rather than temporally av-
eraged observations are required. Additionally, the use of ob-
servations without gridding or temporal averaging aims to
improve analysis quality by reducing spatially correlated un-
certainties in the measurements and allowing accurate uncer-
tainty estimates, vital for data assimilation, to be more easily
determined than would be possible for data with more pro-
cessing applied.

Therefore, in this study, we investigate the feasibility of as-
similating Arctic SIT observations derived from along-track
CryoSat-2 radar altimeter sea ice freeboard measurements
into a global, coupled ocean–sea-ice model. We demon-
strate that the assimilation system (including prior observa-
tion quality control) successfully reduces the effect of noise
in the observations such that initial gridding and temporal
averaging are not required. Work is currently underway at
the Met Office to assimilate SMOS observations in conjunc-
tion with those from CryoSat-2, and this will be reported in
a future publication. A validation of the SIT and SIC analy-
ses, as well as 1 and 5 d forecasts generated using the FOAM
system with the assimilation of CryoSat-2 SIT, in addition
to all the standard observation types, is presented. Analy-
sis and forecast performance compared to a control without
SIT assimilation are assessed. The paper is structured as fol-
lows: Sect. 2 provides descriptions of the FOAM system, ob-
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servations used in this study and assimilation methods. Re-
sults from the SIT assimilation experiment and the control
are shown in Sect. 3, and validation using assimilation statis-
tics and independent in situ observations follows in Sects. 4
and 5 respectively. A final discussion and conclusions are
presented in Sect. 6.

2 Methods

2.1 The FOAM test system

The Forecast Ocean Assimilation Model (FOAM; Blockley
et al., 2014) is the Met Office’s global, coupled ocean–sea-ice
model. It is forced at the surface using output from the Met
Office NWP system. The ocean and sea ice components of
FOAM are also used in an ocean–sea-ice–atmosphere–land
coupled short-range forecasting system (Guiavarc’h et al.,
2019). Analyses and 5 d forecasts of ocean and sea ice
variables are produced operationally from the coupled sys-
tem and are disseminated through the Copernicus Marine
Environment Monitoring Service (CMEMS; https://marine.
copernicus.eu/, last access: 16 December 2021). FOAM anal-
yses are also used operationally to initialise the Met Office’s
seasonal forecasting system, GloSea (MacLachlan et al.,
2014). Here we focus on the forced ocean and sea ice FOAM
system, but the implementation of any developments will
also be of benefit to the coupled short-range and seasonal
prediction systems.

The ocean model component of FOAM, Nucleus for Eu-
ropean Modelling of the Ocean (NEMO; Madec, 2017), is
coupled to the Los Alamos Sea Ice Model, CICE (Hunke
et al., 2015). The tripolar grid used by the FOAM system has
recently been upgraded to 1/12◦ resolution (ORCA12) for
both ocean and sea ice components (Barbosa Aguiar et al.,
2022), but the version of FOAM used herein has a 1/4◦

grid (ORCA025). The ocean model has 75 vertical levels
(Storkey et al., 2018), and the CICE configuration includes
five thickness categories (plus open water), multi-layer ther-
modynamics and prognostic melt ponds (Ridley et al., 2018).
The data assimilation scheme NEMOVAR (Waters et al.,
2015) is used in FOAM in a 3D-Var First Guess at Appro-
priate Time (FGAT) configuration to assimilate observations
of ocean and sea ice variables.

The observation data types assimilated in the FOAM
test system used in this study are the same as for the
operational system, namely temperature, salinity, sea level
anomaly (SLA) and SIC. No SIT observations are currently
assimilated operationally in FOAM. For this study, sea sur-
face temperature (SST) observations are obtained from ships,
moored and drifting buoys, Advanced Very High Resolution
Radiometer (AVHRR) sensors aboard the NOAA and MetOp
satellites, and the Visible Infrared Imaging Radiometer Suite
(VIIRS) sensor aboard the Suomi-NPP satellite. Argo floats,
moored buoys, gliders, and research conductivity, tempera-

ture and depth (CTD) instruments provide temperature and
salinity profiles. Temperature profiles are also obtained from
instrumented marine mammals (Carse et al., 2015) and Ex-
pendable Bathythermographs (XBTs). SLA data are pro-
vided by altimetry from the Jason-2, Jason-3, Sentinel-3A,
CryoSat-2 and AltiKa satellites. SIC measurements from
the Special Sensor Microwave Imager/Sounder (SSMIS) in-
struments aboard the Defense Meteorological Satellite Pro-
gram (DMSP) series of satellites are also assimilated. A con-
trol FOAM system using these observations and an experi-
ment system with the additional assimilation of SIT obser-
vations derived from CryoSat-2 measurements are employed
for this study. Both the SIT assimilation experiment and con-
trol systems use a 24 h assimilation time window. The sys-
tems are forced at the surface using hourly wind fields and
3-hourly temperature, humidity, precipitation and radiative
fluxes from the Met Office NWP system, at a horizontal res-
olution of 17 km.

The SIT assimilation experiment and control systems have
been used to generate daily analysis and 1 d forecasts of
ocean and sea ice variables for the 3-year period from Jan-
uary 2015 to December 2017. This follows a 3-month spin-
up period from October 2014, initialised using a previous
FOAM reanalysis. The analysis fields were used to initialise
5 d forecasts for each day in selected periods: March–April,
June–July and September–November, for each of the 3 years
in the study. These months were chosen to cover the Arc-
tic ice break-up and freeze-up periods, as well as includ-
ing March and September to coincide with the annual Arc-
tic maximum and minimum sea ice extents respectively. It
should be noted that CryoSat-2 SIT observations are only
available between October and April each year, owing to the
detrimental impact of summertime melting on the satellite
retrievals (Tilling et al., 2016). Therefore June–July was also
selected to assess the behaviour of the sea ice forecasts over
the summer months when SIT observations are not available
for assimilation.

2.2 Observations used for SIT assimilation

2.2.1 Conversion from freeboard to thickness

The satellite data used in this study are along-track, CryoSat-
2 radar altimeter observations of Arctic sea ice freeboard,
processed by the Centre for Polar Observation and Mod-
elling (CPOM). The data have an along-track resolution of
300 m and have undergone extensive independent validation
(Tilling et al., 2015, 2018). This dataset was selected in part
as it is available in near real time (Tilling et al., 2016), and
this timeliness is necessary for future implementation into
the operational FOAM system.

It would be possible to assimilate freeboard observa-
tions directly into the model, rather than converting to SIT
first. However, the assimilation of further SIT datasets is
planned, including those with direct observations of SIT
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Figure 1. Comparison of snow depth from FOAM model and Warren et al. (1999) climatology. (a) FOAM daily mean modelled Arctic snow
depth (m) for example date 15 January 2015, and (b) Warren et al. (1999) snow depth climatology (m) for January, halved over first-year
ice (FYI) using EUMETSAT Ocean and Sea Ice Satellite Application Facility (OSI SAF) sea ice type observations from 15 January 2015
(Aaboe et al., 2021).

(e.g. from SMOS). For simplicity, a single additional state
vector for the assimilation, to cover all ice thickness data
types, was selected. SIT was chosen since it is a model prog-
nostic, whereas freeboard is a diagnostic. Freeboard obser-
vations (fi) are converted to SIT (hi) in FOAM as part of
the observation operator (the model run used to compute the
model equivalent of the observations), using Eq. (1). Follow-
ing Tilling et al. (2016) and assuming the ice is floating in
hydrostatic equilibrium,

hi =
fiρw+hsρs

(ρw− ρi)
, (1)

where hs is the FOAM modelled snow depth (in m) at the
observation time and interpolated to the freeboard observa-
tion location. ρw, ρs and ρi are the densities of water, snow
and ice respectively. These are assumed constant and are set
to 1026.0, 330.0 and 917.0 kg m−3 respectively, as used in
the CICE sea ice model component of FOAM.

Prior to the conversion to SIT, the modelled snow depth
is also used to provide a correction to the freeboard obser-
vation (the “radar” freeboard; fi_radar) to obtain the “true” or
“corrected” freeboard (fi). This accounts for the reduction
in speed of the altimeter radar pulse due to the presence of
snow on the sea ice (Tilling et al., 2016). The correction is an
addition of the quantity 0.25 hs to the radar freeboard obser-
vations, based on

fi = fi_radar+
[
(Co/Cs)− 1.0

]
hs = fi_radar+ 0.25hs, (2)

where hs is the snow depth as in Eq. (1), Co = 3.0×
108 m s−1 is the speed of light in a vacuum and Cs = 2.4×
108 m s−1 is the speed of light in snow.

Currently, CPOM makes use of a modified snow depth cli-
matology, based on Warren et al. (1999) and halved over first-
year ice, for processing CryoSat-2 sea ice freeboard retrievals

and conversion to SIT (Tilling et al., 2015). This approach is
also used by other centres processing CryoSat-2 freeboard
observations: Alfred Wegener Institute (AWI; Ricker et al.,
2014) and NASA (Kwok and Cunningham, 2015). Instead,
here the FOAM modelled snow depth is used. Modelled
snow depth has a greater spatial and temporal variability
than can be obtained from a climatology, as demonstrated
by Mallett et al. (2021) and illustrated in Fig. 1. Using this
method also maintains consistency between SIT and snow
depth within the FOAM model. A preliminary validation in-
dicates that the FOAM snow depth is somewhat thinner than
the modified climatology of Warren et al. (1999), as shown in
Fig. 1, particularly over multi-year ice. Tuning experiments
demonstrate that simply increasing the snow depth in the
model does not result in better evaluation of the SIT anal-
ysis against independent observations, owing to feedbacks in
the model and between the SIT assimilation and the snow
depth itself.

Snow depth uncertainty is a large source of error in radar
altimetry sea ice measurements, both in the retrievals of free-
board and the subsequent conversion to SIT (e.g. Giles et al.,
2007; Ricker et al., 2015). Due to the linear relationship be-
tween SIT and snow depth (Eqs. 1 and 2), an underestima-
tion of the snow depth would lead to an underestimate in the
SIT. Large uncertainties in the snow depth may apply regard-
less of whether it has been modelled or taken from clima-
tology. Additional uncertainty is also introduced in Eq. (1)
through lack of knowledge of the snow and sea ice densities,
which, although constants in the CICE model used here, are
spatially and temporally varying in reality (e.g. Alexandrov
et al., 2010; Kern et al., 2015). Uncertainties due to variations
in water density can be neglected (Ricker et al., 2014; Kurtz
et al., 2014). In order to quantify and reduce the uncertainty
in the FOAM modelled snow depth, future plans will include
the assimilation of satellite snow depth observations.
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2.2.2 Quality control and pre-processing

Since retrievals of sea ice freeboard from CryoSat-2 are noisy
(e.g. Laxon et al., 2013), it is important to apply quality
control and pre-processing prior to assimilating the data. As
an initial check, following Tilling et al. (2018), freeboard
observations below −0.3 and above 3 m are rejected. Any
negative values remaining after the conversion to SIT (see
Sect. 2.2.1) are also removed. A Bayesian background check
for removal of poor-quality observations (Ingleby and Hud-
dleston, 2005), as currently used for ocean data types in
FOAM, was investigated for SIT. In this method, any obser-
vations that deviate too far from the model background field
are rejected, taking into account the model background and
observation error variances. However, since the SIT obser-
vations are so different from the modelled SIT prior to any
SIT assimilation (as will be shown in Sect. 3), it is difficult
to avoid rejecting large numbers of observations when be-
ginning the assimilation. This leads to issues in the analysis
quality and excessively long spin-up periods for the assimila-
tion. Use of a background check for subsequent months once
the assimilation is established could be investigated further,
noting that model drift in the absence of SIT observations
over the summer months may once again lead to the rejection
of good-quality observations come autumn. Nevertheless, it
will be demonstrated in this study that acceptable results can
be obtained without including this check.

After the initial gross quality control checks, “super-
observations” of the median freeboard observation within
a specified radius are created. Use of median averaging
rather than mean prevents outliers from influencing the re-
sult. Super-obbing is often used in data assimilation to sub-
sample satellite observations to the model grid size. It is
also an established method of reducing the correlated un-
certainty in the observations (e.g. Janjic et al., 2017), which
is assumed to be negligible in the assimilation system used
here (Sect. 2.4.1). The super-obbing radius was selected to be
10 km, as this is similar to the model grid size in the Arctic
on the 1/4◦ tripolar (ORCA025) grid used here by NEMO
and CICE. The radius could be increased to include more
observations per super-observation, but 10 km allows grid-
scale variability to be preserved in the data. For a represen-
tative example date of 1 March 2015, the mean number of
freeboard observations used to create each super-observation
is 18.4 (minimum 2, maximum 101), with the greatest num-
ber of observations available at high latitudes where the orbit
tracks converge. The mean difference of the observation mi-
nus background decreased from 0.12 to 0.08 m pre- and post-
super-obbing, and the root-mean-square difference (RMSD)
decreased from 1.05 to 0.68 m. This indicates a substantial
reduction of noise in the data.

Table 1. Dates of Operation IceBridge data used in this study.

March April

2015 20, 22, 24–31 3–4
2016 – 20, 28
2017 8–14, 17, 19–20, 24 4

2.3 Observations used for SIT validation

Independent in situ observations suitable for validation of
the SIT assimilation experiment, and which cover the ex-
periment time period, are available from the field campaigns
NASA Operation IceBridge (OIB; Kurtz et al., 2013), from
airborne electromagnetic induction (Air-EM) observations as
part of the Pan-Arctic Measurements and Arctic Regional
Climate Model Simulations Project (PAM-ARCMIP; Haas
et al., 2009), and from Beaufort Gyre Exploration Project
(BGEP; Krishfield et al., 2014) moorings that measure sea
ice draft using upward-looking sonar. The following sections
provide details of these datasets.

2.3.1 Operation IceBridge (OIB)

The OIB field campaign used an aircraft equipped with a
scanning lidar altimeter, a snow radar and cameras to ob-
tain springtime measurements of Arctic sea ice freeboard,
thickness and snow depth, for several weeks each year be-
tween 2009 and 2018. The accuracy of the SIT measurements
is estimated to be 0.4 m (Farrell et al., 2012). Data for 2015
to 2017 overlap with the dates of the SIT assimilation exper-
iment carried out in this study and are available for the dates
shown in Table 1.

The dataset used here is from the QuickLook V1 prod-
uct (Kurtz et al., 2019), as the more reliable V2 product
was not available for the SIT assimilation experiment pe-
riod at the time of assessment. The dataset was processed
by the OIB project and comprises 50 km cluster averages of
SIT point measurements, at a spacing of approximately 25 m.
Data from multiple flights over the same locations were com-
bined into the same cluster, for flights fewer than 10 d apart.
Only point observations with low uncertainties were selected
for the clusters: less than 1 m uncertainty for very thin ice and
up to a maximum uncertainty of 2 m for ice thicker than 4 m.
Clusters were required to have at least 500 point samples,
and they have an average of 1670 points with a maximum of
7000 points. As part of this study, further processing was car-
ried out to remove any cluster observations with associated
standard deviations above 3 m. It is necessary to use spatially
averaged rather than point observations for validation, due
to the very high level of noise in the point measurements
and for more appropriate comparison to a model designed
to simulate average sea ice behaviour without sub-grid-scale
heterogeneity.
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Figure 2. Observations (in m) and standard deviations (in m) of validation data used in this study. (a) OIB cluster average SIT observations
and (b) standard deviations of OIB clusters, for 2015–2017 field campaigns; (c) Air-EM cluster average observations of combined SIT and
snow depth, as well as (d) standard deviations of Air-EM clusters, for the 2015 field campaign; (e) locations of BGEP moorings used in this
study.

Figure 2a and b show the 2015–2017 OIB cluster average
SIT observations and the standard deviations of the clusters.
The figure illustrates the large amount of valuable in situ data
available from this project.

2.3.2 Airborne electromagnetic combined snow and ice
thickness (Air-EM) observations

Field campaigns for PAM-ARCMIP were conducted over the
Arctic for several weeks each year between 2001 and 2015.
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An aircraft equipped with an instrument known as an “EM-
Bird” was used to measure combined SIT and snow depth by
airborne electromagnetic (EM) induction (Haas et al., 2009).
Over level ice, the accuracy of Air-EM measurements of
combined SIT and snow depth is 0.1 m (Pfaffling et al., 2007;
Haas et al., 2009). Only data for the 2015 field campaign
overlap with the dates of the SIT assimilation experiment in
this study, for the following dates: 7–9, 11 and 22–23 April.

Similar to the OIB data (Sect. 2.3.1), 50 km cluster aver-
ages have been produced by the Air-EM data providers. The
clusters include contributions from multiple flights if these
spanned a few days over a small region. Further processing
was carried out as part of this study to remove any cluster ob-
servations with standard deviations over 3 m. Figure 2c and d
show the Air-EM cluster average observations and the stan-
dard deviations of the clusters for the 2015 field campaign.

2.3.3 Beaufort Gyre Exploration Project (BGEP)

The BGEP dataset consists of observations of sea ice
draft (thickness of ice below the ocean surface) from
upward-looking sonar (ULS) instruments attached to bottom-
anchored moorings in the Beaufort Sea. The locations of
the moorings providing data used in this study are shown
in Fig. 2e. Data are available continuously between Septem-
ber 2003 and August 2017, with an estimated accuracy of
0.05–0.10 m (Krishfield and Proshutinsky, 2006). Data used
in this study are monthly means of sea ice draft, processed by
the data providers from the raw 2 s observations, and which
do not include any open-water estimates. In the same way as
for the other validation datasets, any averaged sea ice draft
observations with standard deviations above 3 m were ex-
cluded from this study. Further processing was also under-
taken here to convert the measurements of sea ice draft to SIT
by dividing observations by 0.89, following Rothrock et al.
(2003). However, it should be noted that this method does
not take into account the presence of snow on the surface of
the ice, which will likely affect the derived SIT observations
outside of the summer months.

2.4 Assimilation of SIT observations

The NEMOVAR assimilation system is used to calculate in-
crements of SIT to be applied to the model, in the same way
as is done for the other assimilated data types in FOAM. The
inputs to NEMOVAR are the SIT observations and, for each
observation, the model SIT value aggregated over all thick-
ness categories and interpolated to the location of the ob-
servation at the closest model time step to the observation
time, during a 1 d model forecast. The uncertainties associ-
ated with the observations and model forecast are also pro-
vided to NEMOVAR, in the form of error covariances, as de-
scribed in the following subsections. NEMOVAR outputs the
changes required to bring the model SIT into line with obser-
vations from that day, taking into account their respective un-

certainties, as a field of increments on the model grid. These
SIT increments are applied to the CICE model using an incre-
mental analysis update (IAU) method (Bloom et al., 1996),
as is used for the other variables in FOAM. In this method,
a fraction of the increments is added at each time step dur-
ing a 24 h period, such that the total increment is applied by
the end of the model day. Following Blockley and Peterson
(2018), SIT increments are added to each of the five sub-grid
SIT categories, if the ice concentration within that category is
above 1 %. The initial fraction of the contribution of each cat-
egory to the grid-box mean ice volume is calculated, and that
fraction of the SIT increment is then added to that category.
This maintains the initial volume distribution of ice (and ice
area) across each sub-grid SIT category. Changes resulting
from SIT increments are only made where the grid cell ag-
gregate SIC is greater than a conservatively chosen value of
40 %. This means that only SIC increments are able to add
new ice, since these data are deemed more reliable, particu-
larly for the generally thinner ice of the marginal ice zone.
The SIT increments are applied after any SIC assimilation
changes at each time step, and, similar to SIC, no balancing
is performed with the other variables.

2.4.1 Observation error covariance

The assimilation system requires estimates of observation
uncertainties for SIT. The higher the magnitude of the ob-
servation uncertainty, the smaller the impact the observa-
tion will have on the analysis. Observation uncertainties are
provided as observation error variances (OBEs), with the
assumption that the observation error is uncorrelated. This
is not necessarily true but is a standard simplification (e.g.
Stonebridge et al., 2018). The OBE is a combination of mea-
surement uncertainty and representation uncertainty. Mea-
surement uncertainty includes the raw measurement error
and uncertainties due to the retrieval algorithm, including
effects such as surface roughness (Landy et al., 2020), ice
salinity (Nandan et al., 2017), and variability in the densi-
ties of snow and ice (Ricker et al., 2014). Representation un-
certainty results from unresolved scales and processes in the
model, observation operator uncertainty and quality control
uncertainty (e.g. Janjic et al., 2017). In this study, the rep-
resentation uncertainty is set to 0.05 m standard deviation as
an initial estimate, being of a similar magnitude to the mini-
mum measurement uncertainty (see below). Further work is
required to refine this specification. Since estimates of mea-
surement uncertainty are not provided with the CPOM data
used in this study, this has instead been determined using
a simple function. This is based on Fig. 2 of Ricker et al.
(2017), who derived relationships between the magnitude of
CryoSat-2 ice thicknesses and their associated measurement
uncertainties, in terms of percent error. Further details of
these methods are given in Ricker et al. (2014). The SIT and
uncertainty relationships determined by Ricker et al. (2017)
have slightly different characteristics at different times of the
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Figure 3. Observation measurement uncertainty estimates for SIT. (a) Parameterisation for SIT measurement uncertainty in terms of standard
deviation (m), as a function of SIT (m). March 2015 mean binned (b) observed CryoSat-2 SIT (m) and (c) observation measurement uncer-
tainty standard deviation (m), calculated using the parameterisation shown in panel (a), for the observations shown in panel (b). Observations
have undergone initial quality control and pre-processing.

year, but using a single, general function in this study as a
first parameterisation of the measurement uncertainty is a
reasonable choice. The function used here is shown in Fig. 3a
and is specified in Eq. (3) as follows, in metres (m) for thick-
ness hi and standard deviation σ , with a cap of 8 m, and using
the mathematical constant, e:

σ =
8 for hi < 0.7m[

7e
(
−1

0.3−hei

)
+ 1

]
·
hi

100
for 0.7≤ hi < 3.0m{

[(hi − 3.0) · 5]+
[

7e
(

−1
0.3− 3.0e

)
+ 1

]}
·
hi

100
for hi ≥ 3.0m

.

(3)

The uncertainty standard deviation associated with each SIT
observation is calculated using the function given in Eq. (3).
A value of 8 m is selected arbitrarily as the maximum un-
certainty for thin ice observations, being a large magnitude

compared to the size of the SIT observations themselves.
This ensures that these data do not influence the analysis.
The function reaches this value at 0.7 m. For SIT between
∼ 1.5–3 m the uncertainty is at its minimum, meaning these
observations are given stronger weighting in the analysis, and
uncertainty begins to increase again for observations thicker
than 3 m.

Sensitivity tests were conducted to produce the optimum
SIT analysis by finding an appropriate balance between
the OBE and the model background error variance (BGE;
Sect. 2.4.2). This allowed the final form of the OBE func-
tion to be tuned and the minimum uncertainty assigned to
the most reliable observations to be set. The minimum OBE
is rather small compared to previous studies (e.g. Tilling
et al., 2018, give the accuracy of CryoSat-2 SIT as 13 cm),
and this likely due to an underestimate in the model BGE
(Sect. 2.4.2).
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Figure 3b and c respectively show the monthly mean ob-
served CryoSat-2 SIT for March 2015, as well as the mea-
surement uncertainty standard deviation for the data, derived
from the parameterisation shown in Fig. 3a. Data for both
Fig. 3b and c have been binned onto a 1/4◦ regular grid. The
figures show the largest uncertainties occurring in regions of
very thick ice, as there are limited observations of thin ice in
the dataset following the gross error check (Sect. 2.2.2).

There is a high level of random uncertainty in the CryoSat-
2 along-track freeboard observations, owing to speckle noise
in the range measurements, and inaccuracies in the observa-
tions of sea surface height (Ricker et al., 2014). The OBE
estimate does not take this into account. These random un-
certainties can be greater than 1 m and are usually removed
by spatial averaging (e.g. Ricker et al., 2017). The super-
obbing process described in Sect. 2.2.2 will mitigate this is-
sue somewhat, but the uncertainty in the observations will be
higher around the ice edge since there are fewer overlapping
orbits at these latitudes. This results in as few as 2 obser-
vations included in a super-observation, compared with up
to 100 or so at higher latitudes. Work is currently underway
to also assimilate SMOS SIT data to improve the representa-
tion of thin ice in FOAM, and this will improve the SIT anal-
ysis in the regions most affected by this issue. Other possible
improvements include filtering out the affected observations
from the analysis by increasing the OBE in the CryoSat-2
data below a specified latitude or below a minimum number
of observations used in the super-observation. Additionally, a
check of the observation quality against the model SIT back-
ground could be used, although, as discussed in Sect. 2.2.2,
this method relies on the model being unbiased.

2.4.2 Background error covariance

Uncertainties in the 1 d model forecast prior to the assimi-
lation of observations (the “background”) are parameterised
for the SIT assimilation as spatially and seasonally vary-
ing fields of background error variance (BGE) with asso-
ciated spatial error correlation length scales. The seasonal
BGEs are interpolated to the model date within the FOAM
system. This method is also used for SIC assimilation in
FOAM (Blockley et al., 2014). For SIT, the BGE for each
season and the correlation length scale were estimated using
the “Canadian Quick” covariance method (Polavarapu et al.,
2005) with 3 years of FOAM hindcast SIT data (1 June 2015
to 31 May 2018). In this method, differences between daily
model fields are used as a proxy for the model forecast er-
ror. The spatial correlations in the results were assessed and
yielded an estimate of 50 km for the minimum SIT cor-
relation length scale. This value was used as a constant
length scale everywhere, except at very high northern lati-
tudes where it was extended to compensate for the data gap
north of 88.0◦ N resulting from the orbital inclination of the
CryoSat-2 satellite (the “pole hole”). Here, the length scale
was increased to 100 km for observations at latitudes north

of 87.5◦ N, making the assumption that the model uncertain-
ties near the pole are highly correlated with the uncertainties
at 87.5◦ N. This has the effect of filling the pole hole using
increments spread from the surrounding area and allows the
SIT analysis to vary in this region. A sensitivity test was used
to select the magnitude of the extended length scale and the
latitude threshold. The values chosen appear to give a good
result (Fig. 4): the pole hole is filled, but with minimal im-
pact on the increments nearby. A quantitative validation is
not possible, owing to the absence of satellite or suitable in
situ SIT observations at this location.

Figure 4 also demonstrates that the 50 km length scale
allows information from the observations to propagate spa-
tially over the domain, which is helpful owing to the sparse-
ness of the daily CryoSat-2 observations in regions where
the orbit tracks do not overlap (Fig. 4d). A dual length scale
correlation formulation is available in NEMOVAR (Mirouze
et al., 2016; Fiedler et al., 2019), and use of this for SIT re-
mains an avenue for future investigation.

SIT modelled by the FOAM system is too thin without
SIT assimilation (as will be shown in Sect. 3), so the model
BGE calculated using the Canadian Quick method is likely
to be an underestimate. However, it provides a starting point
for iterations of BGE calculations using different methods,
once the SIT assimilation is in place. Examples of such meth-
ods are given in Bannister (2008) and include those based
on innovation (observation-minus-background) correlations
(Hollingsworth and Lönnberg, 1986), differences between
forecasts of varying lengths (the “NMC” method; Parrish
and Derber, 1992), or ensemble data assimilation methods
(Houtekamer et al., 1996).

3 SIT assimilation results

SIT derived from along-track CryoSat-2 freeboard observa-
tions can be successfully assimilated into the FOAM fore-
casting system. Figure 5a and b show daily mean SIT analy-
sis fields for the SIT assimilation experiment and the control
respectively, for 15 January 2015 as an example date. Grid-
ded CPOM CryoSat-2 SIT observations for January 2015
are also included for comparison (Fig. 5c). The results
demonstrate that the FOAM system is able to reproduce
the monthly, gridded observation field by assimilating daily
along-track data. The control SIT model field is smoother
than the observations and much thinner in the Canadian Arc-
tic region. The SIT assimilation experiment has produced a
thicker sea ice field, particularly in the Canadian Arctic and
around Greenland, and introduced more spatial variability
throughout.

Figure 5a demonstrates that the background error correla-
tion length scale for the SIT assimilation is suitable, since
the satellite tracks of the day’s observations are not obvi-
ous in the analysis field (length scale too short), and there
is no excessive smoothing (length scale too long). Despite
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Figure 4. Demonstrating filling of the satellite observation data gap at the north pole using SIT information from the surrounding area. The
87.5◦ N grid line is shown as a dashed black line. SIT increments (m) produced using different background error correlation length scales for
example date 30 January 2015 for (a) 50 km length scale throughout; (b) 50 km length scale, with 100 km north of 87.5◦ N; and (c) difference
between panels(a) and (b). (d) Locations of assimilated SIT observations for the domain shown, 30 January 2015.

the absence of observations, the pole hole has a realistic-
looking SIT, which is thicker than in the control (Fig. 5b).
This demonstrates that the method of using SIT information
spread from the surrounding area, as described in Sect. 2.4.2,
is successful.

Figure 6 shows the difference between monthly averaged
SIT fields for the SIT assimilation experiment minus the
control, for the months of the Arctic sea ice maximum and
minimum extents, March and September respectively. Year
2016 is shown as an example. The main impact of the SIT
assimilation in March is to increase the SIT in the Cana-
dian Arctic and European sectors (Fig. 6a). Some thinning
of the sea ice is also seen outside of these regions, which for
March 2016 occurs around the East Siberian Sea, Chukchi
Sea and Laptev Sea. Although there are no SIT observations
available for assimilation between May and September in-
clusive each year, differences between the SIT assimilation
experiment and control are still apparent in the September
SIT field (Fig. 6b). This demonstrates that the effect of the
SIT assimilation on the model in the months prior to May
persists throughout the summertime to September. This ef-

fect was also shown in the experiments of Blockley and Pe-
terson (2018) and Allard et al. (2018) and illustrates that the
SIT assimilation is having the desired impact on the FOAM
model. The SIT assimilation has a minimal impact on the SIC
model field in March and September (not shown), with small
changes in concentration seen mostly around the ice edge at
times of maximum ice extent and within the pack when the
minimum extent occurs.

Differences between SIT analyses and forecasts generated
by the SIT assimilation experiment and the control are as-
sessed in detail in the following sections, using validation
statistics from the assimilation system and comparisons with
independent in situ observations.

4 Validation using assimilation statistics

The performance of FOAM SIT and SIC 1 d model fore-
casts (also referred to as the backgrounds onto which the
assimilation increments are added) has been assessed using
CryoSat-2 SIT and SSMIS SIC (Tonboe et al., 2017) obser-
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Figure 5. Modelled and observed SIT (in m). Daily mean FOAM SIT analysis for (a) SIT assimilation experiment and (b) control, 15 Jan-
uary 2015, and (c) 5 km gridded CPOM CryoSat-2 SIT observations, January 2015.

Figure 6. Monthly mean SIT differences (in m) for SIT assimilation experiment minus control, March and September 2016. Green (purple)
indicates thicker (thinner) ice in the SIT assimilation experiment compared to the control.
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Figure 7. Time series of daily SIT observation-minus-background (O−B) mean difference and RMSD for 1 January 2015 to 31 Decem-
ber 2017.

vations, prior to them being assimilated. The performance of
the FOAM 5 d forecasts of SIT and SIC has also been as-
sessed using the same observations, during the months for
which these longer forecasts were produced. Matchups be-
tween the forecasts and observations were obtained by inter-
polating the daily-mean model forecast fields to the obser-
vation locations. Although this assessment does not use in-
dependent data, it aims to demonstrate that the assimilation
is working as expected and that the model is brought into
line with high-quality observations, which have been inde-
pendently validated.

Figure 7 shows time series of daily SIT observation-
minus-background mean difference and root-mean-square
difference (RMSD) for the SIT assimilation experiment and
the control, for 1 January 2015 to 31 December 2017. Note
that there are no CryoSat-2 SIT observations and, hence,
statistics available between May and September of each
year. The improvement in both the mean difference and
RMSD of the 1 d forecast on assimilation of the CryoSat-
2 observations is clear. There are substantial reductions for
the SIT assimilation experiment compared to the control of
0.46 m mean difference (0.33 m RMSD) for March–April
(ice break-up) and 0.75 m mean difference (0.41 m RMSD)
for October–November (ice freeze-up), averaged over the
Arctic for 2015–2017. Figure 7 also illustrates that the benefit
to the model from the SIT assimilation continues throughout
the summer months since, despite quite an increase, the dif-
ferences compared to the observations still remain lower than
in the control when the statistics become available again in
October. Additionally, there is a very quick reduction in the
model differences compared to the SIT observations once the
assimilation restarts.

Figures 8 and 9 show the same statistics as Fig. 7, but
as spatially binned plots of mean difference and RMSD.
March–April and October–November are shown, to exam-

ine the regional variation in results for the ice break-up and
freeze-up periods respectively, for 2015 as an example year.
The reduction (improvement) in the mean difference and
RMSD due to SIT assimilation compared to the control is
seen over large areas of the Arctic, both at the start of the melt
period (Fig. 8, though some differences still remain in the re-
gions of thickest ice, in the Canadian Arctic and along the
eastern coast of Greenland) and during the freeze-up (Fig. 9).
This effect is also seen in 2016 and 2017 (not shown). The
largest regional improvements are in March–April (Fig. 8),
with reductions in the mean difference of more than 1.30 and
1.22 m in the RMSD in the European sector and parts of the
Canadian Arctic.

Figure 10 shows spatially binned plots of SIC observation-
minus-background mean difference and RMSD, for
July 2015. The differences between the SIC results for the
SIT assimilation experiment and control are negligible for
the other months. Figure 10 illustrates that both the mean
difference and RMSD for SIC are reduced (improved) in
the Atlantic sector, specifically in the area immediately
north of Svalbard and Franz Josef Land, by around 0.05 sea
ice fraction for the SIT assimilation experiment compared
to the control. This occurs despite the assimilation of SIT
ceasing at the end of April, when CryoSat-2 data production
is suspended over the summer months. This effect is likely
to be due to the wintertime assimilation introducing thicker
ice, which melts more slowly over the summer than in the
control, leading to improvements in the SIC field. This
process ceases to become important by early August and
does not appear to affect SIC in the freeze-up period (not
shown). The effect is also seen, though to a lesser extent,
in 2016 and 2017 (not shown).

Figure 11 shows validation statistics for FOAM 1 to 5 d
forecasts of SIT and SIC compared to observations, for the
SIT assimilation experiment and the control. The break-up
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Figure 8. Spatially binned SIT observation-minus-background statistics (in m) for March–April 2015. For panels (a) and (b) green (purple)
indicates that model ice is thinner (thicker) than the observations. For panels (c) and (d) a reduced RMSD indicates an improvement in the
model compared to the observations.

(March–April) and freeze-up (October–November) periods
in the Arctic are shown for SIT and summertime (July) for
SIC, for 2015 as an example year. The benefit of the CryoSat-
2 assimilation on the forecasts of SIT is clear, with substan-
tial reductions seen in both the mean difference and RMSD
compared to the control (Fig. 11a and b). The improvement
is particularly marked for the freeze-up period (Fig. 11b),
as is illustrated in Fig. 9 for the 1 d forecast (assimilation
background). The uncertainty in the SIT forecasts themselves
grows by only a few centimetres over the 5 d period, as the
thick sea ice observed by CryoSat-2 does not change rapidly
on this timescale.

Figure 11b also unexpectedly shows that there is a slight
improvement in the mean difference (becomes closer to zero)
of the observations minus the model over the 5 d forecast
in the freeze-up period, for the SIT assimilation experiment.
The improvement may be due to smoothing out over the 5 d
period of spatial noise introduced by the assimilation. Noise
in the assimilation could be improved by further tuning of
the error covariances. However, this could also be a result of
the observed ice growing faster than in the model, which has

been shown to have a systematic error towards thinner ice in
the control (Fig. 5 and Fig. 11a and b).

Figure 11c shows SIC forecast statistics for July 2015
(no SIT observations are available for this time period) and
demonstrates improvement in the summertime SIC forecasts
for the SIT assimilation experiment compared to the control.
This was highlighted above for assimilation background (1 d
forecast) assessment results in July (Fig. 10), which demon-
strated the improvement is located in the European sector. As
discussed, this is likely to be due to the retention of thicker
ice introduced by the SIT assimilation earlier in the year,
which leads to a reduction in SIC forecast error growth dur-
ing the summer. Differences between SIC forecasts gener-
ated by the SIT assimilation experiment and control at other
times of the year are negligible.

5 Validation using independent in situ observations

FOAM model output from the SIT assimilation experiment
and the control has been validated using airborne radar and
laser altimeter observations of SIT from NASA OIB, moored
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Figure 9. Spatially binned SIT observation-minus-background statistics (in m) for October–November 2015. For panels (a) and (b) green
(purple) indicates that model ice is thinner (thicker) than the observations. For panels (c) and (d) a reduced RMSD indicates an improvement
in the model compared to the observations.

upward-looking sonar observations of sea ice draft from
BGEP, and combined SIT and snow depth observations from
PAM-ARCMIP using Air-EM. Details of these datasets and
pre-processing applied are given in Sect. 2.3. The CryoSat-
2 SIT observations used in the SIT assimilation experiment
have also been compared with these in situ datasets to pro-
vide context for the changes in the model due to their assim-
ilation. Tilling et al. (2015, 2018) also provide independent
validation of CPOM CryoSat-2 SIT observations.

In order to produce matchups between FOAM model fields
and the validation observations, the model fields were inter-
polated to the observation locations. An offline observation
operator, part of the NEMOVAR assimilation code (Waters
et al., 2015), was used for this purpose. The OIB and Air-
EM data are daily means, so the daily mean model field for
the date of the observations was used when producing the
matchups. For the monthly BGEP data, the monthly mean of
the model fields was used.

For matchups of CryoSat-2 SIT observations with the in
situ data, 30 d’ worth of the quality-controlled, super-obbed,
assimilated subset of the full dataset was gridded onto the
same 1/4◦ tripolar (ORCA025) grid used by the model. The

gridded observation field was then interpolated to the obser-
vation locations. The 30 d periods were chosen to centre on
the middle of the observation window of each yearly field
campaign for the OIB and Air-EM validation datasets, and
calendar months were used when producing matchups with
the BGEP dataset. The necessary exception to this was for
OIB in 2016, with fieldwork dates of 20 and 28 April (Ta-
ble 1). Here, the period of 1–30 April was used in order to
acquire 30 d of CryoSat-2 data, since data production ceases
on 30 April each year before resuming in the autumn. This
means that OIB matchups with CryoSat-2 in 2016 may not be
representative of the true relationship between the datasets.
Nevertheless, these matchups are not outliers of the OIB
matchups group (shown in Fig. 12c), indicating a comparable
level of accuracy. For comparison of CryoSat-2 SIT observa-
tions with the combined SIT and snow depth of the Air-EM
observations, the 30 d mean of the modelled snow depth was
added to the gridded CryoSat-2 SIT observations before pro-
ducing the matchups. The snow depth from the SIT assimila-
tion experiment rather than the control was used, to maintain
consistency with the assimilated SIT observations.
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Figure 10. Spatially binned SIC observation-minus-background statistics (in sea ice fraction) for July 2015. For panels (a) and (b) green
(purple) indicates that model ice concentration is lower (higher) than the observations. For panels (c) and (d) a reduced RMSD indicates an
improvement in the model compared to the observations.

5.1 Operation IceBridge (OIB)

Figure 12a and b show OIB cluster average SIT observations
from 2015, 2016 and 2017, minus the 5 d SIT forecast pro-
duced by the FOAM system, for the SIT assimilation exper-
iment and the control respectively. The figure panels demon-
strate that, overall, the SIT assimilation experiment produces
a substantial improvement in the SIT forecast field compared
to the control.

Figure 12c shows a scatter plot of matchups between
CryoSat-2 SIT observations and OIB cluster average SIT ob-
servations for 2015, 2016 and 2017. Figure 12d and e show
scatter plots of the OIB cluster average SIT observations with
the corresponding FOAM 5 d SIT forecast matchup points,
for the SIT assimilation experiment and control respectively.
Summary statistics of the relationships are given in Table 2,
along with the relationships between the OIB observations
and the FOAM SIT analysis (a 1 d forecast that has been cor-
rected by the assimilated observations and is used to initialise
subsequent forecasts). These results demonstrate that, using
OIB SIT as a reference for validation, the CryoSat-2 SIT ob-
servations are more reliable than the model without SIT as-

similation. Assimilating these observations leads to improve-
ments in the model performance, with fewer outlying points
and the best-fit line being closer to the ideal 1 : 1 line. Table 2
illustrates that there are improvements across all statistics for
the SIT assimilation experiment compared to the control. As
indicated in Sect. 4 using assimilation statistics, validation
of the SIT assimilation experiment against the independent
OIB observations also demonstrates an unexpected slight im-
provement in the 5 d forecast compared with the analysis (Ta-
ble 2). As discussed, this may indicate that spatial noise is
introduced by the assimilation, which is smoothed out over
the 5 d forecast period. The good results for the forecast
again demonstrate that, throughout the 5 d forecast period,
the model is able to successfully retain improvements to the
SIT field introduced by the initial assimilation. There is very
little difference between the statistics for the SIT analysis and
5 d forecast for the control run, since the control analysis has
not assimilated SIT data and the generally thick ice being
assessed changes slowly over this timescale.
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Figure 11. Mean difference and RMSD of SIT (in m) and SIC (in fraction) observations minus 1 to 5 d forecasts for (a) SIT in March–
April 2015 (break-up period), (b) SIT in October–November 2015 (freeze-up period) and (c) SIC in July 2015.

Table 2. Statistics for all matchups (total 547) of OIB SIT observations from 2015–2017 with FOAM SIT analysis, FOAM 5 d SIT forecast
and assimilated CryoSat-2 SIT observations. Differences are in situ observation minus model or satellite observation.

SIT assimilation experiment Control CryoSat-2 obs

Analysis 5 d forecast Analysis 5 d forecast

Correlation coefficient 0.76 0.80 0.57 0.58 0.78
Mean difference (m) 0.14 0.15 0.75 0.74 0.07
Absolute mean difference (m) 0.51 0.48 0.87 0.86 0.49
Root mean square of differences (m) 0.69 0.65 1.11 1.11 0.65
Standard deviation of differences (m) 0.68 0.64 0.82 0.82 0.65

5.2 Airborne electromagnetic combined snow and ice
thickness (Air-EM) observations

Figure 13a and b show Air-EM cluster average observations
of combined SIT and snow depth from 2015, minus FOAM
5 d forecasts of the same quantity, for the SIT assimilation
experiment and control respectively. Figure 13 also shows
scatter plots of the Air-EM observations, with matchups
of CryoSat-2 SIT observations plus modelled snow depth

(Fig. 13c), and FOAM 5 d forecasts of SIT plus snow depth
for the SIT assimilation experiment and control (Fig. 13d, e
respectively). Summary statistics of the relationships be-
tween these datasets and also with the FOAM SIT analysis
plus snow depth are given in Table 3.

For observations in the Canadian Arctic, it can be seen that
differences between the Air-EM observations and the FOAM
output are generally reduced for the forecast runs assimilat-
ing SIT observations compared to the control. However, there
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Figure 12. Validation of CryoSat-2 (CS2) SIT observations and FOAM 5 d SIT forecasts against OIB cluster average SIT observations
from 2015–2017. OIB observations minus FOAM forecasts (in m) for (a) SIT assimilation experiment and (b) control. Green (purple) in
panels (a) and (b) indicates the model ice is thinner (thicker) than the observations. Scatter plots of OIB observations (in m) with (c) monthly,
gridded, quality-controlled CryoSat-2 SIT observations (in m); and FOAM 5 d SIT forecasts (in m) for (d) SIT assimilation experiment and
(e) control. Best-fit lines for panels (c)–(e) are shown in red, with a 1 : 1 reference line in broken grey.

Table 3. Statistics for all matchups (total 45) of Air-EM combined SIT and snow depth observations from 2015 with FOAM SIT analysis plus
snow depth, FOAM SIT plus snow depth 5 d forecast, and assimilated CryoSat-2 SIT observations plus modelled snow depth. Differences
are in situ observation minus model or satellite observation.

SIT assimilation experiment Control CryoSat-2 obs

Analysis 5 d forecast Analysis 5 d forecast

Correlation coefficient 0.68 0.69 0.82 0.82 0.68
Mean difference (m) −0.03 0.04 0.48 0.48 −0.67
Absolute mean difference (m) 0.46 0.45 0.58 0.57 1.03
Root mean square of differences (m) 0.55 0.54 0.67 0.67 1.25
Standard deviation of differences (m) 0.55 0.54 0.48 0.47 1.06

are some larger negative differences, which indicate that the
modelled combined SIT and snow depth for a few points has
increased too much in the SIT assimilation experiment. Fig-
ure 13 also illustrates that differences between the observa-
tions and the model in the Beaufort Sea are slightly smaller
for the control than for the SIT assimilation experiment, in-
dicating that the assimilation leads to a degradation in model
performance for this region. Validation of the FOAM SIT

analysis against Air-EM observations (Table 3) yields sim-
ilar results to the forecasts.

Table 3 indicates that the CryoSat-2 SIT observations plus
modelled snow depth are substantially thicker than the Air-
EM observations, with a large negative mean difference, and
Fig. 13c illustrates that this mainly results from observations
in the Canadian Arctic. Since the modelled SIT is too thin,
assimilating these SIT observations has the compensating ef-
fect of reducing the mean difference of the model compared
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Figure 13. Validation of CryoSat-2 (CS2) SIT observations plus modelled snow depth, and FOAM 5 d SIT plus snow depth forecasts against
Air-EM cluster average combined SIT and snow depth observations from 2015. Air-EM observations minus FOAM forecasts (in m) for
(a) SIT assimilation experiment and (b) control. Green (purple) in panels (a) and (b) indicates the model ice is thinner (thicker) than the
observations. Scatter plots of Air-EM observations (in m) with (c) monthly, gridded, quality-controlled CryoSat-2 SIT observations plus
modelled snow depth (in m); and FOAM 5 d forecasts (in m) for (d) SIT assimilation experiment and (e) control. Best-fit lines for panels
(c)–(e) are shown in red, with a 1 : 1 reference line in broken grey.

to the Air-EM observations, and this also reduces the RMSD
(Table 3). However, the model standard deviation and cor-
relation coefficient are poorer on assimilation of these data.
It should be noted that there are many more OIB observa-
tions over both the Canadian Arctic and Beaufort Sea regions
(compare Figs. 12 and 13; 547 matchups for OIB versus
45 for Air-EM), and these agree much better with the model
output and the CryoSat-2 observations than do the Air-EM
observations. This potentially indicates a sampling uncer-
tainty in the Air-EM matchups. Uncertainty in the modelled
snow depth will also be contributing to this issue, although
the difference between the CryoSat-2 and Air-EM observa-
tions is greater than the snow depth itself.

Figure 14 shows the difference in snow depth be-
tween the SIT assimilation experiment and the control, for
11 April 2015 as an example date when Air-EM and FOAM
matchups are available. This illustrates that the snow is
generally ∼ 5 cm deeper at the Air-EM matchup locations
(shown in Fig. 13a) for the SIT assimilation experiment than
for the control. This indicates that uncertainties in the mod-

Figure 14. Difference in FOAM daily-mean modelled snow
depth (m) for SIT assimilation experiment minus control,
11 April 2015.
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Figure 15. Validation of monthly gridded CryoSat-2 (CS2) observations and monthly mean FOAM SIT analyses against BGEP monthly
mean observations of SIT (converted from sea ice draft) from January 2015 to August 2017, colour-coded by season. Scatter plots of BGEP
observations (in m) with (a) monthly, gridded, quality-controlled CryoSat-2 SIT observations (in m); and FOAM analyses (in m) for (b) SIT
assimilation experiment and (c) control. Note that CryoSat-2 matchups are not available from May to September each year. Best-fit lines (in
red) are plotted separately for BGEP SIT observations below 1 m and equal to or above 1 m. The 1 : 1 reference line is shown in broken grey.

Table 4. Statistics for all matchups of BGEP SIT observations with FOAM SIT analysis and assimilated CryoSat-2 SIT observations,
January 2015–August 2017, for thickness bins less than 1 m (total matchups 35 for model and 17 for satellite observations) and equal to or
above 1 m (total matchups 54 for model and 32 for satellite observations). Differences are observation minus model or satellite observation.
Satellite observations not available between May and September each year. CryoSat-2 observations below 1 m are given very little weight in
the assimilation.

SIT assimilation
experiment Control CryoSat-2 obs

For SIT observations: < 1 m ≥ 1 m < 1 m ≥ 1 m < 1 m ≥ 1 m

Correlation coefficient 0.89 0.79 0.89 0.82 0.65 0.59
Mean difference (m) −0.18 −0.14 −0.01 0.05 −0.36 −0.05
Absolute mean difference (m) 0.24 0.28 0.12 0.21 0.38 0.25
Root mean square of differences (m) 0.36 0.33 0.18 0.27 0.47 0.31
Standard deviation of differences (m) 0.31 0.30 0.18 0.26 0.30 0.30

elled snow depth will affect results, not only for the Air-EM
and CryoSat-2 comparisons, but for assessment of the SIT
assimilation experiment and the control using Air-EM vali-
dation data. An assessment of the snow mass budget in the
model shows that the deeper modelled snow in the SIT as-
similation experiment is due mostly to the thicker ice from
the assimilation reducing the ice surface temperature, which
results in reduced evaporation/sublimation compared to the
control. Note that this change, despite increasing the mean
difference between the CryoSat-2 and Air-EM matchups, ac-
tually brings the modelled snow depth closer to climatology
(see Fig. 1).

Unlike for the validation against OIB observations
(Sect. 5.1, Table 2), the Air-EM 5 d forecast statistics do not
show an improvement over the analysis for the SIT assimila-
tion experiment (Table 3). This may be a result of uncertainty
due to snow depth in the Air-EM validation, a potential sam-
pling error owing to the limited number of Air-EM matchups
or uncertainties in the Air-EM observations themselves.

5.3 Beaufort Gyre Exploration Project (BGEP)

Figure 15 shows scatter plots of monthly mean SIT observa-
tions derived from BGEP sea ice draft observations for Jan-
uary 2015 to August 2017 (no BGEP data were available af-
ter this date), with matchups to CryoSat-2 SIT observations
and FOAM SIT analyses. Results for FOAM 5 d forecasts
are not shown since these were only produced for selected
months and the limited number of data points would lead
to unreliable statistics. Table 4 summarises the statistical re-
lationships between the observation and model or satellite
datasets. Results in Fig. 15 and Table 4 are separated into
bins of thin ice (below 1 m) and thicker ice (equal to or
above 1 m), based on the BGEP SIT. Points in Fig. 15 are
colour-coded by seasonal groupings of months, with May–
September together to represent the summer months without
SIT assimilation and when the effect of snow potentially bi-
asing the draft to SIT conversion is negligible.
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Figure 15 and Table 4 demonstrate that CryoSat-2 SIT ob-
servations over 1 m thick are slightly less reliable than the
model without assimilation, using the BGEP data as a vali-
dation reference. Consequently, statistics for the SIT assim-
ilation experiment are slightly poorer than for the control.
However, overall, for SIT above 1 m, the control, SIT assim-
ilation experiment and CryoSat-2 statistics are good, and the
difference is considerably smaller than for observations be-
low 1 m. It is therefore less likely that a dramatic improve-
ment could be achieved for this region by the assimilation of
thick SIT observations from CryoSat-2, unlike for other ar-
eas such as in the Canadian Arctic where the SIT is much too
thin in the control (see Fig. 5).

For matchups where the BGEP SIT observations are under
1 m, the mean difference, standard deviation, and RMSD be-
tween the model and in situ observations are all poorer for the
SIT assimilation experiment than for the control (Figs. 15b
and c; Table 4), despite the assimilation giving very little
weight to CryoSat-2 observations under 1 m. This difference
results from the October–November observations (results for
the SIT assimilation experiment and control are similar for
the other thin ice matchups, in May–September). The nega-
tive mean difference between the validation observations and
the model indicates that in the Beaufort Sea region, where the
BGEP moorings are located, the modelled ice in the SIT as-
similation experiment thickens up more quickly in October–
November than the BGEP observations. Investigation has
shown that this is unrelated to positive SIT increments in the
assimilation being spread too far from regions of thicker ice.
It is instead likely to be a result of poorly specified observa-
tion uncertainties for the assimilated CryoSat-2 data. At high
latitudes there are up to around 100 observations per super-
observation due to overlapping orbit tracks of the satellite,
but at lower latitudes, towards the ice edge, there can be as
few as 2 observations. This means there will be an increased
contribution of random error in these observations. Since the
measurement uncertainty component of the OBE is based
on the magnitude of the SIT observations themselves, this
(along with other potential biases in the data) is not taken into
account. Mitigating the issue of random error is an avenue
for future investigation and could include, for example, filter-
ing the CryoSat-2 observations by latitude or by a minimum
number of observations included in the super-observation.
Alternatively, the Bayesian background check discussed in
Sect. 2.2.2 could be used to reject observations deviating too
far from the model. However, as previously discussed, this
relies on the free model (without assimilation) being rela-
tively unbiased. It is also possible that thicker modelled ice
in the Canadian Arctic in the SIT assimilation experiment is
being advected into this region by the model, following the
general pattern of ice circulation in this region. Conversely,
however, the relationships between SIT and season shown
in Fig. 15 illustrate that the summertime (May to Septem-
ber) model SIT is too thin compared to the BGEP observa-
tions. The ice mass balance budget of the model for this area

could therefore be assessed as an avenue of future investi-
gation. Research into assimilating observations of SIT under
1 m from the SMOS satellite instrument is also underway,
which aims to improve the representation of thinner ice in
FOAM and will help to mitigate these problems.

6 Discussion and conclusions

The feasibility of assimilating sea ice thickness (SIT) derived
from CryoSat-2 along-track measurements of sea ice free-
board into a global, coupled ocean–sea-ice model, Forecast
Ocean Assimilation Model (FOAM), has been demonstrated.
This is a novel use of along-track SIT observations, as other
centres have previously used only gridded, temporally aver-
aged SIT measurements. The assimilation results in improve-
ments to the SIT analysis and forecast fields generated by
FOAM compared to a control without SIT assimilation, val-
idated using SIT observation-minus-background mean dif-
ference and RMSD assimilation statistics. Arctic-wide im-
provements are 0.75 m mean difference (0.41 m RMSD)
in the freeze-up period (October–November) and 0.46 m
mean difference (0.33 m RMSD) in the ice break-up period
(March–April), calculated using data from 2015–2017. Re-
gional improvements in the Canadian Arctic are particularly
notable, where there is a reduction of more than 1.30 m mean
difference (1.22 m RMSD) for SIT in the break-up period.

Comparison with independent springtime in situ SIT ob-
servations from NASA Operation IceBridge (OIB; Kurtz
et al., 2019) also indicates that the assimilation results in sub-
stantial improvements to the model SIT, of 0.61 m mean dif-
ference and 0.42 m RMSD. Validation against monthly sea
ice draft measurements from the Beaufort Gyre Exploration
Project (BGEP) shows that, for thicknesses above 1 m, the
model performance without SIT assimilation is similar to
(and slightly better than) that of CryoSat-2 SIT observations.
Therefore, the SIT assimilation experiment does not show
an improvement compared to the control against this valida-
tion dataset, although the statistics for both model runs are
good. The SIT assimilation experiment experiences a degra-
dation for thicknesses below 1 m compared to the control,
validated using the BGEP observations, despite giving very
little weight to SIT observations below 1 m in the analysis.
The degradation may be due to poorly specified observa-
tion uncertainties in the assimilated observations. Validation
against springtime airborne electromagnetic induction (Air-
EM) combined SIT and snow depth observations (Haas et al.,
2009) yields poorer results than for the OIB and BGEP
datasets, despite covering similar locations. This may be evi-
dence of sampling uncertainty in the Air-EM matchups, ow-
ing to the more limited number of observations available
from this dataset that cover the time period of interest. It may
also be a result of noise in the SIT analysis or uncertainty in
the modelled snow depth, in the assimilated observations, or
in those used for validation.
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Despite the lack of CryoSat-2 SIT observations over the
summer months due to the presence of melt ponds affect-
ing retrievals, the model has been shown to retain improve-
ments to the SIT field throughout the summer due to previ-
ous SIT assimilation. Sea ice concentration (SIC) assessment
results for the SIT assimilation experiment show a regional
improvement in July in the European sector, compared to a
control. This is likely due to the slower melting of thicker
ice introduced by the SIT assimilation in previous months.
Overall, it is concluded that CryoSat-2 along-track measure-
ments, rather than gridded and temporally averaged observa-
tions, can be successfully assimilated.

The heterogeneous nature of sea ice means that SIT ob-
servations will always contain sub-grid-scale noise, as well
as sizeable uncertainties in the data. The mitigating effect of
using a model and a well-specified data assimilation scheme
avoids the need for gridding or temporal averaging of the
noisy CryoSat-2 data. A spatial averaging of sorts is car-
ried out on the freeboard observations through the process
of super-obbing, which takes the median observation within
a 10 km radius. This aims to reduce the random uncertainty
in the observations, while preserving spatial variability at
the model grid scale. Remaining noise in the SIT analysis
could be reduced by increasing the observation error vari-
ance (OBE) for, or filtering out, super-observations with a
number of input values below a specified threshold. This is-
sue mainly affects lower latitudes close to the ice edge, and
the planned assimilation of Soil Moisture and Ocean Salin-
ity (SMOS) thin ice observations (below 1 m) into FOAM
will help to improve the SIT analysis and forecasts in these
regions. Measurement uncertainties generated as part of the
processing chain for each CPOM freeboard observation, and
not determined solely from the magnitude of the observation
itself, would be very useful since the current method is reliant
on the observations being unbiased.

There are a number of options for further development of
SIT assimilation in FOAM. Well-specified OBEs and back-
ground error variances (BGEs), and importantly the balance
between them, are vital for producing high-quality analy-
ses. Owing to the reduction in Arctic sea ice cover in recent
decades (e.g. Meredith et al., 2019), a climatological BGE
as used in this study may not be the optimal method for SIT
assimilation. Instead, a daily-varying BGE could be obtained
for SIT from the latest ensemble system under development
at the Met Office. This would be combined with the clima-
tological BGE in a hybrid ensemble/variational framework,
as is planned for the ocean variables in FOAM. Use of the
NEMOVAR dual length scale capability for background er-
ror covariances could also be investigated for SIT. Additional
future plans include the assimilation of satellite snow depth
observations into the FOAM system, which would reduce
this source of uncertainty in the conversion of sea ice free-
board to SIT.

In order to introduce SIT assimilation into operational
Met Office forecasting systems, improvements to the deliv-

ery timeliness of the near-real-time observations would be re-
quired, as well as operational support of their dissemination.
The CPOM near-real-time product used in this study cur-
rently has a latency of 72 h and, at the present time, FOAM
uses observations which are made available within 48 h. The
coupled numerical weather prediction (NWP) system being
implemented in 2021 will require observations to be avail-
able as close to real time as possible, up to a maximum delay
of 24 h. Operational implementation of SIT assimilation in
FOAM will directly influence the Met Office’s GloSea sea-
sonal forecasting system (MacLachlan et al., 2014), as this
is initialised using FOAM analysis fields. Using improved
FOAM SIT fields for initialisation, particularly for regions
of thicker ice, is expected to be of substantial benefit to the
quality of seasonal forecasts of sea ice extent, concentration
and thickness produced by GloSea, as was demonstrated by
Blockley and Peterson (2018).

CryoSat-2 is currently operating well beyond its 3.5-year
nominal lifespan, having been launched in 2010. Freeboard
observations from NASA’s ICESat-2 (launched 2018, also
with a design life of 3 years) are available, though not cur-
rently in near real time. Although planning is underway for a
high-priority ESA candidate satellite mission to observe the
polar regions, Copernicus Polar Ice and Snow Topography
Altimeter (CRISTAL), there is a real risk of an observation
data gap occurring, should CryoSat-2 and ICESat-2 both fail
before the CRISTAL mission is realised. The work in this
study highlights the significance of the continuation of dedi-
cated satellite missions for monitoring SIT and demonstrates
the suitability of near-real-time, along-track SIT observations
for use in operational ocean–sea-ice modelling and forecast-
ing.

Data availability. CryoSat-2 along-track sea ice freeboard observa-
tions were processed by CPOM for use in this study and are avail-
able on request for non-commercial research use.

FOAM sea ice and ocean analysis and forecast products from the
SIT assimilation experiment and control are available on request for
non-commercial research use.

The in situ sea ice thickness observations used for validation
of the FOAM model output were obtained through the University
of Washington Unified Sea Ice Thickness Climate Data Record
(Schweiger, 2017). The teams responsible for the collection and
processing of the field measurements are acknowledged:

– Operation IceBridge (QuickLook v1 product, downloaded
1 August 2019), Kurtz et al. (2019);

– PAM-ARCMIP Air-EM (downloaded 1 August 2019), Haas
et al. (2009); and

– BGEP (downloaded 5 August 2019) – the data were col-
lected and made available by the Beaufort Gyre Exploration
Project based at the Woods Hole Oceanographic Institu-
tion (http://www.whoi.edu/beaufortgyre, Beaufort Gyre Ex-
ploration Project, 2021).

The SSMIS SIC observations used for validation in Sect. 4
are from EUMETSAT OSI SAF products OSI-401 and OSI-401-b
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(Tonboe et al., 2017), obtained in near real time through the EU-
METCast delivery system.

The sea ice type data used for Fig. 1 are from EUMETSAT OSI
SAF product OSI-403-c (Aaboe et al., 2021), downloaded 19 Febru-
ary 2021 via ftp.
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