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Abstract. Cone penetration tests have long been used to
characterize snowpack stratigraphy. With the development
of sophisticated digital penetrometers such as the SnowMi-
croPen, vertical profiles of snow hardness can now be mea-
sured at a spatial resolution of a few micrometers. By us-
ing small penetrometer tips at this high vertical resolution,
further details of the penetration process are resolved, lead-
ing to many more stochastic signals. An accurate interpreta-
tion of these signals regarding snow characteristics requires
advanced data analysis. Here, the failure of ice connections
and the pushing aside of separated snow grains during cone
penetration lead to a combination of (a) diffusive noise, as
in Brownian motion, and (b) jumpy noise, as proposed by
previous dedicated inversion methods. The determination of
the Kramers–Moyal coefficients enables differentiating be-
tween diffusive and jumpy behaviors and determining the
functional resistance dependencies of these stochastic con-
tributions. We show how different snow types can be charac-
terized by this combination of highly resolved measurements
and data analysis methods. In particular, we show that denser
snow structures exhibited a more collective diffusive behav-
ior supposedly related to the pushing aside of separated snow
grains. On less dense structures with larger pore space, the
measured hardness profile appeared to be characterized by
stronger jump noise, which we interpret as related to break-
ing of a single cohesive bond. The proposed methodology
provides new insights into the characterization of the snow-
pack stratigraphy with micro-cone penetration tests.

1 Introduction

Snow is an essential component of our environment and
can significantly impact our lives: from the wishful dream
of a white Christmas to the misfortune of avalanche acci-
dents. Having a closer look at snow, one discovers many mi-
crostructural patterns and realizes that snow on the ground
undergoes constant evolution (Colbeck et al., 1990). The
snow microstructure fully controls its physical and mechan-
ical properties, which are essential for diverse applications,
such as avalanche forecasting (Schweizer et al., 2003). A
snowpack is typically structured in numerous layers com-
posed of different snow types, where such stratigraphy will
determine the snowpack stability. Cone penetration tests have
long been used to characterize the snowpack stratigraphy
(Bader and Niggli, 1939). The SnowMicroPen (SMP) can
perform cone penetration tests of snow in the field (Schnee-
beli et al., 1999). It measures the force needed to drive
a cylinder with a millimetric conic tip into the snowpack.
With its high resolution (250 measurements mm−1), the mea-
sured force or hardness is supposedly linked to the snow mi-
crostructure (Johnson and Schneebeli, 1999). A typical con-
sequence of such a high-precision measurement is that more
and more details of the penetration process can be resolved,
leading to many more stochastic signals. In this context, it
is of particular interest to employ advanced data analysis to
find out how different kinds of stochastic signals are related
to different snow types. There are also other penetrometers
used for cone penetration tests in the field of snow; for exam-
ple McCallum (2013) used a large-scale penetrometer with a
tip diameter of 36.7 mm in polar snow. For our analysis, we
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specifically used the measurement data of micro-cone pene-
tration tests from Schneebeli et al. (1999).

Johnson and Schneebeli (1999) developed the first model
to estimate micromechanical properties of snow from mea-
sured penetration profiles. They assumed that the material
compaction is negligible and that the penetration resistance
is only composed of friction between the penetrometer and
snow grains and a superposition of spatially uncorrelated
and identical brittle failures of individual snow microstruc-
tural elements (e.g., the bonds between the snow grains).
Marshall and Johnson (2009) extended the theory of John-
son and Schneebeli (1999) to account for simultaneous rup-
tures by Monte Carlo simulations. They precisely resolved
the snow micromechanical parameters, such as the deflec-
tion length, rupture force and rupture intensity. Löwe and van
Herwijnen (2012) re-stated the pioneering idea of Johnson
and Schneebeli (1999) and described the fluctuating penetra-
tion hardness as a Poisson shot noise process. In their model,
the micromechanical parameters can be simply derived from
the cumulants and the co-variance of the penetration signal.
Peinke et al. (2019) further extended the homogeneous Pois-
son process of Löwe and van Herwijnen (2012) so that the
scale of variation in the rupture intensity could be decoupled
from the scale of variations in the deflection length and the
rupture force. These models are now commonly used to char-
acterize the snowpack stratigraphy from SMP measurements.
Indeed, Proksch et al. (2015) related the micromechanical
parameters derived from SMP measurements to some of the
most critical snow characteristics, namely density, specific
surface area and structural correlation length. These relations
are now routinely used to quantify the snowpack stratigraphy
(e.g., Calonne et al., 2020). Besides, Reuter et al. (2019) es-
timated the elastic modulus and fracture energy from the mi-
cromechanical parameters, which can then be used to com-
pute point snow stability for avalanche hazard assessment
(e.g., Reuter et al., 2015).

Here, we consider the measured fluctuating hardness as
a consequence of summing up the interactions between the
penetrometer tip and individual snow particles. We describe
this penetration process in analogy to the well-known Brow-
nian motion (Einstein, 1905), where a microscopically vis-
ible particle suspended in fluid is moving randomly. Due to
the sum of several collisions with the molecules in the fluid as
illustrated in Fig. 1, the large red particle undergoes a motion
described by a stochastic process. Such a stochastic process
is driven by white noise and is known as a Langevin process
(see Gardiner, 1985, and Sect. 2). While very similar ele-
mentary collision events are assumed for classical Brownian
motion, we also need to consider brittle failures of individual
snow microstructural elements (bonds between snow grains,
crushing of grain clusters), which cause sharp declines in
penetration hardness. These brittle failures were modeled as
a Poisson shot noise process by Löwe and van Herwijnen
(2012) and Peinke et al. (2019). Jump noise acts as discontin-
uous paths inside the diffusion process, and low-jump events

Figure 1. (a) Penetration resistance caused by the interactions of the
snow particles (gray) with the penetrometer tip (red); (b) Brown-
ian motion where a microscopically visible particle (red) suspended
in the fluid is moving randomly due to the collisions with the
molecules (gray) in the fluid.

can be considered Poisson distributed noise (which corre-
sponds to the abovementioned shot noise). The idea of this
work is to employ a method that allows estimating the un-
derlying stochastic differential equation from empirical data
and differentiating between a Langevin (pure diffusive) and
a jump-diffusion process (Anvari et al., 2016). Via this ad-
vanced analysis, we seek more detailed snow characteriza-
tion from micro-cone penetration test resistance data.1

The article is organized as follows. In Sect. 2, we sum-
marize the stochastic analysis method and show how it is
possible to distinguish between diffusive and jump noise.
In Sect. 3, the method is applied to centimetric snow sam-
ples whose microstructure is also captured by tomography.
In Sect. 4, as a proof of concept, the SMP profile of a natural
snowpack is analyzed with this technique.

2 Stochastic method

A stochastic process x(t) can be described through stochas-
tic differential equations. This section explains the equations
used to model cone penetration tests in snow. Since the SMP
is driven by a motor with constant speed u= dz

dt (z is depth; t
is time) and samples the measurement every 4 µm, the mea-
sured penetration force or snow hardness R is considered the
depth dynamics R(z(t)) and handled like a stochastic vari-
able x(t).

2.1 Langevin equation

A diffusive process x(t), which is a continuous stochastic
process, follows the Langevin equation, where for a small
step size dt has the following expression (Risken, 1984;
Friedrich et al., 2011; Tabar, 2019):

dx(t)=D(1)(x, t) dt +
√
D(2)(x, t) dWt , (1)

1A direct comparison of our stochastic approach with the works
based on shot noise is out of the scope of this paper.
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where D(1)(x, t) and D(2)(x, t) are the drift and the diffu-
sion coefficients, respectively, and Wt is the Wiener pro-
cess. The drift term D(1) describes how fluctuations relax to
the local mean values of x, defined by D(1)(x, t)= 0. The
diffusion term D(2) represents the amplitude of the noise.
The coefficients D(1) and D(2) are also known as the first-
and second-order Kramers–Moyal (KM) coefficients, respec-
tively. In general, KM coefficients can be directly determined
from the given data x(t) using their definitions of the con-
ditional incremental average (Friedrich et al., 2011; Tabar,
2019); i.e.,

K(j)(x, t)= lim
1t→0

〈
(x(t +1t)− x(t))j |x(t)=x

〉
1t

. (2)

Further details on methods of this estimation can be found
in Friedrich et al. (2011) and Rinn et al. (2016)2. The
Langevin equation describes a continuous diffusion process
where K(j)(x, t)= 0 for j ≥ 3 and D(j)(x, t)=K(j)(x, t).
According to Pawula’s theorem, all KM coefficientsK(j) are
vanishing for j ≥ 3 if K(4)(x, t)= 0 (Risken, 1984; Pawula,
1967). In our case, however, the higher-order coefficients are
not always vanishing; hence we extend the discussion to the
jump-diffusion process (see Sect. 2.2).

For the SMP data considered, the drift termD(1) in Eq. (1)
describes how hardness fluctuations relax to the local mean
values of hardness R, defined by D(1)(R,z)= 0. The dif-
fusion D(2) term represents the amplitude of the hardness
fluctuations. The coefficients D(1) and D(2) are z-dependent
for non-stationary (inhomogeneous) processes. Here, we as-
sume that for a chosen small depth interval (z), D(1)(R,z)
andD(2)(R,z) only depend on R (similarly to Löwe and van
Herwijnen, 2012, for their shot noise model).

2.2 Jump-diffusion dynamics

Typically, when the signal of a stochastic process presents
sharp changes at some instant (discontinuity events), higher-
order Kramers–Moyal coefficients (especiallyK(4)(x, t)) be-
come non-negligible. In this case, an extension to Langevin-
type modeling with additional jump noise is needed (see
Tankov, 2003; Stanton, 1997; Johannes, 2004; Bandi and
Nguyen, 2003; Anvari et al., 2016; Tabar, 2019). Such a
jump-diffusion dynamic is given by the following stochastic
differential equation:

dx(t)=D(1)(x, t) dt +
√
D(2)(x, t) dWt + ξ dJt , (3)

2KM coefficients for the Langevin equation are defined

asK(j)(x, t)=D(j)(x, t)= 1
j !

lim1t→0
〈(x(t+1t)−x(t))n|x(t)=x〉

1t in
Friedrich et al. (2011) and Rinn et al. (2016). In order to
make it consistent with the jump-diffusion process, our defini-
tion differs by a factor of 1

j !
, in which dWt = 0(t) · dt where

〈0(t)〉 = 0 and
〈
0(t)0(t ′)

〉
= δ(t − t ′). The corresponding Fokker–

Planck equation will be ∂
∂t
p(x, t)=− ∂

∂x

[
D(1)(x, t) p(x, t)

]
+

1
2
∂2

∂x2

[
D(2)(x, t) p(x, t)

]
.

where, again, D(1) and D(2) are the drift and the diffusion
coefficients, respectively, and Wt is the Wiener process. The
quantity ξ is the size of the jump noise and is assumed to be
normally distributed; i.e., ξ ∼N(0,σ 2

ξ ), where σ 2
ξ (x, t) is the

so-called jump amplitude. The term Jt is the Poisson jump
process, which is the zero–one jump process with a jump rate
(or intensity) λ(x, t) (Hanson, 2007; Tabar, 2019).

For jump-diffusion processes, the drift and diffusion coef-
ficients (D(1), D(2)), the jump rate σ 2

ξ and amplitude λ are
related to the KM coefficients as (Anvari et al., 2016):

D(1)(x, t)=K(1)(x, t), (4)

D(2)(x, t)+ λ(x, t)〈ξ2
〉 =K(2)(x, t), (5)

λ(x, t)〈ξ j 〉 =K(j)(x, t), for j > 2. (6)

The estimate of the drift coefficient is the same for the dif-
fusion process (Eq. 1) and the jump-diffusion process (Eq. 4).
Jump amplitude σ 2

ξ and rate λ can be estimated by using
Eq. (6) with j = 4 and j = 6 and Wick’s theorem (Isserlis,
1916; Wick, 1950) for Gaussian random variables, which
states that 〈ξ2n

〉 =
(2n)!
2nn! 〈ξ

2
〉
n:

σ 2
ξ (x, t)=

K(6)(x, t)

5K(4)(x, t)
, (7)

λ(x, t)=
K(4)(x, t)

3σ 4
ξ (x, t)

. (8)

To improve the estimation of KM coefficients K(j)(x, t)

and in particular of high-order coefficients, the Nadaraya–
Watson estimator, which is a kernel estimator, can be used
(Nadaraya, 1964; Watson, 1964):

K(j)(x, t)= lim
1t→0

∑
ik(

xi1t−x
h

)(x(i+1)1t − xi1t )
j∑

ik(
xi1t−x
h

)1t
, (9)

where here we use a Gaussian kernel k(u) (Tabar, 2019).
With the kernel-based method the conditional moments can
be calculated more smoothly by controlling the kernel band-
width h (Lamouroux and Lehnertz, 2009), where here we use
the kernel bandwidth h= 0.3.

For the SMP measurements considered, we also as-
sume that for a chosen small depth interval (z), D(1)(R,z),
D(2)(R,z), σ 2

ξ (R,z) and λ(R,z) only depend on R. The
stochastic differential equation for the jump-diffusion pro-
cess thus reads, at small depth intervals, as

dR(z)=D(1)(R) dz+
√
D(2)(R) dWz+ ξ dJz, (10)

with an interpretation of the drift and diffusion terms (D(1),
D(2)) analogous to the purely diffusive process (Eq. 1) but
now extended by a jump noise term. This is the same as
Eq. (3) in terms of depth z instead of time t . The jump rate
λ has the dimension of 1

[Z]
and can be related to the shot

noise intensity described by Löwe and van Herwijnen (2012)
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and Peinke et al. (2019). Typically, λ dz corresponds to the
stochastic average of the number of jumps for a penetration
increment of depth dz (Anvari et al., 2016; Tabar, 2019). The
jump amplitude σ 2

ξ represents the square of the typical size of
a jump. Note that the jump can be negative (failure of a mi-
crostructural element) or positive (loading of a microstruc-
tural element). Here, we do not consider any progressive
loading of a microstructural element as described by Löwe
and van Herwijnen (2012) and Peinke et al. (2019) with the
microstructural deflection length δ. Here, the loading of a
microstructural element and its contribution to penetration
hardness are considered instantaneous.

2.3 Synthetic examples

In this section, we illustrate how diffusive and jump noises
affect the stochastic fluctuations on a synthetic example.
An Ornstein–Uhlenbeck (OU) process x is described by a
stochastic differential equation (SDE) with linear relaxation
dynamics and an additive uncorrelated noise. With an addi-
tional jump term, it is defined as

dx =−γ x dt +
√
D dWt + ξ dJt . (11)

where γ is the relaxation rate, D the constant diffusion co-
efficient and Wt a scalar Wiener process. The noise ξ ∼
N(0,σ 2

ξ ) is assumed to be normally distributed with the con-
stant variance or jump amplitude σ 2

ξ . Jt ∼ P(λt) is the Pois-
son jump process, which is a zero–one jump process with
constant jump rate λ. Here, we have triply stochastic pro-
cessesWt , Jt and ξ , which are assumed to be independent of
each other.

Three synthetic time series of the OU jump-diffusion pro-
cess were generated for 1t = 10−3 s with γ = 100s−1, D =
10s−1 and for the additional jump terms with λ= 100s−1

and σ 2
ξ = 1. The generated data were normalized with their

respective standard deviation. In Fig. 2 the normalized time
series of the OU jump-diffusion processes are shown. A pure
diffusion process (left), a drift-jump process (middle) and
the combined jump-diffusion process (right) are shown. The
fourth-order KM coefficients K(4)(x) of each time series are
also plotted in Fig. 2, bottom row. K(4) of the diffusion pro-
cess is negligibly small compared to drift-jump and jump-
diffusion processes.

For a jump-diffusion process, another parameter that we
considered was the ratio of diffusion and jump noise D(2)

λσ 2
ξ

,

which becomes here for our OU jump-diffusion process
D

λσ 2
ξ

. To validate our method, based on the KM coefficients

of Eq. (5) to Eq. (8), three pairs of parameters were cho-
sen: (i) D = 5s−1, σ 2

ξ = 1; (ii) D = 5s−1, σ 2
ξ = 0.5; and

(iii) D = 20s−1, σ 2
ξ = 1. The other parameters are the same

as in the previous example. The normalized time series of
these examples are plotted in Fig. 3, top row. In Fig. 3, bot-
tom row, the ratios of diffusion and jump noise D

λσ 2
ξ

estimated

from each time series were compared to the expected values
(blue lines). As we used normalization and the same noises
in simulation, all time series are very similar; however, one
can observe clearly the much noisier fine structure in case
(iii) where the diffusion coefficient is larger.

3 Application to snow measurements

In this section, our main aim is to show how the jump-
diffusion model can be used to distinguish snow types from
hardness profiles measured with the SMP. Firstly, small snow
samples whose microstructure was also fully characterized
by tomography before being measured by the SMP were used
to test the developed methodology. Secondly, as a proof of
concept, we analyzed one penetration profile of a snowpack
measured in the field and we provided the subsequent pro-
file of microstructural parameters. Last, the results were dis-
cussed.

3.1 Laboratory samples

3.1.1 Measurement data

We tested several snow samples composed of four differ-
ent natural snow types, namely precipitation particles (PP),
depth hoar (DH), rounded grains (RG) and large rounded
grains (RGlr) as classified in Fierz et al. (2009). The sam-
ples were prepared by sieving snow into small sample hold-
ers (diameter and height of 20 mm) and letting them sinter
for a couple of days at −10 ◦C. Their microstructure was
captured with X-ray tomography at a nominal resolution of
15 µm (Fig. 4). The cone penetration test was conducted with
a modified version of the SMP, as shown in Fig. 5. More in-
formation on sample preparation and the SMP measurement
can be found in the study of Peinke et al. (2020). The main
sample properties are summarized in Table 1, and the mea-
sured hardness profiles (one example for each snow type) are
plotted in Fig. 6. The first 4 mm is affected by the progres-
sive penetration of the conic tip and was not considered in the
stochastic analysis (Peinke et al., 2019). The remaining pro-
files were divided into smaller segments of a depth of 10 mm.

To work out the significance of advanced stochastic fea-
tures for snow, we focused on the fluctuations in the hard-
ness profiles. Each profile was first detrended. The trend
R was computed as the convolution of the original signal
with a Gaussian kernel with a standard deviation of 0.6 mm.3

The fluctuation amplitude σR was computed as the standard
deviation of R−R. The detrended profiles are defined as
R′ = R−R

σR
. The detrended profiles R′ are characterized by

a zero mean and a standard deviation of 1. The average value
of R on the segment and the value of the standard deviation

3The results do not change significantly if the kernel widths are
changed between 0.14 and 0.66 mm, where this range corresponds
to the range of average grain sizes of the snow types.
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Figure 2. Normalized time series of Ornstein–Uhlenbeck processes with only diffusion, only jump (drift-jump) and jump-diffusion terms (a,
b, c) and their fourth-order KM coefficients K(4) (d, e, f). K(4) of the diffusion process is negligible compared to drift-jump and jump-
diffusion processes. For all three examples, we used the same noises in the stochastic part of the stochastic differential equation.

Figure 3. Normalized time series of OU jump-diffusion processes with1t = 10−3 s, γ = 100s−1 and λ= 100s−1 for (i)D = 5s−1, σ 2
ξ = 1;

(ii)D = 5s−1, σ 2
ξ = 0.5; and (iii)D = 20s−1, σ 2

ξ = 1 (a, b, c) and the corresponding ratio of diffusion and jump noise D(2)

λσ 2
ξ

=
D

λσ 2
ξ

(d, e, f).

Dots are results from the KM coefficients, and the blue line denotes the theoretical values given by the constants. For all three examples, we
used the same noises in the stochastic part of the SDE.

σR are shown for each segment in Table 1. The detrended
profiles R′ are shown in Fig. 7, for all four snow types.

To estimate errors, we divided the detrended and normal-
ized data into different sub-samples. Given are two PP, three
DH, three RG and six RGlr measurement profiles. These
profiles were separated into smaller segments, which finally
gives four PP, five DH, five RG and six RGlr samples. We es-
timated the KM coefficients of each sample using Eq. (2) and
averaged them over the sub-samples of each snow type. Thus,

drift, diffusion functions and jump parameters and their er-
rors were estimated. The errors were reported as the standard
error of the means.

3.1.2 Results

According to the description provided in Sect. 2, the drift
D(1)(R′) and diffusion D(2)(R′), as well as the fourth-order
KM coefficients K(4)(R′), for normalized data were deter-

https://doi.org/10.5194/tc-16-4811-2022 The Cryosphere, 16, 4811–4822, 2022
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Figure 4. Three-dimensional view of the microstructure of some representative samples: precipitation particles (PP1), depth hoar (DH1),
rounded grains (RG1) and large rounded grains (RGlr1). The ice matrix is shown in gray; the pore space is transparent. Sub-samples shown
are cubic with a side length of 3 mm. Details on the data acquisition can be found in Peinke et al. (2020).

Table 1. Overview of the detailed properties of the snow samples used. Snow types are classified according to the international classification
of snow on the ground (Fierz et al., 2009). The density and specific surface area (SSA) are derived from the tomographic images from Peinke
et al. (2020). Additionally, the standard deviations σR of the detrended profiles are calculated.

Sample name Snow type Sieve size Density SSA σR
(mm) (kgm−3) (m2 kg−1) (kPa)

PP1 Precipitation particles 1.6 92 53.5 0.55
PP2 Precipitation particles 1.6 137 41 0.81
DH1 Depth hoar 1.6 345 16.9 4.78
DH2 Depth hoar 1.6 364 15.9 3.67
DH3 Depth hoar 1.6 364 16.5 3.89
RG1 Rounded grains 1.6 289 23.0 3.29
RG2 Rounded grains 1.6 304 23.7 3.81
RG3 Rounded grains 1.6 325 20.6 3.63
RGlr1 Large rounded grains 1 530 10.1 13.20
RGlr2 Large rounded grains 1 544 10.3 11.78
RGlr3 Large rounded grains 1.6 557 9.9 8.99
RGlr4 Large rounded grains 1 542 9.3 14.01
RGlr5 Large rounded grains 1 541 9.7 20.49
RGlr6 Large rounded grains 1 526 10.1 17.22

mined for the four different snow types, PP, DH, RG and
RGlr as shown in Fig. 8. In addition, the autocorrelation func-
tion (ACF) was determined from the signals. If the fluctua-
tions in R′(z) belong to the diffusion processes, one would
expect that K(4)(R′)= 0. However, we find that in general,
K(4)(R′) 6= 0 and the higher-order KM coefficients are not
negligible. This indicates the presence of discontinuities in
the snow hardness profile, so the jump-diffusion model is
considered. Therefore, we estimated jump parameters, i.e.,
jump amplitudes σ 2

ξ (R
′) and jump rates λ(R′) from data of

R′(z) in Fig. 9.
As shown in Fig. 8, the drift coefficients, D(1)(R′,z),

are mostly linear functions with negative slopes, which
describe how fast the system tends back toward the sta-
ble fixed point. Due to our normalization, the fixed point
of dynamics is located at the origin, i.e., R′ = 0. Tak-
ing D(1) =−γR′, the correlation length scale is given by
LC =

1
γ

. For each snow type, LC was determined for −2<
R′ < 2: {PP, DH, RG, RGlr} = {0.01,0.04,0.02,0.08}mm.
Comparing LC with the correlation lengths of the au-

tocorrelation functions – LACF, {PP, DH, RG, RGlr} =
{0.006,0.025,0.016,0.038}mm – we find that both length
scales have the same ordering of their values for all snow
types. The snow types PP and RG have the shorter correla-
tion length scale, in comparison to the snow types DH and
RGlr.

The jump amplitudes, σ 2
ξ (R

′), and the jump probabili-
ties, λ(R′) 1z, are shown in Fig. 9. The jump amplitude,
σ 2
ξ (R

′), indicates how large the jump noise for different
R′ values is. The jump probability describes how proba-
ble jumps or discontinuities in forces can occur. To analyze
whether diffusion or jump noise is dominating, the dimen-
sionless ratio of diffusion and jump noise D(2)

λσ 2
ξ

(Fig. 9, bot-

tom row) was calculated. For a rough estimation, the mean
values were determined in the range of −2<R′ < 2 and
are plotted as horizontal blue lines. The mean of λ can be
used to define the second characteristic length scale LJ =

1
λ

(apart from 1
γ

). For the abovementioned range of R′ we ob-
tained {PP, DH, RG, RGlr} = {0.006,0.01,0.007,0.02}mm.
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Figure 5. Setup of micro-cone penetration test (Peinke et al., 2020).
The cone penetration tests (CPTs) were conducted by inserting a
cylinder of diameter 5 mm, with a conical tip of an apex angle of
60◦, into the snow samples. The samples were placed in the cylin-
der sample holder with a diameter of 20 mm. The cone was inserted
vertically at a constant speed of 20 mms−1. The SMP force sen-
sor (Kistler 9207) measures forces in the range of [0, 40] N with a
resolution of 0.01 N.

Figure 6. Segments of snow hardness profiles of PP1, DH1, RG1
and RGlr1. These four different types occur as natural snow types.
Precipitation particles (PP) have the smallest trend and fluctuation
force; large rounded grains (RGlr) are the largest, while depth hoar
(DH) and rounded grains (RG) have similar trends and fluctuation
forces between those of PP and RGlr. The first 4 mm is affected by
the progressive penetration of the conic tip and was not considered
in the stochastic analysis.

Results are summarized in Table 2, and we discuss these in
Sect. 4.

3.2 Application to field snow data

3.2.1 Measurement data

Next, measurements from a field campaign are presented
(Hagenmuller and Pilloix, 2016). The measurements were
also performed with an SMP, but the tip had a slightly dif-
ferent shape corresponding to the standard version of the
SMP (Johnson and Schneebeli, 1999). The spatial sampling
is again 4 µm. This difference in the measurement methods
was irrelevant, as we subsequently show with these prelimi-
nary results that in principle, the stochastic methodology can
also be applied to real snow data and that qualitatively com-
parable results are obtained.

3.2.2 Results

The snow hardness profile of a field measurement is shown
in the top left of Fig. 10. The measurement profile is strongly
inhomogeneous; therefore, we used the Nadaraya–Watson
estimator to determine the local characteristics of the pro-
file. Using the moving-window technique, the profile was
separated into non-overlapping windows of 500 data points
(2 mm), and the detrending was performed on each window
by the Gaussian kernel with a kernel size of 0.6 mm, nor-
malized with its standard deviation as in our previous anal-
ysis of laboratory data. For each depth value z and the cor-
responding value R′(z), the local values of the fourth-order
KM coefficient K(4)(z) and the jump amplitude σ 2

ξ (z) can
be determined, as shown in Fig. 10. The local characteristic
of each snow type from the previous section is plotted in the
right column of Fig. 10 for better comparison with the field
measurement data. Interpretation of these results will be dis-
cussed next.

4 Discussion

Our work is based on the proposed analogy of Brownian mo-
tion and the SMP penetration process, as illustrated in Fig. 1.
The events of bond breaking or of collision with molecules
are summed up in a mean force and noise. For continu-
ous Brownian noise, we need an integration over sufficient
micro-scale events, as discussed by Einstein (1905) in his
original paper. In our interpretation, it is found that suffi-
ciently large particles lead to this integration; see Fig. 1b. To
our interpretation, this integration over discrete single events
of bond breaking in the immediate surroundings of the SMP,
in addition to the pushing aside of loose snow grains during
the penetration process, forms continuous Brownian noise.
The jump noise may represent the bond-breaking events oc-
curring directly at the tip of the SMP, and the amplitude of
the jump noise should depend on the strength of the ice bonds

https://doi.org/10.5194/tc-16-4811-2022 The Cryosphere, 16, 4811–4822, 2022



4818 P. P. Lin et al.: Stochastic analysis of micro-cone penetration tests

Figure 7. Detrended snow hardness profiles of four different snow types, PP, DH, RG and RGlr. For the snow type RGlr, we only show the
samples RGlr4, RGlr5 and RGlr6, as described in Table 1. The detrended profiles R′(z) of each snow type are shifted vertically for better
visualization.

Figure 8. State-dependent drift D(1)(R′), diffusion D(2)(R′), fourth-order KM coefficients K(4)(R′) and their respective autocorrelation
functions (ACFs) of four different snow types, PP, DH, RG and RGlr (left to right). The errors are shown as gray-shaded background. The red
lines in the ACF plots indicate the correlation length scales determined from ACFs. Comparing the correlation length scales LC =

1
γ where

D(1) =−γR′ with those of the autocorrelation functions (ACFs), we find that both length scales have the same ordering of their values for
all snow types.

and void sizes. From this interpretation, it is clear that snow
type morphology, shown in Fig. 4, is essential for effective
stochastic analysis as outlined herein.

We start the discussion with the mean values of R and
the standard deviation σR (see Fig. 6 and Table 1). The less

dense PP and the dense RGlr snow can be well separated,
whereas the differences are less clear for DH and RG. In the
following, we discuss the measured SMP penetration pro-
files based on our stochastic results. Since we now focus on
a stochastic investigation of the fluctuations in the penetra-
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Figure 9. Jump amplitudes σ 2
ξ (R
′), jump probabilities λ(R′) 1z, and diffusion and jump ratios D

(2)

λσ 2
ξ

of four different snow types, PP, DH,

RG and RGlr (left to right). More data are present in the range of −2<R′ < 2; we focus our statistical analysis in this range with fewer
uncertainties. The errors are shown as gray-shaded background. The ratios of diffusion and jump noise D(2)

λσ 2
ξ

for PP and RG are minimum

near zero and maximum for DH and RGlr, which means that the larger the ice structure, the stronger the diffusion noise, and vice versa. The
horizontal blue lines show the mean values of the respective parameters in the range of −2<R′ < 2.

Table 2. Summary of the results for the correlation length scales LC =
1
γ , LJ =

1
λ , jump amplitude σ 2

ξ , and diffusion and jump ratio D(2)

λσ 2
ξ

for all snow types analyzed. The results were evaluated in the range of −2<R′ < 2.

Snow type LACF LC =
1
γ LJ =

1
λ

σ 2
ξ

D(2)

λσ 2
ξ

(mm) (mm) (mm)

PP (0.006± 0.004) (0.0101± 0.0009) (0.0058± 0.0002) (1.21± 0.09) (0.120± 0.008)
DH (0.025± 0.004) (0.040± 0.009) (0.010± 0.001) (0.54± 0.05) (0.48± 0.09)
RG (0.016± 0.004) (0.020± 0.002) (0.0065± 0.0004) (0.68± 0.06) (0.19± 0.03)
RGlr (0.038± 0.004) (0.08± 0.02) (0.016± 0.001) (0.38± 0.07) (0.53± 0.04)

tion profiles, the detrended and normalized data are R′ used.
Furthermore, we can note that the normalization of the snow
profiles affects neither the correlation length scales LC =

1
γ

from the drift coefficients nor the jump characteristic length
scales LJ =

1
λ

. Because this analysis depends on the number
of available data, our discussion of the estimated KM coeffi-
cients is limited to the range −2<R′ < 2.

The drift terms D(1), Fig. 8, are all monotonously decay-
ing with increasing R′ and can be approximated by a linear
decay,D(1) =−γR′. The slope indicates how fast the signals
relax to a fixed point located atR′ = 0. The magnitudes of the
slopes are PP> RG> DH> RGlr; thus the PP snow has the

fastest relaxation or shortest correlation length scale LC. We
find that the larger the ice structures, the slower (or longer)
the relaxation. If we compare this result with the snow struc-
tures shown in Fig. 4, we conclude that LC or γ is clearly
related to the size of the snow structures.

The results for D(2) show that about the same diffusive
noise amplitude is found for all snow types. In contrast, we
see clear differences for the fourth-order KM coefficients
K(4). AlthoughK(4)

6= 0 is always the case, clear differences
in the magnitude of this KM coefficient are found.K(4) is the
largest in PP, followed by RG, DH and RGlr.
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Figure 10. The snow hardness profile of a field measurement together with its fourth-order KM coefficients K(4) and the jump amplitude
σ 2
ξ (z) is shown in (a), (c) and (e). These parameters were determined using non-overlapping moving window with 500 data points (2 mm)

by means of the Nadaraya–Watson estimator. Snow hardness profiles of the laboratory-prepared snow types and their local parameters are
also plotted to enable better comparison (b, d, f); they are shifted horizontally for better visualization. The results of field measurements are
shown at the depth of 700mm< z < 740mm. With reference to the local characteristic snow types from laboratory measurements, we can
see in the dynamics that mixtures of different snow types are present in this section of measurement. For 732mm< z < 740mm, the high
K(4) and σ 2

ξ indicate the presence of small and less dense structures of snow which resemble the RG-like snow types.

The amplitudes of jump noise, σ 2
ξ , are the highest for PP,

followed by RG, DH and RGlr. For the jump probabilities
λ 1z, we distinguish a group composed of PP and RG, with
higher values, and one composed of DH and RGlr, with lower
values. One can interpret this finding such that for the precip-
itation particles (PP, recent snow) with very small ice struc-
tures and high porosity, the breaking occurs easily and fre-
quently, which explains that the jump probability has the
largest contribution here. Similarly, RG is also less dense
with smaller ice structures than DH and RGlr. Thus, we can
also interpret this finding such that the smaller the ice struc-
tures and the less densely the snow is packed, the stronger
the jump noise. For the densely packed snow with larger ice
structures, the breaking of the ice structures is less frequent,
which explains a lower jump probability. The mean of the
jump rate λ in the range of −2<R′ < 2 can be used to de-
fine the second characteristic length scale LJ =

1
λ

. Similarly
to the correlation length scale LC =

1
γ

, PP has the smallest
length, followed by RG, DH and RGlr.

Besides the features of the different terms in the stochas-
tic processes, the contributions of the diffusive and the jump

noise can be compared by the dimensionless quotient of D
(2)

λσ 2
ξ

,

i.e., the relation between the two noise contributions. Consis-
tent with our earlier discussion, the smallest values for D(2)

λσ 2
ξ

are obtained for PP; i.e., the jump noise dominates due to the
frequent fracture of small (soft) ice structures. For the other
snow types, we see that within the range of −2<R′ < 2,
the values of D(2)

λσ 2
ξ

increase with larger ice structures, in ac-

cordance with Fig. 4. The quotient D
(2)

λσ 2
ξ

is smaller for PP and

RG and larger for DH and RGlr. For RGlr, the diffusive noise
dominates in a broad range of R′ values. For the densely
packed snow with larger grain sizes, it also takes much force
to push the ice grains on the side but not necessarily to break
the cohesive bonds close to the tip. Therefore the penetration
signal is dominated by Brownian noise. This result is also
consistent with the value of K(4), which is relatively small
for RGlr. It is interesting to see that D

(2)

λσ 2
ξ

andK(4) enable dif-

ferentiation between RG and DH. In contrast, according to
the classical statistical features of the snow signals shown in
Table 1, the differences for DH and RG are less clear.
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In Sect. 3.2, we analyze field measurement data which
are highly inhomogeneous. With reference to the laboratory
measurements, we see dynamics that suggest mixtures of dif-
ferent snow types within this depth segment. For 732mm<

z < 740mm, the high K(4) and σ 2
ξ indicate the presence of

small and less dense structures of snow which resemble the
RG-like snow types. Based on these preliminary results of
real field data, the developed methodology appears promis-
ing for interpreting cone penetration tests in the field, but fur-
ther quantitative evaluation is required.

5 Conclusions

In conclusion, we observe that the advanced stochastic anal-
ysis of SMP measurements of snow layers allows differen-
tiation of snow types. The diffusive and jump-noise con-
tribution can be quantified and gives new insights into the
stochastic behaviors of the cone penetration test in snow.
For different snow types, we find an interesting mixture of
diffusive- and jump-like noise. We propose the interpreta-
tion that the dominant diffusive process is due to the push-
ing aside of many snow grains, whereas the breaking of ice
structures leads to dominant jump noise. Our results show
that the denser structures typical of DH and RGlr lead to a
more collective diffusive behavior, whereas for the highly
porous snow structures of PP and RG, the single breaking
events lead to a relatively strong jump noise. For this inter-
pretation, all R values were detrended and normalized; thus
the absolute values of the snow hardness R are not essential
but more the resulting collective behavior of the snow types.

Finally, we would like to point out that our characteri-
zation of a complex material, snow, by a penetration pro-
cess should have the potential to be generalized to, for ex-
ample, biological tissue or ground layers. Last but not least,
we would like to point out that our work provides additional
insight into analyzing and modeling the complex nature of
snow types, complementing existing methods.
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