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Abstract. Modeled snow stratigraphy and instability data are
a promising source of information for avalanche forecast-
ing. While instability indices describing the mechanical pro-
cesses of dry-snow avalanche release have been implemented
into snow cover models, there exists no readily applicable
method that combines these metrics to predict snow insta-
bility. We therefore trained a random forest (RF) classifica-
tion model to assess snow instability from snow stratigraphy
simulated with SNOWPACK. To do so, we manually com-
pared 742 snow profiles observed in the Swiss Alps with their
simulated counterparts and selected the simulated weak layer
corresponding to the observed rutschblock failure layer. We
then used the observed stability test result and an estimate of
the local avalanche danger to construct a binary target vari-
able (stable vs. unstable) and considered 34 features describ-
ing the simulated weak layer and the overlying slab as poten-
tial explanatory variables. The final RF classifier aggregates
six of these features into the output probability Punstable, cor-
responding to the mean vote of an ensemble of 400 classifi-
cation trees. Although the subset of training data only con-
sisted of 146 profiles labeled as either unstable or stable,
the model classified profiles from an independent validation
data set (N = 121) with high reliability (accuracy 88 %, pre-
cision 96 %, recall 85 %) using manually predefined weak
layers. Model performance was even higher (accuracy 93 %,
precision 96 %, recall 92 %), when the weakest layers of the
profiles were identified with the maximum of Punstable. Fi-
nally, we compared model predictions to observed avalanche
activity in the region of Davos for five winter seasons. Of the
252 avalanche days (345 non-avalanche days), 69 % (75 %)
were classified correctly. Overall, the results of our RF classi-
fication are very encouraging, suggesting it could be of great
value for operational avalanche forecasting.

1 Introduction

Forecasting snow avalanches in mountainous terrain has long
proved to be a challenge for researchers and operational
forecasters. The probability of avalanche release depends on
snow instability, the sensitivity of the local snowpack to ar-
tificial or natural triggers (Statham et al., 2018). Snow insta-
bility results from a complex interplay between snowpack,
terrain and various meteorological drivers over time (e.g.,
Schweizer et al., 2003a; Reuter et al., 2015b). To estimate
snow instability at a specific location, stability tests, such as
the rutschblock (RB) test or the extended column test (ECT),
can be performed (e.g., Schweizer and Jamieson, 2010;
Techel et al., 2020b). These tests consist of incrementally
loading an isolated block of snow to assess the load required
to fracture weak layers in the snowpack. Such tests provide
essential information for the preparation of avalanche fore-
casts intended to warn the public about the avalanche dan-
ger. However, stability tests are very time-consuming, some-
times dangerous to perform and only provide local informa-
tion for one point in time. Although the potential of numer-
ical snow cover models to increase the spatial and temporal
resolution of snow instability data has been recognized, op-
erational avalanche forecasting rarely incorporates modeled
snow instability data (Morin et al., 2020).

A major reason for the limited use of modeled snow in-
stability data in avalanche forecasting is the complexity of
the processes involved in avalanche formation. The release
of a dry-snow slab avalanche is a fracture mechanical pro-
cess starting with failure initiation in a weak layer below
a cohesive slab and followed by rapid crack propagation
across the slope (e.g., Schweizer et al., 2003a; van Her-
wijnen and Jamieson, 2007; Gaume et al., 2017). Model-
ing snow instability thus requires (i) modeling snow stratig-
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raphy including relevant weak layers, (ii) suitable parame-
ters describing the mechanical processes and (iii) a mean-
ingful interpretation of these parameters. Modeling the one-
dimensional snow stratigraphy (step i) is feasible with the
two most advanced numerical snow cover models CROCUS
(Brun et al., 1989; Brun et al., 1992; Vionnet et al., 2012)
and SNOWPACK (Lehning et al., 1999; Bartelt and Lehn-
ing, 2002; Lehning et al., 2002a, b). Both physically based
models are driven with meteorological data from either auto-
matic weather stations or numerical weather prediction mod-
els (e.g., Bellaire and Jamieson, 2013; Quéno et al., 2016)
and provide microstructural (e.g., grain size) and macro-
scopic (e.g., density) properties for each snow layer. Valida-
tion campaigns have demonstrated a reasonably good agree-
ment between modeled and observed snow stratigraphy (e.g.,
Durand et al., 1999; Lehning et al., 2001; Monti et al., 2009;
Calonne et al., 2020) and, in particular, have confirmed the
models’ capability to reproduce critical snow layers such as
surface hoar (Bellaire and Jamieson, 2013; Horton et al.,
2014; Viallon-Galinier et al., 2020). From the basic model
output, different mechanical properties can be calculated.
The model MEPRA combines mechanical variables obtained
from CROCUS snow cover simulations with empirical rules
into an index describing avalanche danger (Giraud, 1993).
SNOWPACK contains a module for mechanical stability di-
agnostics which includes various parameters describing the
processes of avalanche formation. To assess dry-snow insta-
bility, a potential weak layer is determined with the structural
stability index (SSI; Schweizer et al., 2006) or the thresh-
old sum approach (Monti et al., 2014), and stability indices
are then calculated for this layer. These include the skier
stability index (SK38) describing failure initiation (Föhn,
1987b; Jamieson and Johnston, 1998; Monti et al., 2016)
and the recently implemented critical cut length (rc) relat-
ing to crack propagation (Gaume et al., 2017; Richter et al.,
2019). While SK38 and rc should capture the most impor-
tant processes involved in the formation of human-triggered
avalanches (step ii), the interpretation of these stability in-
dices (step iii) remains challenging. Although both indices
were related to avalanche observations or signs of instabil-
ity in several field studies using observed snow properties
(e.g., Jamieson and Johnston, 1998; Gauthier and Jamieson,
2008; Reuter and Schweizer, 2018), there are only a few val-
idation studies based on simulated snow stratigraphy (e.g.,
Schweizer et al., 2006; Richter et al., 2019). In particular,
there are no validated threshold values for a combination of
both indices in the case of simulated snow profiles. More-
over, SK38 provides meaningful results only for weak layers
that are not deeply buried (< 80 cm) (Schweizer et al., 2016;
Richter et al., 2021).

Given the limitations of the process-based snow instabil-
ity indices, we aim at assessing dry-snow instability from
simulated snow stratigraphy employing a machine learning
approach. Our goal is to develop a model which aggregates
information on snow stratigraphy into a probability of insta-

bility provided for each layer of the simulated snow profile.
This model should offer the possibility of detecting the weak-
est layer of a snow profile and assessing its degree of instabil-
ity with one single index. To this end, we incorporate existing
stability indices as well as microstructural and macroscopic
snow layer properties as input variables into a random for-
est (RF) classification model. We construct this RF model
using a one-to-one comparison of SNOWPACK simulations
with observed snow profiles including stability test results.
To discriminate rather unstable from rather stable snow con-
ditions, we derive threshold values for the predicted probabil-
ity of instability. A comparison of modeled snow instability
with observed avalanche activity highlights the potential of
our model to assess snow instability.

2 Data and data preparation

Our approach to classifying snow profiles using simulated
snow stratigraphy was divided into several steps (Fig. 1). It
involved two data sets (DAV and SWISS), each consisting
of pairs of observed snow profiles (Sect. 2.1) and associated
simulations at virtual slopes. The simulations were obtained
using meteorological forcing data (Sect. 2.2) as input for
SNOWPACK (Sect. 2.3). Pre-processing the data included
a one-to-one comparison of manual and simulated snow
profiles. We manually defined a weak layer in the SNOW-
PACK simulations corresponding to the rutschblock failure
layer observed in the field and discarded all profile pairs
that did not meet predefined similarity criteria (Sect. 3.1.2).
We then used the DAV data set to train the classification
model (Sect. 3.1.3) and the SWISS data set for validation
(Sect. 3.2).

2.1 Manual snow profiles and stability observations

2.1.1 DAV data set

To train our classification model, we used snow profiles ob-
served in the region of Davos (Eastern Swiss Alps, Switzer-
land; Appendix A – Figs. A1 and A2) from 18 winter seasons
between 2001/02 and 2018/19 (data set used by Schweizer
et al., 2021b, accessible at Schweizer et al., 2021a). This
data set (DAV) consisted of 512 profiles with information
on the profile site (coordinates, slope angle, slope aspect),
snow stratigraphy (grain type and size, snow hardness index)
observed according to Fierz et al. (2009), a rutschblock test
(RB; Föhn, 1987a; Schweizer and Jamieson, 2010) and an
estimate of the local avalanche danger level (local nowcast –
LN; Techel and Schweizer, 2017). RB test results included
the test score (ranging from 1 to 7; for a detailed description
of the test procedure see Schweizer, 2002), depth of the fail-
ure interface and release type (whole block, partial release
below skis or only an edge). A local nowcast assessment of
avalanche danger was also provided using a five-level danger
scale (1 – low, 2 – moderate, 3 – considerable, 4 – high, 5 –
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Figure 1. Overview of data sets and steps used for data pre-processing (left side) and model training and evaluation (right side).

very high). The assessment refers to the area observed dur-
ing a day traveling in the backcountry, which is typically on
the order of several square kilometers, and does not refer to a
single slope (for more details refer to Techel and Schweizer,
2017). The mean snow depth of all profiles in the DAV data
set was 111 cm, and 76 % of the recorded failure layers con-
tained persistent grain types.

To evaluate the application of the RF model to complete
snow profiles, we also used visual observations of dry-snow
avalanches from the region of Davos for the five winter sea-
sons 2014/15 until 2018/19 (data set used by Schweizer et al.,
2020a, and accessible at Schweizer et al., 2020b). From this
data set, we extracted dry-snow avalanches which released
naturally, were human-triggered or had an unknown trigger
type. These data were aggregated into the avalanche activity
index (AAI), a weighted sum of all observed avalanches on
a specific day, with weights assigned according to avalanche
size (weights 0.01, 0.1, 1 and 10 for size classes 1 to 4, re-
spectively; Schweizer et al., 2003b) and type of triggering
(weights 1, 0.81 and 0.5 for trigger types “natural”, “un-
known” and “human”, respectively; Schweizer et al., 2020a).
We further defined an avalanche day as a day with at least one
recorded avalanche of size class 2 or greater.

2.1.2 SWISS data set

For model validation, we compiled an independent data set
of 230 snow profiles (SWISS, Fig. A1), again including a
RB test and a LN assessment. These profiles were observed
at various locations throughout the Swiss Alps, not including
the region of Davos, during the winter seasons of 2001/02
to 2018/19. To perform representative SNOWPACK simula-
tions, we only used snow profiles within a horizontal distance
of 10 km and a vertical distance of 200 m of an automated
weather station (AWS). Moreover, the data recorded by the
corresponding AWS could not have gaps of more than 24 h.
The mean snow depth of the SWISS profiles was 138 cm, and
49 % of the RB failure interfaces were located adjacent to a
layer of persistent grain types.

2.2 Meteorological forcing data

To simulate the snow cover at the locations of the observed
snow profiles, we forced SNOWPACK with meteorological
data from a network of automated weather stations (AWSs)
located between 1500 and 3000 ma.s.l. across the Swiss
Alps (Intercantonal Measurement and Information System –
IMIS; Lehning et al., 1999). These IMIS stations are located
at mostly flat sites considered representative of the surround-
ing area. Meteorological variables and snow cover proper-
ties were recorded every 30 min and included air temperature
(non-ventilated), relative humidity, wind speed and direction,
reflected shortwave radiation, snow surface temperature, and
snow height. The majority of the AWSs are equipped with
an unheated rain gauge and thus do not provide reliable mea-
surements of solid precipitation. For the simulations of the
DAV data set, we also used data from two SwissMetNet sta-
tions, operated by the Swiss Federal Office of Meteorology
and Climatology (MeteoSwiss) and a research station oper-
ated by SLF. These stations also measure incoming short-
and longwave radiation with ventilated and heated sensors as
well as solid and liquid precipitation with heated rain gauges.

2.3 SNOWPACK setup

2.3.1 DAV data set

For the SNOWPACK simulations in the DAV data set, we
interpolated measurements from six AWSs from the IMIS
network (WFJ2, DAV2, DAV3, KLO2, KLO3, SLF2), two
SwissMetNet stations (WFJ, DAV) and the research station
STB2 to the locations of the snow profiles. For the loca-
tions of snow profiles and AWSs see Appendix A (Figs. A1
and A2). In addition to the precipitation measurements from
WFJ and DAV, we also used estimated precipitation values
for the five IMIS stations obtained from SNOWPACK runs
driven with measured snow depth (Lehning et al., 2002a;
Wever et al., 2015), employing an empirical relationship for
new-snow density as a function of air temperature, relative
humidity and wind speed (Schmucki et al., 2014). To spa-
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tially interpolate meteorological parameters to the locations
of the manual snow profiles, we used the pre-processing li-
brary MeteoIO, which applies a combination of lapse rate
and inverse distance weighting (Bavay and Egger, 2014).

Starting on 1 October of the respective winter season, each
simulation was run at the location of the manual snow pro-
file up to the exact date and time (± 0.5 h) when the pro-
file was observed, using a time step size of 15 min. To ac-
count for slope angle and aspect, the simulations were carried
out for so-called virtual slopes; i.e., shortwave radiation and
precipitation amounts were projected onto the slope, while
other influences of surrounding terrain were neglected. En-
ergy fluxes at the snow–atmosphere interface were calculated
using Neumann boundary conditions. For the soil heat flux
at the bottom of the snowpack we employed a constant value
of 0.06 Wm−2 (Davies and Davies, 2010). The flow of liq-
uid water through the snow cover was modeled applying the
Richards equation (Wever et al., 2014). Finally, to obtain a
simulated snow depth close to that of the manual snow pro-
file, we scaled interpolated precipitation values as

Pcorr,i(t)=
HSobs,i

HS1,i
P1,i(t), (1)

where Pcorr,i(t) is the scaled precipitation for profile i at time
step t , HSobs,i is the snow depth observed at the manual pro-
file i, HS1,i is the simulated snow depth from a first un-
scaled SNOWPACK run for the same location and time as
the observed profile, and P1,i(t) is the interpolated unscaled
precipitation used in the first simulation. Each simulation
was then re-run using the corrected precipitation Pcorr,i(t)

to drive snow accumulation.

2.3.2 SWISS data set

For the SWISS data set, we simulated snow stratigraphy at
the location of the nearest IMIS station. In contrast to the
DAV data set, we thus did not interpolate meteorological
data to the exact profile location. As with the DAV data set,
we performed virtual slope simulations with slope angle and
aspect corresponding to the manual profile. The measured
snow surface temperature was imposed as a Dirichlet-type
upper boundary condition for the energy exchange at the
snow surface. To ensure that the energy input was not under-
estimated during ablation periods, the upper boundary con-
dition switched to Neumann-type (i.e., energy fluxes at the
snow surface were calculated) whenever the snow surface
temperature exceeded −1.0 ◦C. All further settings, includ-
ing the scaling of precipitation, were identical to those of the
DAV simulations.

3 Methods

An overview of the different steps and data subsets involved
in the development (Sect. 3.1) and evaluation (Sect. 3.2) of

our classification model is shown on the right-hand side of
Fig. 1.

3.1 Model development and optimization

3.1.1 Target variable and features

The construction of the classification model required the def-
inition of a target variable based on the observed stability.
To this end, we labeled the manual snow profiles based on
the RB test results and the LN assessment. The snow pro-
file and the RB test provide information on weak layers and
their stability at the location of the snow pit. The location
of these snow pits is often rather specific as observers aim
to find locations where snowpack stability is poor (e.g., Mc-
Clung, 2002). The nowcast assessment (LN), on the other
hand, also considers observations at a larger scale, such as
recent avalanches, avalanche size and signs of instability
(Schweizer et al., 2021b).

Based on the combination of RB score and release type,
we grouped RB test results into three different stability
classes: poor, fair and good (Fig. 2a). While our approach is
similar to that of Techel et al. (2020b), we only defined three
classes by merging the two lowest classes very poor and poor
of Techel et al. (2020b) into one class (poor). Besides this
RB stability rating, we also considered LN as a second crite-
rion to identify profiles that were presumably most represen-
tative of snow stability in the region and hence best suited for
building the classification model. The frequency of the differ-
ent stability classes varies with the danger level (Techel et al.,
2020a). If a stability test belongs to a minority class at a given
danger level, the simulated snow stratigraphy will likely not
be able to reproduce the snowpack at that test location. In
general, we cannot expect that the simulated snowpack can
fully reproduce the snow depth, stratigraphy and stability as
observed at the location of the manual snow profile, since
we relied on interpolations of meteorological data to drive
the 1D simulations (see Sect. 2.3), which, for instance, do
not consider snow redistribution by wind in complex terrain.
Therefore, we combined the RB stability classification and
the LN assessment and assigned all snow profiles to nine dif-
ferent subgroups (Fig. 2b), of which only two were used to
train the classification model. In the following, we denote the
upper left and lower right of this 3× 3 RB–LN grid as stable
and unstable classes, respectively; i.e.,

stable class= [(RB result= good) and (LN= 1)], (2)
unstable class= [(RB result= poor) and (LN≥ 3)]. (3)

For these two “extreme” classes, we hypothesize that it is
more likely that the simulated snow stratigraphy and the
manual snow profile are similar compared to all other classes.
The two classes stable and unstable thus constituted the bi-
nary target variable of our classification model. To train the
classification model, we only used the subset of profiles from

The Cryosphere, 16, 4593–4615, 2022 https://doi.org/10.5194/tc-16-4593-2022



S. Mayer et al.: A random forest model to assess snow instability from simulated snow stratigraphy 4597

Figure 2. (a) Definition of the RB stability classes poor, fair and good in dependence on RB score and release type. (b) Classification
of profiles into nine classes of a rutschblock stability–local nowcast (RB–LN) grid. The classification model was trained on DAV profiles
belonging to either the upper-left or the lower-right classes (in blue).

the DAV data set that belonged to these two classes. The re-
maining classes were used for model evaluation beyond bi-
nary classification. The SWISS data set, on the other hand,
only contained profiles labeled as either stable or unstable.

A careful selection and creation of discriminant features
are crucial to the predictive performance of any classifica-
tion task (Duboue, 2020). For our classification model, we
extracted features from the simulated snow stratigraphy de-
scribing the weak layer and the overlying slab. Overall, we
used 34 features (see Appendix B, Table B1), either di-
rect SNOWPACK output, such as macroscopic (e.g., den-
sity) or microscopic (e.g., grain size) layer properties, me-
chanical properties (e.g., shear strength), and stability in-
dices (e.g., SK38), or derived properties (e.g., skier penetra-
tion depth) and variables constructed on the basis of expert
knowledge (e.g., the mean of the ratio of density and grain
size of all slab layers).

3.1.2 Profile comparison

For each simulated profile (DAV and SWISS), we manually
selected the layer corresponding to the RB failure layer in
the manual snow profile. This was done by visually identify-
ing a simulated weak layer with similar grain type and hard-
ness to the RB failure layer, taking into account the overall
sequence of layers. Prominent hardness differences and lay-
ers consisting of depth hoar, surface hoar or crusts generally
facilitated the subjective profile alignment (some examples
in Fig. 3). For an unstable profile pair, we always searched
for a layer with properties characteristic of a typical failure
layer (large grain size, low density, persistent grain type, etc.;
see Schweizer and Jamieson, 2003). As simulated snow pro-
files generally consist of more layers than manual profiles,
we chose the layer with the lowest density and largest grain
size within the potential layers to define the weak layer. If the
weak layer of the manual profile was not present in the sim-
ulation, we picked an alternative weak layer within the mod-
eled profile that corresponded best. For instance, in the pro-
file pair in Fig. 3a, we selected the depth hoar layer just below
the slab in the simulated profile since the simulation did not

contain a faceted layer below a crust as in the observed pro-
file. For stable profile pairs, it was often not possible to find
a layer with the same grain type and hardness as the RB fail-
ure layer. In that case, we chose a layer with similar proper-
ties to the observed layer (e.g., Fig. 3b), rather than selecting
a layer with typical weak layer properties. Clearly, the de-
scribed matching approach is rather subjective and does not
lead to an unambiguous choice of the weak layer in the sim-
ulated profile. To reduce subjectivity in the comparison of
profiles, we adhered to the following criteria:

1. Difference in observed and simulated snow depth must
not exceed 20 cm.

2. Simulated slab thickness must not deviate more than
20 cm from the observed slab thickness.

3. The difference in the hand hardness index between the
observed and simulated weak layer must not exceed one
step.

4. Differences in observed and simulated mean slab hard-
ness must not exceed one step.

5. The grain type in the observed and simulated weak layer
must be either both persistent (i.e., facets, surface hoar
or depth hoar) or both non-persistent.

A pair of profiles was included if both criterion 1 and cri-
terion 2 and at least two out of the three criteria 3 to 5 were
fulfilled. For the profiles where the RB test did not fail at all
(i.e., RB score 7) and there was no estimate for the weakest
layer, we judged the similarity of the profile pair comparing
snow stratigraphy and selected a weakest layer in the simu-
lation based on expert knowledge.

By applying the similarity criteria 1–5 to the 512 DAV pro-
file pairs, we excluded 69 profile pairs (13 %). The number of
profiles in the unstable and stable classes of the DAV data set
was reduced to N = 73 and N = 67, respectively (Fig. 4a).
To obtain a balanced training data set, we included three ad-
ditional layers for each of the two stable profiles with no
RB failure (i.e., RB score 7). Of the 230 SWISS profiles,
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Figure 3. Exemplary profile pairs from the DAV data set with (a, c, e) manually observed snow profiles and (b, d, f) corresponding simulated
snow stratigraphy from SNOWPACK. Hand hardness and grain type (colors) were coded after Fierz et al. (2009), where F corresponds to
fist, 4F to four fingers, 1F to one finger, P to pencil and K to knife. Grain types are precipitation particles (PP), decomposing and fragmented
precipitation particles (DF), rounded grains (RG), faceted crystals (FC), depth hoar (DH), surface hoar (SH), melt forms (MF), melt–freeze
crusts (MFcr), and ice formations (IF). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer,
and the corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. Profile pairs (a, b) and
(c, d) passed the similarity check, while profile pair (e, f) was sorted out. Observed rutschblock results were (a) RB score 1, whole block;
(b) RB score 5, edge; and (c) RB score 4, whole block. The local nowcasts were given by (a) LN= 3, (b) LN= 1 and (c) LN= 2.

Figure 4. Classification of profiles for (a) the DAV data set and
(b) the SWISS data set into RB stability – local nowcast classes.
The numbers in the boxes denote the number of profile pairs per
class which fulfilled the similarity criteria. The profiles in the blue
boxes were used for the training of the classification model, while
the beige boxes were used for model evaluation. The second num-
ber in the lower-right class, N = 73, indicates that we included six
additional layers of the stable profiles with RB score 7 to obtain a
balanced training data set.

121 profiles fulfilled the similarity criteria (53 %); 75 were
labeled as unstable and 46 as stable (Fig. 4b).

3.1.3 Training the classification model

We trained a RF model to distinguish between stable and un-
stable profile classes in the DAV data set (N = 73 each), us-
ing the Python library scikit-learn (Pedregosa et al., 2011).

We chose a RF model for this classification task as, in con-
trast to parametric approaches and threshold-based methods,
this model can account for complex mutual dependencies be-
tween features without any pre-assumptions about the multi-
variable relationship between observed stability and simu-
lated stratigraphy (Breiman, 2001). The RF model is a su-
pervised machine learning algorithm which constructs an en-
semble of decision trees for data classification. The average
of the predictions from the individual decision trees yields
the final prediction of the RF, where the probability for a
given class is determined by the proportion of trees that voted
for that class. Compared to a single decision tree, a RF esti-
mator is less prone to overfitting as its construction contains
several sources of randomness (e.g., bootstrap sampling).

As the variety of split rules used within the ensemble of
trees cannot be grasped by the human brain, RF can be con-
sidered a black-box-type classifier. Nevertheless, the RF al-
gorithm includes a built-in feature importance estimation,
based on evaluating the Gini impurity decrease at each split
for every tree in the forest. The importance of a feature is
computed as the normalized total decrease in Gini impurity
brought by that feature within the ensemble of trees. The
more a feature reduces the impurity, the more important the
feature is.

The RF model includes several hyperparameters that can
be optimized in order to customize the model to the training
data, in particular to prevent overfitting. The main hyperpa-
rameters include

– the number of trees in the forest
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– the maximal depth of a tree, i.e., the longest path be-
tween the root node and the leaf node

– the maximal number of features to consider for the best
split

– the minimum number of samples required to split a node

– the function to measure the quality of a split.

We optimized the hyperparameters before training the fi-
nal RF model by systematically considering different hyper-
parameter combinations in a cross-validated grid search. For
every combination of hyperparameter settings, we trained a
random forest model on five different subgroups of the train-
ing data set and evaluated model accuracy on the left-out
data. To prevent similar profiles being used for training and
evaluation, we sorted the profiles by date before splitting the
data set. We repeated the hyperparameter optimization pro-
cess with different subsets of the complete set of features,
avoiding highly correlated (Pearson’s r > 0.8) pairs of fea-
tures. Finally, we selected the combination of hyperparam-
eters and feature subset which yielded the highest mean ac-
curacy score (i.e., the ratio of correct predictions among all
predictions) in the 5-fold cross-validation.

Based on the feature importance ranking of the RF model
with the optimized hyperparameters, we selected a sub-
set of features with the highest ranking (feature impor-
tance > 0.05). We then conducted another round of hyperpa-
rameter optimization with the new choice of features (N = 6)
and trained the final RF model with the optimized hyperpa-
rameters on the complete set of training data.

3.2 Model evaluation

3.2.1 Classifier performance on the SWISS data set

To evaluate the performance of the final RF model, we
compared predicted and observed stability classes using the
SWISS data set and standard performance measures based
on a 2× 2 contingency table (Fig. 5) (Wilks, 2011). With the
definitions shown in the contingency table, the accuracy, pre-
cision (positive predictive value), recall (true positive rate or
sensitivity) and specificity (true negative rate) are defined as

accuracy=
TP+TN

P+N
, (4)

precision=
TP

TP+FP
, (5)

recall=
TP
P
, (6)

specificity=
TN
N
. (7)

To optimize the classification performance, we analyzed
the receiver operating characteristic (ROC) curve (Fawcett,

Figure 5. Contingency table.

2006). The ROC curve is a diagnostic plot and shows the
recall against the false positive rate (false positive rate=
FP
N
= 1− specificity) for different classification thresholds.

A random classifier would yield a diagonal line from [0,0]
to [1,1], and a perfect model would be indicated by a
ROC curve rising vertically from [0,0] to [0,1] and then
horizontally to [1,1]. The area under the ROC curve (AUC)
summarizes the overall performance of a model with a value
between 0.5 (no skill) and 1.0 (perfect skill). When equal
weight is given to recall and specificity, the optimal thresh-
old is the threshold value that maximizes Youden’s J =
recall+ specificity− 1 statistic, which describes the vertical
distance between the [0,0]–[1,1] diagonal and the associated
point on the ROC curve (Youden, 1950).

3.2.2 Application to all profile layers

The RF classifier was trained to predict two classes (stable
and unstable) for manually identified weak layers. To inves-
tigate if the RF model can be used to identify the weakest
layer in a simulated snow profile, we analyzed the probabil-
ity of instability Punstable given by the mean vote of the RF;
i.e.,

Punstable =
1
ntree

ntree∑
i=1

vote(treei), (8)

where ntree is the total number of trees in the forest and
vote(treei) ∈ {0,1} is the vote of the ith tree, which is ei-
ther 0 (stable) or 1 (unstable). Using Punstable and its overall
maximum value Pmax =max(Punstable), we explored the ap-
plicability of our RF model to complete snow profiles in four
steps:

1. We applied the RF model to all profiles from the DAV
data set which passed the similarity check (N = 443),
including the profiles not used for training, and calcu-
lated the mean of Punstable for the manually identified
failure layers of each RB–LN class.
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2. To explore if the maximum value of Punstable can be used
to describe the stability if the weak layer is not a priori
known, we again classified the SWISS data set profiles
using the Pmax values instead of the Punstable values of
the manually determined weak layers.

3. We applied the RF model to each layer of all simulated
profiles in the DAV and SWISS data sets and evaluated
the probability of detecting the manually picked weak
layers with the local maxima of Punstable. A local max-
imum was defined as a layer whose value of Punstable is
greater than or equal to the Punstable values of the two
layers above and the two layers below the layer. The
probability of detection (POD) was then defined as the
proportion of weak layers coinciding with one of the
three largest local maxima of Punstable or one of the ad-
jacent layers within 3 cm of these local maxima.

4. We investigated if the daily maximum of Punstable for
five winter seasons (2014/15 and 2018/19) at the AWS
Weissfluhjoch (2536 ma.s.l.) was related to avalanche
observations from the region of Davos. To this end, we
compared the distributions of the values of Pmax on
avalanche days and non-avalanche days from 1 Decem-
ber to 1 April of the respective winter season. Further-
more, we qualitatively compared the evolution of Pmax
during the winter seasons 2016/17 and 2017/18 with the
avalanche activity index (AAI) for the region of Davos.

4 Results

4.1 Model development and optimization

Using the complete set of features and default hyperpa-
rameters resulted in a 5-fold cross-validated accuracy of
86± 6 % for the classification of unstable and stable profiles
in the DAV training data set (N = 146, balanced). Removing
highly correlated features (Pearson r > 0.8) and conducting
a first round of hyperparameter optimization, the mean ac-
curacy increased to 88± 8 %. The feature importance rank-
ing obtained with this first optimized model is shown in Ap-
pendix B (Fig. B1). To enhance the interpretability of the
model, we removed all features with relative feature impor-
tance lower than 5 %, resulting in six features, and after a
further optimization of hyperparameters, the 5-fold cross-
validated accuracy was 88± 6 %. Using the optimized hy-
perparameters and these six remaining features, we trained
the final model on the complete set of unstable and stable
profiles in the DAV data set. The feature importance ranking
for the six features of the final model is shown in Fig. 6, and
the final hyperparameters are presented in Appendix B (Ta-
ble B2). While a full understanding of the decision process
within the RF is impossible, we visualized the relationship
between model output and input features using partial depen-
dence (PD) plots (Friedman, 2001). The PD plots (Fig. B2)

Figure 6. Feature importance ranking for the final model, based
on evaluating the Gini impurity decrease at each split for every
tree in the RF. The most important features were viscous deforma-
tion rate (ε̇v), critical cut length (rc), skier penetration depth (Pk),
sphericity of grains in the weak layer (sphwl), mean of the ratio
of density and grain size of the slab (〈 ρgs 〉sl), and weak layer grain
size (gswl). For further details on these features, see Appendix B
(Table B1).

reveal that the RF model tends to produce more stable predic-
tions when increasing the critical cut length and sphericity of
the weak layer, while increasing absolute values of the other
four input features leads to more unstable predictions.

4.2 Model evaluation

4.2.1 Performance assessment with the SWISS data set

We evaluated the performance of the RF model by classify-
ing the manually defined weak layers for the profiles from
the SWISS data set. Using the default classification thresh-
old of 0.5, the overall accuracy was 88 %, 68 of the 75 unsta-
ble weak layers were correctly classified (recall of 91 %) and
39 of 46 stable weak layers were classified correctly (speci-
ficity of 85 %; Table 1 and Fig. 7b). The precision value was
high (91 %) as only 7 of the 75 profiles predicted as un-
stable were stable according to the ground truth label. Al-
though the classification threshold of 0.5 resulted in good
model performance, the optimal threshold value maximizing
Youden’s J statistic was 0.71 (compare orange and red dots
in Fig. 7a). With a threshold of 0.71, precision and speci-
ficity scores improved at the expense of the recall value (Ta-
ble 1). From an operational perspective, it is thus question-
able whether the increased number of false negative predic-
tions associated with this Youden index optimization indeed
represents an improvement.

4.2.2 RF model applied to other stability classes

We determined Punstable (Eq. 8) for all manually selected
weak layers from the DAV data set and computed mean
values for each RB–LN subgroup (Fig. 8a). Punstable val-
ues decreased from top to bottom, i.e., from higher to lower
LN values, and from the left to the right, i.e., from higher to
lower RB stability. Considering only the RB stability classes

The Cryosphere, 16, 4593–4615, 2022 https://doi.org/10.5194/tc-16-4593-2022



S. Mayer et al.: A random forest model to assess snow instability from simulated snow stratigraphy 4601

Figure 7. (a) ROC curve analysis and (b, c) contingency tables for
the classification of the manually determined weak layers of the
SWISS data set. Contingency tables are shown for (b) the default
threshold (T = 0.5) and (c) the optimized threshold (T = 0.71) ob-
tained from the ROC curve analysis.

Table 1. Performance measures for the classification of profiles
from the SWISS data set based on the manually determined weak
layers and using two different thresholds (T ): 0.5 (default) and
0.71 (optimized).

Performance measure T = 0.5 T = 0.71

Accuracy 88 % 88 %
Precision 91 % 96 %
Recall 91 % 85 %
Specificity 85 % 93 %

of both data sets not used for training, Punstable decreased
from the marginal RB stability class poor (mean 0.73, 67 %
of 119 profiles (DAV 44, SWISS 75) predicted as unstable
(i.e., Punstable≥ 0.71)) to the marginal RB stability class good
(mean 0.45, 29 % of 185 profiles (DAV 139, SWISS 46)
predicted as unstable). The decrease was even more pro-
nounced between the subsets with LN≥ 3 (mean 0.76, 72 %
of 169 profiles (DAV 94, SWISS 75) predicted as unsta-
ble) compared to LN= 1 (mean 0.31, 14 % of 79 profiles
(DAV 33, SWISS 46) predicted as unstable), suggesting
that Punstable of the manually detected weak layers in the sim-

ulated profiles correlated more strongly with LN than with
the observed stability as assessed with a RB test.

Overall, these results suggest that our RF classifier pro-
vides valuable information on snow instability for two rea-
sons. First, weak layers associated with lower stability in
terms of the RB class had higher values of Punstable. Second,
higher LN values increase the likelihood that the associated
simulated profile indeed exhibits unstable properties, which
was also reflected in higher Punstable values. Note that both
observations and simulations contain uncertainties that are
difficult to quantify. This is reflected in relatively high values
of the standard deviations of Punstable, typically in the range
of 20 %–30 %.

4.2.3 RF model applied to complete snow profiles

Figure 9 shows Punstable calculated for all layers in three ex-
ample profiles (black line, right-hand side of subplots), ex-
cept for the uppermost layer as it has no overlying slab.
These examples indicate that typical weak layers, such as
depth hoar, surface hoar or soft faceted layers, yield higher
Punstable values than layers consisting of rounded grains,
melt–freeze crusts and harder layers of facets. Indeed, the
mean Punstable value for all layers of persistent grain types
with hand hardness ≤ 2 (four fingers) in both data sets was
0.37± 0.3, while for layers consisting of rounded grains or
melt–freeze crusts it was 0.17± 0.17. The high standard de-
viation for the layers of persistent grain types suggests that
the stability is determined not only by layer properties but
also by the overlying slab. New snow layers (i.e., precipita-
tion or defragmented particles) had the highest average val-
ues of Punstable (0.52± 0.26). We further observed simulated
layers with high Punstable values, i.e., potential weak layers,
not observed in the manual counterpart (e.g., Fig. 9c and d –
surface hoar present in simulated but not in manual profile).

To explore if the maximum value of Punstable can be used
to describe the stability when the weak layer is not known,
we determined Pmax =max(Punstable) for each profile of the
SWISS data set. Using Pmax and a default threshold of 0.5,
we classified the profiles as unstable and stable. The result-
ing contingency table is shown in Fig. 10b, and the associ-
ated performance measures are shown in Table 2. With this
threshold value, the classifier performed well in labeling un-
stable profiles as unstable (recall 96 %), but almost half of
the stable profiles were misclassified (specificity 55 %). The
optimal threshold value for Pmax was 0.77 (orange dot in
Fig. 10c), greatly improving the overall performance (third
column in Table 2, all performance measures > 90 %). This
optimal threshold value of 0.77 was close to the optimized
value obtained for the classification of the manually selected
weak layers (i.e., 0.71, Sect. 4.2.1), which led to similar val-
ues of the performance measures (second column in Table 2).
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Figure 8. Average values 〈Punstable〉± σ of the probability of instability over all manually determined weak layers shown for each RB–LN
class of (a) the DAV data set and (b) the SWISS data set.

Figure 9. Three profile pairs from the DAV data set with (a, c, e) manually observed snow profiles and (b, d, f) corresponding simulated
snow stratigraphy obtained with SNOWPACK. Hand hardness and grain type (colors) were coded after Fierz et al. (2009) (for further
explanation see caption of Fig. 3). The dashed horizontal line in the manual profile displays the observed height of the RB failure layer, and
the corresponding manually determined layer is indicated by a dashed line in the respective simulated profile. The black line in the simulated
profiles shows the probability of instability Punstable determined for each layer. Observed RB results were (a) RB score 2, whole block;
(b) RB score 6, edge; and (c) RB score 4, partial. The local danger level estimates were (a) LN= 3, (b) LN= 2 and (c) LN= 1.

4.2.4 Weak layer detection

To investigate if our RF model can be used to detect the
weakest layer within a profile, we calculated the probability
of detecting the manually picked weak layers with the local
maxima of Punstable as described in Sect. 3.2.2 (point 3). For
the DAV data set, the overall POD was 60 %, and POD values
strongly varied between different RB–LN classes (Fig. 11a).
While for the unstable training class, the POD was high
(86 %), the POD was low (37 %) for the stable training class.
For the SWISS data set, the POD was 75 % for the unsta-
ble class and 46 % for the stable class (Fig. 11b). Lower

POD values for classes with higher stability can be explained
by the fact that the manual identification of the simulated
layer associated with the RB failure layer was generally less
clear, since a prominent weak layer was often not present. In
addition, “weak” layers, which only failed with a large ad-
ditional load (high RB score) and which result in a fracture
not propagating (a partial RB failure), are usually not associ-
ated with instability (Schweizer and Jamieson, 2003). Thus,
it seems plausible that distinguishing these (not truly) weak
layers from other layers within a profile is more difficult; yet
it is also likely to be less relevant.
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Figure 10. (a) ROC curve analysis and (b, c) contingency tables for
the classification of the unstable and stable classes from the SWISS
data set, using the maximum value of the probability of instabil-
ity, Pmax. Contingency tables are shown for (b) the default threshold
(T = 0.5, red dot in a) and (c) the optimized threshold (T = 0.77,
orange dot in a) obtained from the ROC curve analysis.

Table 2. Performance measures for the classification of profiles
from the SWISS data set based on the maximum value of the proba-
bility of instability (Pmax) for different classification thresholds (T ):
0.5 (default), 0.71 (optimized value for the classification of manu-
ally selected weak layers) and 0.77 (optimized value for the classi-
fication based on Pmax).

Performance measure T = 0.5 T = 0.71 T = 0.77

Accuracy 80 % 92 % 93 %
Precision 77 % 93 % 96 %
Recall 96 % 93 % 92 %
Specificity 55 % 89 % 93 %

Our RF model does not contain any feature explic-
itly describing slab thickness. However, it is well known
that weak layers associated with skier-triggered avalanches
are typically within the first meter from the snow surface
(e.g., Schweizer and Camponovo, 2001; van Herwijnen and
Jamieson, 2007). To account for this, we investigated if
adding information on slab thickness improved the weak
layer detection by defining the function

P ∗unstable(w)= Punstable

[
(1−w)+w ·

pde(Dslab)

pdemax

]
, (9)

which includes a weighting factor w and the normalized es-
timated probability density function pde(Dslab) of the ob-

Figure 11. Probability of detecting the weakest layer with the three
largest local maxima of Punstable and adjacent layers within 3 cm of
these local maxima shown for every RB–LN class of (a) the DAV
and (b) the SWISS data set.

served slab thicknesses Dslab in the DAV data set (Fig. 12a).
We analyzed the influence of the weighting factor w on the
probability of detecting the manually determined weak layer
with the maximum value P ∗max(w)=max(P ∗unstable(w)). We
counted a weak layer as detected when P ∗max(w) was located
within 3 cm of the manually picked weak layer. To calcu-
late the POD, we only considered the unstable classes of
the DAV and SWISS data sets. For w = 0, i.e., when not ac-
counting for slab thickness, the POD was 55 % for the DAV
data set and 44 % for the SWISS data set. The largest POD
values of 67 % (DAV data set) and 57 % (SWISS data set)
were achieved for weights of w = 0.14 and w = 0.12, re-
spectively. For larger weighting factors, the POD decreased
again (Fig. 12b). Thus, accounting for slab thickness in-
creased the probability of detecting a weak layer found with
a RB test and hence a weak layer which can potentially be
triggered by a human. On the other hand, the relatively low
values of w for the highest POD values suggest that with our
model, accounting for slab thickness is of only limited im-
portance.

4.2.5 Comparison with avalanche activity

To demonstrate the practical applicability, we applied the
RF model to SNOWPACK simulations for five winter sea-
sons (2014/15 to 2018/19) driven with meteorological data
from the AWS at the Weissfluhjoch study site at 2540 ma.s.l.
For these five winter seasons (597 d), values of Pmax were
significantly higher on avalanche days (median 0.88) than
on non-avalanche days (median 0.51; Mann–Whitney U test,
p < 0.001; Fig. 13). Applying the threshold value of 0.77 to
the daily values of Pmax yielded an overall accuracy of 73 %
for discriminating avalanche days from non-avalanche days.
Of the 252 avalanche days, 69 % occurred on days when
the threshold was exceeded, while for 75 % of the 345 non-
avalanche days, Pmax was below the threshold.

Two examples for the temporal evolution of the simu-
lated snow stratigraphy in terms of grain types and val-
ues of Punstable and Pmax over entire winter seasons at the
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Figure 12. (a) Normalized Gaussian kernel density estimate (pde) for the distribution of observed slab thicknesses in the unstable class of the
DAV data set. (b) Probability of detecting the manually picked weak layer in dependence on the weighting factor w used in the calculation
of P ∗unstable(w) (Eq. 9) for the unstable classes in the DAV data set (blue markers), in the SWISS data set (orange markers) and in the
combination of both (green markers).

Figure 13. Distribution of maximal values Pmax of the probability
of instability Punstable calculated for the simulated snow stratigra-
phy at the location of the AWS Weissfluhjoch (WFJ, 2540 ma.s.l.)
on avalanche days and non-avalanche days during the winter sea-
sons 2014/15 to 2018/19. Avalanche days were defined as days with
at least one recorded dry-snow avalanche in the region of Davos
which was greater than avalanche size class one, released naturally,
was human-triggered or had an unknown trigger type. Boxes show
the interquartile range from the first to third quartiles, and the hori-
zontal line displays the median. The upper and lower whiskers mark
1.5 times the interquartile range above the third and below the first
quartiles, respectively. The dashed line displays the classification
threshold T = 0.77. Number of avalanche days: N = 252; number
of non-avalanche days: N = 345.

WFJ are shown in Figs. 14 (winter 2016/17) and 15 (win-
ter 2017/18) in comparison to the avalanche activity index
(AAI) of observed avalanches in the region of Davos. The
2016/17 winter season was characterized by below-average
snow depth and the presence of three prominent persis-
tent weak layers throughout the season (dark-blue layers in
Fig. 14c). The daily Pmax was often in the vicinity of these
persistent weak layers (black line in Fig. 14c). Three larger
precipitation events in early January, early February and
mid-March were associated with increased avalanche activity

(blue bars in Fig. 14b). These periods of increased avalanche
activity all occurred when Pmax values exceeded the thresh-
old value of 0.77 (yellow-shaded regions in Fig. 14b). The
2017/18 winter season was characterized by above-average
snow depth and a lack of persistent weak layers. Pmax was
generally located below the recent new snow (black line in
Fig. 15c). Three large snowfall events between December
and the middle of January resulted in three distinct avalanche
periods, all of which corresponded to Pmax values exceed-
ing the threshold value of 0.77 (yellow-shaded regions in
Fig. 15b). Overall, this qualitative comparison suggests that
applying the RF model to complete snow profiles provides
valuable information linked to regional avalanche activity.

5 Discussion

We trained a RF classifier to distinguish between unsta-
ble and stable snow profiles simulated with the snow cover
model SNOWPACK. The resulting model provides a prob-
ability of instability for every single layer of a snow pro-
file using six features describing the layer and the overlying
slab. To train and validate the model, we relied on data from
manual snow profiles with RB tests and compared the results
from our model to avalanche activity in the region of Davos.

5.1 Data

A critical component for the construction of the RF model
was a data set linking observed and modeled snow insta-
bility. We therefore performed a one-to-one comparison of
742 pairs of observed and simulated snow profiles. The
snow cover simulations relied on interpolated meteorologi-
cal data or measurements from an AWS in the vicinity of the
manual profile projected to virtual slopes which do not ac-
count for the influence of the surrounding terrain. Thus, the
simulations cannot be expected to reproduce the exact ob-
served snow stratigraphy. In particular, manual snow profiles
are preferentially recorded at locations expected to exhibit
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Figure 14. Evolution of (a) probability of instability Punstable (colors), (b) maximal values Pmax (black line) and avalanche activity index
(AAI, blue bars), and (c) the depth of Pmax (black line) and grain types (colors) calculated for the simulated snow stratigraphy at the AWS
Weissfluhjoch (WFJ, 2540 ma.s.l.) during the winter season 2016/17. Grain types were coded after Fierz et al. (2009) (see caption of Fig. 3).
Yellow-shaded areas in (b) indicate days with Pmax exceeding the threshold T = 0.77.

poor stability (targeted sampling), e.g., slopes with below-
average snow depth (McClung, 2002; Techel et al., 2020a).
By scaling the precipitation input (Sect. 2.3), we intended
to align modeled and observed snow depths. However, this
scaling method mimics local snow redistribution on a very
basic level only and cannot replace the application of high-
resolution wind fields required to explicitly simulate snow
drift. While of the DAV profile pairs, only 13 % did not meet
the predefined similarity criteria, 47 % of the SWISS profiles
were excluded, indicating that the interpolation of meteoro-
logical data from several stations to the profile location led
to a better representation of the local snow stratigraphy than
merely simulating the snowpack at a single nearby AWS. Our
approach of comparing profiles was based on the manual se-
lection of a simulated layer corresponding to the observed
RB failure layer and thus contained a certain degree of sub-
jectivity. Recently developed automated methods for profile
comparison (Viallon-Galinier et al., 2020; Herla et al., 2021)
are less time-consuming and may provide a more objective
alternative for profile comparisons in future studies.

5.2 Target variable

As with any classification task, the definition of a suitable tar-
get variable was crucial. In the field, instability is evaluated
using a stability test, such as the RB test. We combined the
observed RB test result from the manual profiles with an es-
timate of avalanche danger (local nowcast) to build a binary
target variable describing stability at both ends of the stabil-
ity spectrum (stable vs. unstable, Table 2). While past stud-
ies (Gaume and Reuter, 2017; Monti et al., 2014) used only
observed stability test results to train or evaluate snow insta-
bility models, exclusively relying on the observed RB test re-
sult as the target variable was not sufficient in our case. In the
mentioned studies, either only observed data were considered
or the stability test was conducted next to the AWS where
the simulation was run. In our study, however, we used inter-
polated meteorological data. Due to the reasons described in
Sect. 5.1, the simulated properties of the snow profiles, which
yielded the explanatory variables for the classification task,
thus cannot fully capture the peculiarities of the snowpack at
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Figure 15. Evolution of (a) probability of instability Punstable (colors), (b) maximal values Pmax (black line) and avalanche activity index
(AAI, blue bars), and (c) the depth of Pmax (black line) and grain types (colors) calculated for the simulated snow stratigraphy at the AWS
Weissfluhjoch (WFJ, 2540 ma.s.l.) during the winter season 2017/18. Yellow-shaded areas in (b) indicate days with Pmax exceeding the
threshold T = 0.77.

the observation site. By considering the local nowcast assess-
ment of avalanche danger as an additional criterion, we se-
lected those profiles that were likely to represent either rather
stable or rather unstable conditions. As illustrated in various
studies (e.g., Techel et al., 2020b; Schweizer et al., 2021b),
the proportion of poor stability test results increases with the
local danger level. Consequently, a profile with poor stabil-
ity can be assumed to be more representative of the condi-
tions at considerable danger level (level 3) and consequently
to be better captured by the SNOWPACK simulation com-
pared to a poor stability test result obtained at low danger
level (level 1).

5.3 Explanatory variables

We reduced the explanatory input variables of our RF model
to six features while maintaining a high classification per-
formance. Two features, the critical cut length and viscous
deformation rate, combine slab and weak layer properties;
two features are related to microstructural weak layer prop-

erties (grain size and sphericity); one feature describes snow
surface and upper slab conditions (skier penetration depth);
and one feature relates to bulk slab properties (mean of the
ratio of density and grain size of all slab layers). The combi-
nation of these parameters and the relationship between tar-
get response and individual input features depicted by the
PD plots (Appendix B, Fig. B2) fit well with our conceptual
understanding of snow instability.

The viscous deformation rate was the most important fea-
ture in our model (Fig. 6). It is proportional to the normal
stress of the slab and inversely proportional to the viscos-
ity (Appendix B, Table B1). High viscous deformation rates
can thus occur during loading (i.e., snowfall) and in particu-
lar in layers with low viscosity, such as layers composed of
low-density new snow. In our training data set, viscous de-
formation rates were significantly higher for unstable than
for stable layers (Mann–Whitney U test, p < 0.001).

In the context of human-triggered avalanches, the impor-
tance of skier penetration depth is well established (e.g.,
Schweizer and Camponovo, 2001; Jamieson and Johnston,
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1998). Large penetration depths increase the stress exerted
on potential weak layers in the snowpack and thereby facili-
tate skier triggering. Schirmer et al. (2010) found skier pen-
etration depth to be the most important variable to classify
simulated snow profiles as unstable using a single classifica-
tion tree model. The parameterization of the skier penetration
depth in SNOWPACK is inversely related to the mean den-
sity of the upper 30 cm of the snow cover and thus relates to
slab properties (Schweizer et al., 2006). Changes in the pen-
etration depth are therefore closely linked to the presence of
new snow. In our RF model, a second feature characterizing
the slab was the mean ratio of density and grain size of all
slab layers. We assume that this parameter was important as
it can distinguish cohesionless slabs (low-density new snow
consisting of large grains) from well-bonded slabs (higher
density consisting of small rounded grains) typically associ-
ated with slab avalanches.

The importance of the critical cut length rc in our
RF model is in line with a recent study by Richter et al.
(2019), who observed that minimal values in modeled critical
cut length often coincided with observed persistent weak lay-
ers. As such, it is likely that the critical cut length favors the
classification of persistent weak layers as unstable. While the
critical cut length is related to crack propagation, our set of
features did not include any parameter related to failure initi-
ation. Indeed, the traditional skier stability index SK38 (Föhn,
1987b; Jamieson and Johnston, 1998; Monti et al., 2016) and
the related failure initiation criterion (Reuter et al., 2015a)
had lower feature importance scores (Appendix B, Fig. B1).
Recently, Reuter et al. (2022) suggested using a combina-
tion of the critical cut length and a failure initiation index to
differentiate stable from unstable profiles using a threshold-
based approach. Applying these thresholds without further
training to our DAV data set resulted in a recall of 42 %.
Training a decision tree of depth two with the same features
on the DAV data set yielded a 5-fold cross-validated accu-
racy of 68 %; the accuracy was however higher (72 %) when
using only the critical cut length as input feature. While this
suggests that the strength-over-stress initiation criteria do not
provide any added value compared to the critical cut length,
we cannot exclude the possibility that these results are bi-
ased by uncertainties introduced by the manual identification
of the weak layers in the SNOWPACK simulations.

5.4 Training and evaluating the RF model

To train the RF model, we used the DAV data set with
detailed snow cover and stability observations (Schweizer
et al., 2021b), as well as high-quality meteorological input
for SNOWPACK from a dense network of AWSs. Neverthe-
less, the number of profile pairs in the stable and unstable
classes was rather small (N = 67 and N = 73, respectively).
Due to this limited number of data points, we conducted
feature selection, hyperparameter optimization and training
of the RF model all on the same data set without further

splitting. This resulted in a 5-fold cross-validated accuracy
of 88 % on the balanced DAV training data. Schirmer et al.
(2010) achieved a cross-validated accuracy of 75 % when
training a classification tree to distinguish between rather
stable and rather unstable simulated profiles. However, their
definition of the target variable differed from ours and their
data set was imbalanced.

The validation of our model on a second independent data
set (SWISS) revealed a robust performance (overall accu-
racy 88 %) in the binary classification of the manually de-
termined weak layers. Optimal performance with respect to
Youden’s J statistic was reached with a classification thresh-
old of 0.71, although the default threshold of 0.5 used in the
training configuration led to the same overall accuracy. For
any application of the model, the threshold should hence be
adjusted according to the specific requirements regarding de-
tection and false alarm rate. To overcome the subjectivity in-
herent in the manual identification of weak layers in the sim-
ulated profiles, we again classified the SWISS profiles us-
ing Pmax. With an optimized classification threshold (0.77),
this classification yielded an accuracy of 93 %. Using Pmax
thus led to a better classification performance than using the
Punstable value of the manually selected weak layers. The high
optimal threshold value of 0.77 could be due to the fact that
some weaker layers in the simulations were not present in
the manual profiles. Furthermore, this shift in threshold val-
ues might also be related to differences between the training
and validation data set. The profiles used for training were
all observed in the region of Davos, an area characterized by
an inner-alpine snow climate (e.g., Schweizer et al., 2021b).
While for 80 % of the manual profiles in the training data
set, the RB failure interface was adjacent to a layer including
persistent grain types, this was the case for only 57 % of the
profiles in the validation data set, which were conducted in
various snow climatological regions of the Swiss Alps.

5.5 Model strengths and limitations

Applying our RF model to snow layers not falling into the
stability categories of the binary target variable produced rea-
sonable results (Figs. 8 and 9). Moreover, the detection of
weak layers performed well under poor stability conditions
(Fig. 11). While previous studies (Schweizer et al., 2006;
Schirmer et al., 2010) used separate routines for weak layer
detection and instability assessment, our approach can assess
instability and detect the weakest layer with one single index,
the maximum of the probability of instability over all layers
of the simulated snow profile.

Clearly, the interpretability of our RF model is con-
strained by its black-box character. However, an advantage
of RF models is the ability to capture complex multi-variable
relationships between features and the target variable, be-
yond linear or threshold-based dependencies. Moreover, our
model is built on only six features, which facilitates its ap-
plication. An apparent limitation of our method is the lack
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of profiles with intermediate stability in the training data,
which prevents a direct interpretation of the absolute values
of the probability of instability. The probability of instability
does not directly refer to a physical quantity but should al-
ways be interpreted as a mean vote of trees trained with pro-
files from both ends of the stability spectrum. Setting thresh-
olds to differentiate fair from poor or good stability would
require more training data. Nonetheless, the comparison of
modeled snow instability at the WFJ with observed regional
avalanche activity revealed the potential of our model to in-
dicate conditions of poor stability by using the optimized
threshold value from the binary classification. The model
chain captured the major avalanche cycles of the two win-
ter seasons shown in Figs. 14 and 15 and discriminated rea-
sonably well between avalanche and non-avalanche days (re-
call 69 %, specificity 75 %) despite a lack of information on
spatial snow distribution in the modeled data as well as po-
tential incompleteness or bias of the observed avalanche data.
The transferability of our RF model and its optimized thresh-
old to other snow climatological settings should be evaluated
on further independent data sets.

6 Conclusion and outlook

We introduced a novel method to assess dry-snow instability
from simulated snow stratigraphy. Our random forest (RF)
model provides a probability of instability Punstable for each
layer of a snow profile simulated with SNOWPACK, given
six input variables describing microstructural, macroscopic
and mechanical properties of the particular layer and the
overlying slab. The probability of instability allows the de-
tection of the weakest layer of a snow profile and assessing
its degree of instability with one single index, a main advan-
tage of this new model. Although the RF model was trained
with only 146 layers manually labeled as either unstable or
stable, it classified profiles from an independent validation
data set with high reliability (accuracy 88 %, precision 96 %,
recall 85 %) using manually predefined weak layers and an
optimized classification threshold. The binary classification
performance with an optimized threshold was even higher
(accuracy 93 %, precision 96 %, recall 92 %) when the weak-
est layers of the profiles were not known and were instead
identified with the maximum of Punstable. Finally, we illus-
trated the potential of our model and its optimized threshold
value to indicate conditions of poor stability by comparing
the temporal evolution of modeled snow instability with ob-
served avalanche activity in the region of Davos for five win-
ter seasons.

With the maximum of Punstable, our model, in principal,
provides an estimate of dry-snow instability for any sim-
ulated snow profile for which the required input variables
are available. For the derivation of further threshold val-
ues which detect intermediate stability, more data are re-
quired. The threshold that distinguishes rather unstable from
rather stable profiles may need to be adjusted if the simulated
stratigraphy originates from models other than SNOWPACK
or if applied in a region with a snow climate strongly differ-
ing from the conditions in the Swiss Alps.

In the future, the RF model may be used to estimate
avalanche danger from simulated snow stratigraphy. To this
end, the RF model would be applied to modeled snow stratig-
raphy at different locations within one region. The respective
maxima of Punstable and the corresponding frequency distri-
bution may then yield information on the snowpack stability
as well as the spatial distribution of stability, and the depths
of the weakest layers determined with these maxima may
provide an indicator of the expected avalanche size. Since
this application of the RF model covers all three factors con-
tributing to avalanche hazard (Techel et al., 2020a), it could
be of great value for operational avalanche forecasting. This
application may even be extended by extracting the grain
type of the weak layer to distinguish between the avalanche
problem types “persistent weak layer problem” and “new
snow problem” (EAWS, 2021). Besides this operational use,
the method described is also suited for analyzing past and
future changes in snow instability due to climate warming.
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Appendix A: Data

The locations of snow profiles and AWSs are shown in
Figs. A1 and A2.

Figure A1. Map of Switzerland showing the locations of the snow profiles and the automatic weather stations used in the Davos and Swiss
data set (orange and red markers, respectively). An enlargement of the Davos region is shown in Fig. A2.

Figure A2. Map showing the region of Davos with the automatic weather stations (with their labels) and the profile locations (orange
markers).
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Appendix B: Classification model

To build the classification model, we used 34 features which
are described in Table B1. The relative importance of a subset
of 20 of these features is shown in Fig. B1. The final values
of the hyperparameters in the RF model are compiled in Ta-
ble B2.

Table B1. Table with all features describing slab (sl) and weak layer (wl) properties.

Abbreviation Feature Formula/remarks Reference

Basic SNOWPACK output parameters

gswl grain size of wl – Lehning et al. (2002b)
sphwl sphericity of wl – Lehning et al. (2002b)
bswl bond size of wl – Lehning et al. (2002b)
dwl dendricity of wl – Lehning et al. (2002b)
gtwl grain type of wl – Lehning et al. (2002b)
ρwl density of wl – Bartelt and Lehning (2002)
η viscosity of wl – Lehning et al. (2002b)
agewl age of wl – –
HS snow depth – –

Composed features weak layer
ρwl
gswl

– – –
ρwl·bswl

gswl
– – –

Composed features slab

Dsl slab thickness – –
ρsl mean sl density – –〈 ρ
gs
〉
sl mean of the ratio of density

〈 ρ
gs
〉
sl =

1
N

∑N
i=1

ρi
gsi
, –

and grain size of all slab layers with gsi being grain size of the ith of the N slab layers〈ρ·bs
gs
〉
sl –

〈ρ·bs
gs
〉
sl =

1
N

∑N
i=1

ρi ·bsi
gsi

, with bsi being the bond size of the
ith of the N slab layers

–

ρsl20 mean density of 20 cm above wl – –
ρ10max maximal mean density of – –

all 10 cm windows above wl
Pk skier penetration depth Pk = 34.6/ρ30, with ρ30 being mean density in uppermost

30 cm
Jamieson and Johnston (1998),
Schweizer et al. (2006)

Composed features weak layer and slab

4gs difference in grain size – Schweizer and Jamieson (2007)
between wl and layer above wl

4h difference in hardness – Schweizer and Jamieson (2007)
between wl and layer above wl[

ρ
gs

]
wl/(wl+1)

–
[
ρ
gs

]
wl/(wl+1)

=
ρwlgswl+1
gswlρwl+1

, with (wl+ 1) being layer above wl –

rts relative threshold sum – Monti et al. (2014)

Snow mechanical features

τp shear strength of wl – Jamieson and Johnston (1998)
σn normal stress exerted on wl by sl – Bartelt and Lehning (2002)
4τ skier shear stress on wl calculated for slope angle of 38◦ Jamieson and Johnston (1998)
4τ∗ refined skier shear stress on wl calculated for slope angle of 38◦ Monti et al. (2016)
SK38 skier stability index SK38 =

τp
τsl38+4τ

, with Föhn (1987b),
τsl38 being shear stress on wl by overlying sl Jamieson and Johnston (1998)

SK∗38 skier stability index, refined version SK∗38 =
τp

τsl38+4τ∗
Monti et al. (2016)

Sskier failure initiation criterion τp
4τ

Reuter et al. (2015a)

rc critical cut length (flat field) rc =
√

2τp
σn

√
E′DslFwl, with E′ being plain strain elastic mod-

ulus of sl and Fwl a function of ρwl · gswl

Richter et al. (2019)

σns wl neck stress – Lehning et al. (2002b)
ε̇n wl neck strain rate – Lehning et al. (2002b)
ε̇v viscous deformation rate ε̇v =

σn
η Bartelt and Lehning (2002)

Sdr deformation rate index Sdr =
σc
σns

, Lehning et al. (2004)
with σc being critical neck stress
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Figure B1. Feature importance after hyperparameter optimization round 1.

Table B2. Hyperparameters of final random forest model.

Hyperparameter Optimized choice

Number of trees 400
Split quality measure Gini criterion
Maximum depth of a tree 7
Number of features to consider at every split

√
Nfeat = 6

Minimum number of samples required for a leaf node 1
Minimum number of samples required to split internal node 3
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Figure B2. Partial dependence (PD) plots showing the relationship between target response and individual input features (a viscous defor-
mation rate, b critical cut length, c sphericity of the weak layer, d grain size of the weak layer, e skier penetration depth, f mean of the ratio
of density and grain size of the slab). Each plot depicts how a given feature influences the predicted outcome when marginalizing over the
distributions of all other features. The values for each PD plot were computed by applying the RF model to all data points of the training data
set and then varying the value of the feature of interest while keeping the values of all other features fixed. The blue lines show the target
response for the individual samples, and the orange line displays the mean of all samples.

Code availability. The code of the final RF model developed in
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Data availability. The data set of observed and simulated snow
profiles that was used to train and validate the RF model is accessi-
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