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Abstract. The statistics of ice-ridging signatures were stud-
ied using high-resolution (1.25 m) and medium-resolution
(20 m) SAR images over the Baltic Sea ice cover, acquired
in 2016 and 2011, respectively. Ice surface profiles mea-
sured by the 2011 airborne campaign were used as valida-
tion data. The images did not delineate well the individual
ridges as linear features. This was assigned to the random
occurrence of ridge rubble arrangements that generate bright
SAR returns. Instead, the ridging signatures were approached
in terms of the local density of bright returns selected by a
variably bright-pixel percentage (BPP). Density was quanti-
fied by counting bright-pixel numbers (BPNs) in pixel blocks
with variable side length L. A statistical model for BPN dis-
tributions was determined by considering how the BPN val-
ues change with the BPP and was found to apply over a wide
range of values for BPP and L. The statistical approach was
also able to simulate a higher-BPP image when seeded by a
low-BPP image. It was also found to apply to surface profile
data analysed by counting ridge sail numbers in profile seg-
ments of variable length L. This provided a statistical con-
nection between the bright-pixel density and the ridge den-
sity. The connection was studied for the 2011 data in terms
of surface rubble coverage estimated both from the medium-
resolution image and from the surface profiles. Apart from a
scaling factor, both were found to follow the same distribu-
tion.

1 Introduction

The ports of the northern Baltic Sea are kept accessible by
icebreakers during severe winters, and there exists a demand
for accurate ice information, especially on ice ridging. Ridge
fields increase collision and besetting risks and reduce the
predictability of shipping operations. In the Finnish–Swedish

ice charts, ridging is coded by the degree of ice ridging
(DIR), which is a numeral based on icebreaker observations
and manually interpreted SAR images. Due to the qualitative
nature of DIR, a need for SAR methods to retrieve quanti-
tative ridging parameters persists. The usual surface param-
eters are ridge sail height and ridge density, which can be
used to parameterise associated statistical models. Ridge sail
height and ridge density are also related to the fraction of the
surface area covered by ridge rubble, a parameter that con-
tributes to the magnitude of σ ◦ in SAR images. The surface
statistics can be linked to the subsurface ridge keel statistics
with cross-sectional models, providing an estimate of the to-
tal mass of ridged ice.

It is still not well-understood how the pixel-to-pixel inten-
sity variations relate to the variation in ridging. Backscatter-
ing from rough surfaces like brash and sastrugi may over-
whelm the ridging signatures, and changes in temperature,
moisture and snow cover may alter their discernibility. Air
temperatures around 0 ◦C reduce the penetration depth of
microwaves into the snow layer, decreasing the backscatter-
ing. For high frequencies, volume backscattering may exceed
surface backscattering (Albert, 2012). For low-salinity ice,
the scattering is dominated by volume inhomogeneities in
the uppermost layers of the ice, which in part explains the
high variation in X-band σ ◦ values for the northern Baltic
Sea ice (Dierking, 1999). As the resolution of operative SAR
data is usually not better than 100 m, the σ ◦ values come
from varying assemblages of ridge rubble and other sur-
face types. Correlations between SAR signature and ridged
ice volume emerge, as shown in the Beaufort Sea study of
Melling (1998), but quantitative estimates are hard to obtain.

In the Baltic, SAR research has approached ridging from
two main directions. Physics-based approaches seek to deter-
mine the microwave backscattering properties of ridged ice,
while image-based approaches seek to retrieve ridging with
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image segmentation methodologies, trained and validated by
field data.

Physical backscattering was studied extensively in the
1980s and 1990s. This included models taking the sail block
angle distributions into account. According to the 3D model
of Manninen (1992, 1996), the most important ice proper-
ties in the C-band backscattering from ridges are microscale
surface roughness, the dielectric constant and sail block ge-
ometry. The main difference between ridged and level ice
was that backscattering from ridge blocks has a broad range
of incidence angles, whereas level ice has a narrow range.
On the other hand, using a 2D model describing the sail as a
collection of circular facets with variable surface roughness,
Carlström and Ulander (1995) concluded that specular reflec-
tions are dominant. Both models predict rather similar results
due to the broad distributions of ridge block orientations and
dimensions. Ridge backscatter has also been observed to be
slightly sensitive to the radar azimuth angle (Johansson and
Askne, 1992).

Baltic image-based research has mostly used nonlinear re-
gression and Bayesian methods to classify ridged ice types.
Similä et al. (1992) found reasonable results using surface
profile data and the tail-to-mean ratio computed from the
SAR pixel value distribution as a predictor. Utilising 3D
scanner data, Similä et al. (2010) demonstrated that in dry
and cold ice conditions with thin snow cover, a correspon-
dence between freeboard and C-band SAR can be found if
the dominant ice thickness is known.

In Mäkynen and Hallikainen (2004) the σ ◦ distributions
were computed for several ice deformation categories and
incidence angles from scatterometer campaign data. Only
small differences were noticed between the X- and C-band
or different polarisations with the exception of HV polarisa-
tion. This agrees with the results of Eriksson et al. (2010).
The same scatterometer data were utilised in the hierarchical
Bayesian model of Similä et al. (2001). Gegiuc et al. (2018)
assessed automated determination of DIR numerals in three
stages: segmentation of a SAR image, computing a feature
vector to each segment and classifying the segments. Train-
ing data consisted of Gulf of Bothnia DIR numerals from ice
charts. In addition, a clear correlation between DIR numer-
als and deformed ice volume was demonstrated using surface
profile data.

The present paper provides a model that connects SAR im-
age statistics with ridging statistics. It can be used both for
theoretical investigations and for ice information production.
In Sect. 2, after describing data, the method of counting the
bright-pixel numbers (BPNs) and ridge sail numbers (RSNs)
is introduced and an estimate of ridge sail rubble coverage
from observed ridge density is provided. A theoretical argu-
ment for generating BPN and RSN statistics and the resulting
distribution model and SAR texture simulation method are
then presented. Section 3 validates the model theoretically
and by direct comparison between ridging and SAR data. In

Sect. 4 we discuss the developed approach and its possible
applicability to SAR frequencies other than the X-band.

2 Data and methods

2.1 Data

Two modes of TerraSAR-X (TSX) satellite data were used.
The medium-resolution HH-polarised ScanSAR image was
acquired on 28 February 2011 over the Gulf of Bothnia. The
high-resolution HH-polarised stripmap image was acquired
on 5 March 2016 near the island of Hailuoto in the Bay of
Bothnia. Surface profile data were collected in the Bay of
Bothnia during 2–7 March 2011 along tracks shown in Fig. 1.

The ScanSAR swath width is 100 km, and the azimuthal
length is 150 km, while in the studies, a 106× 94 km subim-
age was used. The image was land-masked and rectified to
the Mercator projection with reference latitude 61◦40′ N and
pixel size 20 m. As the incidence angle range from 29.5 to
38.7◦ is narrow, no incidence angle corrections were made
(Mäkynen et al., 2002), only the calibration of the backscat-
tering coefficient σ ◦.

The stripmap image is a geocoded ellipsoid-corrected
(GEC) product without any terrain correction and a spa-
tially enhanced (SE) product designed for the highest pos-
sible square ground resolution. The image was rectified to
1.25 m resolution in the Mercator projection. The covered
area is about 33.6× 42 km2 (width× length), from which a
19× 19 km2 subimage was used in the analyses.

The ice profile dataset comprising 2800 km of the pro-
file was collected during the week after the ScanSAR ac-
quisition. The helicopter-borne system was similar to that
described by Haas et al. (2009). Only the lidar surface pro-
file data are used here, while the electromagnetic (EM) ice
thickness has been addressed in Ronkainen et al. (2018). The
analysis of lidar data followed standard procedures. After a
reference-level determination, the local maxima were iden-
tified by the Rayleigh criterion that demands that for two
successive maxima, the minimum elevation between them
must be less than half from either maximum. Otherwise, the
shallower one is not counted. The elevation distribution of
maxima has a negative exponential tail for values higher than
0.4 m, which was selected as the cutoff elevation. Above the
cutoff, the maxima are assumed to be ridge sails. The average
sail height and ridge densities are 0.65 m and 11.7 1 km−1,
respectively.

The winter prior to the ScanSAR acquisition and profil-
ing campaign was colder than average. During the campaign,
SW winds up to 18 m s−1 triggered opening and deforma-
tion periods in the Bay of Bothnia, and the drift speed of
the research vessel Aranda serving as the campaign base was
typically 0.05–0.2 m s−1. The ice thickness varied from 30
to 60 cm in pack ice. The air temperature increased from
−10 ◦C on 24 February to −1.5 ◦C on 27 February. When
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Figure 1. The profiling measurement lines during the 2011 field campaign. The ice conditions on the days of the images.

the ScanSAR image was acquired, the air temperature was
−2.3 ◦C at the Aranda base. Snow lines measured during 2–
4 March had a mean thickness of 8 cm and a standard devi-
ation of 11 cm. About 50 cm thick snow accumulations were
often found by ridges, sometimes covering shallower sails.
On 3 March, the snow already had some moisture, and the
density varied from 200 to 300 kg m−3 on level ice and 300–
400 kg m−3 near ice ridges. It can be assumed that during the
ScanSAR acquisition prior to the campaign, the snow was
still dry and did not significantly affect the backscattering.

The winter of 2016 was mild, and only the Bay of Both-
nia had an ice concentration of 100 %. Recurrent periods
of mostly SW wind induced cycles of deformation, opening
and freeze-up. Only in the beginning of March did the basin
attain a more persistent ice cover consisting of ridged and
rafted ice types. On 5 March, the fast-ice thickness in the NE
quadrant of the basin was 50–65 cm, the level of ice thickness
in the ridged ice pack was 30–50 cm and the air temperature
was from −4 to −1 ◦C. The temperature stayed below 0 ◦C,
and no snowfall occurred during the 10 d before the stripmap
SAR image acquisition date when the snow thickness on the
mainland was about 30 cm.

2.2 Approach

From the backscattering viewpoint, the principal quantity to
describe ridging is the relative area of ice surface covered
by ridge rubble (rubble coverage). Curvilinear ridge sails are
often visible, having a roughly triangular cross-section and a
typical scale of 1–10 m in the across-sail direction and tens to
hundreds of metres in the along-sail direction. However, less
well defined block accumulations are also understood here as
ridging as they contribute to the rubble coverage. Their sig-
natures in surface profiles are also similar to those of curvi-
linear ridges.

It appears clear that the returns from the ridge rubble dom-
inate the brighter end of the backscattering intensity his-
togram. The brightness statistics involve a certain uncer-
tainty, however. The histogram depends on the processing of

the image aiming for a good visual appearance. A change in
ambient conditions may result in quite different intensity his-
tograms for an otherwise unchanged ice cover. Still, an ice-
charting expert can typically recognise in both cases the same
ridging signatures as these appear persistent and symptomat-
ically nonhomogeneous. The persistence shows up clearly in
binary images comprising a certain percentage of bright pix-
els from the intensity histogram tail. If the percentage is re-
duced, the ridging signatures become more sparse but tend to
retain structural congruence with the non-reduced signatures.

In a way, the objective of the present approach is to provide
a statistical foundation for the assessment that the ridging
signatures in two SAR images “look the same”. Towards this
end, a certain bright-pixel percentage (BPP) is selected with
an intensity threshold. For a lower BPP, the selected bright
pixels are expected to be predominantly returns from ridge
rubble. The spatial variation related to the ridging signatures
is described in terms of the bright-pixel number (BPN) in
pixel blocks with side lengthL or equivalently in terms of the
bright-pixel coverage (relative area, density) in the blocks.
The side length L and the BPP are variable parameters of the
BPN approach.

Proper validation data for the BPN approach would consist
of ridge rubble topography in square areas with a comparable
side length, for example, scanning lidar data over snow-free
ice. The extent of such data is limited, however. The vali-
dation data, therefore, consist of linear surface profiles from
which ridge sails are identified. The profiles are divided into
segments of length L, and the ridge sail numbers (RSNs) in
the segments are counted. Only those sails are counted that
exceed a certain height threshold. The ridge rubble coverage
will inherit the RSN statistics that can then be parametrically
compared with BPN statistics for concurrent datasets. The
segment length L and the sail height threshold are variables
of the RSN approach.

As the BPN and RSN approaches are formally analogical,
a more theoretical validation exercise seeks to show that they
follow the same statistical model. The model is derived by
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considering how BPN and RSN values change with threshold
changes (threshold process). High-resolution (1.25 m) im-
ages resolving individual ridge sails are used.

2.3 Estimating ridge rubble coverage

Ridge rubble coverage can be estimated along a linear profile
from ridge sail height and ridge density. To provide realistic
estimates, the effect of the cutoff sail height used in the pro-
file analysis must be assessed, as well as the application of re-
sults reported on the sail width / height ratio, which is noted
as R = w/h. Considering first the ridge width, the effect of
oblique angles of sail crossings must be taken into account.
For randomly oriented ridges, the average width is π/2 times
the perpendicular width (Mock, 1972). The reported R ratios
for perpendicular width are usually around 4. However, the
measurements typically refer to the highest point of some sail
section, while aerial imagery shows that the sail width does
not vary as much as the sail height but is rather constant. The
results of Lensu (2003) indicate that the highest point of a
sail section is typically 2.5 times the average sail height, and
thus the average value ofR for random sail crossings is about
10. Additionally, the Rayleigh criterion counts certain wider
multiple-peak formations as singular ridges. Deformed ice
fields also include scattered rubble and other diffuse rough-
ness not accounted for in the estimates. To include the con-
tribution of these, the value R = 13 is adopted.

The cutoff sail height affects both ridge density and ridge
height. To estimate the cutoff effect, the extrapolation model
by Lensu (2003) is applied. It is assumed that the average
sail height is representative of the whole dataset and only
the variation in ridge density is at issue. For the present lidar
profile data with a cutoff height of 0.4 m and an average sail
height of 0.65 m, the model provides estimates that the true
average height is ha = 0.48 m and that the true densities are
2.0 times the observed density.

Taken together, the ridge rubble coverage (RRC) along a
profile is

RRC
A
=
π

2
×R×ha× 2× λ (1)

=
π

2
× 13× 0.00048× 2× λ, (2)

where all quantities are in kilometres (ha is average height;
λ is observed ridge density). A unit increase in the observed
ridge density for 0.4 m cutoff data increases the along-profile
rubble coverage by 1.96 %. However, as the interpolation fac-
tors are rough estimates, the value 2 % is used instead.

If the profiling flights have crossed an area multiple times
in different directions, which for our data was the case for
coastal ridge fields near the flight base, the estimate is rep-
resentative of areal rubble coverage. For a singular cross-
ing, the relationship involves randomness and is generally
the more reliable, the larger the considered area is, provided
that homogeneity of ridging conditions persists. On the other

hand, independent estimates of rubble coverage from SAR
or other data can be converted to ridge density interpreted ei-
ther as an average of multiple crossings or as the probability
of finding the said density in a singular random crossing.

2.4 Threshold process

For an idealised SAR image with accurate real-valued inten-
sities, the pixel values can be arranged into strictly increas-
ing order. Starting from an empty image matrix and from the
brightest pixel, the pixels of the ordered series can then be
added to the matrix one by one. It can then be studied how
the probability of the BPN to increase by 1 depends on the
pixel block state< L,BPN> as defined by L, BPN and pos-
sibly other descriptors. The probabilities can then be used to
formulate recurrence relations, generating finite BPN distri-
butions.

For integer-valued SAR images, the process starts from the
BPN values for maximum intensity and proceeds in unit inte-
ger steps by adding pixels of subsequent lower intensity. This
is designated as the threshold process. The increase probabil-
ities are replaced by increase rates, that is, the relative num-
ber of events of unit BPN increase. For RSNs, an analogical
process decreases the sail height threshold by small values,
starting from a threshold equalling the highest ridge. The in-
crease rates of the threshold process are then interpreted as
increase probabilities of an idealised process. This is legit-
imate if the number of increase events larger than unity is
relatively small for each step.

The threshold process is continued to a certain pixel inten-
sity or ridge sail height cutoff, called a target threshold. The
derivation of the statistical model is based on the following
observation. The intensity or ridge sail height values higher
than or equal to the target threshold can be randomly per-
muted. This changes the increase rates, generating another
threshold process. However, the BPN or RSN distribution
observed on the target threshold level is the same for both
processes. Thus, the new increase rates can be used to gen-
erate the observed distribution. The random permutation has
the merit of removing the spatial correlations of intensities
or sail heights so that the threshold process is reduced to a
random deposition process.

2.5 Scale system of distributions

The threshold process and the distribution model are pre-
sented for RSN statistics. The case for the BPN is concep-
tually analogical but involves complications not present in
RSN statistics: discreteness of integer data, resolution set by
pixel size and L2 as the maximum BPN value.

In RSN analysis, surface profile data are divided into
segments, and the numbers n of sails in the segments are
counted. A discrete distribution k(ni) for sail number ni is
defined for each scale Li . If Lj < Li is a shorter segment, a
conditional distribution k(nj |ni) is defined. This can be inter-
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preted as the conditional probability of finding nj sails in an
Lj segment nested inside an Li segment containing ni sails.
The k(nj |ni) can also be called downscaling probabilities as
it can be used to derive distribution k(nj ) from k(ni). The
approach can be extended to a cascade of scales, constituting
a scale system of distributions.

In an ideal threshold process, the sail heights are arranged
into a strictly increasing order and added one by one to
the segmented profile. Two nested segments with lengths
Li > Lj are considered so that the longer segment Li is di-
vided into segments with length Lj and Li −Lj . If the sail
is added in the process to the Li segment, it has a certain
probability of being added to each subsegment. This proba-
bility must satisfy the additivity condition P(Li)= P(Lj )+
P(Li −Lj ). The simplest assumption satisfying the condi-
tion is P(Li)∼ ni +aLi , which leads to the hypergeometric
distribution (Lensu, 2003):

k(nj |ni)=

(
aLj + nj − 1

nj

)(
aLi − aLj − 1+ ni − nj

ni − nj

)
(
aLi + ni − 1

ni

) ,

nj = 0,1, . . .,ni . (3)

If Li/Lj � 1, then the finite and discrete distribution
k(nj |ni) is approximated by k(nj ) and k(nj ) is approxi-
mated by the negative binomial distribution

k(nj )=
(
aLj + nj − 1

nj

)
paLj (1−p)nj ,

where p =
aLj

aLj+< nj >
, (4)

and furthermore, if the expected value < nj > is large, the
continuous approximation of Eq. (4) is the gamma distribu-
tion:

f (nj )=
1

0(α)
βαnα−1

j e−βnj , α = aLj , β =
aLj

< nj >
. (5)

It is convenient to assume that Li is a regional scale
where ridging statistics are described by the negative bino-
mial k(ni), as approximated by the gamma distribution. The
hypergeometric k(nj |ni) is then used to describe local varia-
tion.

The statistical model is validated in two stages. First, the
additivity condition is validated by conducting a threshold
process for selected scales and target thresholds and observ-
ing whether the increase rates have a linear dependence on
the RSN or BPN. In the next stage, the distribution models
are fitted to the data. In the sections to follow, this is done by
the observed mean and variance, and the goodness of fit is
checked. The parameter a is obtained from the variance

var(nj |ni)=
Ljni(aLi + ni)(Li −Lj )

L2
i (aLi + 1)

(6)

and

var(nj )= 〈nj 〉+
〈nj 〉

2

aLj
(7)

for the hypergeometric and negative binomial models, re-
spectively. The variance for the negative binomial distribu-
tion is larger than the mean, which ensures that a is positive
in Eq. (7). The parameter a quantifies the relative strength
of the component process of the random spatial deposition
of sails, that is, the Poisson process. If the validation results
agree for test cases selected from a certain scale range, it
can be concluded that the scale system is applicable over the
scale range.

2.6 Simulation of SAR texture by the threshold process

To analyse the BPN threshold process in full detail requires
that bright pixels are added one by one in process steps. For
integer-valued images, this cannot be attained. On the other
hand, it is possible in a validation approach where the gen-
erative hypotheses are tested by simulating the generative
process. The simulation commences from a certain stage of
the observed threshold process. New bright pixels are added
one by one following the assumed probabilities and possibly
other conditions. The simulated result is then compared with
the observed one.

A binary image with value 1 (white) for an observed low
percentage of brightest pixels is used to seed the process.
The simulation changes the value of black (zero) pixels into
white, one at a time. This is done by a scale cascade, which
is assumed here to follow the linear generative hypothesis.
The first step divides the image into four rectangles along
randomly chosen vertical and horizontal lines. To each rect-
angle is assigned weight aN0+N1, where N0 is the num-
ber of pixels, N1 is the number of white pixels and a < 1
is a parameter that controls the relative strength of a random
spatial placement (Poisson process). One of the rectangles is
selected for the next step with a probability defined as the
ratio of the rectangle weight to the sum of weights. The se-
lected rectangle is divided further into 4, and the cascade is
continued until the rectangle contains only 1 black pixel that
is changed to a white pixel. The process repeats until a preset
number of white pixels is reached.

The simulation approach can also be applied to other gen-
erative hypotheses. Imposed maps of spatially distributed
weights can be used to include spatial aspects of the gener-
ative process, like correlations, homogeneity, gradients and
support, i.e. the subregion outside of which the process is not
active.

3 Results

3.1 Observed threshold process rates and distributions
for ridge sail number

From the profile dataset described in Sect. 2.1, profiles ex-
ceeding 5 km in length were selected and truncated to be di-
visible into 1.6 km, in total 2256 km. In RSN analysis the val-
ues (50,100,200,400,800) (metres) were used for the seg-
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ment length L. The threshold process decreased in 0.01 m
steps from 2.5 m (10 ridges). The target threshold was set to
0.5 m (18 638 ridges).

The increase rates per step were determined as the mean
value of the RSN increases, including zero increase, and the
presented results are for the pooled data comprising all steps
to the 0.5 m target threshold. The increase rates were calcu-
lated both for the original data and for randomly permuted
sail heights. The results shown in Fig. 2 disregard the tail
part with excessive variation. In the right panel of Fig. 2, the
highest RSN values correspond to ridge density 160 km−1, a
value characteristic of rubble fields with no level ice visible.
The increase rates were linear with a slight superlinear bend.

The rates for non-randomised data deviate after beginning
from a linear-to-sublinear increase. For other scales, the be-
haviour was similar, and for long L values, the rate more or
less settled to a constant value in its tail part. A likely rea-
son for this is that sail height correlations that arise naturally
as block thickness (a parameter controlling ridge sail height)
vary spatially during the course of the ice season. Correla-
tions were indeed found between the RSN and the average
sail height.

The hypergeometric and negative binomial distributions
were fitted to the data with observed mean and variance. The
negative binomial k(ni) agrees well with the empirical distri-
butions derived from the full dataset in Fig. 3. Only the num-
ber of empty segments is overestimated for 200 m and 400 m
segment lengths. Figure 4 shows the hypergeometric distri-
butions k(nj |ni) for the conditioning scale Li = 1600 m and
for the range (50,100,200,400) of the subsegment scale Lj .
The results for two values of the conditioning RSN, ni = 16
and ni = 72, are shown. These are equivalent to ridge den-
sities 10 and 45 km−1 for the segments Li . The agreement
is good, considering that the subset size is limited by a fixed
value ni . Similar results are found for other combinations of
Li , Lj and ni .

The hypergeometric model was derived from the assump-
tion that the rate of the RSN increase for the segment length
is proportional to n+ aL. The parameter a is obtained from
the mean and variance and is generally found to decrease
with L following the power law. For the hypergeometric case
shown, the exponent has about the same value of 0.5 for all
values of the conditioning ni from 16 to 72. The parame-
ter a was interpreted as the relative Poisson intensity, which
also provides the rate of sail appearances to empty segments
in the threshold process. If there is no rubble present in the
segment, it can be said to consist of level ice and cannot ex-
perience a change in the RSN from 0 to 1 either. The Pois-
son parameter of level ice segments is zero, and the observed
Poisson parameter a is obtained by multiplying the true Pois-
son parameter of rubble segments by their relative coverage.
Thus the power law suggests that the area covered by ridge
rubble has fractal geometry.

3.2 Characteristics of high-resolution SAR

The pixel size of the March 2016 stripmap image is 1.25 m,
which resolves backscattering signatures from individual
ridges. The size of the image (Fig. 5) is 19× 19 km,
but for analysis and visualisation, different subimages
were also used, principally 7000× 7000 (8.7× 8.7 km) and
1024× 1024 (1.3× 1.3 km) subimages with representative
ridging signatures. To proceed following the approach out-
lined in Sect. 2.2, a certain bright-pixel percentage (BPP) is
selected and a binary image with unit values for the bright
pixels is generated. The variation in bright-pixel density is
described in terms of bright-pixel numbers (BPNs) in pixel
blocks with variable side length L.

Two derivative image types are also presented. Following
the BPN approach, the first derivative replaces (as a slid-
ing operation) pixel values with BPN values calculated for
pixel blocks centred on the target pixel. This is accomplished
by a convolution with an L×L all-ones kernel. The result
is termed the “contextual image” as the visibility of ridging
signatures and their effective resolution depend on BPP and
block side length L, which can be chosen to suit the appli-
cation context. The other derivative is the “category image”,
which divides the brightest 30 % of pixels into three 10 %
classes, for either the original or the contextual image.

In the category-image version of the stripmap image,
Fig. 5, ridging features appear to be visually delineated
by the brightest 20 %, while the interval 70 %–80 % be-
gins to add more scattered pixels. The hope of a similar
quasi-photorealistic appearance as is found in comparable
TerraSAR-X terrestrial images by Dumitru and Datcu (2013)
does not quite materialise. There are obvious linear ridges,
but these consist of chains of detached bright components
that do not connect to continuous features. Larger features,
reminiscent of ridge groups or small rubble fields, are more
readily observed. However, they are also aggregates of de-
tached bright components, and a similar texture is also found
for ship ice channels that are flat and rather uniform beds of
bright scatterers. Increasing the bright-pixel percentage from
30 % slightly improves the connectedness of ridge signatures
but at the same time obscures their delineation by adding
scattered bright pixels to apparent level ice areas.

These observations agree with the results by Manninen
(1992) and Carlström and Ulander (1995) that indicate that
bright returns from ridge rubble depend on random factors
like a favourable orientation of blocks, while the returns from
the remaining sail may fail to be clearly distinct from the
surrounding level ice. The apparent randomness also corrob-
orates the assumption that the density of the bright pixels in
the image is proportional to the coverage of ridge rubble.

In the contextual image and its category-image rendering,
Fig. 6, the sliding-block side length is L= 101 (126 m), and
the BPP is chosen to be 20 %, comprising the red and yellow
pixels of Fig. 5. It is seen that the ridging signatures are en-
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Figure 2. Sail number increase rate for a threshold process with target threshold 0.5 m. (a) Rate for observed sail heights and randomised
sail heights for segment length L= 100 m. (b) Rates for randomised sail heights for different segment lengths.

Figure 3. Negative binomial fits to the RSN distribution for the full lidar dataset and for different segment lengths.

hanced and their connectedness improved in the contextual
images.

3.3 Observed threshold process rates and distributions
for high-resolution BPNs

For the analyses, a 7000× 7000 upper-left-corner subimage
of the stripmap image was used in order to avoid the re-
frozen lead visible in Fig. 5. The image was divided into
non-overlapping pixel blocks with side length L, measured
in pixels. The intensity threshold was decreased by unit in-
teger steps, starting from 255, and the rate of BPN increase
as a function of the BPN was obtained for each step. In the
presented results, the rate data comprise all steps down to
the target threshold. In the subimage, 1.2 % of the highest
intensities are saturated to 255. This percentage is equal to
that for the intensity band [218,254] and would correspond
to the extending of the exponential tail of the intensity his-

togram beyond 255 to 350. This somewhat affects the results
for the initial steps of the process.

Analogically to the RSN analysis, the pixel intensities
above and including the target threshold were randomly per-
muted. In Fig. 7, the block side length is set to L= 32 and
the target intensity threshold values (182,149,118,86) are
chosen, corresponding to BPP values (5,10,20,40). As for
the RSN, the magnitude of the rates is not relevant, and they
have been scaled so that the sum rate equals L2 or 1024. The
different degrees of saturation then separate the point clouds
in the figure. Linearity is observed unless the saturation of the
pixel block is felt after three-quarters of the block capacity is
filled.

In the other test case in Fig. 8, the BPP is set to 20 % (target
intensity threshold 118), and the block side length increases
from 4 to 128. In addition to the same scaling of rates as in
the first test case, the BPN range [0,L2

] has been scaled to
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Figure 4. Hypergeometric fits for distributions k(nj |ni) conditioned by Li = 1600 m and ni = 16 (left panel group) and ni = 72 (right panel
group). The scales Lj belong to [50,100,200,400].

Figure 5. The 15 200× 15 200 stripmap image with the locations
of 1024× 1024 (blue) and 200× 200 (yellow) subimages indicated
(upper panel). The 1024× 1024 and 200× 200 subimages (lower
panel).

[0,1]. The results are similar to the first test case. For com-
parison, the same result is shown for the original data where
the pixel intensities are not randomised. For higher L, the
relationship is then approximately linear for small relative
BPN values, but otherwise, it is quadratic. Intensity correla-
tions are the likely reason for this, but no further conclusions
are attempted.

The agreement of the proposed distribution system with
the data is again good. Distributions were calculated from
block tiling of the 9216× 9216 (11.5× 11.5 km) upper-left-
corner subimage. Figure 9 shows negative binomial distri-
butions k(n) fitted by observed mean and variance for BPP
10 %, and three scales are shown. The fourth subplot shows
the model parameter a as obtained from the mean and vari-
ance for the binary cascade of scales L= 8,16, . . .,256 and
for three BPP values. The power law exponents vary from
−0.45 to −0.37 and are thus close to but somewhat smaller
than the values obtained in the RSN analysis. Also, the neg-
ative hypergeometric model k(nj |ni) conditioned by scale
Li and BPN value ni applies well. Figure 9 shows the results
for selected combinations of Li , Lj and ni . The conditioning
scale cannot much exceed the value Li = 16 as the number
of instances nj for conditioning pairs (Li,ni) decreases with
increasing Li as L−4

i .

3.4 Simulated high-resolution SAR texture

The simulation algorithm was applied to the 1024× 1024
subimage indicated in Fig. 5. The white pixels of the initial
binary image correspond to BPP 3 %. The simulation added
10 % so that the resulting BPP is 13 %. If aN0�N1, the
Poisson process dominates the simulation step, but overall,
the process gravitates towards image areas with a higher den-
sity of white pixels. However, if the fraction of white pixels
is initially low, the Poisson component process tends to add

The Cryosphere, 16, 4363–4377, 2022 https://doi.org/10.5194/tc-16-4363-2022



M. Lensu and M. Similä: Ridge signatures 4371

Figure 6. The 15 200× 15 200 contextual image (a) and corresponding category image (b) derived from the full image with BPP 20 % and
sliding-block side length 101. The colour bar extends to the maximum observed BPN in the blocks, 9831. The location of the 1024× 1024
subimage is also indicated.

Figure 7. The BPN increase rates for pixel block side length 32 and
BPP increasing from 5 % to 40 % in a binary fashion.

nonzero pixels into larger empty areas, first creating disper-
sion and then spurious clusters. To reduce this, an additional
condition requires that in a process step, a white pixel cannot
be added within a rectangle if its fraction of nonzero pixels
is below a threshold Co and the rectangle area measured as
a pixel number is within certain limits [N1,N2]. This effec-
tively means restricting the support of the process.

The parameters were a = 1/20, Co = 1/100 and
[N1,N2] = [100,20000], and the results are shown in
Fig. 10. Although not matching exactly on the pixel level,
both 13 % images exhibit the same pixel density variations.
For contextual and category images for L= 21, the results
for the real and simulated 13 % images match almost

exactly; that is, they contain the same information at scale
L= 21. The results provide additional corroboration for the
soundness of the generative hypothesis. They also provide
the insight that certain parts of “non-deformed” ice should
be left outside the ridging statistics, a feature also previously
suggested by the emergence of power law exponents for the
parameter a in the distribution fits. The parameters of this
demonstration were determined by simple experimentation,
but more systematic approaches can be conceived. Espe-
cially, intensity values could be incorporated, which would
introduce spatial intensity correlations, and the fractality
suggested by the distribution analysis could be encoded into
the simulation steps.

3.5 SAR and lidar comparison for the 2011 image

The analysis of ridged areas in the 20 m resolution TSX
ScanSAR image proceeds in a similar manner to the anal-
ysis of high-resolution SAR data. The basic SAR tools are
the bright-pixel percentage (BPP) and the counting of bright-
pixel numbers (BPNs) in pixel blocks. The target is distri-
butions f (x), where x is the estimated ridge rubble cov-
erage (RRC) in pixel blocks (SAR RRC) or their ground
truth counterparts as determined from lidar surface-profiling
flights (lidar RRC).

The essential assumptions are that lidar RRC can be esti-
mated from profile data, Sect. 2.3; that the bright-pixel num-
ber can be used as a proxy for SAR RRC also for 20 m resolu-
tion data; and that both RRC concepts inherit their statistics
from the model for RSNs and high-resolution SAR BPNs,
Sect. 3.1 and 3.3. It is noted that the 20 m resolution can still
detect much of the ridging signature in Fig. 11 and that the
simulation method described in Sect. 2.6 works.
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Figure 8. The BPN increase rates for BPP 20 % and the pixel block side length increasing from 4 to 128 in a binary fashion for randomised
data and for original data.

Figure 9. In the left panel group are BPN distributions and their negative binomial fits for BPP 10 % and three different pixel block side
lengths L. The parameter a is also shown for a scale cascade 8,16, . . .,256 and for three different BPPs. In the right panel group are
hypergeometric fits for conditional BPN distributions for different combinations of conditioning scale Li and conditioning BPN ni .

The BPP is set to 20 %. The exact BPP value is not es-
sential, but the chosen one is expected to comprise most
of the ridging signatures and not too much level ice. Simi-
larly, as for the high-resolution image, the bright pixels are
mostly not connected to continuous ridging features. A con-
volution operation is then conducted, generating a contex-
tual image, Fig. 11, where each pixel value of the original
image is replaced by the number of bright pixels (BPNs) in
a 15-by-15-pixel block centred at the pixel. As the target is
rubble coverage, the BPN values are changed to percentage
points. The convolution operation acts similarly to the high-
resolution SAR and effectively reveals the ridged areas and
connects many of the ridging structures that are only vaguely
discernible in the original SAR imagery.

For comparisons between the SAR RRC and lidar RRC,
the resolution of the contextual image is weakened to 1 km2.

This coarser-scale image, Fig. 12, is called an analysis image,
and its pixel value is the mean of all pixels inside the corre-
sponding contextual-image pixel block. These pixels repre-
sent the SAR RRC and are compared with lidar RRC values
determined in grid cells matching the pixels with respect to
size and location. The lidar data were assigned to the grid
cells in Fig. 12 using the coordinates included in the data. If
the lidar grid cell contains data, its value is the ridge density
detected in it, and the RRC in percentage points is estimated
by multiplying the density by 2 %, Eq. (5). Ridge densities
larger than or equal to 50 then have 100 % RRC. This was the
case for about 2 % of all the cells with nonzero ridge density
and occurred only in the rubble field zone close to the eastern
coast.

As mentioned in Sect. 2.1, ice drift and deformation oc-
curred during the profiling campaign week after the acqui-
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Figure 10. BPP 3 % binary image, BPP 13 % image, and the BPP 13 % image generated from the BPP 3 % image by the simulation algorithm.

Figure 11. The test area covered by the TSX SAR imagery with resolution of 20 m. On the right is the contextual image with BPP 20 %.

sition of the SAR image. As the ice drift could have been
well over 10 km during the time gap and the flights are from
several days, it is not possible to establish a pairing between
the two RRC estimates in SAR analysis pixels and lidar grid
cells, and the comparison was made regionally. All lidar data
in the area covered by the SAR image were used for the RRC
values in the lidar grid, Fig. 12. The SAR RRC analysis im-
age, Fig. 12, includes all pixels outside the mask (N = 7549
pixels). Lidar data (N = 1017 cells) comprise about 13 % of
the SAR pixels.

The two datasets are compared in terms of a quantile–
quantile (Q–Q) plot for the respective distributions. This can
be viewed as a nonparametric approach to comparing their
underlying distributions. There is also no need to compare
the grid values pairwise or have equally sized datasets. The
quantile pairs are largely located along a line with a ratio
of 1.34 between the quantiles (Fig. 13, the left panel). This
indicates that the shapes of the distributions are similar and
that they may belong to the same distribution family. As lidar
RRC is expected to follow a gamma distribution (Eq. 5), this
is then also expected for SAR RRC. For two gamma distri-
butions, the linearity of the Q–Q plot entails that the shape
parameters are equal, which also holds for the model (Eq. 5)
if the scale Lj and the process parameter a are the same for
both. The slope of the Q–Q plot then equals the ratio of the
scale parameters, suggesting that a value of 1.34 can be used
as a scaling coefficient.

It was examined how close to each other the distributions
of the SAR and lidar RRC are with and without the scal-
ing coefficient of 1.34, Fig. 13. The original SAR and lidar
RRC densities show the same basic shape but do not match
well. When SAR RRC is scaled by 1.34, the match is im-
proved, and the obtained mean values are very close to each
other: 26.2 % for the scaled SAR RRC and 25.9 % for the li-
dar RRC. Converting these RRC values back to ridge density
values yields about 13 km−1 for both datasets. Gamma distri-
butions were also fitted to both datasets. The maximum like-
lihood estimates for the shape parameter of the scaled SAR
RRC gamma density is 1.7 and the scale parameter 15.5. The
respective values for lidar data are 1.4 and 18.2. Thus, al-
though the parameters of the fits are close to each other, they
are not equal.

The problems with the fit and agreement with gamma dis-
tribution mostly concern the tail part of the distribution. The
linearity of the Q–Q plot was no longer valid for SAR RRC
over 50 % and for lidar RRC over 75 % RRC. The SAR RRC
values over 50 % are relatively rare in the data, and highly
ridged areas form proportionally a much larger fraction in
the lidar data. Especially the rubble field hump seen at the
end of the lidar distribution is not present in the SAR dis-
tribution. As the lidar flights frequently flew over the large
coastal rubble field zone (Fig. 11), a larger proportion of the
lidar data were collected from this area than was the case with
the SAR RRC data. The scaling coefficient was found to in-
crease with the area of SAR included in the comparison and
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Figure 12. The analysis image over the test area presented as a SAR RRC image (a) and the corresponding lidar RRC image (b). The units
are percentage points in both images.

Figure 13. The quantile–quantile plot for the SAR and lidar datasets (a). The SAR and lidar RRC distributions overlaid (b). The scaled SAR
and original lidar RRC distributions (c).

varied from 1.3 to 1.6. With a spatially more uniform cov-
erage of the lidar flights over the SAR image, the agreement
would probably have been better for the tail part.

As expected, decreasing the BPP value increases the scal-
ing coefficient when the SAR image extent and the lidar data
stay fixed. Three cases were examined: for BPP 10 %, the
scaling is 2.22; for 15 %, it is 1.61; and in the above analysis
with BPP 20 %, it is 1.34. In all three cases, the Q–Q plot is
linear for its main part and the mean of the scaled SAR RRC
distribution is always close to the lidar RRC mean.

3.6 Contextual images as ridging information

Although in SAR images from a ridged ice cover the bright
returns are predominantly from ridge rubble, the step to
quantitative methods has proved hard. The bright pixels do
not typically connect well to ridging features but appear as
diffuse pixel clouds. The connectivity is improved in the con-
textual images that enhance the ridging signature by a BPN
sliding operation (Fig. 6 or Fig. 11). If the BPP is changed,
the BPN values change accordingly, but for a random pair
of pixel blocks the change more often retains the size order
of their BPN values than reverses it. Consequently the ap-
pearance of the contextual image is not sensitive to changes

in BPP. This is more strikingly demonstrated in the category
versions of the contextual images (Fig. 6).

The upper panels in Fig. 14 show the 1024× 1024 subim-
age of the high-resolution SAR indicated in Fig. 5 and its
BPP 20 %, L= 21 contextual derivative presented as a cat-
egory image in the upper right panel. However, for the BPP
range from 2 % (pixels with value 255) to 95 %, the cate-
gory image would be almost identical to that in the upper
right panel. The same result is found for several alterna-
tive methods to generate a contextual image, like the L= 21
sliding-block average of intensity. Moreover, the informa-
tion of the contextual image is essentially retained in differ-
ent randomising transformations. In the lower left panel of
Fig. 14 the 1024× 1024 image has been multiplied 8 times
by a random matrix that erodes the ridging signature almost
beyond visual recognition. However, the contextual category
image still emerges essentially unchanged in its main fea-
tures in the right panel.

The observed behaviour is due to the fact that changes in
BPP, changes in method or randomising operations on av-
erage preserve the order of values in the contextual images.
This feature is enhanced in the category versions as the flux
of values across category boundaries is then relatively small.
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Figure 14. Results for 1024× 1024 stripmap subimage multiplied
8 times by a random matrix. (a, c) The subimage (a) and the ran-
domised subimage (c). (b, d) Category versions of contextual im-
ages obtained by BPP 20 % and a 21× 21 convolution kernel for
the original subimage (b) and for the randomised subimage (d).

This can be studied in detail by pixel-to-pixel mapping be-
tween two contextual images. For the 1024× 1024 subimage
and L= 21 pixel block, the pixel-to-pixel mapping of 20 %
BPN values to intensity averages is monotonous on average.
For each BPN value, the mapped intensity averages have a
normal distribution with a standard deviation in the range of
3.5–4.5. On the other hand, the widths of the 70 %–80 %,
80 %–90 % and 90 %–100 % categories for the intensity av-
erage are 9, 15 and 102, respectively. Thus, the highest class,
in particular, retains its delineation in this method change.
More importantly, if the change in BPN values induced by
a change in ambient conditions preserves the order on aver-
age, the category images can be consistently used in the daily
production of ice information.

The pixel block side length L affects the resolution of de-
tail in the contextual images, and its value may be chosen to
suit the context, hence the term. Including a pragmatic view-
point, L= 21 of Fig. 14 and L= 101 of Fig. 6 correspond
to the width and length scales of ice-breaking ships so that
the BPN values of contextual images provide the number of
bright scatterers that the ship bow or the whole ship interacts
with at a time. As the BPN has been shown to be a proxy
for ridge rubble coverage, the contextual images have direct
pertinence to navigability. The categorised versions can be
interpreted as classes of navigational difficulty or as a delin-
eation of areas that a ship should not enter. They can be used
in tactical navigation or in route optimisation that only seeks
to avoid difficult ice types. More advanced route optimisation
is based on physical models for the added resistance from the
ridges. The ice-going speed and the probability of besetting

can then be obtained in simulations that take the ice condi-
tions along alternative tracks as input, specifically ridge den-
sity and ridge height (Kuuliala et al., 2016). As the contextual
images provide only relative ridge density estimates, the scal-
ing to true values, as well as ridge height, must be determined
by other means. These may include observations from ships;
measurements; or satellite data, especially ICESat-2 profiles.
Another possibility is to use a ship’s response, observed re-
motely from AIS (Automatic Identification System) data for
ship speeds and positions, to classify the contextual-image
signatures directly in terms of ice cover resistance (Similä
and Lensu, 2018).

4 Discussion and conclusions

Ice-charting experts are usually able to recognise the same
ridging signatures in SAR images that have different resolu-
tions or are taken in different ambient conditions. The present
approach proceeded from this observation by analysing SAR
images in terms of the local density of bright pixels chosen
by a certain percentage (BPP). The tail intensity variations,
which are often relied on in SAR ice type classification ap-
proaches, were left to play a secondary role. The quantifi-
cation is in terms of bright-pixel numbers (BPNs) counted
in pixel blocks. First, high-resolution images for which the
bright returns can be assumed to come from individual ridge
sails were investigated. A distribution model was derived
and found to also apply to ridge sail numbers (RSNs) de-
termined for surface profile segments. A validation study us-
ing a medium-resolution SAR image with near-concurrent
ground truth data demonstrated that the method can be used
to derive ridge density up to the scaling factor. This can be
provided by independent observations, most promisingly by
ICESat-2 surface profiles.

The distribution model was derived with a threshold pro-
cess where bright pixels or ridge sails were deposited sequen-
tially onto the image canvas or surface profile. The probabil-
ity for the deposition to select a certain pixel block or pro-
file segment was proportional to the corresponding BPN or
RSN value. This raises the question of the role of the phys-
ical ridge formation events in profiling segments that man-
ifest as the formation of new sails or as the appearance of
new bright scatterers in a SAR image time series. An alter-
native approach to sail statistics considers sail spacings or
sail-to-sail distances. A new sail divides the spacing into two
shorter spacings, and if the probability of this happening does
not depend on the spacing, the spacing distribution is asymp-
totically lognormal, as shown by Kolmogorov (1941). As the
RSN and the number of spacings are about equal for ridge
segments, the probability that a new ridge appearing in the
profile ends in a certain segment is then proportional to the
RSN of the segment. This indicates that the applicability of
lognormal and that of hypergeometric models have the same
physical origin. The lognormal has also been found to ap-
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ply to sail spacings in the Baltic since Lewis et al. (1993).
Another hint of the background physical process is that the
BPN statistics are parameterisable by pixel block side length
L rather than area L2. The length of ridge sails typically ex-
ceeds L, and thus a ridge formation event does not add bright
scatterers pixel-wise but as a chain crossing the pixel block.

In the high-resolution SAR, it was likely that most bright
pixels indicate ridge rubble. Their statistics were studied us-
ing binary images, and no attempt was made to interpret the
intensity variations in the bright pixels, although it may be
noted that they followed exponential distribution. It was ob-
served that the bright-pixel texture in dense ridge fields was
not much different from that of ship channels that are flat rub-
ble beds. All studied BPP values generated more or less the
same contextual images. This suggests that the correlation
between sail height and SAR intensity is weak. It remains to
be investigated whether connectedness, curvature and other
measures may provide ridge height estimates.

High-resolution SAR data provide a kind of baseline for
the investigations on ridge parameter retrieval as the re-
turns have a connection both with ground truth ridging
statistics and with the backscattering models by Manninen
(1992) and Carlström and Ulander (1995). The hypergeomet-
ric model provides a scale connection tool that can be used
to study how lower-resolution pixel intensities relate to the
pixel statistics in higher-resolution matching-pixel blocks.
Our high- and medium-resolution images did not have the
required spatiotemporal overlap unfortunately. However, the
medium-resolution image did not appear much different in
binary BPP versions, which mostly consisted of disconnected
pixels and generated contextual images that enhanced the
ridging features in a similar way for a wide range of BPP val-
ues. Also, the simulation algorithm applied to the medium-
resolution image as well as the gamma distribution asymp-
totics of the hypergeometric model.

Relying on the results obtained in Mäkynen and Hal-
likainen (2004) for the scatterometer data at the X- and C-
band and Dierking (2010) for L-band SAR imagery, it can
be hypothesised that the results for the C-band and L-band
would follow similar lines. A possible obstacle to the pre-
sented analysis occurs when the air temperature is warm
enough to make the snow cover wet. As shown by Mäkynen
and Hallikainen (2004), this essentially decreases the con-
trast between level and deformed ice, and thus it is uncertain
whether the proposed method applies in the wet snow condi-
tions. However, for this not to happen, any change in ambient
conditions should severely overturn the order of BPN val-
ues; otherwise the persistence of contextual category images
demonstrated in Sect. 3.6 would prevail. In addition, higher
ridges are often snow-free and less affected by wet condi-
tions. Further studies applying matching multiplatform data
with different resolutions and varying ambient conditions are
needed to clarify this and other unanswered issues left open.
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