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Abstract. Arctic sea ice is declining rapidly, but predictions
of its future loss are made difficult by the large spread both
in present-day and in future sea ice area and volume; hence,
there is a need to better understand the drivers of model
spread in sea ice state. Here we present a framework for
understanding differences between modelled sea ice simu-
lations based on attributing seasonal ice growth and melt dif-
ferences. In the method presented, the net downward sur-
face flux is treated as the principal driver of seasonal sea
ice growth and melt. An energy balance approach is used
to estimate the pointwise effect of model differences in key
Arctic climate variables on this surface flux and hence on
seasonal sea ice growth and melt. We compare three models
with very different historical sea ice simulations: HadGEM2-
ES, HadGEM3-GC3.1 and UKESM1.0. The largest driver of
differences in ice growth and melt between these models is
shown to be the ice area in summer (representing the surface
albedo feedback) and the ice thickness distribution in win-
ter (the thickness–growth feedback). Differences in snow and
melt pond cover during the early summer exert a smaller ef-
fect on the seasonal growth and melt, hence representing the
drivers of model differences in both this and in the sea ice
volume. In particular, the direct impacts on sea ice growth
and melt of differing model parameterisations of snow area
and of melt ponds are shown to be small but non-negligible.

1 Introduction

Arctic sea ice has undergone dramatic changes in recent
decades, with a decline of 0.88× 106 km2 per decade in
September extent observed from 1979–2020 according to

the HadISST.2.2 dataset (Hadley Centre Ice and Sea Sur-
face Temperature; Titchner and Rayner, 2014) and associ-
ated thinning in summer and winter (Lindsay and Schweiger,
2015). Associated with the decline in sea ice have been win-
ter warming (e.g. Graham et al., 2017), earlier onset of melt
over the ice (Markus et al., 2009) and later onset of freezing
(Stammerjohn et al., 2012).

Sea ice is an important component of the climate system
due to its high albedo, its ability to insulate the atmosphere
from oceanic heat during the winter and its effects on ocean
circulation. Hence the accurate modelling and future predic-
tion of sea ice are of primary importance for climate science.
These issues are an important focus of the Coupled Model
Intercomparison Project (CMIP), in which results from cou-
pled models worldwide are collated, compared and evaluated
in a series of “phases” every few years.

In the most recent three phases of CMIP (CMIP3, CMIP5
and CMIP6), sea ice was evaluated in the present day by
Stroeve et al. (2007), Stroeve et al. (2012), Shu et al. (2015),
and Notz and SIMIP Community (2020) amongst others,
finding substantial spread in ice extent and volume. All stud-
ies have found a tendency to underestimate the speed of
sea ice extent loss; this may be due to internal variability
(e.g. Notz, 2015), although Rosenblum and Eisenman (2017)
and Notz et al. (2020) found that speed of decline was also
underestimated as a function of rate of global temperature
change.

There have been multiple attempts to understand the rea-
sons behind the large spread in model sea ice simulation.
Holland et al. (2010) showed that model spread in Arctic
sea ice volume during the historical period explained a large
proportion of model spread in the rate of Arctic sea ice loss.
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Eisenman et al. (2007) and DeWeaver et al. (2008) linked
differences in sea ice simulation in the CMIP3 ensemble to
differences in atmospheric forcing using idealised models but
disagreed on the exact relationship. Massonnet et al. (2012)
evaluated a variety of metrics of sea ice state in CMIP5, find-
ing a number of statistical relationships between present and
future sea ice state, but they did not examine the underlying
drivers in detail. Boeke and Taylor (2016) evaluated Arctic
surface radiation in the CMIP5 ensemble, showing upwelling
shortwave (SW) to be strongly dependent on sea ice area,
but they did not examine causation in the opposite direction.
Keen et al. (2021) compared mass budget terms across the
CMIP6 ensemble, identifying links between sea ice model
parameters and the relative size of individual terms. In this
study we aim to build on the strengths of these previous ap-
proaches by combining evaluation of Arctic climate variables
with simple physical relationships between these variables.

The framework is based upon the induced surface flux
(ISF) bias method of West et al. (2019), which is extended
and enhanced to allow comparison of models to each other
(as opposed to comparing models only to observations of the
real world). The net downward surface flux is treated as the
principal driver of the sea ice growth and melt. We use a sys-
tem of simple models to understand the ways in which dif-
ferences in individual model variables drive differences in
the surface flux and hence in the sea ice growth and melt.
In particular, we use the framework to separate the effects
of model differences in sea ice area and thickness on sea ice
growth and melt (representing the two most important feed-
backs of the sea ice state, the surface albedo feedback and
thickness–growth feedback) from the effects of model dif-
ferences in other Arctic climate variables (representing, in
a sense, external forcing of the Arctic sea ice state). In this
way, we can analyse how model differences in forcing vari-
ables drive differences in ice state, as well as ice growth and
melt, as a coupled system.

The framework is similar to that used by Holland and Lan-
drum (2015) to quantify the contribution of changes in sur-
face albedo and in downwelling SW to changes in net SW
over three periods of the 21st century but differs in two ways.
Firstly, it quantifies the contribution of model processes to
model biases, as well as inter-model differences, rather than
to changes in time within model runs. Secondly, it is effec-
tively a generalisation of this method, as it quantifies the con-
tributions of model differences in a larger number of model
variables.

The study is set out in the following way. In Sect. 2, the
models and reference datasets used for evaluation are de-
scribed. In Sect. 3, the Arctic climate simulations of the mod-
els are compared and evaluated with respect to observations.
In Sect. 4, the ISF framework is introduced and used to sepa-
rate the effects of different surface albedo drivers on ice vol-
ume balance and the effects of the thickness–growth feed-
back during winter from other variables. In Sect. 5, we dis-
cuss how the results enable understanding of the sea ice state

and sea ice growth and melt as a coupled system. In Sect. 6,
conclusions are presented.

2 Models and reference data

2.1 Models

In this paper we evaluate the UK CMIP6 models HadGEM3-
GC3.1 (Williams et al., 2017) and UKESM1.0 (Sellar et al.,
2019), comparing them to the previous generation CMIP5
model HadGEM2-ES (Collins et al., 2011). All are fully
coupled models with interactive sea ice components, and
HadGEM2-ES and UKESM1.0 employ additional compo-
nents to simulate terrestrial and oceanic ecosystems and tro-
pospheric chemistry (see Collins et al., 2011; Sellar et al.,
2019).

Within CMIP6 HadGEM3-GC3.1 was run at multiple res-
olutions: in this study, we evaluate the low-resolution config-
uration, HadGEM3-GC3.1-LL (Kuhlbrodt et al., 2018), for
consistency with UKESM1.0-LL, which was run at low res-
olution only. In the LL configuration, the atmosphere model
is integrated on the N96 grid, with a resolution of 1.25◦ lat-
itude and 1.07◦ longitude. The ocean and sea ice models are
integrated on the ORCA1 grid, an irregular grid with a reso-
lution of approximately 50 km in the Arctic. HadGEM2-ES
was run at only one resolution, with the atmosphere model
also on the N96 grid and the ocean model on the HadGOM
grid, a regular latitude–longitude grid with a resolution of 1◦

in polar regions.
We briefly describe differences in the sea ice components

of the models here (differences in the atmospheric and ocean
components are described in more detail in Williams et al.,
2017). Some features of the sea ice components are shared
between all models. All employ a sub-grid-scale ice thick-
ness distribution (Thorndike et al., 1975), elastic–viscous–
plastic rheology (Hunke and Dukowicz, 1997) and incremen-
tal remapping (Lipscomb and Hunke, 2004). In addition, all
models share a thermodynamic framework in which the sur-
face energy balance over ice is calculated in the atmosphere
model (West et al., 2016).

However, there are some fundamental differences between
the sea ice component of HadGEM2-ES, which uses the na-
tive sea ice model of the HadGOM ocean model, and those
of HadGEM3-GC3.1-LL and UKESM1.0-LL (henceforth re-
ferred to in this study as the CMIP6 models), which use the
Los Alamos sea ice model CICE, version 5.1.2, in the GSI8
configuration (Ridley et al., 2018). Firstly, in HadGEM2-ES
the sea ice has no heat capacity and responds instantly to
surface thermodynamic forcing (zero-layer framework; ap-
pendix to Semtner, 1976), with vertical conduction assumed
to be uniform through the ice. In the CMIP6 models the sea
ice is divided into four equally spaced layers, each with a
heat capacity, with temperatures calculated according to sur-
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face forcing using a forwards-implicit scheme (multi-layer
framework; Bitz and Lipscomb, 1999).

Secondly, the radiative effect of melt ponds is modelled
explicitly in the two newer models, using the topographic
scheme of Flocco et al. (2015). In this scheme, while melt
pond albedo is a fixed parameter, the melt pond fraction of
ice is able to vary according to the total volume of meltwater
and the ice topography. In HadGEM2-ES the radiative effect
of melt ponds is modelled implicitly by reducing albedo lin-
early (from 0.84 to 0.67 for snow; from 0.64 to 0.565 for bare
ice) as surface temperature increases from −1 to 0 ◦C.

Finally, the sea ice model of HadGEM2-ES runs on a reg-
ular latitude–longitude grid, with a polar island, while those
of HadGEM3-GC3.1 and UKESM1.0 run on the extended
ORCA1 grid, an irregular tri-polar grid with poles in Antarc-
tica, Russia and Canada.

2.2 Reference data

The reference datasets used to evaluate HadGEM3-GC3.1
and UKESM1.0 in Sect. 3 are identical to those used in West
et al. (2019) for HadGEM2-ES. A full description of these
datasets is given in the earlier study, but they are summarised
here, together with some probable biases identified.

For ice concentration, we use the NSIDC (National Snow
and Ice Data Center) “Sea Ice Concentrations from Nimbus-7
SMMR and DMSP SSM/I-SSMIS Passive Microwave Data,
Version 1” (Cavalieri et al., 1996), as well as versions 1.2 and
2.2 of the Hadley Centre Ice and Sea Surface Temperature
dataset (HadISST; Rayner et al., 2003, for HadISST1.2 and
Titchner and Rayner, 2014, for HadISST.2.2). All datasets
use satellite passive microwave imagery as their primary data
source (SSMI), but the algorithm used to calculate sea ice
area from microwave retrievals differs between the datasets.
Uncertainty in ice area is known to be particularly high in the
summer, as satellites cannot distinguish between melt ponds
and open water.

For ice thickness, we use the Pan-Arctic Ocean–Ice Mod-
eling and Assimilation System (PIOMAS; Schweiger et al.,
2011), an ice–ocean model forced by NCEP (National Cen-
ters for Environmental Prediction) atmospheric data that as-
similates ice concentration from HadISST and NSIDC. PI-
OMAS has been evaluated with respect to satellite obser-
vations (Laxon et al., 2013; Wang et al., 2016) and found
to compare quite well, though Wang et al. (2016) found PI-
OMAS to underestimate winter ice thickness relative to ICE-
Sat by 0.31 m over the Arctic Ocean from 2003–2008. We
also use Envisat radar altimetry observations from 1993–
1999 (Laxon et al., 2003) and a regression analysis of sub-
marine sonar observations from 1980–1999 (Rothrock et al.,
2008). Because the latter two datasets are available only for
restricted regions, they are used for model evaluation only
and not for the ISF analysis.

For surface radiation, we use three datasets: CERES-
EBAF (Loeb et al., 2009) and ISCCP-FD (Zhang et al., 2004)

satellite observations, obtained by the application of radia-
tive transfer algorithms to reflected SW and upwelling long-
wave (LW) retrievals, and the ERA-Interim (ERAI) reanal-
ysis dataset (Dee et al., 2011). Comparison of downwelling
LW observations from these datasets to in situ observations
by Lindsay (1998) suggested a high bias in ISCCP-FD but no
clear bias in CERES-EBAF or ERAI. By contrast Lindsay et
al. (2014) found ERAI to overestimate downwelling LW in
winter by 15 W m−2 and underestimate downwelling SW in
spring by 20 W m−2 but with no clear biases in other sea-
sons, and Christensen et al. (2016) found CERES-EBAF to
underestimate downwelling LW radiation in winter by 10–
15 W m−2 relative to in situ observations at Point Barrow,
Alaska.

Finally, for surface melt onset we use the NSIDC “Snow
Melt Onset Over Arctic Sea Ice from SMMR and SSM/I-
SSMIS Brightness Temperatures” dataset (Anderson et al.,
2001, updated 2012).

3 Evaluating the UK CMIP6 models

In this section, we evaluate and compare the three models
UKESM1.0-LL, HadGEM3-GC3.1-LL and HadGEM2-ES.
We analyse first the sea ice state (ice area and volume) before
proceeding to examine variables affecting the surface energy
balance.

3.1 Sea ice state

Evaluation is performed for the 1980–1999 period and for
the Arctic Ocean region, defined in Fig. 1b, unless otherwise
stated. The evaluation is performed for the four historically
forced members of HadGEM3-GC3.1-LL and HadGEM2-
ES, as well as the first six historically forced members of
UKESM1.0-LL. For energy fluxes the sign convention used
is that downwards is positive.

Total Northern Hemisphere sea ice extent is higher in
both UKESM1.0-LL and HadGEM3-GC3.1-LL than in
HadGEM2-ES, particularly during the summer (Fig. 1a).
HadGEM2-ES tended to underestimate Arctic sea ice extent
from June–October with respect to HadISST1.2, HadISST.2
and NSIDC, whereas ice extent in HadGEM3-GC3.1-LL and
UKESM1.0-LL mainly lies within the observational spread.
However, HadGEM3-GC3.1-LL and UKESM1.0-LL simu-
late the minimum of the annual cycle in extent to occur in
August, whereas in reality it occurs in September.

Sea ice thickness is greatest in UKESM1.0-LL (Fig. 1b,
annual mean Arctic Ocean region thickness 3.9 m) and
least in HadGEM2-ES (1.7 m) throughout the year with
HadGEM3-GC3.1-LL tending to lie between the two (2.8 m).
UKESM1.0-LL and HadGEM3-GC3.1-LL are biased high
relative to the ice–ocean model PIOMAS (Fig. 1b, annual
mean thickness 1.9 m), whereas HadGEM2-ES is biased low
during the summer. We also evaluate the three models with
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Figure 1. (a) 1980–1999 average sea ice extent for the whole Northern Hemisphere for the evaluated models and reference datasets
(HadISST1.2, HadISST.2 and NSIDC); (b) 1980–1999 average sea ice volume over the Arctic Ocean region shown in the subpanel for
the evaluated models and PIOMAS. For each model, ensemble mean (lines) and twice the standard deviation (shading) is shown.

respect to European Remote Sensing (ERS) satellite mea-
surements from 1993–1999 and to the multiple regression
of submarine data from 1980–1999 (not shown). In both
cases UKESM1.0-LL and HadGEM3-GC3.1-LL are biased
high and HadGEM2-ES is biased low year-round. However
HadGEM3-GC3.1-LL lies somewhat closer to observations,
and HadGEM2-ES somewhat further, than is the case when
PIOMAS is the reference dataset, consistent with PIOMAS
being biased low during winter (Sect. 2.2). For all three mod-
els, internal variability (shown as twice the ensemble stan-
dard deviation) is low compared to the inter-model differ-
ences and the model biases.

The large differences in ice thickness between the mod-
els are associated also with differences in the amplitude
of the seasonal cycle of ice thickness, hereafter referred to
as ice growth and melt. Ice growth and melt are greatest
in HadGEM2-ES (1980–1999 Arctic Ocean mean 1.53 m);
it is lower in HadGEM3-GC3.1 (1.22 m) and lower still
in UKESM1.0-LL (1.03 m). By comparison, PIOMAS an-
nual ice growth and melt are similar to HadGEM3-GC3.1 at
1.15 m. The correspondence between the model annual mean
ice thicknesses and volume balances is broadly consistent
with what would be expected from the ice thickness–growth
feedback (Bitz and Roe, 2004): thicker ice tends to grow less
in winter because it conducts heat from the ocean to the at-
mosphere less efficiently. It is also consistent with the sur-
face albedo feedback (Bitz, 2008): thinner ice warms more
quickly in early spring, creating melt ponds sooner, and sup-
ports the creation of more extensive open water areas, leading
to greater absorption of shortwave (SW) radiation and greater
ice melt.

3.2 A conceptual picture of the proximate causes of ice
melt and growth

To motivate the next stage of the model evaluation and the en-
suing analysis, we use an energy balance approach. The ice
heat uptake arises as the sum of the heat flux from the atmo-
sphere, from the ocean and from outside the Arctic (Fig. 2a)
and is itself composed of latent heat uptake (representing ice
melt and growth) and sensible heat uptake. For the remain-
der of this study, we disregard the ice sensible heat uptake
as small relative to the latent heat uptake. We make a case
that in analysing the causes of model differences in ice melt
and growth, it is sufficient in most parts of the Arctic to anal-
yse the causes of differences in the net grid-box mean sur-
face flux (over ice- and ocean-covered portions of grid cells).
That is, the grid-box mean net surface flux can be treated as
the primary driver, to first order, of the ice melt and growth.

Firstly examining the melting season (Fig. 2b), the melting
of the snow–ice column from the top is directly analogous to
the portion of the surface flux occurring over ice-covered re-
gions. Basal and lateral melting, by contrast, are driven by
ocean-to-ice heat flux: evidence from models (Steele et al.,
2010; Keen and Blockley, 2018) and observations (McPhee
et al., 2003; Perovich et al., 2008) suggests that this derives
almost entirely from direct solar heating rather than from
oceanic heat convergence. Hence in our conceptual picture,
the portion of surface flux over open sea is converted into
both basal and lateral sea ice melt, as well as into sensible
heating of the top ocean layer.

In the freezing season (Fig. 2c), the growth of the snow–
ice column is primarily driven by cooling from the top, anal-
ogous to the portion of the surface flux occurring over ice-
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Figure 2. Schematics showing (a) the principal energy flows between atmosphere, ice and ocean in the Arctic and (b) how surface flux
relates to ice melt and growth in the melting season. Panel (c) as (b) but for the freezing season.

covered regions. The open water part of the surface flux is
associated firstly with cooling of the top ocean layer and sec-
ondly with the formation of new ice.

In summary, over the year as a whole the net surface flux
is analogous to the melting/freezing of the sea ice, together
with warming/cooling of the top ocean layer. Hence the net
surface flux can be treated as the primary driver of the sea ice
melt and growth.

To provide added context, we calculate Arctic Ocean av-
eraged ice export and oceanic heat convergence for the pe-
riod 1980–1999 in the evaluated models. The ice divergence
term is small, with indeterminate annual cycles, at 2.5, 4.0
and 5.1 W m−2 in HadGEM2-ES, HadGEM3-GC3.1-LL and
UKESM1.0-LL respectively. The oceanic heat convergence
term is also small at 4.4, 3.8 and 3.9 W m−2 respectively; in
all models, these values show high sensitivity to the location
of the Arctic Ocean region boundary in the Atlantic sector,
suggesting that most of this heat is released close to the At-
lantic ice edge. Monthly differences in these terms between
models are too small to explain the differences in ice melt
and growth seen: with ice density of 917 kg m−3 and latent
heat of fusion of 3.35× 105 J kg−1, a difference of 1 W m−2

is equivalent to only an additional 8.4 mm of ice melt per
month. This supports the view that the surface flux should be
treated as the primary driver of ice melt and growth and that
causes of differences in ice melt and growth should be sought
first by analysing this term. Hence our next step is to evaluate

and compare surface radiative fluxes, the largest components
of the surface flux.

3.3 Surface radiation

We now evaluate surface radiative fluxes in the three mod-
els (Fig. 3). Throughout this study, the convention used
is that positive numbers denote a downwards flow of en-
ergy, and vice versa. Downwelling SW is very similar in
all three models year-round (Fig. 3a). By contrast upwelling
SW displays large differences from June–August (Fig. 3b),
with HadGEM2-ES lowest in magnitude and UKESM1.0-
LL highest. This is consistent with the ice melt and growth
differences: lower upwelling SW in HadGEM2-ES causes a
higher net SW flux (Fig. 3c) and more overall sea ice melt-
ing. It is also consistent with the ice extent differences: the
lower summer ice extent of HadGEM2-ES causes a lower
surface albedo and hence lower SW reflection. However, in
June the ice area differences are small and insufficient to ex-
plain the upwelling SW differences. Hence another parame-
ter influencing surface albedo is likely to be responsible for
the model differences in this month. We examine possible
drivers shortly.

Downwelling LW fluxes are similar from January–May in
the three models (Fig. 3d), but from June–July and October–
November downwelling LW is much higher in HadGEM2-
ES than in UKESM1.0-LL and HadGEM3-GC3.1-LL, in-
dicating a colder, or clearer, atmosphere in these months
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Figure 3. (a) Downwelling SW, (b) upwelling SW, (c) net downwards SW, (d) downwelling LW, (e) upwelling LW and (f) net downwards
LW from 1980–1999 in HadGEM2-ES, HadGEM3-GC3.1-LL and UKESM1.0-LL, together with observational estimates from ISCCP-FD,
ERAI and CERES, averaged over the Arctic Ocean region. For each model, ensemble mean (lines) and twice the standard deviation (shading)
is shown. For all fluxes, the convention is that positive numbers denote downwards energy flows, and vice versa.

in the newer models. Upwelling LW fluxes are higher in
magnitude in HadGEM2-ES than in UKESM1.0-LL and
HadGEM3-GC3.1-LL from September–February (Fig. 3e),
indicating a colder surface in the newer models. Net LW is
higher in HadGEM2-ES from June–August, and lower from
September–May, than in the newer models (Fig. 3f), indicat-
ing that the upwelling LW differences dominate during the
winter. The net LW differences are also consistent with the
greater ice melting and ice freezing seen in HadGEM2-ES
relative to the CMIP6 models. For both net LW during win-
ter and net SW during summer, model internal variability is
small relative to the difference between HadGEM2-ES and
the CMIP6 models.

To summarise, the weaker summer ice melt of the CMIP6
models relative to HadGEM2-ES is driven by a greater (more
strongly negative) upwelling SW flux from June–August and
hence smaller net downwards SW flux. This is likely caused
by ice area differences in July and August (the surface albedo
feedback), but in June other surface albedo drivers are re-
sponsible. The weaker winter ice growth of the CMIP6 mod-
els relative to HadGEM2-ES is driven by a smaller upwelling

LW flux from October–April. This is likely caused by the ice
thickness–growth feedback: compared to HadGEM2-ES, the
two CMIP6 models have thicker ice, which leads to a colder
surface due to reduced heat conduction through the ice, and
the colder surface results in less longwave radiative loss to
space.

3.4 Variables influencing surface albedo

We now evaluate other model variables that affect surface
albedo. Surface albedo αsfc can be expressed as

αsfc =
∑
i

Aiαi , (1)

where i varies over all surface types present in a grid cell,
Ai is the fractional area of surface type i, and αi is the sur-
face albedo of surface type i. Hence differences in surface
albedo between models must be associated with differences
either in area of surface types or in their albedo. For all evalu-
ated models, the relevant surface types are open water, snow,
bare ice and melt pond. The ice fraction (which contains the
snow, bare ice and melt pond surface types) in all models
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evolves as a prognostic variable, but within the sea ice the
snow and melt pond fractions are subject to different param-
eterisations, discussed in more detail below. In seeking the
cause of the surface albedo differences, we concentrate pri-
marily on differences in snow and melt pond fraction. Fur-
thermore, we concentrate on the month of June as it is in
this month that the models display differences in upwelling
SW radiation that cannot be explained by ice area differences
alone.

Firstly we compare the sea ice area fraction in the three
models (Fig. 4a–c). Ice area is very similar (close to 1) away
from the Arctic Ocean coasts in all three models; only near
the Fram Strait and the Barents Sea does HadGEM2-ES dis-
play significantly lower values. This is consistent with the ice
area differences being insufficient to explain the upwelling
SW differences. For comparison, we show HadISST1.2 sea
ice area observations from 1980–1999 (Fig. 4d), which are
consistent with the three models across much of the Arctic
and, near the Fram Strait and Barents Sea, display values
higher than HadGEM2-ES but lower than the CMIP6 mod-
els.

Secondly, we compare snow cover in the three models. In
June, snow thickness is highest in UKESM1.0-LL and low-
est in HadGEM2-ES (Fig. 4e–g), with Arctic Ocean average
snow thicknesses of 6, 13 and 18 cm respectively. For each
model, ensemble standard deviation snow thickness is mostly
lower than 2 cm, although in UKESM1.0-LL standard devia-
tion approaches 5 cm between Fram Strait and the North Pole
(not shown).

The models differ in how snow area is parameterised from
snow thickness. HadGEM2-ES uses the formula

Asnow = 1− e−0.2hsnowρsnow , (2)

while HadGEM3-GC3.1-LL and UKESM1.0-LL use the for-
mula (from CICE):

Asnow =
hsnow

hsnow− 0.02
, (3)

where Asnow, hsnow and ρsnow refer to snow area, thickness
and density respectively.

The effect of this is that the newer models simulate a
lower fraction of snow for the same snow thickness value,
with the difference greatest at a thickness of 4 cm when
the newer models simulate 26 % less snow area (Fig. S1
in the Supplement). We can see the effect of this when we
compare maps of June snow thickness in the three models
(Fig. 4e–g), with maps of June snow area estimated using
the models’ respective formulations (Fig. 4h–j). Despite the
substantially higher snow thicknesses in HadGEM3-GC3.1-
LL and UKESM1.0-LL, the increase in snow area in the
newer models is muted. The effect of the new parameterisa-
tion is to reduce the surface albedo difference caused by the
thicker snow in UKESM1.0-LL and HadGEM3-GC3.1-LL.
Despite this, the difference in snow area between HadGEM2-
ES and the CMIP6 models (rising to 0.7 near the Bering

Strait) is much larger than the ensemble standard deviations
in snow area, which approach 0.15 near the Bering Strait in
HadGEM2-ES but are otherwise under 0.05 (not shown).

Next, we examine differences in melt pond coverage be-
tween the models. As with the snow comparison, care is
required as the explicit topographic melt pond scheme of
the CMIP6 models is more complex than the simple param-
eterisation of HadGEM2-ES, in which (broadband) albedo
is linearly reduced from 0.80 to 0.65 (snow-covered por-
tion and area calculated as in Eq. 2) or from 0.61 to 0.52
(bare-ice-covered portion) as surface temperature rises from
−2 to 0 ◦C. We first compare the average date of melt on-
set between the three models: the first day, for each grid cell
and year, for which the surface temperature exceeds a fixed
threshold, chosen to be−1 ◦C. In this way we create a metric
to compare surface melting tendencies in each model, inde-
pendent of the melt pond scheme.

The date of melt onset is earliest in HadGEM2-ES, at mid-
to-late May in the central Arctic, and latest in UKESM1.0-
LL, in late June in the central Arctic. By comparison, SSMI
observations suggest melt onset occurred in mid-June, on
average, in the central Arctic for the period 1980–1999.
Hence UKESM1.0-LL models melt onset to occur too late
in the central Arctic, but HadGEM2-ES is much too early
(as identified by West et al., 2019). To demonstrate the ef-
fect of this on June surface albedo, the proportion of June
for which melting conditions are present (tmelt) is plotted
(Fig. 4k–m): for HadGEM2-ES, Amelt is 100 % across most
of the Arctic, but in HadGEM3-GC3.1-LL and UKESM1.0-
LL tmelt approaches 70 % and 50 % respectively across the
central Arctic. The ensemble standard deviation in tmelt is
nowhere higher than 10 % for any model (not shown). For
reference, we also show average proportion of time in which
surface melting was present, derived from the NSIDC satel-
lite dataset described in Sect. 2 (Fig. 4n). This demonstrates
that HadGEM2-ES and HadGEM3-GC3.1-LL tend to model
too much surface melting in June, while UKESM1.0-LL is
much closer to observations.

To assess the effect of melt ponds on surface albedo, the
melt pond fraction where melting is taking place must also
be compared. In this way the proximate effect of the differ-
ent melt pond schemes is captured. HadGEM2-ES effectively
simulates a uniform, constant melt pond fraction of 0.2 in
the presence of surface melting, while UKESM1.0-LL and
HadGEM3-GC3.1-LL simulate a variable melt pond frac-
tion depending on total meltwater and ice topography. Hence
June melt pond fractions are higher in the CMIP6 models
than HadGEM2-ES at lower latitudes but much lower in the
central Arctic (Fig. 4o–q). Ensemble standard deviation in
the CMIP6 models is everywhere less than 4 % (not shown).
Hence the explicit melt pond scheme is contributing to a por-
tion of the surface albedo differences in June, in addition to
the different melt onset dates and snow thickness. For ref-
erence, we also show the MODIS-derived melt pond frac-
tion for 2001–2011 (Fig. 4r; data are unfortunately not avail-
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Figure 4. The 1980–1999 June averages of variables affecting surface albedo in HadGEM2-ES (first column), HadGEM3-GC3.1-LL (second
column) and UKESM1.0-LL (third column), compared where appropriate to observational datasets (fourth column) and showing (a–d) sea
ice area fraction, (e–g) snow thickness, (h–j) parameterised snow area fraction, (k–n) proportion of time in June during which surface
melting conditions were present and (o–r) melt pond area fraction during times in which surface melting conditions were present. Note that
in panel (r) MODIS melt pond fraction is for the period 2000–2011.

able for the reference period 1980–1999). This demonstrates
that the uniform melt pond fraction effectively assumed by
HadGEM2-ES is likely to be too low near the Arctic Ocean
coasts and too high in the interior. While the modelled melt
pond fraction in the CMIP6 models is generally lower than
MODIS, this is almost certainly partly due to MODIS being
from a later period, in which surface melting of Arctic sea
ice began earlier in the year (e.g. Markus et al., 2009).

In summary, differences in both snow and melt pond cover
during June are consistent with surface albedo differences
between the three models. We now quantify the approxi-
mate surface albedo difference between UKESM1.0-LL and
HadGEM2-ES that we expect due to the model differences
in ice area, snow thickness, snow area parameterisation, sur-
face melting tendency and melt pond parameterisation. For
the ice area, snow thickness and surface melting tendency we
do this by multiplying the model difference in each variable
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Figure 5. Components of June surface albedo difference for UKESM1.0-LL relative to HadGEM2-ES (1980–1999, averaged over all ensem-
ble members). Shown are estimated surface albedo difference due to (a) ice area difference, (b) snow thickness difference, (c) the different
snow area parameterisations used by the two models, (d) difference in surface melting tendency or the proportion of time during which
surface melting conditions were present, and (e) the different melt pond parameterisations used by the two models. Panel (f) shows the total
surface albedo difference produced by all components, and (g) shows the actual surface albedo difference between the two models, diagnosed
from downwelling and upwelling SW radiation, for comparison.

in question by the change in model mean surface albedo that
would be associated with that variable. For the parameteri-
sation variables we do this by calculating surface albedo in
the model mean state according to both model parameterisa-
tions and taking the difference. This gives five surface albedo
difference “components” whose sum is very similar in mag-
nitude and spatial pattern to the actual June surface albedo
difference (Fig. 5). Surface albedo is everywhere higher in
UKESM1.0-LL than in HadGEM2-ES (except on the Beau-
fort Sea and Kara Sea coasts), but the component analysis
demonstrates that this is due to different causes in differ-
ent parts of the Arctic. On the ice margins, and particularly
in the Atlantic sector, the ice area difference dominates; in
the coastal Arctic Ocean seas, the snow thickness difference
dominates; and in the central Arctic, surface melting ten-
dency and melt pond parameterisation dominate. The effects
combine to make surface albedo much higher everywhere in
UKESM1.0-LL than in HadGEM2-ES despite the snow area
parameterisation difference creating an opposing effect.

The component analysis is a powerful way to examine
proximate causes of differences in surface albedo and hence
in surface flux. However, a shortcoming is that not all surface
albedo differences shown here are equal. An albedo differ-
ence of 0.15 will have a greater effect on surface flux, and
hence on ice melt and growth, if it occurs in a region of
greater downwelling SW radiation. In other words, the sur-
face albedo differences do not operate linearly on the ice melt
and growth and cannot be averaged over space and time to

estimate meaningful surface flux or ice melt and growth dif-
ferences. This observation motivates the ensuing analysis.

4 Attributing differences in modelled ice melt and
growth using an induced surface flux (ISF) difference
framework

The model evaluation presented in Sect. 3 prompts two ques-
tions. Firstly, by how much do the model differences in snow
and melt pond variables affect the ice melt differences over
the melting season? Secondly, does the thickness–growth
feedback fully account for the differences in ice growth,
given the opposing effect of the downwelling LW differences
during the early winter? To address these questions we use a
method similar to the “induced surface flux” (ISF) frame-
work described by West et al. (2019). This framework at-
tempts to separate and quantify the drivers of differences in
surface flux and hence in seasonal ice growth and melt, of
which the surface flux is treated as the principal driver. In a
similar way to the surface albedo analysis above, it aims to
split model differences in surface flux into components at-
tributable to specific model differences. Crucially, when sur-
face flux rather than surface albedo is treated as the depen-
dent variable, components can be averaged in time and space
to obtain meaningful aggregate statistics, comparable to ice
melt and growth differences.

The ISF analysis works by approximating, at any point
(x, t) of model space and time, the total net surface flux
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as a function g (vi,x, t) of variables vi which are “quasi-
independent”. We loosely define quasi-independence to
mean that the variables affect surface flux on a much shorter
timescale than that in which the affect each other. (For exam-
ple, two such variables could be downwelling SW radiation
and ice concentration, as in Holland and Landrum, 2015.) In
this way the rate at which surface flux depends upon a model
variable vi at point (x, t) can be estimated as ∂g/∂vi . Given
two model estimates of vi at point (x, t), vMODEL1

i (x, t) and
vMODEL2
i (x, t), we can characterise the induced surface flux

difference between the models due to variable vi at (x, t) as

(
vMODEL1
i,x,t − vMODEL2

i,x,t

)( ∂g
∂vi

MODEL1
+
∂g

∂vi

MODEL2
)
/2 . (4)

The ISF differences obtained can be averaged over large re-
gions of time and space to determine the large-scale effects
of specific model biases on surface flux. In particular, the
quasi-independence requirement helps refine causality. Due
to the requirement for the variables to affect surface flux on
shorter timescales than they affect each other, the ISF dif-
ferences for each variable should represent largely separate
effects, and the sum of the individual ISF differences should
approach the true surface flux difference, which is thereby
divided into components, each representing the effect of a
model variable. In turn, this allows the drivers of differences
in ice melt–growth to be separated and quantified.

We briefly describe how the effects of different model
variables on surface flux are quantified in this way (West
et al., 2019, gives a more complete description). Firstly, the
division of the upwelling SW difference into components
is demonstrated. Net downwelling SW radiation can be ex-
pressed as

FSW−net = FSW−down−FSW−up

= FSW−down (1−αsfc) , (5)

where αsfc is surface albedo, FSW−down is downwelling SW
radiation, and FSW−up is upwelling SW radiation. αsfc can be
further expressed as

αsfc = Aoceanαocean+Abare_iceαbare_ice+Asnowαsnow

+Ameltpondαmeltpond , (6)

where Ai is the fractional area of surface type i, and αi is
the surface albedo of surface type i. As

∑
i

Ai = 1, the Ai

are not quasi-independent variables (a change in one entails
a change in one or more of the others); hence we substitute
Abare−ice = Aice−Asnow−Apond andAocean = 1−Aice, where
Aice is the total area covered by sea ice in the grid cell. This
then expresses αsfc in terms of Aice, Asnow and Ameltpond, al-
lowing the impact of ice, snow and melt pond differences on
surface flux to be examined separately.

We refine the calculation further in two ways. Firstly, to
separate the melting tendency Tmelt (as defined in Sect. 3.3)

from the effects of the different melt pond parameterisations,
we define Ameltpond−given−melting = Ameltpond/Tmelt and sub-
stitute Ameltpond = TmeltAmeltpond−given−melting into Eq. (6).
Because Tmelt represents the response of the surface tempera-
ture to atmospheric forcing andAmeltpond−given−melting the re-
sponse of the melt pond scheme to melting conditions, these
variables also represent quasi-independent, separate effects
on the surface flux. Specifically, in HadGEM2-ES the melt
pond parameterisation effectively assumes a uniform, con-
stantAmeltpond−given−melting of 0.23 (when snow is present) or
0.18 (when snow is not present), while in the CMIP6 models
this quantity can vary.

Secondly, to separate the effect of model differences
in snow thickness (the actual prognostic snow variable)
from that of the different parameterisations of snow area,
we write Asnow = fMODEL−i (hsnow), where fMODEL−i are
Eq. (2) for HadGEM2-ES and Eq. (3) for UKESM1.0-LL
and HadGEM3-GC3.1-LL.

In summary,

FSW−net = FSW−down (1−αocean (1−Aice)

−αsnowfMODEL−i (hsnow)

−αmeltpondTmeltAmeltpond−given−melting

−αbare−ice (Aice− fMODEL−i (hsnow)

−TmeltAmeltpond−given−melting
))
. (7)

In this way, the surface flux is expressed as a function of
downwelling SW, ice area, snow thickness, snow parame-
terisation melting “tendency” and melt pond fraction. These
variables have the required property of affecting surface flux
on a shorter timescale than that on which they affect each
other. Indeed, their effect on surface flux via the net SW flux
(mainly via surface albedo) is near-instantaneous.

We now describe how albedo parameters are prescribed.
Open sea albedo is parameterised in HadGEM2-ES accord-
ing to Barker and Li (1995) and in the CMIP6 models ac-
cording to Jin et al. (2011); instead of attempting to repli-
cate this in our simple model, we calculate the distribution
of open sea albedo values from model SW radiation diagnos-
tics and prescribe ocean albedo in our simple model to be
0.07, close to the modal value seen. For the CMIP6 models,
melt pond, bare ice and snow albedos are prescribed as sep-
arate infrared and visible values, respectively 0.07 and 0.27
for melt ponds, 0.36 and 0.78 for bare ice, and 0.78 and 0.98
for snow; in our simple model, we combine these values us-
ing an infrared fraction of 0.4. In HadGEM2-ES, bare ice and
snow albedos are 0.61 and 0.80 respectively.

For any model, month and grid cell, in addition to approx-
imating the net SW flux, we can then characterise the depen-
dence of the net SW flux on any model variable or parameter
by taking the derivative of Eq. (7) with respect to that param-
eter. For example, net SW varies with ice concentration by
FSW−down (αocean−αbare−ice). As a second example, the de-
pendence of net SW on Tmelt, the tendency of a grid point to
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be undergoing surface melting, is

∂FSW−net

∂Tmelt
= FSW−downAmeltpond−given−melting

·
(
αmeltpond−αbare−ice

)
. (8)

The contribution of the snow parameterisation scheme is cal-
culated differently to that of the other components by evalu-
ating surface flux at the model mean state using each snow
area function in turn and taking the difference.

In general, therefore, given a model difference in a vari-
able at any point in model space and time, we multiply that
difference by the model mean dependence of net SW on that
variable to obtain an estimate of the surface flux difference
induced by the difference in that variable. In this way, the
model differences in upwelling SW can be decomposed into
contributions from different model parameters, and the con-
tributions can be averaged in time and space to determine the
large-scale effects of differences in each variable.

We demonstrate this by showing how components of in-
duced surface flux difference evolve through the summer
when comparing the models in turn. As daily data are avail-
able for only the first ensemble member of HadGEM2-ES,
the evolution is demonstrated using only first historical en-
semble members when comparing to this model. As the en-
semble spread in the driving model variables is small relative
to the model differences (demonstrated in Sect. 3.3), this is
likely to give a similar result to using the ensemble means.

When comparing UKESM1.0-LL with HadGEM2-ES
(Fig. 6a), the total ISF difference is negative throughout the
summer, consistent with the weaker ice melt and reduced
net SW radiation in UKESM1.0-LL. In April, the total ISF
difference is weakly negative, but it falls steeply through
May to reach values of over −30 W m−2 in mid-June, ris-
ing very slowly thereafter. Consistent with the evaluation
in Sect. 3, ice area difference does not become the domi-
nant contribution to the total ISF difference until early July,
with significant contributions occurring both from surface
melt onset occurrence (peaking at the beginning of June,
at −15 W m−2) and from snow area (peaking in mid-to-late
June, at −18 W m−2). The melt pond scheme contributes
only a small negative ISF difference because large negative
differences in the central Arctic are mostly outweighed by
large positive differences near the coasts. The difference in
snow parameterisation, as expected, contributes a positive
ISF difference, rising to a maximum of 8 W m−2 in early
June. The downwelling SW term contributes a negative dif-
ference in May, becoming a positive difference in June, but
this is counteracted by the downwelling LW term which is
shown for comparison. These terms likely represent the re-
sponse of modelled cloud cover to the weaker ice melt of
UKESM1.0-LL and collectively contribute little surface flux
difference.

Examining the ISF terms over the melt season as a whole
(Fig. 6b) we see that the ice area term contributes about two-

thirds of the total ISF difference (18.6 of 27.2 W m−2), with
the snow area and melt onset terms contributing −3.2 and
−2.4 W m−2 respectively. The value of using daily data is
demonstrated: the snow area and melt onset terms appear
very small over the season as a whole, but the daily data
show that they play a vital role in the early part of the season
and help generate the ice area differences that contribute the
major part of the surface flux differences. The downwelling
radiative differences collectively contribute−4.9 W m−2, but
the effect is much more uniform over the melting season than
that of the snow area and melt onset terms.

Spatial maps of the ISF components show a very simi-
lar picture to the surface albedo “decomposition” in Fig. 5.
In June, for example, the total ISF difference is everywhere
strongly negative (indicating less melt in UKESM1.0-LL),
by 20–40 W m−2, but this arises as the sum of terms which
dominate in different regions: the ice area term at the coasts,
the snow thickness term further into the Arctic Ocean and the
melt pond terms in the central Arctic. The region in which the
snow thickness ISF component dominates, however, extends
further into the central Arctic than in the surface albedo com-
parison. This may be a result of using higher-resolution daily
data for the ISF calculation. The downwelling SW and down-
welling LW components display nearly equal and opposite
patterns in all months, except July when there is a substantial
SW+LW radiative difference of −10 W m−2 in a large re-
gion of the central Arctic that is also likely implicated in the
weaker sea ice melt of UKESM1.0-LL.

When HadGEM3-GC3.1-LL is compared to HadGEM2-
ES (not shown) the picture is qualitatively similar, but the ISF
terms are smaller in magnitude, consistent with the rate of ice
melt being more similar in these two models. The total ISF
difference is smaller still when UKESM1.0-LL is compared
to HadGEM3-GC3.1-LL (Fig. 6c), but in this case the snow
thickness component is comparable in magnitude to the ice
area component (Fig. 6d). This occurs because despite the
snow thickness component being of similar size in the two
comparisons, the ice area component is much larger when
UKESM1.0-LL is compared to HadGEM2-ES than when
compared to HadGEM3-GC3.1-LL. This likely reflects the
non-linear relationship between ice thickness and ice area:
more ice area is lost during a melting season at lower ice
thicknesses. Hence the ice area term naturally plays a propor-
tionally larger role in differences with respect to HadGEM2-
ES (with the thinnest ice) than with respect to HadGEM3-
GC3.1.

Secondly, we describe how the thickness–growth feedback
can be separated from the atmospheric radiative components.
This is done using a single-column model after Thorndike
(1992), discussed more extensively in West et al. (2019). As
in the models, each grid cell is divided into five sea ice cat-
egories, plus a “zero” category for open water. For each cat-
egory, we assume a uniform conductive flux through the ice
(no sensible heat storage) and flux continuity at the surface.
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Figure 6. Illustration of drivers of summer melting differences, using the ISF framework. Shown are ISF differences between (a,
b) UKESM1.0-LL and HadGEM2-ES and (c, d) UKESM1.0-LL and HadGEM3-GC3.1-LL, apportioned by downwelling SW, ice area,
snow thickness, surface melt onset, direct impact of snow fraction parameterisation and direct impact of the UKESM1.0 melt pond scheme.
Showing April–September daily evolution (left column) and melt season mean (right column, 16 May–15 September). For the first compari-
son, only the first ensemble member is shown, as daily data are not available for other members of HadGEM2-ES; for the second comparison,
all four ensemble members of both models are used, with ensemble mean and standard deviation indicated.

Hence

Fcond (x, t,cat)=
Tsfc (x, t,cat)− Tbase

Rice (x, t,cat)
, (9)

where “cat” represents the category number (ranging from 0
to 5), Fcond is conductive flux through the ice, Tbase is ice base
temperature, and Tsfc is ice surface temperature. Rice denotes
the thermal insulance of the ice–snow column, defined as

Rice =
hice (x, t,cat)

kice
+
hsnow (x, t,cat)

ksnow
, (10)

where hice and hsnow are the categories ice and snow thick-
ness respectively, and kice and ksnow are fresh ice and
snow conductivity. The latter are parameterised as 2.03 and
0.30 W m−1 K−1 respectively, similar to the values used in
HadGEM2-ES, HadGEM3-GC3.1-LL and UKESM1.0-LL.

By flux continuity, Fcond = Fsfc, where Fsfc is the down-
wards surface energy flux. We linearise the dependence
of Fsfc on surface temperature Tsfc as Fsfc (x, t,cat)=
Fatmos−ice (x, t)+BupTsfc (x, t,cat). For optimal estimation,
the linearisation is at each grid cell centred at Tsfc−0 (x, t),
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the monthly mean surface temperature at that grid cell aver-
aged between the two models being compared.

Eliminating Tsurface and rearranging give an equation for
Fsfc−cat, the surface flux over a single ice category:

Fsfc−cat =
Fatmos−ice+BupTbase

1+BupRice
. (11)

Summing over categories gives

Fsfc−ice = Fatmos−ice

5∑
cat=1

aice

1+BupRice
, (12)

where Fsfc−ice represents the total surface flux over the ice-
covered portion of the grid cell. In this equation Fatmos−ice
represents the part of the atmosphere–ice energy flux that is
independent of the surface temperature or the components
that do not vary on short timescales when surface tempera-
ture is varied.

After West et al. (2019) we identify Fatmos−ice with the
sum of the net SW flux, the downwelling LW flux and the
turbulent fluxes over the ice-covered portion of the grid cell.
The net SW flux is estimated as in Eq. (5), while the down-
welling LW flux (invariant over the grid cell) and the turbu-
lent fluxes over ice are obtained from model diagnostics.

We justify treating the turbulent fluxes as independent of
the surface temperature because surface temperature adjust-
ments tend to occur in association with similar near-surface
air temperature adjustments and therefore cause little turbu-
lent flux variation on short timescales. We justify treating
downwelling LW as independent of the surface temperature
because the processes by which surface temperature changes
influence downwelling LW are too complex to include in
our model, involve likely discrete changes in boundary layer
cloud properties (e.g. Morrison et al., 2012), and occur over
timescales at least as long as those over which air masses are
replaced and are therefore less likely to be relevant.

To obtain the total surface flux we add the surface flux over
the open water portion of the grid cell to obtain

Fsfc =
(

1−
∑5

cat=1
aice

)
Fatmos−ocean

+Fatmos−ice

5∑
cat=1

aice

1+BupRice
. (13)

Here Fatmos−ocean represents the total surface flux over the
non-ice-covered portion of the grid cell and is calculated sim-
ilarly to Fsfc−ice but using the open water values of net SW
and turbulent fluxes.

In this way, we approximate surface flux as a function of
downwelling SW, downwelling LW, sensible and latent heat
fluxes, and the categories ice area, ice thickness and snow
thickness. In HadGEM2-ES each of these affects surface flux
instantaneously in a manner analogous to our simple model.
Although in the CMIP6 models the ice heat capacity com-
plicates the surface heat flux response, it is still the case that

for each variable the effect on the surface heat flux must be
realised before the effect on another variable. For example,
over longer timescales changes in ice thickness would affect
downwelling LW by changing the local modelled weather,
but a change in the surface flux is a prerequisite for this to
take place. Hence the ice heat capacity should not prevent
the separation of causes of the surface flux differences.

Using Eq. (13) we can separate the ice thickness–growth
feedback from the different atmospheric forcing parameters
at any point in model space and time. For a given model,
at a point (x, t), the dependence of net surface flux on
any component of Fatmos−ice under freezing conditions is

5∑
cat=1

aice
1+BupRice

, the “ice thickness scale factor”, which tends

to
∑5

cat=1aice in the limit of thin ice and 0 in the limit of
thick ice. In this way, given a model difference in down-
welling LW of −50 W m−2 (for example), we multiply this
by the model mean ice thickness scale factor to estimate the
difference in net surface flux induced. Under thicker ice con-
ditions, a given difference in atmospheric forcing will tend
to induce a smaller difference in net surface flux and hence a
smaller difference in ice growth.

Given full information about the modelled ice thickness
distribution, we can also use Eq. (13) to diagnose the ef-
fect of the thickness–growth feedback itself. At each model
point (x, t) this effect is represented by the sum over all
categories of the effects of differences in category ice area
and thickness. For each category, the rate of dependence
of surface flux on category ice area is 1/

(
1+BupRice

)
,

while the rate of dependence on category ice thickness is
−Bupai−cat/

(
ki
(
1+BupRice

))2.
Hence we can calculate surface flux difference induced by

differences in atmospheric forcing (Fatmos), snow thickness
and in the ice thickness distribution at each point in model
space and time, and we can average these over the Arctic
Ocean region and the period 1980–1999 to understand the ef-
fect of the evolving differences over the ice freezing season
(Fig. 7). For all three pairs of models, the effect of the ice
thickness distribution (represented by the sum of the individ-
ual category terms) greatly outweighs the effects of differen-
tial atmospheric forcing and of differences in snow cover. For
example, when comparing UKESM1.0-LL to HadGEM2-ES
(Fig. 7a) the total ice-thickness-induced surface flux differ-
ence achieves a maximum of 15 W m−2 in November, rep-
resenting a weaker upward surface flux and hence reduced
ice growth, in UKESM1.0-LL. Fatmos contributes significant
differences only at the beginning of the freezing season, be-
ing −9.4 W m−2 in September but near-zero from December
onwards, while snow differences contribute a maximum of
−0.3 W m−2 surface flux difference in January.

When we examine spatial patterns of the different com-
ponents (not shown), the ice thickness component is seen
to be strongest in the Atlantic sector and the Siberian seas,
being above 20 W m−2 in the early freezing season, show-
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Figure 7. Illustration of drivers of winter freezing differences, using the ISF framework. Shown are ISF freezing season differences due to
atmospheric forcing, snow thickness and ice thickness for (a, b) UKESM1.0-LL relative to HadGEM2-ES and (c, d) UKESM1.0-LL relative
to HadGEM3-GC3.1-LL, showing September–May monthly evolution (left column) and freezing season mean (right column, October–
April). For (a) and (c), the bars denote ensemble mean and standard deviation.

ing that the ice thickness differences attenuate ice growth in
UKESM1.0-LL most in these regions. This is because ice
in both models tends to be thinner here, rendering surface
flux more sensitive to ice thickness. Nevertheless, the ice
thickness component is also of substantial size in the cen-
tral Arctic throughout the freezing season, reducing from
∼ 15 W m−2 in October to ∼ 5 W m−2 in April. The atmo-
spheric surface flux term Fatmos is large and negative (below
−20 W m−2) in the seas bordering the Atlantic Ocean and
Siberia in October and November but is otherwise small.

Ice thickness distribution-induced differences dominate
also when HadGEM3-GC3.1-LL is compared to HadGEM2-
ES (not shown) and also when UKESM1.0-LL is compared

to HadGEM3-GC3.1-LL (Fig. 7c), but in this last case con-
tributions across all thickness categories are similar rather
than being dominated by very thin ice as was found in the
previous comparison. Unlike for the summer analysis, the
required data exist for all model ensemble members, and en-
semble standard deviation is seen to be small compared to
the ensemble mean ISF differences. Hence the model differ-
ences in ice thickness distribution contribute to a systematic
difference in seasonal ice growth and melt between models.

These two approaches can be combined to provide a com-
plete breakdown of the drivers of surface flux differences be-
tween pairs of models (Fig. 8). We illustrate this with the
UKESM1.0-LL and HadGEM2-ES comparison, performed
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Figure 8. ISF differences compared between pairs of models over the year as a whole for UKESM1.0-LL relative to HadGEM2-ES. Averages
are taken over the 1980–1999 period and the Arctic Ocean region. The grey lines show, for comparison, the total net radiation difference
and the ice growth and melt difference. All values are plotted in watts per square metre (W m−2; left axis), while the right axis shows
the equivalent monthly ice growth and melt difference in centimetres, assuming an ice density of 917 kg m−3 and latent heat of fusion
3.35× 105 J kg−1.

using monthly means year-round as daily data are not avail-
able for the ice thickness distribution. Together with the ISF
components, we plot the Arctic Ocean average ice export
difference, and add this to the total ISF difference. The to-
tal ISF difference is negative from May–September and pos-
itive from October–April. This indicates that model differ-
ences tend to drive a lower net downward surface flux in the
summer in UKESM1.0-LL (less ice melt) and a higher net
downward surface flux in the winter (less ice growth).

In summer, the ice area differences account for most of
the negative ISF difference except in June. In this month, the
ice area difference contributes only −13.2 W m−2 of the to-
tal −29.2 W m−2. The remaining negative ISF difference is
accounted for by the snow area albedo effect (−7.8 W m−2),
surface melt onset (−4.5 W m−2) and melt pond parameteri-
sation (−2.6 W m−2), with an opposing effect from the snow
area parameterisation (4.4 W m−2). In addition, there are op-
posing contributions from the downwelling SW (6.8 W m−2)
and downwelling LW (−9.8 W m−2) terms which largely
cancel out.

In winter, the ice thickness distribution contributes almost
the entire positive ISF difference, except in October and
November, when there is a substantial negative term from the

downwelling LW (−5.0 W m−2, comparing to 12.4 W m−2

from the ice thickness distribution over these 2 months). In
both summer and winter, the ice export contributes a small
positive flux equivalent to net loss of ice (2–3 W m−2), indi-
cating more export from the Arctic Ocean in UKESM1.0-
LL relative to HadGEM2-ES, consistent with the ice in
UKESM1.0-LL being thicker.

Viewing the year as a whole, the ice growth and melt dif-
ferences are almost all driven by differences in the ice state
(area and volume) itself, with other drivers being important
mainly during the early summer. The implications of this are
discussed in Sect. 5 below. The other model comparisons
are qualitatively similar (not shown): only when comparing
UKESM1.0-LL to HadGEM3-GC3.1-LL in the melting sea-
son does a variable other than ice area or volume dominate
the total ISF (snow thickness albedo effect). The ice area
ISF difference in the melting season can be identified with
the surface albedo feedback; the ice thickness ISF difference
in the freezing season can be identified with the thickness–
growth feedback.

Finally we note that the total ISF difference is qualita-
tively consistent with the difference in net radiation between
the models and also with the difference in ice growth and
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melt, shown in Fig. 8 for comparison. This gives confi-
dence that the ISF framework is producing meaningful re-
sults. For example, from October–April the surface flux dif-
ferences imply 58 cm less ice growth in UKESM1.0-LL than
in HadGEM2-ES; from May–September, they imply 75 cm
less ice melt. This compares to a total growth and melt differ-
ence of 50 cm. The difference in summer melt is likely over-
estimated in the ISF framework because some of the ISF dif-
ferences occur over regions of already-melted ice, where they
would affect the heating of the surface ocean layer rather than
the ice volume balance. This is consistent with the biggest
difference between the total ISF and the ice growth and melt
being in August and the net radiation difference being closer
to the total ISF than to the ice growth and melt in July and
August.

5 Discussion

In this section, we discuss the extent to which the ISF
framework is able to explain the differences between the
sea ice states of UKESM1.0-LL, HadGEM3-GC3.1-LL and
HadGEM2-ES. In accordance with the conceptual picture
laid out in Sect. 3.2, we continue to assume that the surface
flux is the primary driver of the sea ice melt and growth and
that mechanisms causing differences in surface flux cause
proportionate differences in ice melt and growth.

The ISF framework shows that for the assessed models, the
differences in seasonal ice growth and melt between models
are driven almost entirely by differences in ice area and thick-
ness. In a proximate sense, however, the ice area and thick-
ness – collectively representing the ice volume – are driven
by the seasonal ice growth and melt in turn. Because of this
it is helpful to consider the ice volume and the seasonal ice
growth and melt as a simple coupled system, with points of
equilibrium where seasonal ice growth and melt are equal.
Given an initial equilibrium, changes to an external variable
such as downwelling radiation or snow cover lead to an ini-
tial change in annual growth and/or melt. This in turn induces
a change in the ice volume (i.e. in the ice area or thickness),
inducing a further change in the growth or melt via the ef-
fect of the surface albedo feedback and/or thickness–growth
feedback on the surface flux. The chain of causality contin-
ues until ice growth and melt are once again in balance, and
a new equilibrium is reached.

Therefore the ISF differences not due to ice area and thick-
ness show the proximate causes of the differences in the
whole ice volume and seasonal ice growth and melt cou-
pled system. For example, comparing UKESM1.0-LL and
HadGEM2-ES, when the ice thickness and area contributions
are excluded, the largest remaining ISF differences are from
the variables affecting surface albedo in early summer: sur-
face melt onset, melt pond parameterisation, snow thickness
and snow parameterisation (contributions from downwelling
SW and LW radiation largely cancel each other out). Collec-

Figure 9. An illustration of idealised ice thickness and ice growth
(blue line) and ice thickness and ice melt (red line) relationships in
the evaluated models and in observations, as produced by the ISF
parameterisation. The graph demonstrates how the ice growth and
ice melt curves determine equilibrium ice thickness in each model
climate.

tively, they account for far less ISF difference than the ice
area term. Yet they likely account for a major part of the dif-
ference between the ice volume and seasonal ice growth and
melt systems of UKESM1.0-LL and HadGEM2-ES because
the ice area and ice volume differences can be traced to the
initial reduced ice melting they trigger.

More generally, the “external” variables – such as down-
welling radiation, snow cover and surface melt – set the pa-
rameters of the ice volume – seasonal ice melt and growth
coupled system. In effect, they determine the climate in
which the sea ice will find an equilibrium volume, with ice
melt and growth equal. This can be visualised by calculat-
ing ice melt and ice growth curves, as a function of annual
mean ice thickness, with the simple model used in Sect. 4
(Fig. 9), forced with the Arctic Ocean average surface radia-
tive fluxes from each model. For each model and for the real
world, the external variables determine the relationship be-
tween ice thickness and ice growth and melt: an equilibrium
ice thickness lies where the two curves meet.

This conceptual picture accurately reproduces the qualita-
tive differences between each model, as well as the model bi-
ases. All three models share similar ice growth curves, biased
high relative to the real world: this reflects the similar low
downwelling LW biases. The differences between models are
caused by the ice melt curves. For example, the equilibrium
ice thickness of HadGEM2-ES is much lower than that of
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UKESM1.0-LL because this is the only way to achieve the
greater ice growth required to balance the ice melt differ-
ences.

The impact of external drivers on the sea ice varies greatly
by time of year because of this interplay between ice thick-
ness and ice growth and melt. On the one hand, the effect of
surface flux biases during the freezing season is diminished
by the thickness–growth feedback, particularly early in the
season. Differences created are reduced as the freezing sea-
son proceeds because thin ice grows more quickly than thick
ice. On the other hand, the effect of surface flux biases during
the melting season is enhanced by the surface albedo feed-
back, particularly early in the season. Differences created
increase as the season progresses, as thinner, warmer, less
extensive ice has a lower albedo than thicker, colder, more
extensive ice. Hence small differences in forcing can have
a large effect in the late spring and early summer, whereas
small differences during the freezing season will tend to only
have a small impact. This is consistent with the prediction of
DeWeaver et al. (2008) that this sea ice state is more sensitive
to surface forcing during the ice melt season than during the
ice freezing season.

A particularly useful aspect of the ISF analysis is that the
direct effect of model parameterisation changes can be quan-
tified, namely the change to an explicit melt pond scheme
and the change of snow area parameterisation. In each case,
the impact on the surface flux, although small compared to
the melt onset and snow thickness terms (let alone the ice
area term), is not negligible, and because the impact is felt in
the early summer, it likely has a significant impact on the sea
ice state. This offers a useful perspective on the importance
of sea ice model improvements versus model forcing. The ef-
fect of such model improvements may be small but could still
have significant effects, particularly if the effects are concen-
trated in the crucial late-spring to early-summer time of the
year.

6 Conclusions

The models HadGEM2-ES, HadGEM3-GC3.1-LL and
UKESM1.0-LL have been compared using a systematic
framework (the ISF, or induced surface flux framework) to
quantify the impact of differences in individual model vari-
ables on differences in modelled sea ice melt and growth.
Of the three models, UKESM1.0-LL displays the highest an-
nual mean ice thickness and September ice area and the least
annual ice growth and melt, while HadGEM2-ES displays
the lowest annual mean ice thickness and the most annual ice
growth and melt. These are consistent with differences in sur-
face fluxes, with UKESM1.0-LL (HadGEM2-ES) displaying
the lowest (highest) net SW flux during the summer and the
highest or least negative (lowest or most negative) net LW
flux during the winter. The ISF framework shows that the ma-
jor part of the difference in surface flux between each pair of

models is caused by differences in the ice state itself, via the
surface albedo feedback in the summer and the thickness–
growth feedback in the winter. In this way, it demonstrates
how closely coupled the seasonal ice growth and melt are to
the ice volume.

The remainder of the surface flux differences can mostly
be attributed to variables influencing surface albedo in June.
The snow thickness and melt onset terms, in particular, drive
a higher surface albedo, and hence a lower surface flux,
in both CMIP6 models relative to HadGEM2-ES and in
UKESM1.0-LL relative to HadGEM3-GC3.1-LL. These rep-
resent the proximate causes of model differences in the ice
volume and seasonal ice melt and growth coupled system.
Small differences in surface flux at this time of year are mag-
nified by the surface albedo feedback into much larger dif-
ferences in ice melt later in the season, as represented by the
ice area ISF term.

The ISF framework focuses attention on model processes
most likely to be implicated in driving inter-model spread,
helping inform future model development. For the models
examined in this study, for example, small differences in the
surface energy budget in the early summer appear to lead
to very large differences in the sea ice state. Differences in
snow area and melt onset in particular are implicated. This
underlines that these are likely to be particularly important
variables to model correctly in order to reduce sea ice state
errors.

The framework also allows the proximate effect of some
specific model improvements on seasonal ice growth and
melt to be measured directly. The effect of the explicit melt
pond scheme and new snow parameterisation of the CMIP6
models on the sea ice volume balance, relative to other model
drivers, is shown to be small but non-negligible precisely be-
cause their greatest effect on the surface flux occurs in the
early summer, when small differences in ice melt can lead to
much greater differences later in the season.
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