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Abstract. Seasonal snowpack deeply influences the distri-
bution of meltwater among watercourses and groundwater.
During rain-on-snow (ROS) events, the structure and prop-
erties of the different snow and ice layers dictate the quan-
tity and timing of water flowing out of the snowpack, in-
creasing the risk of flooding and ice jams. With ongoing
climate change, a better understanding of the processes and
internal properties influencing snowpack outflows is needed
to predict the hydrological consequences of winter melting
episodes and increases in the frequency of ROS events. This
study develops a multi-method approach to monitor the key
snowpack properties in a non-mountainous environment in a
repeated and non-destructive way. Snowpack evolution dur-
ing the winter of 2020–2021 was evaluated using a drone-
based, ground-penetrating radar (GPR) coupled with pho-
togrammetry surveys conducted at the Ste-Marthe experi-
mental watershed in Quebec, Canada. Drone-based surveys
were performed over a 200 m2 area with a flat and a sloped
section. In addition, time domain reflectometry (TDR) mea-
surements were used to follow water flow through the snow-
pack and identify drivers of the changes in snowpack condi-
tions, as observed in the drone-based surveys.

The experimental watershed is equipped with state-of-the-
art automatic weather stations that, together with weekly
snow pit measurements over the ablation period, served as a
reference for the multi-method monitoring approach. Drone
surveys conducted on a weekly basis were used to generate
georeferenced snow depth, density, snow water equivalent
and bulk liquid water content maps.

Despite some limitations, the results show that the com-
bination of drone-based GPR, photogrammetric surveys and
TDR is very promising for assessing the spatiotemporal evo-
lution of the key hydrological characteristics of the snow-
pack. For instance, the tested method allowed for measur-
ing marked differences in snow pack behaviour between the
first and second weeks of the ablation period. A ROS event
that occurred during the first week did not generate signifi-
cant changes in snow pack density, liquid water content and
water equivalent, while another one that happened in the sec-
ond week of ablation generated changes in all three variables.
After the second week of ablation, differences in density, liq-
uid water content (LWC) and snow water equivalent (SWE)
between the flat and the sloped sections of the study area
were detected by the drone-based GPR measurements. Com-
parison between different events was made possible by the
contact-free nature of the drone-based measurements.

1 Introduction

By acting as transient storage, seasonal snow cover deter-
mines the amplitude of spring floods, the level of late sum-
mer flows and the recharge of aquifers (DeWalle and Rango,
2008). Snowmelt floods are a cause of economic losses and
sometimes loss of life (Ding et al., 2021), while insufficient
aquifer recharge affects water availability for agricultural and
industrial uses, fresh water supply, and the ecology of river
systems (Dierauer et al., 2021).
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Recent changes in snow cover characteristics have been re-
ported from different regions of the globe (Magnusson et al.,
2010; Zhang et al., 2015;Hodgkins and Dudley, 2006; Cho
et al., 2021; Ford et al., 2021; Najafi et al., 2017). Climate
change projections anticipate further alteration of snowpack
characteristics: seasonal snowpack depth is expected to di-
minish (Dierauer et al., 2021), the winter maximum snow
water equivalent to decline (Sun et al., 2019) and the spring
melt to occur earlier in the season (Gergely et al., 2010).
Moreover, observations and models indicate an increase in
the number of winter rain-on-snow (ROS) events (Li et al.,
2019). Combined with changes in snowpack characteristics,
those events are predicted to trigger increases in winter flood
and ice jam intensity and frequency (Morse and Turcotte,
2018; Andradóttir et al., 2021).

Within this context, monitoring the spatiotemporal evolu-
tion of snow cover properties appears essential for anticipat-
ing adverse climate change consequences on winter hydrol-
ogy and groundwater recharge (Lindström et al., 2010).

– Snow depth (h), snow water equivalent (SWE), den-
sity (ρ) and liquid water content (LWC) are among the
most measured properties of the snowpack (Kinar and
Pomeroy, 2015). These four variables are considered
key properties for characterizing the snowpack’s hydro-
logical behaviour (Vionnet et al., 2021). Different tech-
nics have been developed over time to independently
monitor those four variables over very limited surfaces
(less than 100 m2 for most of them).

– Snow depth is widely monitored using ultrasonic sen-
sors (Doesken et al., 2008), and methods like global
navigation satellite system interferometric reflectometry
(GNSS-IR) (Li et al., 2021) and terrestrial laser scan-
ning (Prokop, 2008; Revuelto et al., 2015; Deems et al.,
2017) are gaining in popularity. Still, destructive manual
measurements remain extensively used for snow depth
surveying (Leppänen et al., 2016).

– SWE can be calculated based on manual snow cor-
ing to estimate sample volume and mass. The manual
method is time-consuming, destructive and of moderate
precision (Goodison et al., 1987; Morris and Cooper,
2003; Sturm and Holmgren, 2018; Paquotte and Baraer,
2022). Automatic monitoring makes it possible to cap-
ture SWE temporal variability. The methods most of-
ten used are gamma ray monitoring (GMON), cosmic
ray neutron probe (CNRP), snow pillows and plates, the
system for acoustic sensing of snow (SAS2), the snow-
pack analyzer (SPA-2), and GNSS receiver-based SWE
estimators (Yu et al., 2020). Most of those technics re-
quire site calibration.

– Snow density is commonly measured through gravimet-
ric measurements or calculated from snow depth and
SWE measurements (Conger and McClung, 2009). In

dry conditions, snow density can be estimated with a
dielectric permittivity measurement system such as the
Finnish Snow Fork (Hao et al., 2021). Other methods in-
clude neutron probes (Hawley et al., 2008) and diffuse
near-infrared transmission (Gergely et al., 2010).

– The most common in situ LWC measurement meth-
ods are based on snow permittivity measurements. The
Snow Fork (Sihvola and Tiuri, 1986), the Denoth de-
vice (Denoth, 1995) and the A2 Photonic WISe sensor
(Webb et al., 2021) are among the most popular devices
to measure LWC. They all have an accuracy level of
around 1 % of the volumetric LWC. The most accu-
rate method, however, which is often used as a refer-
ence for those devices, is freezing or melting calorime-
try (Webb et al., 2021; Mavrovic et al., 2020). LWC may
be monitored unattended using time domain reflectome-
try (TDR), but multiday monitoring using that technique
still presents a challenge (Lundberg et al., 2016).

Even if they are accurate in following the evolution of each
variable in time, those techniques do not allow for captur-
ing the spatial variability in the snowpack properties unless
they are repeated at a multitude of points. Aerial and space-
borne remote sensing represents an attractive alternative for
that purpose.

With a vertical accuracy of less than 10 cm, airborne pho-
togrammetry allows for a non-destructive monitoring of the
spatial variability in snow depth in open areas (Bühler et al.,
2016a; Avanzi et al., 2018; Harder et al., 2020; Jacobs et
al., 2021). In forested areas, airborne lidar (light detection
and ranging) has proven a more accurate option (Koutantou
et al., 2021; Dharmadasa et al., 2022). The use of satellite-
based remote sensing for snow depth and, by extension, SWE
mapping has received much attention over the past decade
(Guneriussen et al., 2001; Rott et al., 2003). While showing
promising results and fast improvements in large open areas
of a range of several square kilometres (e.g. McGrath et al.,
2019), satellite-based SWE and/or snow depth estimations
still involve coarse spatial data with a high degree of uncer-
tainty when passive sensors are used (Mortimer et al., 2020),
and some accuracy challenges still exist with active sensors
(Pfaffhuber et al., 2017). This is the case in mountainous ar-
eas, for example (LiYun Dai, 2022).

From the 1980s onward, the use of ground-penetrating
radar (GPR) has been seen as a solution to overcome the
difficulties in capturing key properties of and spatial vari-
ability in the snow pack, as described above (Marchand et
al., 2003). First carried by the operator, GPR airborne and
ground-vehicle-based applications have risen in popularity
due to their abilities to cover transects that are 1/10 of a kilo-
metre long (Bruland and Sand, 1998). Radargrams generated
using GPR show the influence a milieu has on the emitted
electromagnetic wave that travels through it. This influence
is characterized by the milieu’s permittivity, expressed as a
complex number. For snow layers, the real component of the
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permittivity is mostly a function of snow density, snow depth
and LWC. As SWE can be calculated from snow depth and
density, GPR therefore allows for measuring a physical char-
acteristic that is related to the four key snowpack properties
in a single survey (Di Paolo et al., 2018).

Since the 1980s, GPR has been shown to be a valuable tool
for measuring physical snowpack characteristics (Holbrook
et al., 2016). It is one of the most-used methods in snow-
pack studies (Vergnano et al., 2022), and the spatial variabil-
ity in snow properties has been extensively assessed using
GPR (Lundberg et al., 2010; Previati et al., 2011; Holbrook
et al., 2016).

However, GPR applications in monitoring one or several
of the four key snowpack characteristics still involve differ-
ent challenges, such as the following.

– The real component of the permittivity requires the
snow depth to be known or estimated (Di Paolo et al.,
2020).

– Different empirical equations have been developed to
relate snow density and LWC to the real component of
the permittivity (Frolov and Macheret, 1999; Di Paolo
et al., 2018). In dry conditions, LWC being neglectable,
a direct relation exists between the snow density and
the relative permittivity. On the other hand, the intro-
duction of liquid water into the snowpack cannot be ac-
curately characterized with GPR velocity alone (Brad-
ford and Harper, 2006). In the absence of other measure-
ments allowing for mapping of LWC or snow density in
wet conditions, either an assumption needs to be made
regarding snow density variability from spot measure-
ments (e.g., Webb et al., 2020; Yildiz et al., 2021) or an
empirical relation must be parametrized by calibration
(e.g. Singh et al., 2017).

– Ground-based GPR applications require direct contact
with the snow surface, modifying its properties (Valence
and Baraer, 2021) and making subsequent surveys not
fully representative of natural conditions.

– Air surveys such as the helicopter-based ones are lim-
ited by high operating costs, while ground-based sur-
veys are difficult to conduct on unstable and steep slopes
(Vergnano et al., 2022).

Recent developments show interesting potential to over-
come those challenges. Combining GPR applications with
other measurements has been shown to be an efficient way to
overcome the first two challenges. For instance, Marchuk and
Grigoryevsky (2021) improved GPR-based snow depth pro-
filing by associating GPR to a laser range finder. The use of
drone-based surface mapping methods such as photogram-
metry or lidar in snowpack studies provides reliable snow
depth maps (Bühler et al., 2016b). Lundberg et al. (2016) and
Yildiz et al. (2021) used drone-based photogrammetry or li-
dar to integrate snow depth measurements into SWE calcula-

tions. Combining techniques that monitor the temporal evo-
lution of the snow permittivity, such as TDR, with GPR has
been shown to be a promising approach to studying snow-
pack spatial variability over a given period (Godio et al.,
2018). Estimating LWC from frequency-dependent attenua-
tion of the GPR signal, as proposed by Bradford et al. (2009),
is another way to address the wet snowpack characterization
issues.

Actual developments in drone-borne GPR have opened
new avenues in GPR-based snow pack studies (Francke and
Dobrovolskiy, 2021). Recent studies have shown it to be
valuable in snow avalanche applications (McCormack and
Vaa, 2019) and in snow depth mapping (Tan et al., 2017;
Vergnano et al., 2022). Similarly, drone-based ultra-wide-
band (Jenssen and Jacobsen, 2020) and software-defined
radar (Prager et al., 2022) applications to snowpack char-
acterization surveys have recently been demonstrated to be
potentially ground-breaking solutions.

The present study aimed to monitor the spatiotemporal
variability in snow depth, snow density, SWE and snow
LWC of a snowpack over flat and sloped areas with a
non-destructive approach. This objective was achieved by
combining some of the emerging solutions described above
with more traditional snow-monitoring techniques in a novel
way. This combination included drone-based photogramme-
try, drone-based GPR, and continuous monitoring of SWE,
snow depth and snow permittivity using TDR and snow-pit-
based measurements.

2 Study site

The study was conducted at the bassin versant experimen-
tal (BVE) of Ste-Marthe, an experimental watershed located
approximately 70 km west of Montréal, in Quebec, Canada
(45.4239◦ N, 74.2840◦W) (Fig. 1a). The main station of the
BVE of Ste-Marthe is situated at 120 m above sea level in
an approximately 200 m2 forest clearing (Fig. 1b and c). A
distinction is made between two different topographic areas
of the clearing: one of approximately 30 m2, categorized as
flat, and the other of approximately 50 m2, categorized as
sloped (Fig. 1d). The automatic weather station (AWS) mea-
sures various hydroclimatic variables. Those of interest for
the purpose of this study are listed in Table 1.

Measurements took place during the winter of 2020–2021,
from 26 February to 26 March. Two rain-on-snow (ROS)
events occurred during this period. The first ROS was ob-
served from 28 February to 1 March and the second from 9
to 12 March.

Field visits for drone-based surveys and snow pit mea-
surements occurred on 26 February, 5 March, 12 March
and 19 March. 26 February corresponded to the end of the
accumulation period, while the ablation period started on
27 February.
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Figure 1. Study site. (a) Location of the BVE of Ste-Marthe. (b) Snow-free DSM of the main station area; the red polygon delimits the study
area, red lines represent the two studied transects, and blue crosses mark the two profiles’ origins. (c) Overview of the BVE of Ste-Marthe
main station; the red polygon delimits the study area, blue areas represent the two studied areas, and dashed dark blue ellipses represent the
zone used for the snow pit. Numbers identify devices of interest for the present study: (1) sonic sensor, (2) ground and snow temperature
sensors, (3) shielded precipitation gauge, (4) snow lysimeter, (5) SWE sensor, and (6) TDR instruments. (d) Altitude profile of the two
studied transects.

Table 1. List of the instruments used in this study. Accuracy is either given by the manufacturer or estimated for worst-case scenarios.
Adapted from Paquotte and Baraer (2022).

Variable Sensors Manufacturer Accuracy Time stamp

Tair Hygrovue10 Campbell Scientific ±0.6 ◦C 15 min
Precipitation Tipping bucket rain gauge (52202) Campbell Scientific ±3 % 15 min
Snow depth Ultrasonic (SR50A) Campbell Scientific ±1 cm 15 min
Tn,cm Thermal profiler (CS230) Campbell Scientific ±0.2 ◦C 15 min
Outflow Lysimeter Homemade ±1 % 15 min
SWE SWE sensor (CS725) Campbell Scientific ±15 mm 6 h
Permittivity (ε) TDR (CS610) Campbell Scientific ±5 % 15 min

3 Methods

The spatiotemporal variability of snow depth, snow density,
SWE and snow LWC was assessed by combining different
methods with different sampling approaches. Table 2 pro-
vides a list of the different methods that were used. Those
were split into three categories according to the frequency

of measurements and the spatial coverage. Repeated surveys
conducted over the flat and sloped areas were used to produce
maps of the four studied variables on a weekly basis. Contin-
uous and repeated measurements at a single point were used
for verification of the map data at a given point in the study
area. TDR sensors were an exception: a total of eight probes
were split between the two areas. At each spot, probes were

The Cryosphere, 16, 3843–3860, 2022 https://doi.org/10.5194/tc-16-3843-2022



E. Valence et al.: Drone-based GPR application to snow hydrology 3847

Table 2. Methods combined in this study and classified based on
the sampling frequency and the spatial coverage.

Variable Continuous, single
point

Repeated, Repetitive,

single point two surfaces

h Sonic sensor Snow pit Photogrammetry
ρ h/SWE Snow pit GPR
SWE SWE sensor Snow pit GPR
LWC TDR (two points, four

layers)
A2 GPR

placed on different hard layers on the snowpack. These lay-
ers were identified as possible vectors for lateral flow (Evans
et al., 2016).

3.1 AWS monitoring

Data from the AWS were recorded using a Campbell Scien-
tific CR1000 data logger. AWS sensors included the snow
lysimeter situated at less than 10 m from the surveyed flat
area and presented a comparable exposition to sunlight.

Therefore, it was expected that both snow depth records
would exhibit comparable results. The snow’s relative den-
sity was calculated using the snow depth and the SWE mea-
surements, following Eq. (1):

SWE= h× ρ. (1)

SWE and h are both in metres, and ρ is dimensionless.
The frozen ground depth was estimated by interpolation

of ground temperatures measured from 10 to 60 cm below
the ground level at 10 cm depth intervals. Snowpack temper-
ature was measured with four thermometers at 0, 10, 20 and
30 cm above the ground level. To avoid using snowpack tem-
perature measurements that could have been influenced by
solar radiation or by contact with air, snowpack temperature
measurements were not considered after 17 March 2021, the
day the snow height decreased below 40 cm above ground
level.

3.2 Manual measurements

Manual measurements were conducted on a weekly basis,
on the same days as the drone surveys. Snow pits were ex-
cavated, with northern orientations, at approximately 75 cm
from the previous ones, following the method presented by
Fierz et al. (2009). The snow pits were located less than 3 m
from the flat area surveyed by drone and presented a compa-
rable exposition to sunlight. For each pit, layer identification
was followed by sequential depth, density and snow temper-
ature measurements. Each layer was isolated from the pre-
ceding one using a thin metallic plate and sampled using a
metallic cylinder of 0.3 dm2 or a cylindrical plexiglass sam-
pler with a surface of 0.5 dm2. The sample mass was mea-
sured in situ with a scale of ±1 g accuracy.

LWC measurements were made in the snow pit using an
A2 Photonic WISe sensor. Two vertical measurement pro-
files with 10 cm intervals between observations were created
for each snow pit. Even if the manufacturer’s device preci-
sion was ±1 % of LWC, we anticipated a higher degree of
uncertainty, as measurement through ice layers was not pos-
sible.

Snow pack total depth and bulk SWE were calculated by
adding up the individual layer values for these measures.
Bulk relative density and LWC were calculated by taking the
weighted mean of the measurements of a layer’s thickness.

3.3 TDR monitoring

The CS610 probes were controlled using a TDR200 (both
from Campbell Scientific). Each probe was bench calibrated
according to the Campbell Scientific guidelines before de-
ployment. On-site, each CS610 was inserted into the snow
and left lying over a hard layer without any guide or support.
This setup was chosen to allow the probe to move downward
together with the supporting hard layer as the snowpack set-
tled. Maintaining probes at a fixed position above the ground
triggers air pocket formation around the metallic rod over
time, affecting the measurements’ accuracy (Pérez Díaz et
al., 2017). As no visible differences in stratigraphy were ob-
served between the flat and sloped areas over the accumula-
tion period, hard layers supporting the probes were identified
the same way.

– α represents the ground level. Probes were installed on
January 8 in the flat area and 26 January at the base of
the slope. At both locations, the snow layer on top of the
ground was unconsolidated and heterogeneous.

– β is a wind crust formed on 30–31 December. Probes
were installed on the same days as the ones on layer
α. The layer β was overlaid by unconsolidated granular
snow.

– γ is a hard settled snow layer that formed on 15 January.
Probes were installed on 26 January. At that time, the
hard snow layer was overlaid by a thin layer of fresh
snow.

– ε is an ice layer that formed after a freezing rain event
which occurred on 16 February. Probes were installed
on top of that layer on 22 February at both locations.

TDR probes measure the relative permittivity of the sur-
rounding material. In snow, the relative permittivity is a
function of the density and the liquid water content mainly
(Stacheder et al., 2009). Placed at different spots, initial rel-
ative permittivity values measured by the probes naturally
differ slightly from each other. In order to allow compari-
son of the permittivity evolution between two probes placed
over the same layer, relative permittivity values were nor-
malized by dividing all values measured by a TDR probe by
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the first measurements made after installation of that given
probe value. Doing so allowed the researchers to start each
TDR-derived time series from 1. With a 15 min measurement
interval, it was assumed that any sensible variations in per-
mittivity (higher than 10 % of the initial value) between two
successive measurements were due to changes in liquid water
content, as such changes would occur over a longer timescale
if due to a change in snowpack density only (Stacheder et al.,
2005).

3.4 Drone-based photogrammetry

A DJI Mavic 2 Pro drone was used to capture the RGB im-
ages used for photogrammetry. During a flight time of ap-
proximately 20 min, the drone took around 200 images with
an 80 % overlap at an elevation of 25 m above ground level.
The Mavic 2 Pro is equipped with a TOPODRONE global
navigation satellite system (GNSS) to allow post-processing
kinematic (PPK) treatment to correct images’ locations. The
uncertainty claimed by the manufacturer is 3–5 cm in all di-
rections. PPK corrections were made using a Reach RS2
GNSS base station, with a manufacturer’s uncertainty of
4 mm in the horizontal direction and 8 mm in the vertical.
After each site visit, collected images were processed using
the Pix4Dmapper software to produce digital surface mod-
els (DSMs). The expected horizontal resolution is 0.6 cm per
pixel. Vertical accuracy was assessed using ground control
points (GCPs). For each survey, 10 GCPs were disposed all
around the study area; GCPs were placed approximately at
the same position for each survey. Control points were geo-
localized using a KlauGeomatic 7700B GNSS rover, ensur-
ing a 5 cm accuracy. Comparing the uncorrected DSMs pro-
duced by photogrammetry to the DSMs after correction using
control points showed variations under 3 cm in all three di-
rections, which is within the expected accuracy of the Klau-
Geomatic GNSS. The use of control points did not lead to
meaningful improvements of the map georeferencing, val-
idating the accuracy of maps produced using PPK adjust-
ments only.

Finally, snow depth maps were produced by subtracting a
snow-free DSM produced on 6 April, just after the complete
thaw of the snow cover and just before the vegetation growth,
from the DSM produced in winter conditions. This was done
using the Esri Geographic Information System (GIS) soft-
ware ArcGIS, following the protocol presented by Bühler et
al. (2016a) and Yildiz et al. (2021).

3.5 Drone-based GPR permittivity measurement

GPR surveys were performed using a Radar Systems Inc.
Zond 1.5 GHz carried by a DJI Matrice (M) 600 Pro drone.
The GPR integration system and the flight control software
(UgCS) were supplied by SPH Engineering. Maximizing
GPR measurements requires flying at 1.2 m s−1 and at ap-
proximately 1 m above the surveyed surface. Drone altitude

was controlled using a terrain-following system supplied by
SPH Engineering. The system is made of the UgCS Sky-
Hub onboard computer coupled with a radar altimeter. The
onboard computer manages the power supply and the GPR
data. The M600 Pro was equipped with a KlauGeomatic
7700B GNSS allowing position correction via PPK. Simi-
lar to the photogrammetry, PPK corrections were made using
the Reach RS2 GNSS as a base station. GPR data were ref-
erenced by post-treatment using the KlauGeomatic PPK so-
lution. Surveys were performed over both the flat and sloped
areas. Post-treatment of radargrams was performed with the
Radar System Inc. Prism2 software. The GPR system was
sampled every 512 ns over both flat and sloped areas, and
the drone’s flight followed north–south transects. Thus, the
spatial resolution of GPR measurements was a function of
the actual drone speed (different from expected drone speed
due to wind and other meteorological conditions affecting the
drone flight) and the sampling frequency. For each survey,
six transects on the flat area and nine transects on the slope
were surveyed. The distance between two consecutive tran-
sects was 50± 20 cm. Post-treatment consisted of applying a
background removal filter, adjusting the gain, and applying
a time-delay compensation. The ground–snow and snow–air
interfaces were detected automatically wherever possible and
manually where the layer boundaries were not recognized by
the automatic graphic interpretation tool. Figure 2 provides
two examples of radargrams with identified layer boundaries.
Given that GPR measurements were geo-localized using the
same PPK as the photogrammetry, the radargram georefer-
encing was considered to have a 5 cm accuracy.

Snow depth for each GPR transect was extracted from the
snow depth maps produced by photogrammetry using Ar-
cGIS. The velocity of the electromagnetic wave within the
snowpack (ν) and the snow height (h) extracted from the
DSM are related as follows:

ν =
h

TWT/2
, (2)

where TWT is the two-way travel time of the wave within
the snowpack (in ns). TWT is extracted from the radargrams
by taking the difference between the air–snow interface and
snow–ground interface two-way travel times.

The relative permittivity of the snowpack is a complex
number. Its real part (ε′s) is calculated using Neal (2004):

ε′s = (c/v)
2 , (3)

where c stands for the velocity of light in a vacuum (taken as
equal to 0.3 m ns−1).

3.6 Drone-based GPR frequency-dependent
attenuation analysis

In wet conditions, the imaginary part of the permittivity
of the snow (ε′′s ) is estimated using the GPR frequency-
dependent attenuation analysis method proposed by Brad-
ford et al. (2009). In the standard GPR frequency range
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Figure 2. Flat-area drone-based 1.5 GHz GPR radargrams collected on (a) 5 March and (b) 12 March (considered as the less legible radar-
grams). The red line represents the air–snow interface, and the yellow line represents the snow–ground interface.

(10 MHz–1 GHz), ε′s is strongly dependent on LWC and as-
sumed to be independent of frequency. Assuming that the
frequency-dependent attenuation of an electromagnetic wave
through water is linearly related to frequency (Turner and
Siggins, 1994), the attenuation coefficient over the GPR sig-
nal band can be written as

α = α0+

√
µ0ε′s

2Q∗
ω , (4)

where Q∗ represents the generalization of the attenuation
quality parameter in the linear region of the attenuation, ∝0
the impact of low frequencies in the radar attenuation, ω the
angular frequency and µ0 the permeability in the free space.

Within the frequency range of 1 to 1500 MHz, Q∗ is as-
sumed to be constant (Bradford et al., 2009) and related to
ε′′s as follows:

Q∗ =
ε′s

2ε′′s
, (5)

where a GPR generates waves in the form of a Ricker
wavelet, the frequency f0 of the spectral maximum of the
GPR wave, measured at the snow–air interface on the radar-
gram, and the frequency ft of the spectral maximum, mea-
sured at the ground–snow interface, which are related to Q∗

(Bradford, 2007):
1
Q∗
=

4
TWT

ω2
0−ω

2
t

ω2
0ωt

ω0 = 2πf0
ωt = 2πft

. (6)

In the present study, f0 and ft were measured by randomly
sampling at least 10 points on each GPR line. For each se-
lected point, readings were made on five consecutive traces
using the Prism2 software. Peak frequencies for each point
were calculated by taking the median of the measurements.
When at least one trace showed a higher frequency at the
ground–snow interface than at the snow–air interface, two
extra traces were used; ε′′s was then computed using Eqs. (5)
and (6), with ε′s being calculated using Eqs. (2) and (3).

LWC and the relative density of dry snow (ρd) were then
calculated with the following set of dimensionless empirical
equations proposed by Tiuri et al. (1984) and Sihvola and
Tiuri (1986):

ε′d = (1+ 1.7ρd+ 0.7ρ2
d) , (7)

ε′s =
(

0.1LWC+ 0.8LWC2
)
ε′w+ ε

′

d , (8)

ε′′s =
(

0.1LWC+ 0.8LWC2
)
ε′′w , (9)

where εd’ is the bulk permittivity of dry snow, and ε′w and ε′′w
are the real and the imaginary parts of the relative permittiv-
ity of pure water, respectively.

Equations (7), (8) and (9) were established for a measure-
ment frequency of 1 GHz and were assumed to remain valid
for the purpose of the present study.

The relative snow density (ρ) was then calculated with the
following equation:

ρ = ρd+LWC . (10)
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Finally, the SWE was calculated using the relative density
(ρ) calculated using Eq. (10) and with the snow depth (h)
extracted from the DSM produced by photogrammetry us-
ing Eq. (1). LWC maps were then produced by extrapolat-
ing the punctual results to area values using an inverse dis-
tance weighting interpolation with barriers set at 2 m. For
each LWC map, 10± 2 points per transect were randomly
selected for the interpolation. The inverse distance exponent
was set at two, the maximum distance for data calculation
was set at 2 m, and the minimum number of points consid-
ered in the calculation was three. The interpolation was used
to create LWC maps of 5 cm cell size.

For the surveys on 26 February and 5 March, the snow-
pack was assumed to be dry, as the surveys were preceded
by several cold days and as the snowpack temperatures mea-
sured were all below 0 ◦C. The SWE was determined using
the assumptions that ε′d = εs’, ρs = ρd, and LWC= 0.

For the surveys on 12 and 19 March, the SWE was deter-
mined following the GPR attenuation method.

4 Results

4.1 AWS

Figure 3 presents the AWS-relevant measurements over the
study period. The 27 February measured snowpack temper-
atures were all below 0 ◦C and had not been altered by any
significant ROS or major melt event yet.

Between 27 February and 1 March, the snowpack was af-
fected by a first mild episode (M.E. 1) that ended with a ROS
event. Mild episodes are here defined as more than 24 h long
periods with continuous above-zero air temperatures. The
first week of investigation was also characterized by several
snow precipitation events. The ROS event lasted 45 min, with
1.6 mm of cumulative precipitations during the first 30 min
and only 0.1 mm in the last 15 min. M.E. 1 warmed up the
snowpack to nearly 0 ◦C at all measured depths, generated
slightly more than 1 mm of cumulative outflow at the base of
the snowpack, and increased both the SWE and relative snow
density by 15 mm equivalent and 0.05, respectively. Outflow
at the snowpack’s base started while the measured snow-
pack temperatures were still negative, suggesting that at least
part of the outflow was made of liquid precipitation flowing
through the snowpack. M.E. 1 was followed by a drop in air
temperature of 25 ◦C, starting the beginning of a 7 d long cold
period. Over that cold period, the measured snowpack tem-
peratures dropped below 0 ◦C, while SWE and relative snow
density stabilized. Outflow at the snowpack’s base stopped
24 h after the temperature started to decrease. Considering
that during this mild episode at least part of the ground re-
mained frozen, with negative temperatures observed between
0 and −30 cm under the soil surface, it is assumed that no
significant ground infiltration occurred during M.E. 1 (Ding-
man, 1975). This suggests that most of the rain percolation

Figure 3. AWS measurements during the winter 2022 ablation pe-
riod. (a) Air temperature and precipitations; (b) frost depth and
lysimeter outflow; (c) snow temperature at four different heights;
(d) snow water equivalent, snow height and relative snow density.
Variables associated with the different line colours are indicated in
each panel. Semi-transparent grey shadings represent mild episodes.
Mild episode identification is given underneath panel (a). Details
about variable descriptions and measurements are given in Table 1.
Vertical dashed lines indicate field measurements days.

either froze inside the snowpack or flowed longitudinally at
its base.

The second survey occurred on 5 March, during the 7 d
long cold period described here above, over a dry snowpack.

A second mild episode (M.E. 2) started on 8 March and
ended on 12 March, the day of the third survey. On 11 March,
the air temperature reached a maximum of 15 ◦C, and a ROS
event occurred. It took 2 d for the warm conditions to warm
the snowpack up to 0 ◦C at all measurement points and to
generate outflow at the snowpack’s base. The second ROS
event occurred on an already warm snowpack and produced
0.8 mm of precipitation over 30 min. This ROS event was
therefore slightly less intense than the first one. The snow
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lysimeter measured a cumulative outflow comparable to that
during M.E. 1. As the soil remained frozen during this sec-
ond mild episode, most of the water coming from the melt
and from the precipitation was expected to have flowed hori-
zontally at the base of the snowpack.

12 March marked the last day of M.E. 2 with air temper-
atures falling under 0 ◦C. Between 8 and 12 March, snow
depth decreased by almost 30 %, while SWE remained al-
most unchanged despite substantial liquid precipitations be-
ing recorded. Snowpack temperatures and outflow measure-
ments indicated that at least some of the snowpack layers
were wet at the time of the survey. From 12 March, air
temperatures remained negative until 17 March. A refreez-
ing front slowly moved down the snowpack, and the out-
flows stopped over that period, suggesting a gradual dry-
ing of the snowpack. From 17 to 18 March, a third mild
episode (M.E. 3) brought the snowpack temperatures back
to the melting point. An outflow of minor amplitude com-
pared to those observed during the first two mild episodes
was measured on 18 March only.

During the 19 March survey, the air temperature reached a
maximum of −2 ◦C. At that date, the snowpack was drying,
with an almost continuous increase in snow density and a
decreasing snowpack depth. These reached 0.48 and 38 cm,
respectively.

4.2 Drone-based photogrammetry

Snow cover maps produced using drone-based photogram-
metry are presented in Fig. 4. On top of the uncertainty es-
timation described above, the maps are fully consistent with
field observations. The quality of the DSM allows for iden-
tifying specific features such as trails used to access differ-
ent features of the study area (e.g., lines in yellow on the
26 February 2020 map). Those trails show lower than pristine
snow depths in a consistent way. Similarly, extra snow accu-
mulation in drainage ditches (e.g., brown area in the bottom
left area of the 19 March 2020 map) is well marked and con-
sistently apparent on the different sub-figures. Overall, the
snow depth maps are considered to have satisfactory accu-
racy for the purpose of the study.

By comparing the different Fig. 4 maps, we can observe
that the snow depth decrease that occurred between 26 Febru-
ary and 5 March is homogeneous over the entire area, with
no differences between the flat and sloped areas being vi-
sually noticeable. Snow depth in both areas on 26 February
ranged between 60 and 90 cm, while on 5 March, the snow
depth ranged from 50 to 80 cm in both sloped and flat ar-
eas. The situation is different when comparing the 12 March
map to these first two dates. On 12 March, flat-area snow
depth ranged from 35 to 55 cm, whereas the sloped-area
snow depth was between 25 and 50 cm. The severe abla-
tion and/or settling that affected the study area impacted the
sloped area more than the flat one. Changes in snow depth
were less pronounced between 12 and 19 March than for the

previous periods. Maximum snow depth in the flat area de-
creased from 55 to 50 cm and from 50 to 45 cm in the sloped
area between 12 and 19 March. Between 5 and 12 March,
the maximum snow depth in the flat area decreased by 25 cm
and by 30 cm in the sloped area.

Overall, Fig. 4 shows that the sloped and flat sections had
comparable snow depths at the end of the accumulation pe-
riod but reacted differently to ablation, with a faster loss of
depth in the sloped area than in the flat one.

4.3 TDR monitoring

Relative permittivity measured using TDR probes and nor-
malized to the value measured on 26 February at 12:30 EST
are presented in Fig. 5. As described in the Methods section,
rapid variations in relative permittivity are associated with a
change in LWC. Given that an increase of more than 0.1 in
normalized permittivity in 15 min can be considered as due
to a change in LWC, the normalized relative permittivity is
here used to assess the snowpack response to mild episodes
in terms of water content and flow-through dynamics.

M.E. 1. The first reaction to the M.E. 1 in terms of LWC
was observed on top of the layer ε (Fig. 5a). That increase
in LWC led to an increase in normalized relative permittivity
of 0.2 on 27 February, the day after M.E. 1 began. Snow-
pack response to the February 28 ROS event occurred first at
the bottom of the sloped area, as suggested by the increase
of 1.2 of normalized relative permittivity over the α slope
layer (Fig. 4d), followed by an increase of 0.2 measured by
the other TRD sensors. The detection of an increase in LWC
at the base of the flat area occurred half a day after the in-
crease for the sloped area, with an increase of about 0.7 of
the normalized permittivity above both flat and sloped α lay-
ers, at a time when the air temperature had already dropped
below zero. Interestingly, the lysimeter measured an outflow
at the base of the snowpack in the flat area 24 h before any
moisture increase was detected by the TDR probe placed on
the ground in the flat area. Differences observed in timing
and amplitudes at the different probe locations suggest that
liquid water flows followed preferential pathways. Past that
time, normalized permittivity steadily decreased in all spots,
reaching a plateau representative of the new dry densities of
the snow layers. The relative permittivity of the new plateau
was 10 % higher than on 26 February, suggesting a slight in-
crease in density.

M.E. 2. As was the case at the M.E. 1, the increase in nor-
malizer relative permittivity was first observed at the base of
the sloped area. The increase was followed by an increase
at the other probes 24 h later, those above the β and γ layers
being of very low amplitude: 0.1 to 0.2 of normalized permit-
tivity. The strongest increase in LWC was measured over the
sloped ground layer (Fig. 4d), with a normalized relative per-
mittivity 4 times higher than the one measured on 26 Febru-
ary. At the end of 10 March, three of the four probed layers
showed an increase in LWC, which was more pronounced in
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Figure 4. Snow depth calculated by photogrammetry for the four dates covered in this study.

the sloped area than in the flat area. After 10 March, the fluc-
tuation of LWC above the γ layers in the sloped area (Fig. 4c)
started to mimic the one above the ground but with a lower
amplitude. This synchronism suggests that the sloped area’s
preferential pathway flow-through mode started weakening.

M.E. 3. The sloped area showed a faster and more intense
response to M.E. 3 starting on 17 March than the flat area.
Unlike the flat area, the slope’s LWC fluctuation started ex-
hibiting a strong diurnal pattern, whose peak occurred a cou-
ple of hours before the peak in air temperature and the peak
in lysimeter outflow.

Overall, the TDR probes showed a faster and more intense
response to air temperature warming episodes on the slope
compared to the flat area, the presence of preferential path-
ways (particularly at the start of the ablation period), and a
noticeably higher influence of solar radiation on the ablation
of the sloped area compared to the flat one at the end of the
study period.

4.4 Drone-based GPR permittivity measurement

On each survey day and in each area, snow depth was ex-
tracted from the DSM following the north-to-south tran-
sects (Fig. 1b) covered by the M600 pro. Snow depth and

snowpack bulk permittivity profiles of selected transects are
shown in Fig. 6.

On 26 February (Fig. 6a), the flat area showed quite stable
bulk permittivity and snow depth profiles, with a relative per-
mittivity ranging from 1.2 to 1.6. The sloped transect exhib-
ited slightly lower snow depth and higher bulk permittivity
than the sloped section, between 1.4 and 2. The bulk per-
mittivity over the sloped section appeared more variable than
the flat one too. With a relative permittivity ranging from 1.2
to 1.5 and from 1 to 2 for the flat and the sloped areas, re-
spectively, 5 March (Fig. 6b) showed limited changes in bulk
permittivity compared to 26 February for both areas.

The 12 March (Fig. 6c) transects showed a sharp change
compared to the first two dates. Both areas exhibited a rise in
bulk permittivity and a decrease in snow depth. Bulk permit-
tivity profiles showed gaps due to the GPR signal not pene-
trating fully through the wet snow. They ranged from 1.9 to
2.5 and from 2 to 3.2 for the flat and the sloped areas, respec-
tively. The bulk permittivity in the sloped area had higher
values and variability than in the flat area. On 19 March
(Fig. 6d), the snow depth in the flat transects remained simi-
lar to that measured on 12 March. The bulk permittivity de-
creased to values situated between those of 5 and 12 March,
reaching minimal relative permittivity values of 1.5 in both

The Cryosphere, 16, 3843–3860, 2022 https://doi.org/10.5194/tc-16-3843-2022



E. Valence et al.: Drone-based GPR application to snow hydrology 3853

Figure 5. Normalized permittivity measured by TDR probes in the
sloped (black line) and flat sections (orange line). Probe positions
in each graph are shown in drawings representing a simplified de-
scription of the snowpack, with layer identification letters: (a) layer
ε, (b) layer γ , (c) layer β and (d) layer α. Semi-transparent grey
shadings represent mild episodes. Mild episodes are identified in
panel (a). Vertical dashed lines mark field visit dates.

flat and sloped areas and increasing the value ranges in both
flat and sloped areas. The sloped-area transect exhibited a de-
crease in bulk permittivity, like that of the flat-area transect,
and its variability remained higher than in the flat section.
The main difference between the two sections was the snow
depth. The sloped area showed a more pronounced decrease
than the flat area. As no fresh precipitations were recorded
between 12 and 19 March, the decrease in permittivity in
both sections can be interpreted as a decrease in LWC, which
could have occurred together with snow densification in the
sloped section.

Overall, Fig. 6 confirms the difference in response to
M.E. 2 between the snowpack’s sloped and flat areas, includ-
ing a high moisture content for both areas and a more pro-

nounced densification of the snowpack over the sloped area
compared to the flat one.

4.5 Drone-based GPR frequency-dependent
attenuation analysis

Contradicting snow temperature profiles (Fig. 2c) that sug-
gested the snowpack was dry, the LWC calculation and inter-
polation presented in Fig. 7 suggest non-zero LWC (ranging
from 0 % to 3.5 %), with no visible differentiation between
the sloped and flat areas on both 26 February (Fig. 7a) and
5 March (Fig. 7b). On both dates, there was a relative spatial
heterogeneity in LWC, with no common patterns between the
two dates.

On 12 March (Fig. 7c), the flat-area LWC ranged between
0 % and 5.5 %, while the sloped area had LWC maximal val-
ues above 8 %. The 12 March survey showed a general in-
crease in LWC compared with the two previous surveys, as
well as a differentiation between the two studied areas. The
sloped area exhibited the highest overall LWC, although both
areas were spatially variable.

Compared to 12 March, 19 March (Fig. 7d) showed overall
slightly lower LWC values in the sloped area compared to
the flat area. However, the maximum value reached 6.5 %
in both areas, making them difficult to differentiate. LWC
values remained highly variable for both sections, ranging
between 0 and 6.5 %.

Overall, Fig. 7 confirms that, unlike the ROS event that
occurred at the end of February, the sloped and flat areas re-
sponded in different ways to the 11 March ROS event. On
the other hand, LWC values seem unrealistic for the first two
survey dates that followed the pronounced cold episode. In
a similar way, the absence of a recurrent spatial pattern in
LWC variations between maps of different dates suggests the
method was not able to capture these variations in a detailed
way.

5 Discussion

5.1 Drone-based estimation of key snowpack variables

The spatiotemporal variability in snow depth, snow density,
SWE and snow LWC, four key properties of a snowpack, has
been assessed using drone-based GPR and photogrammetry
methods in a repeated way. Figure 8 provides an overview
of the variability of those properties in the form of boxplots
and, where possible, compares drone-based measurements to
those of the AWS and from snow pits.

Photogrammetry snow depth results (Fig. 8a) are in good
agreement with those of the AWS and of the snow pits over
the entire study period, with a possible slight overestimation
in the first two surveys. The differences between the 25th
and 75th percentiles in the flat area are systematically below
2 cm. For comparison, this difference is of the same order of
magnitude as the one between the snow pit and AWS mea-
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Figure 6. Bulk permittivity (black line) and snow depth (blue line) calculated for the flat (left) and sloped (right) transects on (a) 26 February,
(b) 5 March, (c) 12 March and (d) 19 March. Adapted from Valence and Baraer (2021).

surements and the median. The slope is characterized by a
lower snow depth and a larger range than the flat area, espe-
cially after the ROS event that occurred on 11 March. With
most of the slope snow depth values below 40 cm for the last
two surveys, the estimated ± 5 cm uncertainty that applies
to the photogrammetry affects more than 12 % of the mea-
surement. Such high level of uncertainty may have poten-
tial detrimental effects on the GPR-based calculation of key
snowpack properties.

The LWC boxplot in Fig. 8b is effective in representing the
general evolution of the snowpack moisture content through
time: a stable situation occurring between the first two survey
dates, followed by a marked increase in snow moisture on
12 March and a slight decrease on 19 March (for the sloped
area only). The boxplot also successfully captures the differ-

ence in response to mild events between the flat and sloped
areas. Compared to the A2 WISe sensor measurements, the
boxplot shows the method did not succeed in providing real-
istic LWC values. According to the A2 measurements, snow
pit bulk LWC values were close to 0 % on 26 February and 5
and 12 March, while the GPR-based calculation medians for
the flat area were 2 %, 1.5 % and 4 %, respectively. The dif-
ferences between the 25th and 75th percentiles in the flat
area were 1 %, 1.5 % and 2 % for the same dates. Even if the
A2 measurements might have been influenced by the sam-
pling constraints and therefore might have underestimated
the snowpack average LWC, the drone-based result appears
significantly overestimated.

Disagreement between GPR-based calculations and refer-
ence measurements was observed for the relative snow den-
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Figure 7. LWC calculated by GPR frequency-dependent attenuation analysis. Points used for interpolation are displayed in black.

sity as well (Fig. 8c). On 26 February and 5 March, the dif-
ference between reference values and GPR-based calcula-
tion medians was 3 times higher than the difference between
the 25th and 75th percentiles. The drone-based method un-
derestimated relative snow density over the flat area com-
pared with both the AWS and the snow pit measurements
for the first two and the last dates while overestimating it for
12 March. Moreover, both the flat and sloped areas exhibited
an unrealistic 50 % decrease in snow relative density between
12 and 18 March. No fresh snowfall occurred between those
two dates.

Calculated as the product of h and ρ, SWE boxes show
similar biases to relative snow density (Fig. 8d).

Interestingly, we note that while Fig. 6 shows the bulk per-
mittivity profile being consistent with TDR and AWS mea-
surements, this is not the case with the GPR-based computed
variables presented in Fig. 8. As described earlier, the bulk
permittivity of the snowpack is influenced by both snow den-
sity and LWC. Figure 8 therefore suggests that the method
we applied failed to differentiate the relative influence of both
variables.

The method we applied makes use of empirical Eqs. (7),
(8) and (9), which are commonly used in snow hydrology.
According to Tiuri et al. (1984), Eqs. (8) and (9) apply to pen-

dular regime, for ε′s ≤ 2.6 (ε′s ≤ 3 for Colbeck, 1982), as op-
posed to a funicular regime. In a layered snowpack in which
preferential flow occurs, it is realistic to hypothesize that both
regimes occur in the snow column, making Eqs. (8) and (9)
possibly not directly applicable to bulk relative permittivity
measurements.

Different empirical formulas relating the relative permit-
tivity to relative snow density have been subsequently devel-
oped (e.g., Di Paolo et al., 2018; Frolov and Macheret, 1999).
They could possibly represent more accurate alternatives.

As suggested by Webb et al. (2021), reassessing the appli-
cation conditions of the equation used in the present study
is another direction that could be chosen. Selecting different
equations depending on snowpack conditions and evolution
over the winter could ensure a better use of these equations
too.

Fixing the relative density of the snow based on manual
sampling or AWS values could represent another solution to
the problem encountered in differentiating between the rela-
tive influence of snow density and LWC on bulk permittivity.
However, this solution would not allow for the capturing of
the spatial variability in snow density and therefore might
bias calculations.
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Figure 8. Box plots representing the snowpack studied variables
for the sloped and flat areas for each survey date: (a) snow depth re-
sults from photogrammetry, (b) liquid water content estimated with
drone-based GPR, (c) relative density estimated with drone-based
GPR, and (d) snow water equivalent calculated from relative density
and snow depth. In the boxes, the central black line represents the
median, and the bottom and top edges mark the 25th and 75th per-
centiles, respectively. The whiskers show the data ranges, excluding
outliers. Where they exist, outliers are represented by a black circle.
Dark blue squared and orange triangular markers represent refer-
ence values originating from the AWS and snow pits, respectively.
Grey boxes were calculated with the assumption of a dry snowpack.

For spatiotemporal variability in snowpack characteristics,
TDR monitoring, drone-based photogrammetry and drone-
based GPR have been shown to be a valuable combination
for assessing the spatiotemporal variability in key snowpack
variables. The use of photogrammetry to map snow depth
over the study area provided the opportunity to calculate bulk
permittivity from repeated drone-based GPR surveys. Both
bulk permittivity and snow depth profiles agreed with site ob-
servations and reference measurements. When the bulk per-
mittivity was converted into absolute snow density, LWC and
SWE values did not provide the expected results even if the
temporal evolution of those parameters was captured in an
acceptable way. TDR monitoring complemented the drone-

based measurements well, providing both high temporal res-
olution and layer-based snowpack relative permittivity time
series. Snow depth and snow bulk permittivity calculations
were highly consistent in comparisons of the different meth-
ods to each other, allowing for the capture of the flat- and
sloped-area responses to changes in meteorological condi-
tions.

5.2 Points learned from the case study

The application of the proposed methodology to the winter
of 2020–2021 led to the following facts being learned.

– The flat and sloped areas had comparable responses to
the first ROS event of the study period, which occurred
on a cold and dry snowpack at the end of February.
That event produced snowpack outflows and increases
in LWC, especially at the base of both areas. The sloped
area, however, showed a faster and more intense re-
sponse than the flat one.

– The first ROS episode did not modify the snowpack’s
snow density and snow depth profiles in a substantial
way. Both study areas exhibited characteristics of pref-
erential flow pathways.

– The second ROS event that occurred on 10 March on an
already pre-warmed snowpack affected the sloped area
in a different way than the flat one, both areas showing
important differences in snow depth, LWC and density
in the 12 March surveys. The timing and amplitude of
the outflow suggest a more homogeneous flow path was
present than during the first ROS.

– The third mild episode that occurred from 16 to
18 March did not drastically modify the characteristics
of either area compared to the 12 March situation. How-
ever, the slope showed faster rates of melt/ablation and
showed a higher response to diurnal fluctuations, prob-
ably due to its southerly aspect.

6 Conclusion

A combination of TDR monitoring, drone-based photogram-
metry and drone-based GPR was used in the experimental
watershed of Ste-Marthe (Quebec, Canada) over the win-
ter of 2020–2021. The suite of methods showed compara-
ble snow accumulation over flat and sloped areas, with com-
parable characteristics lasting after the first ROS event. The
second ROS event at the start of the ablation season led to
differences in response between the two areas.

Drone-based GPR was very instructive when interpreta-
tion was based on bulk permittivity results but showed limi-
tations in mapping snow density, SWE and LWC. There are
questions about the applicability of empirical equations used
given the site conditions. The results suggest the empirical
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equations should be reassessed for conditions that differ from
the ones for which they were formulated. The method did
not allow the researchers to obtain the full benefit from ap-
plying the GPR frequency-dependent attenuation method to
estimate LWC in the snowpack. The method shows promise,
however. In the winter of 2020–2021, the radargram obtained
using a 1.5 GHz GPR was not detailed enough to differentiate
between the main snowpack layers. However, efforts should
be continued in this regard, as the 2020–2021 snowpack was
characterized by a relatively low snow depth and an uneven
distribution of the ice layers in the snow column.
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