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Abstract. Accurate and timely forecasts of sea ice condi-
tions are crucial for safe shipping operations in the Cana-
dian Arctic and other ice-infested waters. Given the recent
declining trend of Arctic sea ice extent in past decades, sea-
sonal forecasts are often desired. In this study machine learn-
ing (ML) approaches are deployed to provide accurate sea-
sonal forecasts based on ERA5 data as input. This study, un-
like previous ML approaches in the sea ice forecasting do-
main, provides daily spatial maps of sea ice presence prob-
ability in the study domain for lead times up to 90 d using a
novel spatiotemporal forecasting method based on sequence-
to-sequence learning. The predictions are further used to pre-
dict freeze-up/breakup dates and show their capability to cap-
ture these events within a 7 d period at specific locations of
interest to shipping operators and communities. The model
is demonstrated in hindcasting mode to allow for evalua-
tion of forecasted predication. However, the design allows
for the approach to be used as a forecasting tool. The pro-
posed method is capable of predicting sea ice presence prob-
abilities with skill during the breakup season in comparison
to both Climate Normal and sea ice concentration forecasts
from a leading subseasonal-to-seasonal forecasting system.

1 Introduction

Spatial and temporal forecasts of sea ice concentration (frac-
tion of a given area covered by sea ice) are carried out at
various scales to address the requirements of different stake-

holders (Guemas et al., 2016). Short-term forecasts (1–7 d)
at high spatial resolution (5–10 km) are important for day-
to-day operations and weather forecasting (Carrieres et al.,
2017; Dupont et al., 2015), whereas longer-term (60–90 d)
forecasts are desired by shipping companies and offshore
operators in the Arctic for strategic planning (Melia et al.,
2016). In this study we are interested in these longer-term
forecasting methods, which we will refer to as seasonal fore-
casting. Typical approaches are usually statistical or dynam-
ical in nature. Statistical approaches include multiple lin-
ear regression (Drobot et al., 2006) or Bayesian linear re-
gression (Horvath et al., 2020), whereas by dynamical ap-
proaches we are referring to those that use a forecast model
solving the prognostic equations governing evolution of the
ice cover (Askenov et al., 2017; Sigmond et al., 2016). An ex-
cellent overview of both statistical and dynamical approaches
is given in Guemas et al. (2016).

An early study on seasonal sea ice forecasting using a dy-
namical approach is that by Zhang et al. (2008), in which they
evaluated the ability of an ensemble of sea ice states from
a coupled ice–ocean model to predict the spring and sum-
mer Arctic sea ice extent and thickness for the year of 2008,
following the anomalously warm year of 2007. Each ensem-
ble member was generated by forcing the coupled ice–ocean
model with atmospheric states from 1 of the previous 7 years
and running the model forward in time for 1 year. Similar to
Zhang et al. (2008), the majority of studies on sea ice pre-
diction and forecasting focus on the pan-Arctic domain. A
comparison between pan-Arctic and regional forecast skill
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was carried out by Bushuk et al. (2017), where skill was as-
sessed using the detrended anomaly correlation coefficient
(ACC) of sea ice extent. It was shown that the ACC of sea-
sonal forecasts in specific regions was dependent on the re-
gion and forecast month.

Dynamical forecast models solve differential equations
describing the physics of the underlying system. Solution
methods for these types of equations are well-known and rel-
atively robust. A key challenge with these models in opera-
tional forecasting is the high level of computational resources
required to generate a forecast. This disadvantage can be
overcome by using statistical approaches such as multiple
linear regression (Drobot et al., 2006) or canonical correla-
tion analysis (Tivy et al., 2011). Both of these approaches de-
termine a linear relationship between a set of predictor vari-
ables and a set of predictands.

More recently, convolutional neural networks (CNNs),
which are able to learn nonlinear relationships between spa-
tial patterns in input data and predictands, have been used for
sea ice concentration prediction (Kim et al., 2020). The study
by Kim et al. (2020) used eight predictors composed of sea
ice concentration data and variables from reanalyses to train
12 individual monthly models and produced monthly spatial
maps of sea ice concentration (SIC). Their method was able
to predict mean September sea ice extent in good agreement
with that from passive-microwave data, evaluated for the year
of 2017, where the sea ice extent is the total area in a given
region that has at least 15 % of ice cover. Similar to Kim
et al. (2020), Horvath et al. (2020) focused on the Septem-
ber sea ice extent. Horvath et al. (2020) used a Bayesian lo-
gistic model to predict both a monthly average sea ice con-
centration and an uncertainty. The model inputs were atmo-
spheric and oceanic predictor variables and sea ice concen-
tration from satellite data. It was found that the uncertainty
was higher at the ice edge, although further analysis of this
output was not given. Another recent study by Fritzner et al.
(2020) compared two machine learning (ML) approaches, k-
nearest neighbor (KNN) and fully convolutional neural net-
works, with ensemble data assimilation.

A recent approach close to the one presented here is IceNet
(Andersson et al., 2021), which trained an ensemble of CNNs
to produce monthly maps of sea ice presence (probability
SIC > 15 %) for forecast lengths up to 6 months. Similar to
other studies, input to this model consisted mainly of reanal-
ysis data. A novel aspect was the training protocol, which
consisted of pre-training each ensemble member using a long
time series of data from the Coupled Model Intercompari-
son Project phase 6 (CMIP6) and then fine-tuning the trained
CNNs using sea ice concentration observations, followed by
a scaling method, known in the ML community as “temper-
ature scaling”, to produce a calibrated probability of sea ice
presence.

None of the previously proposed ML approaches produce
a forecast that propagates in space and time, i.e., a spatiotem-
poral forecast. In this study we investigate a sequence-to-

sequence (Seq2Seq) learning approach to provide daily spa-
tiotemporal forecasts of the probability of sea ice presence
(probability SIC > 15 %) over the region of Hudson Bay,
with forecast lead times up to 90 d. To keep the method gen-
eral, we use ERA5 data as input to our model. By using the
Seq2Seq approach we are able to produce forecasts over a
different number of days than our training sequence. The
method is similar to operational forecasting studies (Cheval-
lier et al., 2013; Sigmond et al., 2013), where an initial state
is propagated forward in time, except we are using a data-
driven machine learning approach, as compared to a physics-
based model, and our forecasted variable is a number be-
tween 0 and 1 that indicates the (uncalibrated) probability
of sea ice presence at a grid location, as compared to sea ice
concentration.

2 Data

2.1 ERA5

The present study utilizes ERA5 reanalysis data for model
predictors and validation (Hersbach et al., 2018). ERA5 is
a recent reanalysis produced by the European Centre for
Medium-Range Weather Forecasting (ECMWF). It consists
of an atmospheric reanalysis of the global climate provid-
ing estimates of a large number of atmospheric, land, and
oceanic climate variables. The spatial resolution is ≈ 31 km,
and reanalysis fields are available every hour from 1979–
present (Wang et al., 2019). Observations are assimilated into
the atmospheric model using a 4D variational data assimila-
tion scheme. In this study ERA5 reanalysis data from 1985–
2017 are used.

The sea ice concentration data used in ERA5 are from
the EUMETSAT (European Organisation for the Exploita-
tion of Meteorological Satellites) Ocean and Sea Ice Satel-
lite Applications Facility (OSI SAF) 401 dataset (Tonboe et
al., 2016). These data are produced using a combination of
passive-microwave sea ice concentration retrieval algorithms
to benefit from low sensitivity to atmospheric contamination
of the surface signal while maintaining an ability to adapt to
changes in surface conditions through the use of variable tie
points for ice and water (Tonboe et al., 2016). Although the
SIC is gridded to a 10 km grid, the spatial resolution of these
data is limited by the instrument field of view of the 19 GHz
channel used in the SIC retrieval, which is 45km× 69 km.
When the SIC data are ingested into ERA5, the SIC values
that are less than 15 % are set to zero. Additionally, SIC is set
to zero if sea surface temperature (SST) is above a specified
threshold to account for known biases in passive-microwave
sea ice concentration during melt.

The current study utilizes daily samples with the following
eight input variables from the ERA5 dataset over the period
of 1985–2017: sea ice concentration, sea surface tempera-
ture, 2 m temperature (t2m), surface sensible heat flux, wind
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10 m U component (u10), wind 10 m V component (v10),
land mask, and additive degree days (ADDs) derived from
the t2m variable. All the input variables except sea ice con-
centration and land mask are normalized before being input
to the network. Recalling that data are available from ERA5
every hour, the fields from 12:00 UTC (midday) were used.

There were some irregularities with the ERA5 land mask
file and the sea ice concentration. Some locations indicated
as land in the land mask file had a non-zero sea ice concen-
tration value. At these locations the sea ice concentration was
set to zero. There were also some locations indicated as non-
land in the land mask file that had a zero ice concentration,
even when the ice concentration should be non-zero based
on the atmospheric conditions, season, and examination of
the time series at the given location. At these locations we
set the sea ice concentration to the average of the non-land
neighboring pixels.

2.2 Operational ice charts

Regional ice charts from the Canadian Ice Service (CIS),
referred to herein as CIS charts, were used to complement
the use of ERA5 for verification of freeze-up and breakup
dates. CIS ice charts are compiled by analysts who manu-
ally combine data from various sources, including synthetic-
aperture radar (SAR) imagery, sea ice concentration from
passive-microwave data, optical data, and ship reports. Re-
gional ice charts are available on a weekly or biweekly ba-
sis over the study period and fully cover the study domain.
Although daily ice charts are available at a higher temporal
frequency than regional charts, they are only available during
certain times of the year and over certain regions. Due to this
non-standard spatiotemporal coverage, daily ice charts were
not used. It is important to note the temporal resolution of
the CIS regional ice charts is coarse compared to the needs
of this assessment.

2.3 S2S forecasts

The subseasonal-to-seasonal (S2S) system by ECMWF (Vi-
tart and Robertson, 2018) was used to complement the use
of ERA5 for verification of binary accuracy spatially and
across seasons. The S2S predictions are launched twice a
week (Monday and Thursday), with forecasts for lead times
up to 46 d. For the comparison presented here, the data from
our models are extracted for the same launch dates as those
used for the S2S system. The S2S data were extracted at a
spatial resolution of 0.25◦× 0.25◦ and interpolated to our
31 km grid resolution using a nearest-neighbor approach. Re-
sults are shown only for 2016 and 2017 because these are the
years for which forecasts are available for the S2S system
that overlap with our study period.

3 Study region

For the present study we focus on the Hudson Bay system,
consisting of Hudson Bay, James Bay, Hudson Strait, and
Foxe Basin (Fig. 1). The area is bordered by 39 communi-
ties, 29 of which are exclusively accessible by sea or air.
These communities rely extensively on sea lift operations
during the ice-free season to receive their yearly resupply
of fuel and goods too heavy to be flown. Shipping traffic,
mostly confined during the ice-free and shoulder seasons, is
also generated by mining, fishing, tourism, and research ac-
tivities (Andrews et al., 2018). The study area is seasonally
covered by first-year ice, with open water over most of the
domain each summer, with the exception of some small re-
gions in Foxe Basin. The seasonal cycle of ice cover in this
region is dominated by local atmospheric and oceanic drivers
(Hochheim and Barber, 2014). Freeze-up generally starts in
November (earlier in the northern part of the region) and lasts
for a couple of months. Breakup usually starts in May or
June, and the breakup period is a little longer than freeze-
up, at 2–3 months. Recent years show earlier breakup and
later freeze-up. The trends and their significance are depen-
dent on the region (Hochheim and Barber, 2014; Andrews et
al., 2018).

4 Forecast model architecture

The seasonal forecasting problem of this study can be for-
mulated as a spatiotemporal sequence forecasting problem
that can be solved under the general sequence-to-sequence
(Seq2Seq) learning framework (Sutskever et al., 2014). In
Seq2Seq learning, which has successful applications in ma-
chine translation (Cho et al., 2014), video captioning (Venu-
gopalan et al., 2015), and speech recognition (Chiu et al.,
2018), the target is to map a sequence of inputs to a sequence
of outputs, where the inputs and outputs can be different
lengths. The architecture of these models normally consists
of two major components: encoder and decoder. The encoder
component transforms a given input (here, a set of geophys-
ical variables such as sea ice concentration and air temper-
ature) to an encoded state of fixed shape, while the decoder
takes that encoded state and generates an output sequence
(here, a sea ice presence probability) with the desired length,
which here is the number of days in the forecast (90 d).

For this study, following the encoder–decoder architecture
described above, two spatiotemporal sequence-to-sequence
prediction models are developed. These will be referred to
herein as the “Basic model” and the “Augmented model” and
are described in Sect. 4.1 and 4.2 respectively. For both mod-
els, the prediction sequence is unrolled over a user-specified
number of forecast days to produce ice presence probability
forecasts on a spatial grid each day with a scale of ≈ 31 km
(the same as the ERA5 input data).
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Figure 1. The study region with locations of interest shown in red. The insets show the location of a nearby port or polynya (red) and the
nearest point on the model grid (blue) that is outside of the land boundary (where the land mask from ERA5 is less than 0.6), in addition
to a bounding box that approximates a grid cell. The ports are Churchill, Inukjuak, and Quaqtaq, whereas the polynyas are near Sanirajak,
Kivalliq, and Kinngait.

4.1 Basic model

The encoder section of the Basic model takes the geophys-
ical variables from the last 3 d (sea ice concentration, air
temperature, etc.) as input. Each input sample is of size
(3×W×H×C), where 3 is the number of historical days, W
and H are the width and height of the raster samples in their
original resolution, and C is the total number of input vari-
ables (here 8). Using a longer input sample of 5 d was also
tested but did not lead to an improvement in forecast quality.
With this longer input the quantity of data to be processed
was greater than that for 3 d, which increased the computa-
tional expense and data storage requirements; hence 3 d was
used for the experiments shown here.

The overall architecture is shown in Fig. 2a. The encoder
starts by passing each input sample through a feature pyra-
mid network (Lin et al., 2017) to detect spatial patterns in
the input data at both the local and large scales. Next, the
sequence of feature grids extracted from the feature pyramid
network are further processed through a convolutional LSTM
(long short-term memory) layer (ConvLSTM) (Hochreiter
and Schmidhuber, 1997; Xingjian et al., 2015), returning the
last output state. This layer learns a single representation of
the time series that also preserves spatial locality. The most
recent day of historic input data is concatenated with the
ConvLSTM output to better preserve the influence of this
state on the model predictions. The encoder provides as out-
put a single raster with the same height and width as the stack
of raster data input to the network but with a higher number
of channels such as to fully represent the encoded state. The
final encoded state is then fed to a custom recurrent neural
network (RNN) decoder that extrapolates the state across the
specified number of time steps. It takes as input the encoded
state with multiple channels and as output produces a state

with the same height and width as the input over the desired
number of time steps in the forecast (here 90 d). Finally, a
time-distributed network-in-network (Lin et al., 2013) struc-
ture is employed to apply a 1D convolution on each time step
prediction to keep the spatial grid size the same but reduce
the number of channels to one, representing the daily prob-
abilities of sea ice presence over the forecast period (up to
90 d).

The custom RNN decoder, shown in Fig. 2b, as is com-
mon of many RNN layers, maintains both a cell state and
a hidden state (Yu et al., 2019). First, the initial cell state
and hidden state are initialized with the input-encoded state.
Then, at each time step and for each of the states, the network
predicts the difference, or residual, from the previous state to
generate the updated states using depthwise separable con-
volutions (Howard et al., 2017). The output of the decoder
section is the concatenation of the cell states from each time
step.

4.2 Augmented model

A slight variant of the Basic model, referred to as the Aug-
mented model, is developed to accept a second input. This
second input has the same height and width as the first in-
put but corresponds to Climate Normal of three variables
over the required period (e.g., 90 d), where these variables
are t2m, u10, and v10 and their Climate Normal is calcu-
lated from 1985 to the last training year for each forecast
day. These variables were chosen because of their availabil-
ity in both historical datasets and real time (for this applica-
tion, through the Meteorological Service of Canada GeoMet
platform). Since this branch of the network “augments” the
core model, it was desired to keep this flexibility for future
development, as our computing infrastructure is designed to
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Figure 2. (a) Overall network architecture and (b) custom decoder. The black portion in panel (a) refers to the Basic model, while the
red portion in panel (a) refers to the additional components required for the Augmented model. The dashed arrows show a process carried
out only once (the initialization of the adder). FPN: feature pyramid network, ConvLSTM: convolutional long short-term memory network,
NiN: network in network module, ReLU: rectified linear unit.

connect with GeoMet. For the Augmented model, the orig-
inal encoder structure for historical input data remains un-
changed, but a secondary encoder is added to the network,
consisting of a feature pyramid network that receives the Cli-
mate Normal data as input. A secondary variant of the de-
coder component is implemented which accepts this encoded
sequence in order to enhance estimates of the residuals at
each of the future time steps (see Fig. 2).

5 Description of experiments

Since the overarching goal is to provide a tool to stakeholders
that can be used operationally, a training and validation pro-
tocol is required that truly assesses the forecasting skill with-
out using future data. For example, on this basis a leave-one-
out approach cannot be used. Instead, we initially train over a
given number of years, and then we update the model weights

for future training periods, where the model weights are the
learned parameters that transform the input to the output. We
tested different initial training periods (10 versus 20 years)
and also different numbers of months to include in training
our monthly models. The current protocol (Fig. 3) led to the
best results.

In this protocol for each month of a year a separate model
is trained on data from the given month as well as the
preceding and following month. For example, the “April
model” is trained using data from 1 March to 31 May. This
monthly model is initially trained on data from a fixed num-
ber of years, chosen to be 10 years, as a compromise be-
tween having enough data to provide the model with rep-
resentative conditions from which it can learn while allow-
ing for enough data to be set aside for validation and test-
ing. After this initial experiment, to predict each following
test year i, using a rolling forecast prediction, the weights
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Figure 3. Training, validation, and test protocol used for both the
Basic and Augmented model.

of the model from year i− 1 are updated with data from
year i− 2. Data for year i− 1 are used as validation for
early stopping criteria and to evaluate the training perfor-
mance. For example the “year 2003” model is initialized with
weights from the year 2002 model, which are updated with
data from year 2002, validated on year 2003, and used to pre-
dict year 2004. This process is used to produce forecasts of
sea ice presence for years 1996 to 2017. Since the weight up-
dates use only data of 1 year for training and validation, the
method is computationally fast and efficient.

The ML models are implemented using the TensorFlow
Keras open-source library with a stochastic gradient descent
(SGD) optimizer with a learning rate of 0.01, momentum
of 0.9, and binary cross-entropy loss function. The maximum
training epoch for the initial model and the retraining process
is 60 and 40 respectively, and for both cases the training pro-
cess stops if the validation accuracy is not improved after
5 epochs.

6 Skill scores

In order to evaluate the performance of the ML models,
the binary accuracy, Brier score, and accuracy of freeze-up
and breakup dates are used. The main observations to which
model forecasts are compared to are the ERA5 sea ice con-
centration (thresholded at 15 % to convert to sea ice pres-
ence). Based on our training, verification, and testing proce-
dure, the ERA5 states used as observations are from future
dates; hence there is a degree of independence from the data
used to train the model. To provide a baseline, we also com-
pare our ML models to a Climate Normal, which is defined

here as the average of the ERA5 sea ice presence from 1985
to the last year in the training set for each experiment. While
inputs of each model in the training and test procedure are
derived from 3 months of each year, only the results from
the central month (second of three) are selected to evaluate
the results of the given model. For example, the April model
is trained using historical data from March–April–May. This
model is evaluated using 90 d forecasts launched during the
month of April. Other datasets used for comparison are sea
ice concentration from the ECMWF S2S forecasting system
and operational ice charts (described in Sect. 2.2).

6.1 Binary accuracy

Binary accuracy is calculated by mapping the ML model
forecasts, which denote a probability of sea ice presence, to
binary values by thresholding the probability such that when
P > 0.5 the pixel is considered to be ice and when P ≤ 0.5 it
is considered to be water (similar to Andersson et al., 2021).
After this thresholding, the binary accuracy is calculated as
(TP+TN)/N , where TP denotes a true positive and has a
value of one if both the pixel in the model and observations
are one (indicating ice) and a value of zero otherwise, TN
denotes a true negative and has a value of one if both the
pixel in the model and observations are zero (indicating wa-
ter), and N is the total number of pixels considered. When
binary accuracy is used to calculate monthly scores for the
entire domain (Fig. 4), N is the product of the number of
pixels in the spatial domain, the days in the given month, and
the number of years over which the forecasts are evaluated.
For binary accuracy a score of one is considered optimal.

6.2 Brier score

Binary accuracy scores do not differentiate between a pre-
dicted probability of 0.51 and 0.9. Both would be a true pos-
itive if the pixel is ice in the observations. Small changes in
the predicted probability around the probability threshold im-
pact the binary accuracy. An alternative score that better re-
flects the value of the predicted probability is the Brier score
(BS) (Ferro, 2007):

BS=
1
M

1
T

M∑
i=1

T∑
t=1

(Pt,i −Ot,i)
2, (1)

where Pt,i is the model prediction (sea ice presence proba-
bility), Ot,i is the corresponding observation (zero or one) at
time t and pixel i, M represents the total number of pixels
in the spatial domain, and T is the total number of temporal
outputs used (note N =M × T ). For the Brier score a value
of zero is considered optimal.

6.3 Freeze-up and breakup accuracy

The accuracy of the model in predicting freeze-up and
breakup dates is indicative of operational capability of the
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trained models to support shipping operations during the
shoulder season. Following the definition used by the Cana-
dian Ice Service (CIS), the freeze-up date of each pixel in
a year is the first date in the freeze-up season (1 October
to 31 January for Hudson Bay) that ice (value of one af-
ter thresholding the predicted probabilities at 50 %) is ob-
served for 15 continuous days. A similar procedure is car-
ried out to predict breakup, with the exception that the pixel
must be considered water (value of zero after thresholding
its predicted probability) for 15 continuous days for breakup
to have occurred in the breakup season (1 May to 31 July
for Hudson Bay, with forecasts initialized up to 31 July con-
sidered). These freeze-up/breakup dates per pixel per year
are calculated for observations, Climate Normal, and model
predictions at 30 and 60 lead days. To obtain each accuracy
map, first the predicted and observed freeze-up/breakup dates
per pixel per year are compared. If the two dates are within
7 d of each other, the prediction is correct (a value of one
is assigned), and if not, the prediction is incorrect (a value of
zero is assigned). Then, the results are averaged over the total
number of years to obtain an overall score between 0 and 1,
which we will refer to as freeze-up/breakup accuracy.

7 Results

7.1 Forecasts of ice presence

7.1.1 Monthly averaged results

For each day in the test set, which is the set of days over
which the 90 d predictions are launched, we have 90 binary
accuracy maps of our study region. The monthly statistics
are summarized in Fig. 4a–c. The value at index (i,j) of
each panel of Fig. 4a–c represents the average binary accu-
racy score of all predictions in the test set that are launched
at month i at lead day j , where 1≤ i ≤ 12 and 1≤ j ≤ 90.
The (1,1) index value of Fig. 4a shows the binary accuracy
of 1 d forecasts launched between 1 and 31 January, ending
2 January to 1 February. The (1,2) index value corresponds
to the binary accuracy of 2 d forecasts. These forecasts were
launched between 1 and 31 January, ending 3 January to
2 February. The (2,1) index value corresponds to the binary
accuracy of 1 d forecasts launched between 1 and 28 Febru-
ary, ending 2 February to 1 March.

Binary accuracies (Fig. 4a–c) are close to 100 % for the
month of January and for lead times that cover the months of
January, February, and March, as would be expected, because
at this time the region is covered with ice. In contrast, for
forecasts at the beginning of the open-water season (June and
July), Climate Normal struggles to accurately capture the ice
cover for lead times of 1 to 50 d (Fig. 4a), likely due to inter-
annual variability and lengthening of the open-water period
(Hochheim and Barber, 2014; Andrews et al., 2018). The Ba-
sic and Augmented models have higher accuracies than Cli-

mate Normal over these months (Fig. 4d and e). We also note
improvements in the Basic and Augmented models at short
lead times for August, September, October, and November,
as compared to Climate Normal (Fig. 4d and e). Improve-
ments with the Augmented model can be seen in particu-
lar for longer lead times in July/August and at shorter lead
times (15–50 d) for November (Fig. 4f). These forecasts cor-
respond to the freeze-up period, which starts in mid-October
or November in the study region and lasts for approximately
2 months (Hochheim and Barber, 2014).

Figure 5 presents the monthly averaged Brier scores for
the Basic and Augmented models (Fig. 5a and b) and their
differences (Fig. 5c) as a function of lead days. Similar to
Fig. 4, each value at index (i,j) of Fig. 5a–b represents the
average Brier score of all predictions in the test set that are
launched at month i at lead day j , where 1≤ i ≤ 12 and
1≤ j ≤ 90. The resulting pattern is similar to that for bi-
nary accuracy. Recalling that a Brier score of zero is optimal,
the higher Brier scores seen during freeze-up and breakup
for both models indicate poorer performance during these
seasons. Their difference (Fig. 5c) indicates a better score
for the Augmented model at longer lead times especially for
March, April, July, and August. In contrast for some cases
like forecasts of 60–90 lead days of the September model,
the Brier score of the Basic model is around 0.01 better than
the Augmented model. The reason for the higher Brier score
of the Basic model in comparison to the Augmented model
may be because the September model uses training data over
August–October. The trend over this period may be less rep-
resentative of more recent ice conditions (Hochheim and Bar-
ber, 2014; Andrews et al., 2018), which may make the addi-
tional data used in the Augmented model unhelpful at these
longer forecast periods.

The calibration curves of the Basic and Augmented
September models are shown in Fig. 6. These curves rep-
resent the observed frequency of ice presence, where the
frequency is calculated over the entire domain, versus the
forecasted probabilities for different lead days of forecasts
launched in September. For short lead times both models, es-
pecially the Basic model, show close to perfect calibration
(blue line), but at 60 lead days the underestimation is more
significant for the Augmented model with lower forecasted
probabilities of ice in comparison to observations, while at
90 lead days the overestimation is more significant for the
Augmented model, with a forecasted probability that is much
higher than the observed frequency of ice. This suggests that
in comparison to observations, freeze-up may be delayed at
60 lead days for regions with freeze-up dates around Novem-
ber and may be too early at 90 lead days for regions with
freeze-up dates around December for the Augmented model.

7.1.2 Spatial maps of sea ice presence

Binary accuracy values averaged over the domain and each
month do not provide information about model performance
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Figure 4. Binary accuracies as a function of lead time. Top row panels a–c show the binary accuracy of each model, while bottom row
panels d–f show the differences in binary accuracy between the models. The Augmented model is trained with additional 90 d Climate
Normal input. Most differences are observed in the breakup and freeze-up seasons.

Figure 5. Brier score of the (a) Basic and (b) Augmented model as a function of lead time. Their score difference is shown in (c). Most
differences are observed in the breakup and freeze-up seasons.

at each location in the spatial domain or at a finer timescale.
The model proposed here provides a spatial map of the prob-
ability of ice for each day in the forecast period. In Fig. 7
the spatial distribution of ice and water is shown with the
probability of ice for three different dates during the breakup
period. The observations are ice and water obtained by ap-
plying a threshold of 15 % to SIC from ERA5 for the given
date. For example, given that the forecasts are launched on
6 May 2014, the left column (after 30 d) corresponds to the
sea ice state on 5 June 2014.

The forecast after 30 d indicates both the Basic and Aug-
mented models predict a reduced ice presence probability
along the eastern coast of Hudson Bay that is in better agree-
ment with observations than Climate Normal. Similarly, after

50 and 70 d, Climate Normal has a higher ice cover relative
to the lower probability of ice for the Basic model in the cen-
tral part of Hudson Bay, while the Augmented model is in
better agreement with observations. In comparing the prob-
ability maps for the Basic and Augmented model, it can be
noted the Basic model has reduced ice presence probability
in the southern part of the domain. Overall we find the spatial
pattern of breakup to be in good agreement with the observa-
tions, in particular for the Augmented model.
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Figure 6. Calibration curves for the Basic and Augmented model for sea ice presence forecasts initiated from 1 to 30 September for different
lead days. At 90 lead days, both models underestimate the probability of sea ice when observed frequencies are less than 0.75 and overestimate
the probability of sea ice at higher probabilities. The Basic model is well-calibrated for short lead times.

7.2 Assessment of operational freeze-up and breakup
date forecasting

7.2.1 Freeze-up and breakup in comparison with
ERA5 data

We start our comparison using ERA5 as the baseline, consis-
tent with our earlier comparisons. Figures 8 and 9 show the
freeze-up and breakup accuracy maps of the Climate Normal
as well as the Basic and Augmented model for 30 and 60 lead
days. The freeze-up accuracy maps (Fig. 8) show similar spa-
tial patterns for the Basic and Augmented models for 60 lead
days, with differences between the two models for 30 lead
days. The freeze-up accuracy for 30 lead days looks very
different also from Climate Normal. To investigate the pre-
diction of freeze-up by the Basic model at 30 lead days, we
looked at forecasts from the November and October models
for 30 and 60 lead days respectively, as freeze-up mainly hap-
pens in December. It was found (not shown) that the Decem-
ber sea ice presence accuracy of the Basic model at 30 lead
days is lower in the central region and higher in Hudson Strait
compared to other methods, which explains the difference in
freeze-up prediction maps. The poorer accuracy in the central
region is because freeze-up was too late, as discussed further
in Sect. 8.

In contrast to freeze-up, for the breakup accuracy the Cli-
mate Normal (Fig. 9a) has an overall poor accuracy, while
the Augmented model at 30 lead days (Fig. 9d) has the best
accuracy, especially in the central region. The breakup pre-
diction accuracy degrades at 60 lead days for both the Basic
and Augmented models.

The interannual variability in accuracy in freeze-up (1 Oc-
tober to 31 January) and breakup (1 May to 31 July) predic-
tions is presented in Fig. 10 for 30 and 60 lead days. The
respective trends are shown by dashed lines. While no sig-
nificant trend is observed for freeze-up accuracy at both lead

times, the breakup accuracy (Fig. 10c and d) shows a de-
clining trend of 2 %. Similar to Fig. 9 for freeze-up/breakup
date predictions, both the Augmented and Basic models have
their highest improvement compared to Climate Normal for
breakup at 30 lead days. In addition, for both cases, 2010
shows an extreme case where Climate Normal has the low-
est accuracy over the entire period. For that year, the Aug-
mented model has a lower freeze-up accuracy compared to
other years, while its breakup accuracy does not show any
significant variability over the years. It has been noted in an
earlier study that 2010 was an anomalous year (Hochheim
and Barber, 2014).

The ability of the model to predict freeze-up and breakup
dates can provide helpful information for local communities
and shipping operators. Here, the nearest pixels to three sam-
ple ports shown in Fig. 1, Churchill, Inukjuak, and Quaq-
taq, and Sanirajak (formerly known as Hall Beach) are se-
lected. The sites were chosen because they represent loca-
tions with significantly different sea ice conditions. Churchill
and Inukjuak are located on the eastern and western coasts
of Hudson Bay, with Churchill being a major port as part of
the potential Arctic Bridge shipping route. The eastern coast
is significantly impacted by freshwater inflow from rivers
draining into Hudson Bay, while the region of the western
coast is impacted by northwesterly winds (there is a latent
heat polynya, the Kivalliq polynya, that runs along the north-
west shore of Hudson Bay; Bruneau et al., 2021). There
are additionally east–west asymmetries in Hudson Bay in
terms of ice thickness and sea surface temperature (Saucier
et al., 2004), with counterclockwise ocean currents leading to
thicker ice cover along the eastern shore of the bay. Quaqtaq
is located in Hudson Strait, where wind and air temperature
patterns are different from those in Hudson Bay and pres-
sured ice is common.

Freeze-up/breakup date predictions of the models at 30
and 60 lead days versus observed dates are presented in
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Figure 7. Spatial patterns of sea ice presence during breakup. These models are trained using data from May, June, and July. The forecasts
are launched on 6 May 2014 and are displayed after 30 d (5 June, left column), 50 d (25 June, middle column), and 70 d (15 July, right
column).
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Figure 8. Accuracy of the predicted freeze-up date within 7 d. Freeze-up dates are checked from 1 October to 31 January. The 7 d window is
chosen to match to the definition used by the Canadian Ice Service.

Figure 9. Accuracy of the predicted breakup date within 7 d. Breakup dates are checked from 1 May to 31 July. The 7 d window is chosen to
match to the definition used by the Canadian Ice Service.

Figs. 11 and 12. The red line in each plot represents a perfect
one-to-one prediction, and the pink region shows the accept-
able 7 d difference that will still be considered a correct pre-
diction according to the CIS criteria. The width of the pink
zone on each plot varies, as the total timeframe of breakup
and freeze-up at each location is different (i.e., the subplots
have different x and y axes). In addition, the year of 2010

is omitted from these plots, as it was an anomalously warm
year (Hochheim and Barber, 2014).

For freeze-up, 30 lead days predictions are more concen-
trated and closer to the pink zone, while there is more disper-
sion and outliers observed for predictions for 60 lead days
(Fig. 11). In addition, predictions of the Augmented model
have fewer outliers than predictions of the Basic model. For
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Figure 10. Accuracy of the Climate Normal, Basic model, and Augmented model freeze-up and breakup predictions over the years at 30 and
60 lead days. Dashed lines show the trend.

the port of Churchill, predictions are close to the center and
inside or close to the pink zone for both models and both
lead times compared to other locations. The Basic model, es-
pecially at 30 lead days, predicts freeze-up dates of several
years with a consistent delay for Inukjuak, while for Quaq-
taq its predictions are earlier than observed dates. In Fig. 12,
similar to freeze-up, breakup dates are better captured by the
Augmented model at 30 lead days as compared to 60 lead
days, where predictions are more scattered. Also, the patterns
of early and delayed predictions are not as visible for breakup
as for freeze-up for the Inukjuak and Quaqtaq ports.

7.2.2 Freeze-up and breakup in comparison with
operational ice charts

To assess the operational capability of the models, it is im-
portant to consider the authoritative source of information
used by shipping operators as a baseline for comparison,
which is operational ice charts. Three sites were selected
for this assessment: the Kivalliq polynya near the Arviat
port (61.19◦ N, 93.49◦W), Kinngait (64.05◦ N, 76.48◦W),
and Sanirajak (68.83◦ N, 81.10◦W). These sites were se-
lected because each is both near a port location and asso-
ciated with a polynya; therefore the ice cover is challenging
to predict. The accuracy of freeze-up and breakup dates at
each site was evaluated against both CIS regional ice charts

and ERA5 baselines. The predictions of the Basic and Aug-
mented models at 30 and 60 lead days were assessed using
the mean absolute error (MAE) and accuracy within 7 d. Me-
dian breakup and freeze-up dates derived from CIS regional
ice charts from 1980 to 2010 and published in the Canadian
Ice Service’s Ice Atlas 1980–2010 (CIS, 2013) are also eval-
uated using the same methodology. For the Sanirajak site,
each time breakup was outside the date range defined by the
extraction methodology (1 May to 31 July) from the ERA5
baseline or model forecast; the missing date was replaced by
the ice atlas freeze-up date, 22 October, in order to calculate
both metrics. This was done in order to handle a multiyear
ice situation when no breakup dates are available.

For breakup, at the Kivalliq site, the Augmented model at
30 lead days showed the best performance based on MAE
and accuracy metrics using ERA5 as the baseline, while the
Basic model at 30 lead days tends to perform better using CIS
ice charts as the baseline (Table 1). The breakup dates for the
Kinngait site have higher interannual variability, reflected by
the poor performance of the ice atlas at this site for both base-
lines. At the Kinngait site the breakup forecast skill is rela-
tively consistent for both Basic and Augmented models at 30
and 60 lead days but shows higher skill using the ERA5 base-
line compared to the ice charts. The difference in breakup
dates derived from the two baselines is significant at this site
(Table 3), where events such as early breakup in March 2012
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Figure 11. Comparison between forecast and observed freeze-up dates at pixels located in the vicinity of ports in the study region for 30 and
60 lead days. Each dot represents 1 year. The red line represents perfect predictions, and the pink area represents ±7 d of the red line, which
is commonly assumed to be an acceptable error range.

are captured by the ice charts but not by the ERA5 reanalysis.
For the Sanirajak site, the difference between baselines is ex-
acerbated. The ice charts consistently detect early breakup at
this site, while the ERA5 reanalysis does not. For example,
the majority of breakup dates derived from ice charts were
before 1 July, whereas this occurs only once in 2016 using
the ERA5 baseline. The baseline discrepancy explains why
the Basic and Augmented models performed better using the
ERA5 baseline, while the ice atlas has better skill using the

CIS ice chart baseline. However, both have similar skill using
their corresponding baseline.

For freeze-up, at the Kivalliq site, all models perform well,
with the lowest freeze-up accuracy at 0.52 using the ERA5
baseline or 0.43 using the CIS ice chart baseline (Table 2).
For all sites, the ice atlas showed the highest freeze-up fore-
casting skill against both baselines, due to the lower interan-
nual variability in freeze-up dates compared to breakup dates.
These results are consistent with the freeze-up and breakup
accuracy maps (Figs. 8 and 9).
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Figure 12. Comparison between forecast and observed breakup dates at pixels located in the vicinity of ports in the study region for 30 and
60 lead days. Each dot represents 1 year. The red line represents perfect predictions, and the pink area represents ±7 d of the red line, which
is commonly assumed to be an acceptable error range.

Table 3 highlights the discrepancy between the two base-
lines using the same metrics as Tables 1 and 2, where MAE
can be interpreted as the mean absolute difference between
the two baselines and the accuracy can be interpreted as the
fraction of the time the baseline dates are within 7 d of each
other. As expected, there is a minimal discrepancy for large
and uniform areas such as the Kivalliq site, explained by the
weekly publication frequency of the CIS regional ice charts.
The discrepancy is higher for smaller and localized polynyas,
such as the Kinngait and Sanirajak sites, where the low-

resolution passive-microwave instruments used by ERA5 do
not detect them compared to CIS regional ice charts, which
rely in part on higher-resolution SAR data.

7.3 Comparison with forecast data from the ECMWF
S2S system

To evaluate our approach further, binary accuracies are calcu-
lated using sea ice concentration from the ECMWF S2S sys-
tem as the baseline for comparison. Results are shown only
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Table 1. Breakup mean absolute error and accuracy at selected sites using data from the CIS Ice Atlas, Basic, and Augmented (Aug) models
at 30 and 60 lead days versus baseline observations derived from CIS regional ice charts and ERA5.

Breakup mean absolute error (d) Breakup accuracy

30 lead days 60 lead days 30 lead days 60 lead days

Baseline Basic Aug Basic Aug Ice Atlas Basic Aug Basic Aug Ice Atlas

Kivalliq ERA5 14.10 12.38 13.67 18.14 15.52 0.29 0.48 0.38 0.10 0.43
Kinngait ERA5 13.05 13.14 17.00 13.81 17.71 0.14 0.29 0.38 0.24 0.29
Sanirajak ERA5 25.19 24.24 20.76 17.52 87.33 0.43 0.48 0.38 0.48 0.00
Kivalliq Ice chart 10.10 13.52 14.52 15.57 13.90 0.43 0.19 0.29 0.19 0.29
Kinngait Ice chart 25.76 25.86 28.95 25.57 34.62 0.05 0.05 0.10 0.14 0.05
Sanirajak Ice chart 90.90 97.95 86.67 82.48 18.67 0.05 0.05 0.05 0.00 0.43

Table 2. Freeze-up mean absolute error and accuracy at selected sites using data from the CIS Ice Atlas, Basic, and Augmented (Aug) models
at 30 and 60 lead days versus baseline observations derived from CIS regional ice charts and ERA5.

Freeze-up mean absolute error (d) Freeze-up accuracy

30 lead days 60 lead days 30 lead days 60 lead days

Baseline Basic Aug Basic Aug Ice Atlas Basic Aug Basic Aug Ice Atlas

Kivalliq ERA5 6.05 7.71 5.81 7.95 5.33 0.62 0.52 0.71 0.52 0.71
Kinngait ERA5 7.48 12.38 11.00 13.33 8.10 0,62 0.43 0.38 0.33 0.71
Sanirajak ERA5 9.10 6.48 9.86 8.52 8.14 0.43 0.67 0,43 0.52 0.62
Kivalliq Ice chart 8.90 9.90 9.81 10.81 7.81 0.48 0.52 0.43 0.52 0.62
Kinngait Ice chart 13.90 19.67 18.10 20.43 13.76 0.43 0.33 0.29 0.33 0.52
Sanirajak Ice chart 10.33 15.52 15.67 17.00 9.86 0.43 0.33 0.29 0.24 0.43

Table 3. Discrepancy between breakup and freeze-up dates derived
from ERA5 and CIS regional ice charts. MAE refers to the mean ab-
solute error (days). Accuracy is the fraction of freeze-up or breakup
events for which the baseline dates are within 7 d of each other.

Breakup Freeze-up

MAE Accuracy MAE Accuracy

Kivalliq 8.76 0.48 5.81 0.76
Kinngait 18.52 0.38 8.14 0.67
Sanirajak 85.52 0.10 11.33 0.48

for forecasts launched during months for which there are
notable differences between the methods, which are May–
June and October–November. Figure 13 shows that during
May and June both the Basic and Augmented models have
a higher binary accuracy than the S2S forecasts, while dur-
ing October and November the opposite behavior is ob-
served, with the Basic and Augmented models having sim-
ilarly low accuracies. We investigate these differences using
false-positive and false-negative rates. The false-positive rate
is FPrate = FP/(FP + T N ) and is the ratio of the number
of days for which water is incorrectly classified as ice (false
positives, FP) to the total number of days classified as water
(FP + T N ), where T N is the true negatives, or number of

days correctly classified as water. The false-negative rate is
FNrate = FN /(FN + T P) and is the ratio of the number
of days for which ice is incorrectly classified as water (false
negative, FN ) to the total number of days classified as ice
(FN + T P), where T P is the true positives, i.e. number of
days correctly classified as ice. Recall the observation used
is the thresholded sea ice concentration from ERA5.

Figure 14 shows spatial maps of the binary accuracy,
false-positive rates, and false-negative rates, for forecasts at
30 lead days launched on dates between 1 June and 30 June.
These forecasts correspond to ice conditions from 1 July to
30 July. The white regions correspond to locations masked
out due to land or where there are no positives (days clas-
sified as ice) in the false-positive plots and similarly in the
false-negative plots. For example, there is no ice in the north-
west portion of the domain at this time of the year. For the
Basic and Augmented models there is a high false-positive
rate in the southeastern portion of Hudson Bay, indicating the
sea ice is not retreating fast enough relative to the observa-
tions. However, for the S2S forecasts the false-positive rate is
high over almost all of Hudson Bay, including Hudson Strait.
Climate Normal has the lowest false-positive rate of the ap-
proaches examined here. For the false-negative rate, different
behavior is observed with a high false-negative rate for Cli-
mate Normal, indicating too much open water, and slightly
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Figure 13. Binary accuracy as a function of lead day for forecasts launched in (a) May, (b) June, (c) October, and (d) November. These
months were chosen because they display the largest differences between the various forecasting methods. Binary accuracies are evaluated
using data from both 2016 and 2017.

lower false-negative rates for the Basic and Augmented mod-
els. The Augmented model has a higher false-negative rate
than the Basic model, suggesting some of the overprediction
of open water may be related to the additional air temper-
ature or wind speed data that are input to this model. The
strong recovery of the binary accuracy of the S2S forecasts
around day 35 (Fig. 13b) is due to the ice quickly retreating
in these forecasts (not shown).

During October and November the S2S forecasts have a
much higher binary accuracy than those from the Basic and
Augmented models (Fig. 13c and d). The poor performance
of the Basic and Augmented models is in part due to the
opening of the Kivalliq polynya (Bruneau et al., 2021) in
northwestern Hudson Bay (Fig. 15, false-positive rates). This
is a large latent heat polynya that is sustained in part due to
strong offshore winds. The Basic model, Augmented model,
and Climate Normal all predict freeze-up too quickly in this
region, in comparison to the observations, while the S2S
forecasts are able to represent this better (false-positive rates,
Fig. 15). The superior performance of the S2S forecasts may
be because the S2S system uses a prognostic sea ice model
coupled to the atmosphere. When ice starts to form, this re-
duces the heat exchange from the ocean to the atmosphere,
and the rate of ice growth slows. The proposed approach
may have had trouble representing this phenomena because
the associated patterns may not have been represented in the
training data.

8 Discussion

The proposed spatiotemporal sea ice forecasting method is
capable of predicting sea ice presence probabilities with skill
during May, June, and July (breakup) in comparison to both
Climate Normal and sea ice concentration forecasts from a
leading S2S system (Figs. 4d and e and 13a and b). Re-
sults during freeze-up are more mixed, with an indication
of higher accuracy in November in comparison to Climate
Normal at short lead times (Fig. 4d and e) but degradation at
longer lead times and larger discrepancies with S2S forecasts

(Fig. 13c and d). Regarding the poor performance of the Ba-
sic model in predicting freeze-up at 30 lead days (Fig. 8b)
versus 60 lead days (Fig. 8c), we note the freeze-up crite-
ria are checked for dates between 1 October and 31 Jan-
uary. For this range of dates, 30 d forecasts would have been
launched between 1 September and 31 December, trained on
data from 1 August to 31 October (for the September model)
and 1 November to 31 January (for the December model). In
contrast, 60 d forecasts would have been launched 1 month
earlier and trained on data covering the same 3-month span.
We hypothesize the 60 d forecasts are better than the 30 d
forecasts because the air temperature can have more of an
impact for 60 d forecasts, as the open-water season is con-
sidered more heavily in the training data for the 60 d model
(training data extend into July). Hochheim and Barber (2014)
note a dependence of sea ice extent on air temperatures dur-
ing freeze-up in this central region of Hudson Bay. The ad-
ditional inputs to the Augmented model, which includes air
temperature and the wind components, may account for the
improved performance of the Augmented model in compari-
son to the Basic model for this scenario.

Throughout the paper the Basic and Augmented mod-
els have been compared. While the Augmented model was
not developed to address a specific problem with the Ba-
sic model, it was developed to incorporate Climate Normal,
which can help the model generalize, meaning produce bet-
ter forecasts over a wider range of conditions. It was found
(Fig. 4f and trend lines in Fig. 10) the Augmented model gen-
erally has higher accuracy than the Basic model. The com-
parison with the S2S forecasts and Climate Normal, shown
in Figs. 13–15, indicates these two approaches are in better
agreement with each other than the S2S forecasts, with the
Augmented model in closer agreement with Climate Normal
that the Basic model, as expected.

It is worthwhile to consider how our results compare with
those of similar studies in the region. Gignac et al. (2019)
and Dirkson et al. (2019) developed methods for probabilis-
tic forecasting based on fitting probability distribution func-
tions (PDFs) to historical passive-microwave sea ice concen-
tration data. Gignac et al. (2019) in particular focused on
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Figure 14. The columns from left to right are as follows: Climate Normal, S2S, Basic model, and Augmented model. Binary accuracy,
false-positive rate, and false-negative rate calculated using data from forecasts launched between 1–30 June 2016 and 1–30 June 2017 at
30 lead days. These correspond to conditions from 1–30 July 2016 and 1–30 July 2017.

the same geographic region as the present study, choosing
a beta PDF to fit the data and define a model from which
they could query the probability of ice, given a date. Fol-
lowing the same definition of breakup and freeze-up as used
here, they found their approach was able to capture freeze-
up and breakup within 1 or 2 weeks of dates provided by the
Canadian Ice Service (CIS) ice atlas, with the exception of
Sanirajak (formerly known as Hall Beach), similar to the re-
sults reported here. Their discrepancy was 9 weeks (or 63 d),
hence slightly shorter than ours (Table 1), although we have
used ice charts directly, while they used a climatology based
on ice charts. They related this discrepancy to the use of a
mean when processing the passive-microwave data, in com-
parison to the median used for the ice atlas. We not only agree
this could be a contributing factor but also note the passive-
microwave data are biased when the ice is thin (Ivanova et al.,
2015), as is the case in a polynya. Dirkson et al. (2019) de-
veloped a related approach but used a zero- and one-inflated
beta distribution. Their PDF is fit to data from a prognos-
tic modeling system, CanSIPS (Canadian Seasonal to Inter-
annual Prediction System), which consists of two coupled
atmosphere–ice–ocean models. A bias correction approach
is applied to their predictions and CanSIPS output before
comparison with observational data, which was provided by
the HadISST2 (Hadley Centre) sea ice and surface tempera-
ture dataset. Their predictions show skill in Hudson Bay for

forecasts initialized in May and June for 1–2 months (their
Fig. 10) but little skill for freeze-up, similar to what is found
in the present study. Studies using coupled ice–ocean mod-
els (Sigmond et al., 2016; Bushuk et al., 2017) show more
skill for freeze-up than for breakup, consistent with the S2S
results found here.

9 Conclusion

This study has focused on sea ice presence probability fore-
casting using deep learning methods at a daily timescale with
lead times up to 90 d. The Basic model uses eight input vari-
ables from the ERA5 dataset for the 3 d prior to the forecast
launch date. An Augmented version of this Basic model is
also proposed which takes an additional input from Climate
Normal. Comparing the binary accuracy of the Basic and
Augmented models and Climate Normal demonstrated im-
provements of up to 10 % relative to Climate Normal for both
the breakup and freeze-up seasons, especially for short lead
times (up to 30 d). The probability assessment by the cali-
bration analysis (Fig. 6) and Brier score also revealed most
differences in the breakup and freeze-up season with scores
from the Augmented model slightly better in comparison to
the Basic model. The analysis of breakup and freeze-up date
prediction of the models shows that the Augmented model
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Figure 15. The columns from left to right are as follows: Climate Normal, S2S, Basic model, and Augmented model. Binary accuracy,
false-positive rate, and false-negative rate calculated using data from forecasts launched between 1–31 October 2016 and 1–31 October 2017
at 45 lead days. These correspond to conditions from 15 November–16 December 2016 and 15 November–16 December 2017.

is more capable of accurately predicting these dates within
7 d compared to the Basic model, while the accuracy of both
models degrades with increasing lead time. It should be noted
that both models show substantial improvement over Climate
Normal at 30 lead days for breakup date prediction.

The model is demonstrated in hindcast mode here, but
it is intended to be used for forecasting. Compared to dy-
namical forecasting systems in this domain, the proposed ap-
proach has the advantage of time efficiency, as once the ini-
tial model is trained, the fine-tuning process for new inputs
(consisting of 1 year of training data) takes around 15 min
on a Tesla GPU (graphics processing unit) and each infer-
ence takes around 10 s to complete. We also do not envision
it to be difficult to use our approach with alternate input data
from the point of view of model architecture. We recommend
that if one were to use input data from a different source that
they fine-tune the existing weights to account for the differ-
ent data dependencies in the input data (in particular consider
that only a subset of model variables are used; dependencies
present in one subset may be partially considered in a differ-
ent subset for a different model).

A limitation of our approach is that it relies on data from
reanalyses. Without an additional downscaling module, the
spatial resolution of our forecasts cannot exceed that of the
input data, which here is 31 km. We note this resolution is
similar to that used in other studies on seasonal forecast-

ing that have been developed with mariners in mind. For
example, passive-microwave data were used for develop-
ment of the probabilistic approach of Gignac et al. (2019)
and for validation of subseasonal-to-seasonal sea ice pre-
dictions (Zampieri et al., 2018). While passive-microwave
sea ice concentration data are often gridded to 25 km, the
spatial resolution of the brightness temperature data used
to generate the sea ice concentration is typically coarser.
The 19.35 GHz channel on the SSM/I (Special Sensor Mi-
crowave/Imager) and SSMIS (Special Sensor Microwave Im-
ager/Sounder) sensors (often used to produce sea ice concen-
tration observations) has an instrument field of view of ap-
proximately 45km×69 km. The spatial resolution used here
is similar to that used in studies that carry out seasonal fore-
casting using a dynamic ice–ocean model (or similar) where
a sea ice state vector is predicted as a function of time (Sig-
mond et al., 2016; Askenov et al., 2017). Hence, in terms of
spatial resolution, the ML approach proposed in this study is
not coarser than other commonly used approaches, some of
which target marine transportation.

As future work, we plan to expand the experiments over
the entire Arctic region and deploy ensemble methods using
more recent deep learning architectures. Looking into pos-
sible improvements by adding a SIC anomaly as additional
input variable as investigated by Kim et al. (2020) is another
path to explore.
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Code and data availability. The ECMWF ERA5 atmospheric
reanalysis data (Hersbach et al., 2018) are available at
https://doi.org/10.24381/cds.adbb2d47. The subseasonal-to-
seasonal forecasting data used for comparison (Vitart and
Robertson, 2018) are available at https://apps.ecmwf.int/datasets/
data/s2s-realtime-daily-averaged-ecmf/levtype=sfc/type=cf/ (last
access: 10 June 2022).

The ice atlas data are available in the Canadian Ice Service’s Ice
Atlas 1980–2010 at https://publications.gc.ca/pub?id=9.697531&
sl=0 (CIS, 2013), while ice charts are available from the Canadian
Ice Service archive via regional ice charts at https://iceweb1.cis.
ec.gc.ca/Archive/page1.xhtml?lang=en (last access: 25 July 2022)
(CIS, 2022).

The model source code can be downloaded from the reposi-
tory website at https://github.com/zach-gousseau/sifnet_public (last
access: 25 July 2022) or https://doi.org/10.5281/zenodo.6855080
(Gousseau, 2022). See the project website’s README.md file for
details.
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