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Abstract. Seasonal meltwater pools on the surface of the
Greenland Ice Sheet (GrIS) during late spring and summer
in lakes on the surface and transforms the ice sheet’s surface
into a wet environment in the ablation zone below the equi-
librium line. These supraglacial lakes in topographic lows on
the ice surface are connected by a dendritic pattern of mean-
dering streams and channels that together form a hydrologi-
cal system consisting of supra-, en-, and subglacial compo-
nents. Here, we use lidar data from NASA’s Airborne Topo-
graphic Mapper (ATM) instrument suite and high-resolution
optical imagery collected as part of Operation IceBridge
(OIB) in spring 2019 over the GrIS to develop methods for
the study of supraglacial hydrological features. While air-
borne surveys have a limited temporal and spatial coverage
compared to imaging spaceborne sensors, their high foot-
print density and high-resolution imagery reveal a level of
detail that is currently not obtainable from spaceborne mea-
surements. The accuracy and resolution of airborne measure-
ments complement spaceborne measurements, can support
calibration and validation of spaceborne methods, and pro-
vide information necessary for high-resolution process stud-
ies of the supraglacial hydrological system on the GrIS that
currently cannot be achieved from spaceborne observations
alone.

1 Introduction

During the summer months, seasonal surface melting on the
Greenland Ice Sheet (GrIS) produces meltwater near the mar-
gins of the ice sheet that pools in supraglacial lakes in de-
pressions on the ice surface and forms a dendritic pattern
of meandering streams and rivers in the ablation zone be-
low the equilibrium line (e.g., Chu, 2014; Nienow et al.,
2017; Pitcher and Smith, 2019, and references therein). The
lakes appear as sapphire-blue features to the eye and in natu-
ral color imagery (Flowers, 2018) (Fig. 1). The supraglacial
streams and channels often connect several lakes and form a
hydrological network on the surface of the GrIS that is part
of a hydrological system consisting of supra-, en-, and sub-
glacial components (e.g., Chu, 2014; Nienow et al., 2017;
Pitcher and Smith, 2019, and references therein). The forma-
tion, retention, and drainage of meltwater impacts ice sheet
mass balance and therefore ice sheet stability. Over the past
decades, runoff from seasonal meltwater production has ex-
ceeded ice loss from ice discharge and basal melting at the
grounding lines and has become the dominant mechanism of
mass loss for the GrIS (Enderlin et al., 2014; van den Broeke
et al., 2016). More recently, supraglacial lakes and channels
have also been catalogued on the West Antarctic Ice Sheet
(Corr et al., 2022).

Several approaches have been used in recent years to study
the supraglacial hydrological network of lakes and streams
at various spatial and temporal scales. On an ice-sheet-wide
scale, the network of supraglacial hydrological features and
their temporal evolution can be observed with panchromatic,
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natural color, and multi-spectral imagery available from mul-
tiple satellite missions at various spatial resolutions (e.g.,
Box and Ski, 2007; Pope et al., 2016; Sneed and Hamil-
ton, 2007, 2011; Yang and Smith, 2016; Yang et al., 2017,
and references therein). Pixel-based surface classification of
satellite imagery is a powerful tool for identifying and map-
ping networks of supraglacial lakes and streams; however,
challenges remain with precise spatial registration of repeat
high-resolution imagery (e.g., Yang et al., 2017). Estimat-
ing water depths from satellite imagery based on reflectance–
depth relationships (i.e., optical depth) requires either natu-
ral color or multi-spectral imagery (e.g., Pope et al., 2016).
Sneed and Hamilton (2011) list several simplifying assump-
tions necessary for optical depth-based estimates including
a homogenous and smooth lake surface without any wind-
induced waves and a homogenous lake bottom that is roughly
parallel to the lake surface. As shown later in this paper
(Fig. 7a) surface waves are not uncommon, and an oblique
aerial photograph of a supraglacial lake shows that newly
formed thin ice and snow-covered lake ice further compli-
cate depth estimates based on reflectance (Fig. 1). The pho-
tograph also shows a complex lake bottom topography and
reflectance that is far from homogenous. Dark lake bottom
sediments in the form of cryoconite, as well as meltwa-
ter channels and bottom crevasses, can be seen complicat-
ing the analysis, although Pope et al. (2016) developed a
method that accounts for the presence of cryoconite. Yang
and Smith (2013) emphasize the need to gain a better un-
derstanding of supraglacial streams, which is limited due
to supraglacial streams’ relatively narrow width (∼ 1–30 m)
making detection difficult using moderate-resolution satel-
lite imagery. However, the recent increase in availability of
high-resolution satellite imagery shows improvements in our
knowledge of supraglacial streams (Yang and Smith, 2013).
Whereas small-scale streams, several meters wide, can be
detected with high-resolution satellite imagery, determining
their depths from spaceborne measurements remains difficult
(Flowers, 2018).

On a local scale, remotely controlled drone boats and zo-
diacs equipped with spectroradiometers, digital fathometers,
and sonars have been used to measure spectral properties of
lakes and streams for calibration and validation of depth es-
timates based on satellite imagery, as well as directly mea-
sure water depth (e.g., Box and Ski, 2007; Das et al., 2008;
Legleiter et al., 2014; Pope et al., 2016; Smith et al., 2017;
Tedesco and Steiner, 2011).

More recently, spaceborne and airborne lidars have been
used to estimate lake depths (Datta and Wouters, 2021; Fair
et al., 2020). Airborne measurements can map supraglacial
hydrological features on the GrIS at a level of detail that can
currently not be accomplished by spaceborne instruments.
Airborne measurements can also map supraglacial hydrolog-
ical features at a spatial scale that cannot be achieved by
measurements from short-range drones operated out of re-
mote field camps that often require line-of-sight communi-

Figure 1. Oblique aerial photograph of a supraglacial lake (approx-
imate location 67◦12′38′′ N, 49◦54′46′′W) on Isunnguata Sermia
near Kangerlussuaq from 13 May 2019 (photo: Michael Studinger).
The lake is approximately 280 m wide. For location see Fig. 2.
Surface temperature and surface melt indicator from the Moderate
Resolution Imaging Spectroradiometer (MODIS) (Hall et al., 2018;
Hall and DiGirolamo, 2019), as well as number of melt days for this
location, are shown in Fig. A1a.

cation. More detailed studies of the supraglacial fluvial sys-
tem on the GrIS are needed (Smith et al., 2015, p. 1001).
Here, we use airborne laser altimetry and high-resolution
optical imagery collected as part of Operation IceBridge
(OIB) in spring 2019 over the GrIS (MacGregor et al., 2021)
to develop methods that allow the study of the bathymetry
of supraglacial hydrological features currently not possible
from space or on the ground.

2 Data sets

OIB campaigns were scheduled to survey the sea ice maxi-
mum in March and survey the GrIS at the end of the winter
season in early spring when ice temperatures are still cold to
optimize penetration and quality of the ice-penetrating radar
data (MacGregor et al., 2021). As a result of this data ac-
quisition strategy, some of the campaigns barely captured
the early onset of the summer melt in central and southern
Greenland but did not capture the peak of the melt season.
In addition to the spring campaigns, several “summer cam-
paigns” have been flown at the end of the Arctic summer
to capture the extent of the summer melt. Because of the
timing of these campaigns, temperatures were often below
freezing and most of the supraglacial hydrological features
were already frozen over. Figure A1 shows the daily mean
surface temperature from the Moderate Resolution Imaging
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Figure 2. Location map with spring and fall 2019 flight lines. Ice
surface elevation is shown in blue with a 250 m elevation con-
tour interval. Topography and ice mask data are from the Green-
land Ice Mapping Project (GIMP) digital elevation model (Howat et
al., 2014; Morlighem, 2021). Inset map over the Sermeq Kujalleq
(Jakobshavn Isbræ) region showing figure locations is a Sentinel-2A
false color image (bands 11, 8A, and 4) from 17 May 2019.

Spectroradiometer (MODIS) and the surface melt indicator
for the locations of the lakes and channels shown in Figs. 1
and 7–9 (Hall et al., 2018; Hall and DiGirolamo, 2019). We
analyze nine flights from OIB’s 2019 Arctic spring campaign
between 5 and 16 May 2019. We also analyzed four flights of
the Arctic fall campaign between 10 and 14 September 2019
which cover the region where supraglacial hydrological fea-
tures in the spring campaign are present (Fig. 2). The four
flights in September 2019 did not conclusively show the pres-
ence of liquid water surfaces, and therefore no examples of
those flights are discussed in this paper, which primarily fo-
cuses on method development. All airborne data used in this
study are freely available at the National Snow and Ice Data
Center (NSIDC).

2.1 Airborne Topographic Mapper (ATM) laser
altimeters

The ATM instrument suite contains two conically scanning
laser altimeters (lidars) that independently measure the sur-
face elevation along the path of the aircraft at 15◦ and 2.5◦

off-nadir angles (Krabill et al., 2002; MacGregor et al., 2021;
Studinger et al., 2020). At a nominal flight elevation of 460 m
above ground level (a.g.l.), the swath widths on the ground
are 245 and 40 m (MacGregor et al., 2021). The 15◦ wide
scanner (ATM T6) transmits at 532 nm wavelength, and the
2.5◦ narrow scanner (T7) transmits at 532 and 1064 nm with
co-located green and infrared footprints. Both lasers have
a pulse repetition frequency of 10 kHz with a 1.3 ns pulse
width (MacGregor et al., 2021; Studinger, 2018). The di-
ameter of the laser footprint on the surface is ∼ 64 cm at
460 m a.g.l.

We use both the Level 1B geolocated point cloud spot ele-
vation measurements for faster detection of supraglacial hy-
drological features and the much larger Level 1B waveform
data product for bathymetry estimates. Table 1 provides a
summary of the data sets used.

2.2 ATM natural color imagery

ATM’s Continuous Airborne Mapping by Optical Trans-
lator (CAMBOT) instrument is a three-channel, natural
color, red, green, and blue (RGB) digital camera with
4896× 3264 pixels and a 28 mm lens. At a nominal flight el-
evation of 460 m a.g.l., geolocated and orthorectified images
span 430 m across track and 290 m along track with a pixel
resolution of 7× 7 cm (MacGregor et al., 2021; Studinger
and Harbeck, 2019).

We use both CAMBOT Level 0 raw data (Studinger and
Harbeck, 2020) for faster detection of supraglacial hydrolog-
ical features and the much larger Level 1B geolocated and
orthorectified CAMBOT version 2 data product (Studinger
and Harbeck, 2019) for analysis of the lidar data. Raw im-
ages are collected at 2 Hz, and geolocated data products are
provided at 1 Hz, giving sufficient overlap between images
at the nominal ground speed of 140 m s−1 for ATM sur-
veys (MacGregor et al., 2021; Studinger and Harbeck, 2019).
The footprint-based surface classification described in the
next section requires the CAMBOT L1B Version 2 imagery.
The geolocated and orthorectified images from the Digi-
tal Mapping System (https://nsidc.org/data/iodms1b, last ac-
cess: March 2022), which are available before the CAMBOT
Version 2 imagery was added, do not have the required spa-
tial accuracy over ice sheets for reliable footprint-based sur-
face classification.
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Table 1. Summary of ATM lidar data products used.

Instrument Off-nadir Wavelength Swath width Contents NSIDC
scan angle at 460 m a.g.l. data set identifier

ATM 6a-T6 15◦ 532 nm 245 m Point cloud spot elevation measurements ILATM1B
ATM 6a-T6 15◦ 532 nm 245 m Elevation triplets with waveforms ILATMW1B
ATM 6d-T7 2.5◦ 532 nm 40 m Point cloud spot elevation measurements ILNSA1B
ATM 6d-T7 2.5◦ 532 nm 40 m Elevation triplets with waveforms ILNSAW1B

3 Image-based methods: automatic identification of
supraglacial hydrological features

A flow diagram summarizing both the image-based process-
ing steps discussed in this section and the process of deriv-
ing geolocated water depth estimates, discussed in Sect. 4,
is provided in Fig. B3 in the Appendix. We use the normal-
ized difference water index modified for ice (NDWIice) from
Yang and Smith (2013) that increases spectral contrast be-
tween liquid water and snow and ice surfaces. The NDWIice
is defined as

NDWIice =
blue − red
blue + red

. (1)

We calculate the NDWIice from CAMBOT RGB images us-
ing the blue and red channels. If 10 % of the pixels within a
CAMBOT frame exceed an NDWIice threshold of 0.05, we
mark that frame as containing a hydrological feature for anal-
ysis (Fig. 3).

CAMBOT images are not radiometrically calibrated.
CAMBOT is a passive instrument that uses sunlight as the
source of illumination. During flight, the camera operator ad-
justs shutter speed, aperture, and the camera’s sensitivity to
light (ISO number) to minimize motion blur and optimize
exposure over the dynamic range of the camera sensor. The
NDWIice threshold used in this paper is an empirical parame-
ter similar to the 10 % threshold of pixels within a CAMBOT
frame exceeding the 0.05 NDWIice threshold. Both parame-
ters were determined to be suitable for the spring 2019 cam-
paign and are not absolute thresholds but appear to be stable
estimates for the duration of the campaign and the purpose of
this paper. It is likely that different campaigns with different
light conditions will require adjustment of these thresholds.

We use a Sentinel-2 image mosaic from MacGregor et
al. (2020) from August 2019 to delineate the maximum melt
and lake extent in 2019 by visual inspection (Fig. 6). We form
a spatial mask using this extent to bound the search for hydro-
logical features in the airborne data from May 2019. Whereas
meltwater also forms upstream in the catchment areas above
the equilibrium line, it primarily pools in lakes and streams
below the equilibrium line. We use the approximate eleva-
tion of the equilibrium line in the August 2019 Sentinel-2
mosaic as a conservative cut-off elevation mask for identi-
fying hydrological features in airborne data from May 2019.
We limit the analysis to CAMBOT images within the melt

extent mask and inside the grounded ice mask from Howat et
al. (2014) to speed up the feature detection.

Using a simple NDWIice threshold can therefore result
in false detections. Dark shadows from elevated topogra-
phy near the ice margin and shadows in deeply incised
crevasses and channels can produce NDWIice values above
the detection threshold. More sophisticated, multi-sensor al-
gorithms could be developed to exclude false detections by
using, for example, information from the lidar receiver. How-
ever, a more complex classification algorithm would be more
computationally expensive than the NDWIice method. The
bathymetry algorithm described next detects surface and sub-
surface returns in the lidar data and distinguishes accurately
between snow and ice surfaces and hydrological features that
have a finite water depth. Therefore, false detections based
on NDWIice alone can be eliminated during the lidar analy-
sis; however, they require the presence of a well-defined lake
surface from surrounding lidar footprints and cannot be per-
formed on an individual footprint basis. The robustness of
the hydrological feature identification is suitable for this pa-
per, since the goal is not to perfectly delineate hydrological
features but to identify lidar granules for analysis.

4 Lidar waveform-based methods: estimating lake and
stream bathymetry

The dielectric contrast between the air–water (lake surface)
and the water–ice (lake bottom) interfaces causes reflections
of laser energy that can be detected as distinct return pulses.
The two-way travel time difference between the lake surface
and lake bottom can be used to estimate the depth of hy-
drological features. The ATM tracking algorithm used for
the Level 1B data products is optimized to determine con-
sistent and accurate surface elevations. The ATM tracking
algorithm uses 15 % of the maximum amplitude above the
baseline as a threshold to determine the centroid of a pulse
(Fig. 4a). For overlapping lake surface and bottom return
pulses the centroid-based tracker returns an averaged slant
range between the surface and bottom of the lake (Fig. 4a).
To properly track the surface and bottom returns for over-
lapping pulses, we use dual-peak Gaussian waveform fitting
implemented in a nonlinear regression with seven model pa-
rameters. We use MATLAB®’s Signal Processing Toolbox
to detect local maxima in the waveforms and use these esti-
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Figure 3. (a) Mosaic of three geolocated, orthorectified CAMBOT
natural color images of water-filled crevasses on Sermeq Kujalleq
(Jakobshavn Isbræ) on 15 May 2019. (b) NDWIice plotted over
CAMBOT image mosaic with NDWIice pixels below the detection
threshold of 0.05 shown at 50 % opacity. For location see Fig. 2.

mates as initial values as input for the nonlinear regression
(Appendix B and Fig. 4b).

For hydrological features, there are several cases that need
to be considered to estimate water depth. First, it needs to be
determined if a laser shot contains a return pulse from both
the surface and the bottom. For some cases, the return from
the surface is stronger (Fig. 5a), and for other cases the return
from the bottom is stronger (Fig. 5b). For very shallow water
depths the surface and bottom returns are typically overlap-
ping (Fig. 5c). Our method is capable of accurately resolving
surface and bottom returns in overlapping pulses even if the
signal amplitudes are very different (Fig. 5c). For some laser
shots there is only a single return which could either be from
the lake surface or the much brighter lake bottom. Alterna-
tively, a single return pulse could also be an overlapping sur-
face and bottom return that are so close they appear as a sin-
gle pulse (Fig. 5d). The algorithm also needs to exclude false
pulse detections that are instrument artifacts. The pulses in
Fig. 5d are caused by characteristics of the photomultiplier
detectors and various other system components such as op-
tical delay fibers and are common in waveform data of air-
borne and spaceborne lasers (Figs. A2 and A3). The occur-
rence of these pulses from electronic ringing is consistent in
both delay time and percentage of maximum amplitude of
the main pulse, and therefore they can reliably be excluded.

We have evaluated the performance of the nonlinear re-
gression and Gaussian tracker to accurately reproduce the
two-way travel time difference as a function of signal-to-
noise ratio and pulse separation (Appendix B). A sensitivity
analysis of the nonlinear regression was performed by using
the mean difference between a prescribed water depth and the
depth estimates obtained from linear regression results for
250 000 simulated waveforms with varying signal-to-noise
ratios. for each prescribed water depth. Above 0.30 m wa-
ter depth the difference between the prescribed water depth
and the water depth estimated from simulated waveform re-
gressions stabilizes, which we interpret as the reliable de-
tection threshold for the minimum water depth that can be
resolved with our approach and instrument system configu-
ration (Fig. B2).

The first step in estimating water depth is to determine the
elevation and geolocation of the lake surface return of each
laser shot that is consistent with ATM’s centroid-based sur-
face elevation tracker used for the Level 1B data products.
First, the uncalibrated slant range in air is determined from
the two-way travel time difference between the transmit and
receive pulse. Then, an intensity-dependent range walk cal-
ibration that is determined during the ground test needs to
be applied to the uncalibrated ranges to account for the com-
bined effects of delay fibers and other system components
on the range estimates. Following that, a range correction
needs to be applied to the range estimates due to the at-
mosphere affecting photon velocity. Scan azimuth and range
bias corrections need to be applied as well. All required cor-
rections are provided in the ATM waveform products. The
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Figure 4. (a) Centroid estimate (tc) of overlapping surface (S) and bottom (B) return pulses. The centroid-based tracker returns an averaged
slant range between the surface and bottom of the lake which in this case is close to the bottom return given the larger amplitude of the
bottom return. (b) Gaussian fit of two peaks of overlapping surface (S) and bottom (B) return pulses. The slant range in water between the
surface and bottom return pulses t1 and t2 is 33 cm.

Figure 5. Example waveforms of lake return waveforms with Gaussian fits. S marks surface return, B marks bottom return, and IA indicates
false return pulses that are caused by instrument artifacts (Fig. A2).

ATM processing flow is detailed in Appendix B and doc-
umented in the MATLAB® code published with this paper
(https://doi.org/10.5281/zenodo.6341230, Studinger, 2022).
The purpose of the approach presented here is not to pro-
duce absolute elevation measurements that are accurate and
consistent within a campaign and between campaigns but to
reliably determine the water depth of supraglacial hydrolog-
ical features.

Once the elevation and geolocation of the lake surface re-
turn have been determined the slant range in water and ge-
olocation of the lake bottom returns are estimated while ac-
counting for the refractive index of water in both geolocation
and range. This is done by using Snell’s law in vector form in
geographic coordinates on the reference ellipsoid. The angle
of incidence and geodetic azimuth of the lidar footprint on
the lake surface, together with the lake surface elevation, the
slant range in water, and the refractive index in air and water,
determine the location and elevation of the lidar footprint on
the lake bottom.

For laser shots that only have a lake bottom return (e.g.,
Fig. 5d) the propagation in water needs to be properly ac-
counted for. We first fit a plane through surrounding lake sur-
face elevations and use the resulting elevation of the plane
as mean lake surface elevation. We then calculate the inter-
section of the laser beam transmitted from the aircraft with
the mean lake surface using the geodetic azimuth of the laser
beam transmitted from the aircraft to the surface target, the
off-nadir pointing angle, and the location and elevation of the
center of the scan mirror front surface (Fig. A3), which is the
fiducial reference point for all two-way travel time estimates.
Based on the location of the intersection the slant range and
hypothetical two-way travel time between the laser sensor
and the intersection of the laser beam with the lake surface
can be calculated. Using the hypothetical lidar footprint on
the lake surface, the proper location and elevation footprints
of laser shots with only lake bottom returns can be calculated.

In general, for waveforms with a lake surface and lake bot-
tom return pulse, the uncertainty of the water depth estimate
is primarily a function of the uncertainty of the range esti-
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mate of the Gaussian tracker used. We use the data from
the T6 and T7 ground tests for this campaign (available
at https://doi.org/10.5281/zenodo.6248437, Studinger et al.,
2022) to estimate the uncertainty of the Gaussian range es-
timate to a target with a known distance. The standard de-
viation of the difference in air between the Gaussian range
estimate and the true range to the target is ±0.7 cm when av-
eraged over the entire range of weak pulses just above the
detection threshold and heavily saturated pulses. The total
uncertainty of the relative range estimate between the sur-
face and the bottom return is the square root of the sum of
the squares of the uncertainties of the two range estimates
being subtracted and is ±1 cm. For water depth estimates
that only have a lake bottom return, additional uncertainty
is added that directly scales with the height of the capillary
waves on the lake surface.

5 Results and discussion

The primary purpose of this paper is algorithm and method
development, and therefore we discuss the bathymetry of
only a few select hydrological features here. We have, how-
ever, applied the hydrological feature detection algorithm to
the entire spring 2019 data set in order to select those exam-
ples and begin with a discussion of the example selection and
selection criteria.

5.1 Locations of supraglacial hydrological features
identified in spring 2019 data: results and
discussion

We analyze all CAMBOT Level 0 images from flights be-
tween 5 and 16 May 2019 that are below the approximate
elevation cutoff for the equilibrium line and within the ice
mask. The locations of images with NDWIice exceeding the
detection threshold are shown with blue circles in Fig. 6 for
central west Greenland. As can be expected, early in the melt
season most of the hydrological features are located near the
ice margin and at low elevations. We found no compelling
evidence for liquid water along our flight lines in southern
Greenland in the spring 2019 data. A possible explanation for
this is that the ice margin and location of our flight lines are at
higher elevations in southern Greenland than they are in cen-
tral west Greenland and therefore likely exposed to cooler
temperatures (Fig. 2). This observation is consistent with the
lakes farthest inland being observed in the Sermeq Kujalleq
(Jakobshavn Isbræ) area near Ilulissat (Fig. 6) where the ice
surface within the Sermeq Kujalleq drainage basin is at lower
elevations (Fig. 2) and likely has experienced warmer air
temperatures and therefore more melt days than the higher
elevations farther south.

We have visually analyzed the images identified as having
water surfaces and selected several features that we consider
suitable for algorithm and method development. These in-

clude a variety of features such as lakes and streams, as well
as varying conditions with thin lake ice and surface waves.
Lidar data spatial coverage and the depth of lakes are addi-
tional criteria used for selection of the below examples. The
next section will discuss water depth estimates of these select
features.

5.2 Depth estimates of supraglacial hydrological
features: results and discussion

The first example, one of the deepest lakes we found, is ap-
proximately 140 m wide and 500 m long with complete lidar
coverage and a smaller 140× 40 m lake to the east with par-
tial lidar coverage (Fig. 7). Prior to ATM data acquisition on
6 May 2019 the lake location itself had experienced 6 d of
melt since the first recorded onset of melt on 13 April 2019
and 8 d of freezing since then (Fig. A1b). Meltwater that
pools in both lakes also forms upstream, but the extent of the
catchment area is not known due to a lack of data upstream
of the lidar swath. Figure 7a and b illustrate the much denser
sampling and level of detail that can be derived from airborne
measurements compared to spaceborne measurements. The
ICESat-2 data closest in time and space over this lake was ac-
quired on 13 June 2019, 38 d after the ATM pass. Inset map
(A) in Fig. 7a shows clearly visible wind-induced waves on
the surface of the lake, suggesting that the assumption of a
lake surface without waves required for optical depth-based
estimates might not be the case for many lakes (Sneed and
Hamilton, 2011). Inset map (B) in Fig. 7a shows shadows at
the lake bottom from an ice floe at the surface. The length
of the shadows could be used together with the elevation and
azimuth of the sun at the time of data acquisition to indepen-
dently estimate the water depth at the edge of the shadow.
However, we believe that lidar-based methods are more ac-
curate, in particular since the freeboard of the ice floe is not
known without lidar data.

The return signal strength (Fig. 7b) over the lakes and
ponds is much weaker than over the snow and ice surfaces
seen in the natural-color image mosaic (Fig. 7a) as expected.
The return signal strength in Fig. 7b is from the Level 1B
point cloud data products (ILATM1B and ILNSA1B, Ta-
ble 1) and includes lake bottom returns. Furthermore, the
wide and narrow scanners are entirely independent lidars,
and therefore the absolute return signal strength differs as
a result of instrument characteristics and instrument set-
tings during data acquisition. Nevertheless, the correlation
between water surfaces visible in the natural-color imagery
and relative return signal strength of the lidar data is pro-
nounced. The lower return signal strength also correlates well
with NDWIice calculated from natural-color CAMBOT im-
ages (Fig. 7b, c). This correlation is also the case for very
small ponds marked by circles in Fig. 7b and c. The NDWIice
representation (Fig. 7c) reveals narrow meltwater channels
connecting the lakes that are difficult to observe in both the
natural color and return signal strength data (Fig. 7a, b). The
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Figure 6. Locations of hydrological features in central west Green-
land identified in spring 2019 data (blue circles). Background image
is a Sentinel-2 image mosaic from MacGregor et al. (2020) from
August 2019. The approximate location of the transition between
the ablation zone and the accumulation zone (equilibrium line) in
August 2019 is indicated by the black arrow.

mean lake surface elevation of the small lake east of the main
lake is 30 cm above the lake surface of the main lake, imply-
ing water from the small lake is flowing downhill into the
main lake through the two channels visible in NDWIice data
marked by arrows (Fig. 7c).

We use the NDWIice threshold algorithm described in
Sect. 3 to assign a surface type (snow and ice, or water) to
each lidar footprint for further processing (Fig. 7d). Figure 7e
shows the lidar footprint elevations that have been identified
as being over either snow and ice or a water surface. The
surface returns over the lake show gaps in the northwestern
part of the main lake. The gaps are related to the angle of in-
cidence: a combination of the aircraft’s pitch and roll angle
over the lake segment resulted in a difference in angle of inci-
dence of 9◦ between the northwestern and southeastern parts
of the main lake with the southeastern lidar footprints closer
to nadir and therefore more likely to trigger recording of a
lake surface return. In addition to the aircraft’s pitch and roll
angle, the geometry of a nutating mirror also results in differ-
ences of angles of incidence between forward and aft scan of
around 2◦ with the aft scan being closer to nadir. With a flight
direction from north to south, Fig. 7e shows that surface re-
turns on the T6 wide scanner are mostly from aft scans as can
be expected. The narrow scanner with a 2.5◦ off-nadir scan
angle shows almost complete lake surface return coverage.

Figure 7f shows the water depth of the main lake, the small
lake to the east, and some of the smaller supraglacial hydro-
logical features such as ponds and channels. Over the main
lake, water depths gradually deepen from the shore towards
the interior of the lake and reach the maximum depth of 7 m
in narrow bottom crevasses (marked by arrows). The ability
to resolve these crevasses through water depth measurements
illustrates the level of detail that can be derived from airborne
measurements. The gradual deepening from the shore to 7 m
over the distance of approximately 70 m suggests that the as-
sumption of a homogenous lake bottom that is roughly paral-
lel to the lake surface used for optical depth-based estimates
must be used with caution (Sneed and Hamilton, 2011).

The deeper water depths toward the interior of the main
lake correlate with higher NDWIice values (Fig. 7c, f). This
change in spectral properties with water depth is used in op-
tical depth-based estimates to derive water depths.

The second example (Fig. 8) is a lake with slightly dif-
ferent conditions than the first one. Between the day of the
airborne survey on 15 May 2019 and the first reported occur-
rence of melt on 29 April 2019, this location had experienced
11 d with melt and 6 d without melt (Fig. A1c). The airborne
survey was a coordinated ICESat-2 under flight with airborne
data acquired just 3 h before ICESat-2 passed over the lake.
The lake contains several snow-covered patches of lake ice
that are obscuring the view of the lake bottom and prevent
enough lidar light to reach the lake bottom necessary to trig-
ger the recording of a bottom return pulse (Fig. 8a). Thin
layers of lake ice impose limitations not only for airborne
and spaceborne lidar-based water depth estimates but also
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Figure 7. (a) Mosaic of five geolocated, orthorectified CAMBOT natural color (red, green, blue) images of a supraglacial lake. ICESat-2
data (Smith et al., 2021) closest in time and space were acquired on 13 June 2019, 38 d after the ATM pass over the lake on 6 May 2019. (b)
Return signal strength of the ATM T6 (wide scan) and T7 (narrow scan) laser footprints. The return signal strength is significantly lower over
the lake compared to the surrounding snow and ice surface. (c) NDWIice plotted over CAMBOT image mosaic with NDWIice pixels below
the detection threshold of 0.05 shown at 50 % opacity. (d) Surface classification of ATM laser footprints based on NDWIice pixels using a
classification threshold of 0.05. (e) Surface elevation of laser footprints over snow, ice, and water. (f) Water depth of hydrological features.
For location see Fig. 2. Surface temperature and surface melt indicator from MODIS (Hall et al., 2018; Hall and DiGirolamo, 2019) and the
number of melt days for this location are shown in Fig. A1b.

for any optical depth-based bathymetry estimates. The high-
resolution natural color imagery reveals relevant details that
currently cannot be identified with spaceborne sensors. On
the eastern side of the lake, there is a sharp transition in the
visibility of details such as crevasses and other structures on
the lake bottom to a blurred lake bottom north of it (Fig. 8a).
While not discernible in the natural color imagery, it is likely
that the blurring of the lake bottom is caused by a thin layer
of clear lake ice. This thin ice cover also acts as a specular
reflector for laser light and likely reflects lidar energy away
from the detector, thereby causing gaps in bottom returns.
This interpretation is supported by the weaker return signal
strength over the area with thin ice cover compared to the

ice-free water surface south of it (Fig. 8b). Figure 8c shows
some of the limitations of using a simple NDWIice detection
threshold for surface classification. When exposure time be-
tween CAMBOT frames is either automatically or manually
adjusted, the brightness of pixels and therefore the NDWIice
value of the same feature changes from frame to frame, as
can be seen in Fig. 8c. However, the visual correlation with
water surfaces in the natural color imagery (Fig. 8a), the li-
dar return signal strength (Fig. 8b), and the lidar footprint
surface classification (Fig. 8d) show that an NDWIice detec-
tion threshold is a robust surface classification method for the
purpose of this paper.
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Figure 8. (a) Mosaic of five geolocated, orthorectified CAMBOT natural color images of a supraglacial lake. ICESat-2 data were acquired
3 h after the ATM pass over the lake on 15 May 2019. (b) Return signal strength of the ATM T6 and T7 laser footprints. The return signal
strength is significantly lower over the lake compared to the surrounding snow and ice surface. (c) NDWIice plotted over CAMBOT image
mosaic with NDWIice pixels below the detection threshold of 0.05 shown at 50 % opacity. (d) Surface classification of ATM laser footprints
based on NDWIice pixels using a classification threshold of 0.05. (e) Surface elevation of laser footprints over snow and ice. (f) Water depth
of hydrological features. For location see Fig. 2. Surface temperature and surface melt indicator from MODIS (Hall et al., 2018; Hall and
DiGirolamo, 2019), as well as number of melt days for this location, are shown in Fig. A1c.

The water depth within this lake gradually deepens from
its western shore towards the interior of the lake before
becoming shallower again. The deepest returns are around
3.5 m, but most of the deepest part of the lake lacks bottom
returns. As can be seen in Fig. 8e, the loss of bottom returns
is not a simple function of water depth alone. Some of the
deepest returns are located within a narrow bottom crevasse
(marked by an arrow in Fig. 8e) that has no returns in the
shallower part around it. A possible explanation for this is
that the slope of the sidewalls of the crevasse or channel is
closer to the normal of the lidar beam than in the surrounding
areas, and therefore lidar light is reflected to the sensor on the
aircraft. Also, concave-shaped surfaces, such as those found
in crevasses and channels, can have a focusing effect that in-
creases the intensity of the reflected lidar light and increases

the likelihood of exceeding the signal strength necessary to
trigger recording of a bottom return pulse.

The third example shows a network of narrow, 5–10 m
wide meltwater channels and streams and reflects the most
challenging targets for bathymetric imaging found in this
study (Fig. 9). Following the first reported melt between
29 April 2019 and the day of the airborne survey, this lo-
cation had experienced 11 d of melt and 1 d of freezing
(Fig. A1d). There are no ICESat-2 footprints within the ex-
tent of the data frame shown. In general, we find that chan-
nels and streams show a very low number of both surface
and bottom returns compared to lakes (Fig. 9). A possi-
ble explanation is that these narrow streams flow in topo-
graphic channels that provide more protection from surface
winds compared to relatively open lakes shown in Figs. 7
and 8. Wind protection hinders generation of surface capil-
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Figure 9. (a) Mosaic of two geolocated, orthorectified CAMBOT natural color images of a supraglacial lakes, streams, and channels from
12 May 2019. (b) Return signal strength of the ATM T6 and T7 laser footprints. (c) Surface classification of ATM laser footprints based on
NDWIice pixels using a classification threshold of 0.05. (d) Water depth of hydrological features. For location see Fig. 2. Surface temperature
and surface melt indicator from MODIS (Hall et al., 2018; Hall and DiGirolamo, 2019), as well as number of melt days for this location, are
shown in Fig. A1d.

lary waves, which are necessary to reflect lidar energy back
to the sensor on the aircraft. The presumably flat water sur-
face of these streams acts as a specular reflector directing
lidar energy away from the sensor and resulting in very few
surface and bottom returns. The deepest returns of around
1.6 m can be seen in a bend of a channel near the northern
end of the data frame.

We compared pulse widths of lake surface and lake bot-
tom return pulses of the hydrological features we have dis-
cussed, and we found no relationship between pulse width
and slant range in water potentially caused by volume scat-
tering in water. In addition to volume scattering in water the
slope and roughness of the lake bottom will likely be big-
ger contributors to pulse widening than volume scattering.
The extremely clear water visible in true-color imagery sug-
gests very low turbidity of these water bodies, which in turn
should result in very little volume scattering and associated
pulse broadening.

6 Conclusions

ATM’s suite of co-located sensors, small laser footprints
(64 cm), high shot density, swath coverage, and high-
resolution imagery (10 cm) reveals fine-scale hydrological
features, such as very narrow meltwater channels and sur-
face waves, that cannot be detected from space. Airborne
measurements can also image supraglacial hydrological fea-
tures at a spatial scale and coverage that cannot be achieved
by local measurements from short-range drones, which are
often operated out of remote field camps and require line-
of-sight communications. The accuracy and resolution from
airborne measurements compared to spaceborne sensors pro-
vides critical complementary information that can support
calibration and validation of spaceborne methods and pro-
vide information necessary for high-resolution process stud-
ies of the supraglacial hydrological system on the GrIS that
currently cannot be achieved from spaceborne observations
alone. The minimum water depth that can be resolved with
the current algorithm using a 1.3 ns laser pulse sampled at
4 GHz is around 30 cm, and the maximum water depth mea-
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sured with the ATM optimized for snow and ice elevation
measurement was around 7 m. However, this could also re-
flect the maximum water depth encountered early in the melt
season rather than an instrument limitation.

Appendix A

ATM KT19 infrared surface temperatures

The KT19 is an infrared radiation pyrometer that is used
to measure infrared radiation wavelengths between 960 and
1150 nm that are used to derive skin temperatures within the
field of view of the sensor. At a nominal flight elevation of
460 m a.g.l., the 2◦ field of view of the sensor results in an
approximately 15 m measurement footprint on the surface.
Measurements are taken at 10 Hz (Studinger, 2019).

Figure A1. Surface temperature (black crosses) and surface melt indicator (red and blue circles) from MODIS (Hall et al., 2018; Hall and
DiGirolamo, 2019) and mean ATM KT19 infrared surface temperatures (Studinger, 2019) averaged in 60 s windows over the hydrological
features with 1σ standard deviation. The windows of operation of the spring and fall 2019 campaigns are indicated by vertical gray areas in
all panels. Panel (a) show the times series for the approximate location of the oblique aerial photograph in Fig. 1, panel (b) is for the lake
shown in Fig. 7, panel (c) is for the location of the lake shown in Fig. 8, and panel (d) is for the location of the streams and channels shown
in Fig. 9.
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Figure A2. Averaged, normalized, unsaturated transmit and return waveforms of the T6 (a, b) and T7 (c, d) transceivers acquired over the
airport ramp in Kangerlussuaq, Greenland, on 13 May 2019. The impact of surface slope and surface roughness of the ramp’s concrete
surface within an ATM laser footprint does not contribute to the shape of the return waveform and can be neglected. The concrete surface has
no subsurface penetration for 532 nm laser light. The main peak is followed by smaller artifact peaks, the first of which occurs 12.75 ns after
the main peak in T6 and 12.5 ns in the T7 waveforms. The difference between T6 and T7 corresponds to one sample for a digitization rate of
4 GHz (0.25 ns). The second peak in T7 occurs 21 ns after the surface return. The corresponding slant range in water is 1rw. All three peaks
have an amplitude of 7 % of the surface return. A total of 28 084 waveforms were stacked for T6, and 48 703 waveforms were stacked for
T7. The deviation from a Gaussian shape is the combined result of characteristics of the laser, photomultiplier detectors, and various other
system components such as optical delay fibers and are common in waveform data of airborne and spaceborne lidars (Fig. A3).
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Figure A3. Schematic diagram of ATM’s dual color T7 transceiver with co-located green (532 nm) and IR (1064 nm) footprints.

Appendix B

This section describes the processing flow for the ATM lidar
data used in this paper for estimating surface elevations and
water depths. The MATLAB® code is available at https://doi.
org/10.5281/zenodo.6341230 (Studinger, 2022).

B1 Geolocation of the laser sensor

The position of the Global Navigation Satellite System
(GNSS) antenna on top of the fuselage of the survey air-
craft is determined from NAVSTAR Global Positioning Sys-
tem (GPS) and Globalnaya Navigatsionnaya Sputnikovaya
Sistema (GLONASS) carrier phase measurements recorded
by receivers on the aircraft. These measurements are com-
bined in post-flight processing with similar measurements
from multiple static ground stations to determine a kine-
matic differential solution (DGPS) of the antenna trajectory.
The lever arm from antenna to ATM scan mirror provided
in the ATM waveform data products includes corrections for
aircraft-specific changes in antenna phase centers that are de-
termined for each campaign. The reference point for all li-
dar measurements is the scan mirror fiducial point (Fig. A3).
To determine the location of the scan mirror fiducial point
in both space and time, the DGPS solutions are combined
with aircraft attitude measurements from a commercial in-
ertial navigation system (INS) on the survey aircraft, often
also referred to as inertial measurement unit (IMU), and mea-
surements of the lever arm between the antenna and scan
mirror in an aircraft-fixed cartesian coordinate system with
the origin in the phase center of the antenna. The coordi-
nate translations and rotations are done in a geocentric ECEF
(Earth-centered, Earth-fixed) coordinate system, which are
then converted to geographic coordinates for the position of
the laser sensor.

The Cryosphere, 16, 3649–3668, 2022 https://doi.org/10.5194/tc-16-3649-2022

https://doi.org/10.5281/zenodo.6341230
https://doi.org/10.5281/zenodo.6341230


M. Studinger et al.: High-resolution imaging of supraglacial hydrological features 3663

B2 Determination of time of flight and uncalibrated
raw ranges using a centroid-based tracking
algorithm

The two-way travel time difference 1t (i.e., the time of
flight) is determined using the centroid of the transmit (ttx
) and receive (trx) pulses. The centroid tc of a discrete wave-
form w(t) is defined as

tc =

i=tend∑
i=tstart

(w(ti)× ti)/

i=tend∑
i=tstart

w(ti) .

w(t) is the amplitude recorded by the waveform digitizer
(in counts) minus the baseline, which is estimated from the
median of the first 21 samples of the waveform. The ATM
tracking algorithm used for the data presented in this paper
uses 15 % of the maximum amplitude above the baseline as
a threshold to determine tstart by interpolating between sam-
ples. Similarly, tend is defined as the first interpolated point
where w(t) falls below the 15 % threshold. The uncalibrated
range runcal between the two centroids of the transmit and
receive pulse is

runcal =
1
2
× c× (trx − ttx) ,

where c is the speed of light in vacuum.

B3 Range calibration determined from ground
calibration data

In a pressurized aircraft, the transmitted laser pulse travels
thru the aircraft’s optical window close to the scan mirror
(Fig. A2). Backscatter from both the scan mirror and the air-
craft’s optical window in the fuselage is close in time to the
transmitted laser pulse and partially overlap with the transmit
waveform. To record a “clean” transmit waveform the trans-
mit pulse is sampled from behind a translucent beam splitter
and subsequently injected into a multimode fiber-optic cable
to provide a fixed optical delay that results in temporal sep-
aration between the recorded transmit pulse and contamina-
tion from backscattered photons from the scan mirror and the
aircraft’s optical window (Fig. A3). The optical delay fiber
and other system components introduce a laser time-of-flight
range bias that needs to be determined from ground calibra-
tion measurements.

In addition to measuring the instrument’s system delay
the second purpose of the ground calibration is to deter-
mine the intensity-varying change in range that is known as
range walk. ATM data are collected from a stationary target
at known range while varying the return intensity from sig-
nal extinction to detector saturation. The waveform tracking
method used will result in apparent changes in range from
the stationary target, and these data can be applied as a range
correction. The ground test calibration values combine the
system delay and range walk correction and are subtracted

from the uncalibrated ranges to yield the calibrated range es-
timates (/laser/calrng) in the airborne waveform files.
The ground test data and MATLAB® code used in this pa-
per for reading the ground test waveform data are available
at https://doi.org/10.5281/zenodo.6248437 (Studinger et al.,
2022).

B4 Determination of mounting biases

Martin et al. (2012) describe the process of estimating the
six mounting biases related to range, scan angle, attitude, and
position using ramp passes and cross-over analysis. Harpold
et al. (2016) describe an alternative approach using the dif-
ference between forward and aft scan elevations. These six
biases are already applied to the data in the HDF5 waveform
files available from NSIDC.

B5 Scan azimuth bias correction

Some campaigns contain scan-azimuth-dependent
elevation biases that can change over the course
of a flight or a campaign. The elevation biases
are a function of scan azimuth and are stored in
/mounting_parameters/scan_elv_adj. The
elevation error due to azimuth error scales with the air-
craft’s elevation above ground level. It is determined for
the nominal flight elevation (1500 ft or 457 m). Scaling the
correction with elevation is done by multiplying the aircraft’s
above ground level with the elevation biases provided in
the waveform data and dividing it by the nominal flight
elevation (457 m). The resulting elevation-scaled values
using /mounting_parameters/scan_elv_adj and
/aircraft/AGL are subtracted from the elevation values.
The lidar data from the spring 2019 campaign used in this
paper did not require scan azimuth bias corrections.

B6 Atmospheric range correction

The propagation speed of light is lower in a denser medium
such as the atmosphere compared to vacuum. In laser altime-
try, this effect is referred to as atmospheric delay. The den-
sity of the atmosphere at the time and position of the aircraft
and the footprint on the surface can be calculated from pa-
rameters provided by global numerical weather models. The
density is primarily a function of the temperature of air, the
atmospheric pressure, and the partial pressure of water vapor
and can be used to calculate the refractive index along the
propagation path of a laser beam. The range correction ap-
plied due to the atmosphere affecting photon velocity is pro-
vided in /laser/atmos_cor for each elevation measure-
ment in the HDF5 waveform files and needs to be applied to
the range estimates. The /laser/atmos_cor values are
subtracted from the /laser/calrng slant ranges.
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Figure B1. Range bias determination (a.k.a. ground test) using a calibration target with a known distance. The range to the calibration target
is measured with an electronic distance meter (a.k.a. “total station”) with an accuracy of a few millimeters.

Figure B2. (a) Synthetic Gaussian waveforms of overlapping surface and bottom return pulses. The FWHM pulse width is 1.6 ns (1σ ), and
the mean of the two pulses is separated by1t = 1.78 ns, which corresponds to a slant range1rw = 20 cm in water. The combined waveform
has the average ATM T6 and T7 system noise level added. The two pulses are not discernible in the combined waveform. (b) Sensitivity
analysis of the nonlinear regression. The mean of difference between the synthetic water depth and the 250 000 nonlinear regressions for
each water depth is shown (orange crosses), and the standard deviation (1σ ) and mean for water depths greater than the determined detection
threshold of 0.30 m are shown.

B7 Range bias

The ultimate reference for in-flight data are the ramps,
crossings, and along-track comparisons to produce consis-
tent elevation measurements over the course of a cam-
paign and between campaigns. Any residual bias thus de-
termined (typically on the order of a few centimeters) is
included in /mounting_parameters/range_bias,
which are added to the range estimates (not elevation).
The /mounting_parameters/range_bias is typi-
cally the same for an entire deployment but can change when
there is a hardware change (e.g., fiber swap, change fiber
pickoff location) during a deployment.

B8 Gaussian fit

The lake surface and lake bottom returns are fitted with a
dual-peak Gaussian function g2(t) with seven parameters:

g2(t)= b+ a1e
−

1
2

(
t−t1
σ1

)2

+ a2e
−

1
2

(
t−t2
σ2

)2

,

where b is the signal baseline (noise floor), a1,2 are the pulse
amplitudes, t1,2 are the pulse locations of the pulse maxima
and means, and σ1,2 are the 1-sigma (1σ ) pulse widths. The

nonlinear regression is done using initial values estimated
using output from MATLAB®’s Signal Processing Toolbox
findpeaks as input for MATLAB®’s Statistics and Machine
Learning Toolbox nlinfit function.

B9 Sensitivity analysis

The performance of the nonlinear regression to accurately
reproduce the two-way travel time difference is primarily
a function of pulse separation. For a 20 cm slant range in
water the two-way travel time difference between the sur-
face and bottom return pulses is 1.78 ns (Fig. B2a), which
is close to the average pulse width of 1.63± 0.71 ns (1σ ),
or 3.84± 1.68 ns (FWHM: full width at half maximum) of
the ATM T6 return laser pulse estimated from ground tests
using a penetration-free target (Fig. B1). The average return
pulse width of T7 has been estimated to be 1.20± 0.31 ns
(1σ ) or 2.82± 0.74 ns (FWHM). We also estimated the stan-
dard deviation (1σ ) of the baseline noise before the arrival
of the return pulse from ground tests to be 0.9± 0.1 digi-
tizer samples for both T6 and T7. The standard deviation
of the electronic noise discernible in the signal baseline is
stable over the course of a campaign and does not change.
We combine two synthetic Gaussian waveforms simulating
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Figure B3. Flow diagram summarizing both the image-based processing steps discussed in this section and the process of deriving geolocated
water depth estimates from lidar data discussed in Sect. 4.

the surface and bottom return pulse from a prescribed water
depth into a single waveform and add random signal noise
with the 1σ standard deviation estimated from the actual li-
dar data to each waveform for input into our sensitivity anal-
ysis. In addition to the baseline noise, we also randomly vary
the signal-to-noise level (maximum pulse amplitude above
baseline vs. standard deviation of electronic noise) in each
simulated waveform with the range possible in the actual
lidar data. The minimum amplitude to trigger signal acqui-
sition for the discussed data set is 36 digitizer counts for
both T6 and T7 resulting in a possible signal-to-noise ra-
tio range between 29 : 1 to 248 : 1 above the baseline for an
8 bit digitizer (7.0± 0.2 digitizer counts for T6 and 8.5± 0.5
digitizer counts for T7). We have varied the simulated wa-
ter depths in 0.01 m increments between 0.2 and 1.0 m and
created 250 000 simulated waveforms with varying signal-
to-noise ratios for each prescribed water depth. We have then
estimated the water depth for each waveform and plotted
the mean difference between the described water depth and
the water depths estimated from each linear regression in

Fig. B2b. We have increased the number of regressions for
each prescribed water depth until the results were stable and
found 250 000 to be a conservative number. There is a notice-
able change in the magnitude of scatter of the differences at
0.3 m which we determine to be the minimum depth thresh-
old to be used for our analysis (Fig. B2b).

Code availability. The MATLAB® code developed for this pa-
per for tracking lake surface and lake bottom returns, analyzing
waveforms, geolocating ATM lidar footprints, and calculating wa-
ter depths is available at https://doi.org/10.5281/zenodo.6341230
(Studinger, 2022).

Chad Greene’s MATLAB® function for interpolating Geo-
TIFF data is available on MATLAB®‘s File Exchange website
at https://www.mathworks.com/matlabcentral/fileexchange/
47899-geotiffinterp (Greene, 2022).

Data availability. All ATM Operation IceBridge airborne data
used in this study are freely available at the National Snow and
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Ice Data Center at https://nsidc.org/icebridge/portal (last access:
March 2022). The ATM waveform data from the two ground tests
used here, the true ranges, and MATLAB® code for reading ground
test data are available at https://doi.org/10.5281/zenodo.6248437
(Studinger et al., 2022). The ATLAS/ICESat-2 L3A Land
Ice Height data (ATL06) are available from NSIDC at
https://doi.org/10.5067/ATLAS/ATL06.004 (Smith et al., 2021).

Greenland-wide topography and ice mask data are from the
Greenland Ice Mapping Project (GIMP) digital elevation model
(Howat et al., 2014; Morlighem, 2021) and are available at NSIDC
at https://doi.org/10.5067/VLJ5YXKCNGXO (Morlighem, 2020).

The Sentinel-2 image mosaic from August 2019 from
MacGregor et al. (2020) is available through QGreen-
land at https://qgreenland.org/ (last access: March 2022) or
https://doi.org/10.5281/zenodo.5548326 (Moon et al., 2021).

The ice surface temperature and ice surface melt indicator from
MODIS (Hall et al., 2018; Hall and DiGirolamo, 2019) are available
at NSIDC at https://doi.org/10.5067/7THUWT9NMPDK (Hall and
DiGirolamo, 2019).

The Sentinel-2A image used in Fig. 2 is available from the USGS
EarthExplorer website at https://doi.org/10.5066/F76W992G (Eu-
ropean Space Agency, 2022).
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