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Abstract. Snowpack models can provide detailed insight
about the evolution of the snow stratigraphy in a way that
is not possible with direct observations. However, the lack of
suitable data aggregation methods currently prevents the ef-
fective use of the available information, which is commonly
reduced to bulk properties and summary statistics of the en-
tire snow column or individual grid cells. This is only of lim-
ited value for operational avalanche forecasting and has sub-
stantially hampered the application of spatially distributed
simulations, as well as the development of comprehensive
ensemble systems. To address this challenge, we present an
averaging algorithm for snow profiles that effectively syn-
thesizes large numbers of snow profiles into a meaningful
overall perspective of the existing conditions. Notably, the al-
gorithm enables compiling of informative summary statistics
and distributions of snowpack layers, which creates new op-
portunities for presenting and analyzing distributed and en-
semble snowpack simulations.

1 Introduction

The layered nature of the snowpack is a necessary condi-
tion for the formation of snow avalanches (e.g., Schweizer
et al., 2003, 2016; Reuter and Schweizer, 2018), and infor-
mation about the snow stratigraphy is crucial for develop-
ing a meaningful understanding of existing avalanche condi-
tions (Statham et al., 2018). Snowpacks are inherently spa-
tially variable due to the complex interactions of the mete-
orological forcing and terrain (Schweizer et al., 2007), and
layer depths, thicknesses, and properties can therefore vary

substantially between different locations even over short dis-
tances. In some circumstances, some layer sequences might
even be missing entirely. To understand the conditions at var-
ious spatial scales, avalanche forecasters observe snow pro-
files at targeted point locations and then synthesize the gath-
ered information into a mental model of the regional-scale
snowpack conditions, which are often represented in hand-
drawn summary profiles. The documented layers in these
idealized snow profiles represent key features of the con-
ditions that forecasters expect to exist within their region.
Local field observations are then used to validate and local-
ize the regional understanding of the conditions. As the sea-
son progresses, forecasters continuously revise their mental
model and update their summary profile throughout the win-
ter as new observations become available.

While avalanche forecasters have developed meaningful
strategies for synthesizing limited numbers of manual snow-
pack observations, the potential volume of data generated
by snowpack simulations is too vast for human processing
(Morin et al., 2020). While effective visualization designs
can help guide human perception to data features that prompt
human reasoning (Horton et al., 2020b), visualizations of
large data sets that include both spatial and temporal dimen-
sions remain challenging. Since computer-based tools excel
at applying repetitive tasks to big data sets, numerical data
aggregation algorithms have the potential to allow avalanche
forecasters to make better use of large-scale snowpack simu-
lations. Inspired by Hagenmuller and Pilloix (2016), Herla
et al. (2021) developed a set of numerical algorithms for
comparing multidimensional, mixed-data-type snow profiles
based on dynamic time warping, a well-established algo-
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rithm for measuring similarity between two potentially mis-
aligned sequences. However, the medoid approach (Herla
et al., 2021) employed for computing representative profiles
has substantial limitations. Since the medoid is simply the
profile within a given group that is most similar to all other
profiles, it does not actually aggregate the available informa-
tion and therefore does not necessarily represent the snow-
pack features that exist within the entire group meaningfully.
Furthermore, it is not suited for tracking average conditions
over time as the medoid within a group of profiles can differ
between time steps resulting in a disjointed and difficult to
interpret time series. Finally, medoid calculations are com-
putationally costly and thus only of limited applicability in
operational contexts. All these reasons make the medoid ag-
gregation approach unsuitable for avalanche forecasting.

The objective of this contribution is to introduce an averag-
ing algorithm for snow profiles that extends the snow profile
processing tools of Herla et al. (2021) with a global averaging
method that is based on the approach proposed by Petitjean
et al. (2011). Our goal is to compute an average snow profile
that provides a quick and familiar overview of the predomi-
nant snowpack features that are captured within large sets of
profiles in a way that is informative for operational avalanche
forecasting and supports existing assessment practices. To do
so, our averaging approach needs to highlight critical snow-
pack features and facilitate their averaging and tracking over
space and/or time. Furthermore, our approach needs to offer
simple access to distributions of layer characteristics from
simulated profiles to provide useful insight about the nature
of the conditions. Analyzing large volumes of snowpack sim-
ulations in these novel ways will make it much easier for
users to access data features and create data views relevant
for avalanche forecasting. The algorithm described in this
paper has been implemented in the open-source R package
sarp.snowprofile.alignment (Herla et al., 2022b)
and is freely available to researchers and practitioners.

2 Description of the snow profile averaging algorithm

Our approach is based on Petitjean et al. (2011) who devel-
oped an averaging method specifically for sequential data
called dynamic time warping barycenter averaging (DBA),
which builds on the comparison method for sequential data
called dynamic time warping. Unlike the medoid aggrega-
tion approach used by Herla et al. (2021), the average se-
quence derived with DBA consists of an entirely new se-
quence that represents the notion of an average of all indi-
vidual sequences. This makes this approach more suitable
for snow profile applications because it actually provides an
average perspective of the conditions. In addition, DBA also
uses considerably less computation time since DBA does not
rely on pairwise comparisons across the entire data set like
the medoid computation but rather uses a simple yet clever
trick to apply dynamic time warping not only to pairs of

sequences but to many sequences. This is accomplished by
comparing all individual sequences to a reference sequence
and repeating that step in an iterative process.

The general workflow of our DBA implementation for
snow profiles starts by picking an initial condition profile
that acts as the reference (Fig. 1). Our dynamic time warp-
ing implementation for snow profiles (Herla et al., 2021) is
then used to align all individual profiles in the data set to
the reference. By matching all layers from all individual pro-
files against all layers in the reference profile, this step cre-
ates sets of corresponding layers. All sets of corresponding
layers are then averaged, and the averaged layer properties
from each set are used to update the corresponding reference
layers. This process of matching and updating the reference
profile is repeated several times until the reference profile
does not change substantially anymore. At this point, the ref-
erence profile represents the average profile of the data set.
Figure 1 illustrates the workflow of the algorithm based on a
small set of profiles. The red lines highlight how two sets of
corresponding layers in the individual profiles are matched to
two layers in the reference profile. Due to the updating of the
reference layers, the updated reference profile on the right
shows different layer properties than the original reference
profile on the left.

The snow profile alignment algorithm that matches each
individual profile against the reference is implemented as de-
scribed in Herla et al. (2021) with one exception. While the
original approach for the alignment required all snow profiles
to be rescaled to identical snow heights before their align-
ment, this requirement has been removed for the updated
implementation presented here. All profiles can therefore be
aligned on their native height grids. Since there are meaning-
ful use cases for both approaches, the updated version of our
R package allows users to choose between the two options.
We have found alignments on the native height grid to be of
slightly higher quality than alignments of rescaled profiles,
but more importantly, alignments on native height grids are
easier to interpret.

Following the approach of Huang (1998) for summariz-
ing categorical variables in k-means clustering, we average
sets of corresponding layers by first calculating the predom-
inant grain type (i.e., the grain-type mode). We start the av-
eraging of mixed-data-type snow stratigraphy layers like this
because grain type is a fundamental layer characteristic and
plays a critical role in snow profile processing tools described
by Herla et al. (2021). The average of other (ordinal or nu-
merical) layer properties are then expressed by the median
properties of the layers of the predominant grain type.

Since thin weak layers are particularly important for
avalanche forecasting, our algorithm includes a flexible ap-
proach for ensuring critical weak layers are meaningfully in-
cluded in the averaged profiles even if their grain types are
not necessarily consistent and the most prevalent. Instead of
averaging weak layers solely based on their grain-type mode,
we implemented a subroutine that can be used to label layers
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Figure 1. Conceptual flowchart demonstrating how dynamic time warping barycenter averaging (DBA) can be applied to snow stratigraphy
profiles. (1) An initial condition profile is picked from the data set of profiles to act as a reference profile. (2) All layers from all profiles in the
set are matched against the reference profile (red line segments highlight two sets of corresponding layers), and (3) all sets of corresponding
layers are averaged to (4) update the reference profile. (5) This process is repeated several times until the reference profile does not change
substantially anymore and therefore (6) represents the final average profile of the set.

of interest based on users’ particular needs and data availabil-
ity. While layers of interest are typically weak layers, they
can also be other layers such as crusts. These layer labels
can be based on grain-type classes (e.g., all persistent grain
types), or they can include additional relevant measures like
stability thresholds (e.g., threshold sums, SK38, p_unstable;
Schweizer and Jamieson, 2007; Monti and Schweizer, 2013;
Monti et al., 2016; Mayer et al., 2022). If the majority of cor-
responding layers are labeled as layers of interest, the result-
ing averaged layer properties are the median properties of all
labeled layers regardless of the actual grain types. Note that
this approach still eliminates weak layers that only occur in a
few profiles but might still be relevant for avalanche forecast-
ing. To address this issue, users can either query the profile
set for the list of weak layers that are not included in the aver-
age profile or they can change the hyperparameter that spec-
ifies the required occurrence frequency threshold for labeled
layers to be included in the average profile away from the
default 50 %. This ensures that the final average profile rep-
resents the predominant and/or relevant snowpack features
and that layer properties are internally consistent.

While the stochastic and iterative nature of the DBA ap-
proach is responsible for its computational efficiency1, it also
makes it sensitive to initial conditions. We turned this poten-

1While computing the medoid for a given profile set of length
N requires O(N2) profile alignments, the DBA approach requires

tial weakness into an opportunity to steer the averaging al-
gorithm in a more informative direction by making the algo-
rithm choose several different initial condition profiles strate-
gically.

Since it is important that relevant thin weak layers are rep-
resented in the average profile, we designed the following
selection routine for initial conditions. The profiles to be av-
eraged are organized into several tiers based on the total num-
ber of layers of interest and the number of depth ranges2 oc-
cupied by at least one layer of interest. Tier 1 contains all
profiles with the maximum total number of layers of interest
and the maximum number of occupied depth ranges. Tier 2
consists of the remaining profiles with the maximum number
of occupied depth ranges and an above-average number of
layers of interest, and tier 3 includes all remaining profiles
with fewer occupied depth ranges but still an above-average
number of layers of interest. Depending on how many ini-
tial conditions are requested by the user, the algorithm picks
profiles from the three tiers in descending order. While this
approach ensures that the algorithm picks appropriate start-
ing conditions by itself, the user can still customize this pro-
cess by labeling relevant layers of interest (see previous para-

O(N · I · IC), where I is the number of iterations, and IC is the
number of different initial conditions.

2The default depth ranges are [0, 30), [30, 80), [80, 150), and
[150, Inf) (cm), but they can be modified by the user if necessary.
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graph). The described strategic selection of initial conditions
makes prevalent weak layers more likely to get matched and
included in the final average profile. Weak layers that exist in
the initial condition profile but not in the rest of the data set
are automatically averaged out during the first iteration.

In addition to the strategic selection of the initial condition
profile, we rescale its depth to the median snow depth to max-
imize the potential for meaningful layer matches and ensure
that the final profile represents the snow depth distribution
of the data set in a meaningful way. To avoid exaggerated
rescaling, we only select initial condition profiles whose to-
tal snow depth is within the interquartile range of the snow
depth distribution. More details on the actual influence of the
initial condition on the final result are presented in Sect. 4.2.

After several DBA iterations the reference profile will only
change marginally. To assess the iterative changes between
the reference profiles and stop the iteration cycle, we use
a similarity measure for snow profiles analogous to Herla
et al. (2021). The algorithm is stopped when the similarity
between the reference profiles of two subsequent iterations
is beyond a certain threshold. Reaching a similarity thresh-
old of 0.99 usually takes fewer than five iterations. However,
if computational speed is of the essence, using a threshold of
0.90 that is attained in two consecutive iterations yields com-
parable results. If the algorithm is started with several initial
conditions, the best average profile among the different real-
izations is chosen by converting the similarity measure be-
tween the reference profile and the profile set to a root mean
squared error (RMSE). The average profile with the lowest
RMSE is chosen as the final realization.

3 Applications

In this section we present several application examples to il-
lustrate the capabilities of our algorithm. While the snow pro-
file data set used in these examples was simulated with the
Canadian weather and snowpack model chain (Morin et al.,
2020) with the goal to represent flat-field conditions, our tool
can be applied to any simulated snow profile irrespective of
its source model. Furthermore, it is possible to use our al-
gorithm on manual profiles, but the processing of these data
sets has some unique challenges (see “Limitations” section
for more details).

3.1 An inconspicuous asset: overview first, details on
demand

Figure 2 illustrates how a calculated average snow profile can
efficiently synthesize a large volume of snow profile data into
an overall perspective of existing conditions in a meaning-
ful way. Figure 2a shows the individual simulated profiles
from 112 model grid points within a forecast region from the
same day ordered by snow depth, and Fig. 2c shows the av-
erage profile that summarizes the characteristics of the entire

profile set. The average profile highlights three distinct weak
layers buried in the middle to lower snowpack with a thick
and consolidated slab above. Close to the surface, the snow is
loose, and a surface hoar layer (SH) is starting to get buried.
This overview provides an insightful synopsis and important
context for interpreting the layer sequences of individual pro-
files if more specific information is required.

However, there is more to the averaging algorithm than
just providing a graphic representation of the average con-
dition across a forecast area. Since all individual layers are
matched against the average profile, each of the averaged lay-
ers can be traced throughout the entire data set. The average
profile therefore acts as a navigation tool that connects all
layers and enables the tracking of layers across space, as well
as the computation of distributions of layer and profile prop-
erties. Hence, the average profile embodies the important and
broadly used “overview first, details on demand” data visu-
alization principle that was first proposed by Shneiderman
(1996). To illustrate this capability, Fig. 2b shows the sta-
bility distribution of each layer using threshold sums (TSA:
threshold sum approach; also known as lemons) (Schweizer
and Jamieson, 2007; Monti et al., 2012, 2014), which we
classified into three categories (poor: ≥ 5; fair: ≥ 4; good:
< 4). About 50 % of all profiles in the data set exhibit struc-
tural instability on a predominant depth hoar layer (DH) in
mid-snowpack, and almost all profiles contain a surface hoar
layer with poor stability that will likely become a concern
when buried more deeply. To dig deeper, it is easy to re-
trieve the depth distribution of that shallow surface hoar layer
and confirm that its burial is generally quite shallow (burial
depth mode: 7 cm), but there are locations with deeper buri-
als of up to 15 cm of new snow (Fig. 2d). Note that similar
charts can be computed for other stability indices or any other
layer properties available in the profiles and that calculating
distributions on subsets of layers with particular properties
is also straightforward. For example, Fig. 2e shows the ele-
vation distribution of the proportion of profiles that contain
layers with poor stability in mid-snowpack. While the indi-
vidual profiles shown in Fig. 2a suggest that these weak lay-
ers mainly exist in shallower profiles, the bar chart shown in
Fig. 2e further highlights that these layers are more likely to
be found at lower elevations. In summary, the average pro-
file enables efficient and user-friendly access to large vol-
umes of snowpack simulations in support of answering criti-
cal avalanche forecasting questions like “which weak layers
exist” and “how distributed and sensitive to triggering are
they”.

To illustrate the value of our summary perspective on large
volumes of snowpack simulations for avalanche research be-
yond operational avalanche forecasting, Fig. 3 demonstrates
how our approach can be used to systematically compare
different stability indices that have been used for charac-
terizing instability in simulated profiles. Figure 3a–e visu-
alize the stability distribution of each layer analogously to
Fig. 2b for the relative threshold sum approach (RTA) (Monti
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Figure 2. (a) Snow profile set from an avalanche forecast region, (c) which is summarized by the average profile. The average profile provides
access to distributions of layer and profile properties, such as, for example, (b) the distribution of layer stabilities derived from threshold
sums, (d) the depth distribution of a SH layer that is starting to get buried, and (e) the elevation distribution of the proportion of profiles that
contain layers with poor stability in mid-snowpack.

and Schweizer, 2013), the multi-layered skier stability index
SK38ML (Monti et al., 2016), the joint RTA and SK38ML
approach (Monti et al., 2014; Morin et al., 2020), the critical
crack length (RC) (Richter et al., 2019), and the most re-
cent random forest classifier p_unstable (PU) (Mayer et al.,
2022). We classified each stability index into categories, such
as very poor, poor, fair, and good, based on thresholds pub-
lished in the respective papers. For the two approaches that
include SK38ML, we use the most recent thresholds pub-
lished in Fig. 5 of Morin et al. (2020). Since Richter et al.
(2019) derived no thresholds for RC values that correspond
to layers with poor stability, we use a threshold for the class
very poor derived from an unpublished analysis by Mayer
et al. (2022) and a threshold for the class poor that has been
derived from manual observations of critical crack lengths
in unstable layers (Reuter et al., 2015). Not surprisingly, the
two related indices, TSA (Fig. 2b) and RTA (Fig. 3a), that
use purely structural considerations show a very similar pat-
tern. The SK38ML shows a similar pattern to RC, which
changes entirely when combined with RTA: potentially un-
stable weak layers are selected with RTA and then evaluated
with SK38ML (Monti et al., 2014; Morin et al., 2020). Since
RC is one of the input variables to PU, both are generally

similar to each other, while PU substantially reduces the lay-
ers with poor stability. Instead of comparing these indices
for one simulated profile, our approach allows for valuable
large-scale comparisons based on many profiles, which were
previously inaccessible.

3.2 A representation of the predominant conditions
over the course of the season

Since snowpack and avalanche conditions evolve continu-
ously throughout a season, being able to effectively present
the evolution of the predominant conditions across forecast
regions is critical for supporting forecasters’ assessment pro-
cess and mental models of existing conditions. Our averaging
algorithm can be used to represent a temporal perspective of
the average conditions in a consistent way by looping it over
the course of the season and using the average profile from
the previous day as the initial condition.

In the time series implementation of our algorithm the
height of the snowpack grows over the course of the season
by matching the current day’s individual profiles against the
previous day’s average profile in an open-ended bottom-up
alignment approach (for more details, see Herla et al., 2021).
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Figure 3. The average profile enables users to compare the distributions of different stability indices. Panels (a–e) show the proportion
of individual profiles that contain layers with poor stability as diagnosed by the threshold sum approach (TSA, i.e., lemons) (Schweizer
and Jamieson, 2007; Monti et al., 2012, 2014), the relative threshold sum approach (RTA) (Monti and Schweizer, 2013), the multi-layered
skier stability index (SK38ML) (Monti et al., 2016), the critical crack length (RC) (Richter et al., 2019), and the most recent random forest
classifier p_unstable (PU) (Mayer et al., 2022). Panel (f) shows the corresponding average profile (on 20 January).

This allows new snow layers that are not present in the pre-
vious average profile to get stacked on top of the old snow
column if more than 50 % of the grid points contain new lay-
ers. The amount of new snow in the updated average profile
therefore represents the median amounts reported in the pro-
file set. The same effect allows for the growing of thin weak
layers at the snow surface.

To capture settlement and melting, the average profile is
rescaled after each day if it exceeds the median snow height.
Layers that were added on the same day remain unchanged.
However, to account for the settlement of freshly buried lay-
ers, the upper part of the old snow column is rescaled with
a uniform scaling factor. The extent of this rescaled column
is adjusted each day based on the median depths of all layers
to avoid unrealistic settlements in more deeply buried layers.
This scaling routine ensures that the time series of the aver-
age profile follows the median snow height and that buried
layers align closely with their median depths.

Applying our averaging algorithm in this temporal fash-
ion repeatedly to the same simulated profiles in a forecast
region yields a continuous time series of averaged profiles
that has a very similar look and feel as the time series of the
snowpack evolution at individual grid points but contains in-
formation from the entire data set (Fig. 4a). To appreciate
the capabilities of the algorithm to capture important sum-
mary statistics, study the black lines in Fig. 4a: the solid line
represents the median snow height and follows precisely the
height of the average profile; the area between the solid line
and the dashed line represents the median thickness of new
snow and is well captured by the corresponding layers of PP

and DF3 shown in yellow; and finally, the dotted lines rep-
resent the median depths of several weak layers, which align
closely with the red and blue colours highlighting the pres-
ence of SH and DH layers in the average profile.

Avalanche forecasters in Canada routinely label weak lay-
ers that likely remain hazardous for multiple storm peri-
ods with date tags to facilitate effective communication and
tracking. Hence, the resulting list of persistent weak layers
represents those layers that the forecasters were most con-
cerned about and that also likely caused avalanches. While
a full and detailed validation of our model chain is beyond
the scope of this paper (Herla et al., 2022a), the visual com-
parison of the tracked weak layers and the time series of the
average profile presented in Fig. 4 demonstrates that the re-
gionally synthesized snowpack simulations reliably capture
the most relevant snowpack features in the region. In an oper-
ational context, this visual comparison of simulated and ob-
served weak layer summaries can provide a real-time valida-
tion perspective that very efficiently communicates potential
discrepancies between modeled weak layers and reality. This
allows forecasters to quickly assess when the simulations re-
quire cautious interpretation or whether more observations
are necessary to verify a yet unobserved weak layer.

In addition to understanding the evolution of the predomi-
nant snowpack features, it is equally important for forecasters
to understand the evolution of the stability of these snowpack
features. As discussed earlier, the average profile stores in-
formation about underlying distributions in the profile set,
which allows us to visualize the proportion of grid points
with poor stability for each layer in the time series of the av-

3Precipitation particles and decomposing fragments.

The Cryosphere, 16, 3149–3162, 2022 https://doi.org/10.5194/tc-16-3149-2022



F. Herla et al.: A data exploration tool for averaging snow profiles 3155

Figure 4. (a) Time series of the average snow profile that illustrates the space-averaged evolution of the snow stratigraphy (visualized by snow
grain types). The algorithm captures the median total snow height (solid line, 〈HS〉), the median amount of new snow (dashed line, 〈NEW〉),
and the median depth of several persistent weak layers (dotted lines, 〈DEPTH〉). (b) The time series of the average profile overplotted with
the distribution of grid points that contain layers with poor stability as diagnosed by p_unstable (Mayer et al., 2022); it is therefore the
analogon to Fig. 3e in a time series view.

erage profile (Fig. 4b). This visualization takes the concept
from Fig. 3e to a temporal context and makes it effortless for
users to understand temporal trends in the layerwise stability
predictions of all profiles within the entire data set within a
single, very familiar visualization.

3.3 Performance of the algorithm during melt season
conditions in spring

Physically based snowpack models are also useful for as-
sessing wet snow avalanche conditions by predicting the
depth and the timing of layers accumulating liquid water
in the snowpack (Wever et al., 2018). Wever et al. (2018)
demonstrate that physically based snowpack models are ca-
pable of simulating the timing of the so-called wetting front
within an accuracy of±1 d. They also show that the modeled
depth of their wetting front correlates well with observed
avalanche sizes. While their approach appears promising,
its operational application is currently limited to few model

grid points because of the lack of spatiotemporal presenta-
tion methods that can display this type of complex informa-
tion effectively. As a consequence, existing operational prod-
ucts for wet snow avalanches are currently limited to bulk in-
dices that represent conditions averaged over the entire snow
column (Mitterer et al., 2013; Bellaire et al., 2017; Morin
et al., 2020). Hence, wet avalanche forecasting could bene-
fit substantially from data synthesis methods that allow ef-
ficient monitoring of the wetting front within regional-scale
data sets of simulated snow profiles.

To demonstrate the capabilities of our averaging algorithm
in supporting wetting and melting conditions, we extracted
a set of 46 lower-elevation grid points from our data set of
simulated snow profiles. While that data set is suited to high-
light how our approach can add value to wet avalanche fore-
casting, operational simulations must consider slope and as-
pect processes due to their considerable impact on the melt-
ing itself. The snowpack at all of these grid points became
isothermal before the end of April (Fig. 5d–f show the in-
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dividual grid points on 23 March, 25 March, and 20 April,
respectively). Similarly to the performance of the algorithm
with mid-season profiles, the average time series precisely
follows the median snow height during melting of the snow-
pack (Fig. 5c). Furthermore, the averaged profile allows for
the monitoring of the median depth of the wetting front as
it penetrates into the snowpack (Fig. 5c). In our example,
all grid points were entirely sub-freezing and dry before 23
March, when warmer air masses (Fig. 5a), cloud cover, and
small amounts of liquid precipitation (Fig. 5b) led to the first
wetting of the snow surface (Fig. 5c and e). In the consecu-
tive month, the median depth of the wetting front remained
constant at roughly 30 cm. A slightly more pronounced rain
event on 19 April led to most grid points becoming entirely
isothermal (with a frozen surface crust) (Fig. 5c and f). In
addition to providing information on the location of the wet-
ting front, distributions or summary statistics of the liquid
water content could easily be computed for each averaged
layer similarly to extracting or visualizing distributions or
summary statistics of the stability of each averaged layer (not
shown).

4 Performance of the algorithm

4.1 Comparison against medoid approach

To quantitatively estimate the performance of the averaging
algorithm given the presented data set, we compared the ag-
gregated snow profiles from three different approaches by
their RMSEs:

1. the medoid approach, which identifies the one profile
from the profile set that is most similar to all other pro-
files (Herla et al., 2021),

2. the default averaging approach described in Sects. 2 and
3.1,

3. the time series averaging approach described in
Sect. 3.2.

We performed this quantitative comparison of methods for
every seventh day of the season. The RMSEs were computed
analogously as described in Sect. 2.

Since the medoid approach follows a simple and trans-
parent concept that has been shown to perform as well or
better than more sophisticated sequence aggregation meth-
ods (Paparrizos and Gravano, 2015), it represents a mean-
ingful benchmark. However, the medoid calculations for the
32 d took 28 h, while the averaging calculations took less
than 30 min. Despite this immense difference in computa-
tional cost, both averaging approaches yielded similar RM-
SEs compared to the medoid approach (Fig. 6). This result
suggests that the performance of the aggregation is more in-
fluenced by the specifics of the profile set than the peculiar-
ities of the aggregation algorithm. The averaging algorithm

presented in this paper therefore performs at least equally
well at a much lower computational cost and comes with
considerable additional benefits, such as the capabilities of
retrieving underlying distributions and producing consistent
time series.

4.2 Impacts of the data set and the initial condition on
the resulting average profile

The initial condition profile can have substantial influence on
the resulting average profile. It is not uncommon that a weak
layer that exists in the majority of profiles is not captured in
the final average profile if it is not already included in the
initial condition profile. It is therefore crucial to select the
initial condition profile with care and to re-run the algorithm
for several different initial conditions as detailed in Sect. 2.

If a prevalent weak layer is not included in the initial con-
dition profile, the odds that the layer will be present in the
final average profile depend on the following factors:

– the prevalence of the layer in the profile set: the more
profiles there are that contain the layer, the more likely
it will be included in the final result because more op-
portunities exist that the layer is aligned onto the same
reference layer.

– the thickness of the layer: the thicker the layer is, the
more likely it will be present in the final result because
it increases the chances of the layer to be aligned. How-
ever, this factor is often not relevant because most weak
layers are thin.

– the distinctness of adjacent layers in the profiles: the
more distinct or specific the adjacent layers of the weak
layer are, the more likely it is that it will be in the fi-
nal result. This is caused by the underlying snow profile
alignment algorithm (Herla et al., 2021) that focuses on
matching entire layer sequences and not only individual
layers. Distinct layer sequences adjacent to weak lay-
ers can therefore be thought of as anchor points during
layer matching that tremendously increase the odds that
an entire group of layers is matched correctly and thus
included in the average profile.

While the prevalence of a layer and the characteristics of the
adjacent layers are attributes of the data set, the initial condi-
tion is the only factor that can be tuned. Since our algorithm
automatically picks (multiple) suitable initial conditions by
default (see Sect. 2), it is very unlikely that only unsuitable
starting conditions are chosen accidentally. However, Fig. 7
explicitly illustrates the effect of the initial condition profile
to provide more information on the intricacies of our algo-
rithm.

A scarcely distributed surface hoar layer that is included
in 40 % of grid points can be found roughly 20 cm below the
new snow within a thick sequence of unspecific bulk layers
(Fig. 7a – the layer is emphasized in all panels by the more
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Figure 5. Applying the averaging algorithm to wet snow conditions in spring. (a) Daily maximum and minimum air temperatures (median
<...> and 5–95th percentile envelopes <...>5−95), as well as times when the median snow surface temperature reached zero degrees
(<TSS>== 0). (b) Rain sums (median and 95th percentile). (c) Time series of the average profile with the median snow height <HS> and
the median depth of MF grains, i.e., wetting front, (<MF>); the dashed lines represent days for which all individual grid points are shown
in panels (d–f).

salient black colour). The occurrence frequency threshold to
include weak layers in the average profile is set to 30 % in
this example. Five out of six initial condition profiles that in-
clude that layer (Fig. 7b) lead to average profiles that also
contain that layer (Fig. 7c) even though the three influenc-

ing factors are all adverse: the layer’s prevalence is low (it
only exists in a few more profiles than the minimum thresh-
old), it is very thin, and the bulk layer sequences around the
weak layer are not distinct and can be found in many other
locations of the profiles as well. Figure 7d and e further illus-
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Figure 6. Distributions of the root mean squared error (RMSE) of
the snow profile averaging methods relative to the RMSE of the
medoid approach for 32 d of the season. Values smaller than 1 sug-
gest that the averaging approaches performed better than the medoid
approach, and vice versa.

trate the importance of the presence of the layer of interest in
the initial condition profile because all of the average profiles
that were initialized with profiles that lacked the surface hoar
layer (Fig. 7d) did not include the layer as well. If, however,
the surface hoar is adjacent to a distinct crust (Fig. 7f), the re-
sulting average profiles do contain both the crust and surface
hoar layer (Fig. 7g) even if they are not present in the initial
condition profile. This experiment demonstrates that the odds
of a specific layer being present in the final result depend on
the interplay of the presented factors and that our routine for
the strategic selection of initial conditions is a capable way
for employing the algorithm to our best benefit.

4.3 Limitations

The quantitative experiments that are presented above
demonstrate that the algorithm and the implemented rules
produce the desired outcome. While we have not examined
the performance of the algorithm in operational avalanche
forecasting explicitly, extensive testing by the research
team during the development and informal explorations by
Avalanche Canada forecasters have shown that the presented
DBA approach creates representative snow profiles that sum-
marize the most important snowpack features and highlight
the existence of prevalent weak layers and slabs in a mean-
ingful way. However, further explorations are required to bet-
ter understand the full operational value of our algorithm.

There are three limitations of our algorithm that users
should be aware of. The largest source of error in averag-
ing snow profiles originates from the layer matching step. As
discussed in Herla et al. (2021), applying the matching algo-
rithm to highly diverse data sets in an unsupervised manner
will inevitably produce some alignment inconsistencies and

errors since a single hyperparameter setting can naturally not
be optimal for the full range of observed conditions. While
the impact of this issue is generally negligible for the high-
level structure of average profiles, it is important to remem-
ber that the extracted distributions of layer and profile char-
acteristics do not represent the truth and need to be evalu-
ated in light of this source of uncertainty. Poor layer matches
between snow profiles are more likely if their snow depths
differ considerably or their layer sequences show very few
common patterns. It is therefore imperative that users judge
whether it is meaningful to compute an average profile for
a specific set of profiles, and we advise to allow for more
margin of error the more diverse the snow profiles are.

Even larger data sets of manual profiles typically contain
too few profiles from the same day to sample the consider-
able spatial variability of the snowpack adequately enough
to form a precise mental model of the conditions. Whereas
experienced forecasters can account for this when updating
their prior mental model with recent observations, it is chal-
lenging to fully implement this Bayesian reasoning of human
forecasters numerically. So, even though it is possible to ap-
ply our algorithms to manual profiles in theory, averaging
such highly variable data sets comes with its particular chal-
lenges that we have not fully considered yet.

To produce a realistically looking time series of average
profiles, several algorithmic tweaks are necessary, such as
using the previous day’s average profile as the sole initial
condition and rescaling parts of the snow column each day.
While these tricks come with the benefits of temporal consis-
tency and computational efficiency, they can introduce unre-
alistic features in special circumstances. One inconvenience,
for example, can occur when new snow falls from one day
to the next, and surface hoar forms on top of the new snow.
Our explorations have shown that in this situation, the sur-
face hoar layer is often only captured in the average time se-
ries once it is buried but not during its formation on the snow
surface. Furthermore, since the time series is designed to rep-
resent several different summary statistics of the profiles (i.e.,
median snow depth, median layer depths, median new snow
amounts), situations can occur when these summary statis-
tics are not completely internally consistent. For example, the
surface hoar layer that got buried on 6 April in Fig. 4a hap-
pens to primarily exist in profiles that subsequently received
above-average snowfall amounts (not shown). Consequently,
its median layer depth is deeper than what can be represented
in the average time series with accurate representations of the
median snowfall amounts and the median snow height. In ad-
dition to that effect, the lower-elevation profiles in the data
set became isothermal around 20 April, which replaced their
original layer sequences with melt forms (not shown). As a
result, the median layer depths of the 17 January and 6 April
surface hoar layers that were still present in most other pro-
files increased abruptly, which explains the abrupt drop in
the dotted lines in late April. These observations teach us to
always examine the results of the presented data exploration
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Figure 7. An experiment demonstrating the influence of the initial conditions. (a) The grain-type sequences of the original grid points with
the interquartile range of snow height highlighted. A scarcely distributed weak layer that is located roughly 20 cm below the new snow
within the bulk layers is slightly emphasized by the more salient black colour in all panels. (b) The grid points chosen by the algorithm as
most suitable initial condition profiles (tier 1). (c) The average profiles resulting from the tier 1 starting positions in (b). (d) Less suitable
starting positions that miss the weak layer within the bulk layers. (e) The average profiles resulting from the suboptimal starting positions
in (d), which also miss the particular weak layer. (f) The modified profiles from (a) with an artificially inserted crust in the bulk layers (also
emphasized by stronger colour). (g) The average profiles resulting from the suboptimal starting positions in (d) when applied to the modified
set of profiles in (f); they contain both the crust and the weak layer above. See text for more detailed explanation.
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tools critically and in the context of the used data set. Other
situations might exist that can lead to additional potentially
misleading presentations.

5 Conclusions

The two snow profile averaging algorithms presented here
continue a line of development that aims to make snowpack
simulations more accessible and relevant to avalanche warn-
ing services and practitioners. Building on the tools intro-
duced by Herla et al. (2021), the presented methods support
the analysis of large volumes of snowpack simulations along
both space and time by (i) providing quick summary visual-
izations that help assess the evolution of snow depths, new
snow amounts, and weak layer and slab combinations and
by (ii) facilitating retrieval of various summary statistics and
distributions of layer and profile characteristics.

Without appropriate tools, the operational processing and
analysis of simulated stratigraphic information has mainly
been restricted to individual grid points or along either
one dimension of space/time. This led to configurations of
snowpack simulations in support of avalanche forecasting
that are primarily station-based or semi-distributed (Morin
et al., 2020). Furthermore, the approaches for evaluating dis-
tributed and/or ensemble simulations have so far been limited
to bulk properties and summary statistics of the snowpack
(Morin et al., 2020; Vernay et al., 2015), which are only of
limited interest to avalanche forecasters. By providing sum-
mary statistics of layers instead of the entire snow column,
our algorithms provide new opportunities for how distributed
or ensemble snowpack simulations can be validated and ex-
ploited. These new ways of mining available and relevant in-
formation aim to inspire new approaches for the operational
use of distributed snowpack simulations that are more useful
for avalanche forecasting. Furthermore, synthesizing snow
profile sets into representative perspectives provides an im-
portant and necessary step towards clustering snow stratigra-
phy information.

While our algorithms open the door for powerful analy-
sis of large data sets of snowpack simulations, there are sev-
eral limitations that should be considered when applying our
methods. It is important to remember that our algorithms are
not designed to extract true summaries (i.e., precise average
grain size of a particular layer) but rather to facilitate mean-
ingful explorations of data sets that are too big for human
forecasters to analyze manually.

Even though the impetus for our research was avalanche
forecasting, our algorithms might also be of use for other
cryospheric researchers interested in the examination of large
data sets of snow profiles. Furthermore, the principles behind
our DBA approach might also have applications for the pro-
cessing of profiles and time series in other geophysical con-
texts.

Code and data availability. The presented algorithms are im-
plemented in the R language and environment for statisti-
cal computing (R Core Team, 2020) as part of the pack-
age sarp.snowprofile.alignment (version 1.2.0). The
open-source package is available from the Comprehensive
R Archive Network at https://cran.r-project.org/package=sarp.
snowprofile.alignment (last access: 1 August 2022) (Herla et al.,
2022b). A static version of the package, as well as an anno-
tated demo script to reproduce the figures in this paper, is ac-
cessible from a permanent repository (Herla et al., 2022c). Our
package builds upon the open-source packages dtw (https://
dynamictimewarping.github.io/, last access: 12 January 2022, by
Giorgino, 2009), which contains the dynamic time warping imple-
mentations, and sarp.snowprofile (https://cran.r-project.org/
package=sarp.snowprofile, last access: 12 January 2022, by Horton
et al., 2020a), which contains basic functionality for reading and
manipulating snow profile data.
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