Supplement of The Cryosphere, 16, 2701–2708, 2022
https://doi.org/10.5194/tc-16-2701-2022-supplement
© Author(s) 2022. CC BY 4.0 License.

Supplement of

Brief communication: Improving ERA5-Land soil temperature in permafrost regions using an optimized multi-layer snow scheme

Bin Cao et al.

Correspondence to: Bin Cao (bin.cao@itpcas.ac.cn)

The copyright of individual parts of the supplement might differ from the article licence.
Text S1

Figure S1 showed the comparisons of observed snow depth and soil temperatures time-series with simulations at selected sites from different geographic regions. The results indicate the snow depth overestimation was reduced in Exp. MLS-Dis+Den with multi-layer snow scheme, leading to a better representation of soil temperatures with lower bias compared to ERA5-Land.

Figure S1. Daily snow depth (dash lines) and soil temperatures (solid line) from observations (black), ERA5-Land (red), and Exp. MLS-Dis+Den (blue) at selected sites from different geographic regions. Color numbers are estimated snow depth (m) and soil temperature (°C) bias in winter for ERA5-Land and simulation experiment.